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Grocery retail is a competitive industry with high sales volumes and low profit
margins, which makes managing costs and optimizing processes especially impor-
tant. Store and warehouse labor costs constitute a large part of the retail cost
structure, and it is also an area where large savings can be obtained by optimizing
different processes. Optimizing the use of shelf space can reduce the amount of
time the employees have to spend bringing stock from the backroom storage to
the shelf. Other benefits of an optimized allocation of shelf space include reduced
lost sales and overall increases in customer satisfaction.

The goal of this thesis is to find a way to divide the available shelf space between a
given set of products so that the need for restocking the shelves is reduced and the
opportunity cost in the form of lost sales is minimized. This approach is different
from the existing methods in literature, many of which focus largely on the space
elasticity of the demand. In this thesis, the shelf space allocation problem is
formulated as an optimization problem, where the function to be minimized is
the expected quantity of lost sales. The main constraint is the available shelf
space.

The optimization problem is solved using the simulated annealing algorithm,
and different variations of the algorithm are compared. The algorithm performs
well with a linear cooling schedule and a static step size of 1. Good results are
also obtained with a logarithmic cooling schedule, when the control parameter is
chosen carefully. Using a method known as thermodynamic simulated annealing
did not result in improvements for the test cases. In all of the variations, the
selection of the initial temperature was found to have a significant impact.

The simulated annealing algorithm is a valid option for solving the shelf space
allocation problem. There are variations of the algorithm that are suitable for
different situations, and by optimizing the values of the different parameters one
can improve the results. Further research is still needed before using these results
in real-life applications.
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Dagligvaruhandeln är en bransch med h̊ard konkurrens, höga försäljningsvolymer
och l̊aga vinstmarginaler, vilket betyder att det är särskilt viktigt att h̊alla kost-
naderna under kontroll och optimera processerna. Arbetskraftskostnaderna i bu-
tiker och lager utgör en stor del av detaljhandelns kostnadsstruktur, och det
finns även stor potential för besparingar inom det omr̊adet. Genom att optimera
användningen av hyllutrymme är det möjligt att minska p̊a tiden de anställda är
tvungna att använda p̊a att föra varor fr̊an lagret till hyllan. Andra fördelar är en
minskning av den förlorade försäljningen och en allmän ökning i kundnöjdheten.

Målet med detta diplomarbete är att hitta ett optimalt sätt att fördela det
tillgängliga hyllutrymmet mellan en given uppsättning produkter s̊a att beho-
vet att fylla p̊a hyllorna minskar och möjlighetskostnaderna i form av förlorad
försäljning minimeras. Denna prioritering skiljer sig fr̊an befintliga metoder i litte-
raturen, varav m̊anga fokuserar starkt p̊a efterfr̊agans utrymmeselasticitet. I det-
ta arbete formuleras hyllutrymmesallokeringsproblemet som ett optimeringspro-
blem, där funktionen som minimeras är den förlorade försäljningens väntevärde.
Huvudsakliga bivillkoret är det tillgängliga hyllutrymmet.

Optimeringsproblemet löses med hjälp av metoden simulerad glödgning, och olika
varianter av algoritmen jämförs. Algoritmen presterar väl med en linjär nedkyl-
ningsfunktion och en konstant stegstorlek p̊a 1. Goda resultat n̊as även med en
logaritmisk nedkylningsfunktion, d̊a kontrollparametern väljs noggrant. En me-
tod som kallas termodynamisk simulerad glödgning ledde inte till förbättringar i
resultaten för testfallen i denna studie. I alla varianter av algoritmen hade valet
av starttemperatur en betydande inverkan.

Simulerad glödgning är ett fungerande alternativ för att lösa hyllutrymmesalloke-
ringsproblemet. Det finns varianter av algoritmen som lämpar sig för olika situa-
tioner, och genom att optimera värdena p̊a de olika parametrarna kan resultaten
förbättras. Fortsatt forskning behövs ännu innan dessa resultat kan användas för
verkliga tillämpningar.

Nyckelord: hyllplanering, allokering av hyllutrymme, simulerad
glödgning, heltalsoptimering, ickelinjärt kappsäcksproblem

Spr̊ak: engelska
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Päivittäistavarakaupan alalla kilpailu on kovaa ja myyntimäärät ovat suuria, mut-
ta voittomarginaalit pieniä, minkä vuoksi kulujen hallinta ja prosessien optimoin-
ti on erityisen tärkeää. Myymälöiden ja varastojen työvoimakulut muodostavat
suuren osan vähittäiskaupan kustannusrakenteesta, ja se on myös osa-alue, jolla
voidaan saavuttaa suuria säästöjä optimoimalla eri prosesseja. Hyllytilan käytön
optimointi voi vähentää työntekijöiltä aikaa, joka kuluu tavaran siirtämisessä ta-
kahuoneesta hyllyyn. Muita etuja optimoidussa hyllytilan allokoinnissa ovat me-
netetyn myynnin väheneminen sekä yleinen asiakastyytyväisyyden kasvu.

Tämän diplomityön tavoite on löytää optimaalinen käytössä olevan hyllytilan
jako annettujen tuotteiden välillä siten, että hyllytystyön tarve vähenee ja vaih-
toehtoiskustannukset menetetystä myynnistä laskevat. Tämä lähestymistapa on
erilainen verrattuna kirjallisuudesta löytyviin menetelmiin, sillä monet niistä kes-
kittyvät pääosin kysynnän tilajoustoon. Tässä diplomityössä hyllytilan allokoin-
tiongelma muotoillaan optimointiongelmana, jossa minimoitava funktio on mene-
tetyn myynnin odotusarvo. Ongelman tärkein rajoite on käytössä oleva hyllytila.

Optimointiongelma ratkaistaan käyttämällä simuloitu jäähdytys -menetelmää, ja
algoritmin eri variaatioita vertaillaan. Algoritmi tuottaa hyviä tuloksia lineaari-
sella jäähdytysfunktiolla ja staattisella askelkoolla 1. Tulokset ovat myös lupaavia
kun käytetään logaritmista jäähdytysfunktiota, mutta se vaatii säätöparametrin
huolellista valintaa. Termodynaaminen simuloitu jäähdytys -niminen menetelmä
ei tuottanut parannuksia testien tuloksiin. Kaikissa variaatioissa alkulämpötilan
valinnalla osoittautui olevan suuri merkitys.

Simuloitu jäähdytys on toimiva algoritmi hyllytilan allokointiongelman ratkai-
suun. Algoritmista on variaatioita, jotka soveltuvat erilaisiin tilanteisiin, ja tu-
loksia voi parantaa optimoimalla eri parametrien arvoja. Aiheesta tarvitaan vielä
jatkotutkimusta ennen kuin tuloksia voi käyttää tosielämän sovelluksissa.

Asiasanat: hyllysuunnittelu, hyllytilan allokointi, simuloitu jäähdytys,
kokonaislukuoptimointi, epälineaarinen selkärepun täyttö-
ongelma

Kieli: englanti
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Glossary

days of supply number of days the current stock will last
when taking into account future demand

facing one unit of a product that is visible on the
front on the shelf or other fixture

fixture any type of shelf or other structure that can
be used for presenting products

heuristics simple rules applied empirically to find a
”good enough” solution quickly

lead time time between order and delivery

macro space planning floor space planning, decisions about where on
the store map product categories are placed

metaheuristics methods that are more general and problem-
independent than heuristics, provide a more
thorough approach

micro space planning shelf space planning, decisions about where in-
dividual products are placed on the shelf

planogram shelf plan in picture form, shows where each
product is to be placed on the shelf

stock-out when the product is sold out
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Chapter 1

Introduction

In the world of retail, the combined sales for the global top 250 companies
reached US$4.4 trillion in 2016 (Deloitte, 2018). In the USA, grocery re-
tailers sold US$648 billion worth of products in 2016, and even in Finland
the grocery market reached EUR18.2 billion in value in 2018 (United States
Department of Agriculture, 2018; Nielsen, 2019). Grocery retail is an enor-
mous industry, but profit margins are relatively small. It was ranked one of
the least profitable industries in 2017, with a net profit of only 2.2% (Biery,
2017). Grocery is also an increasingly competitive industry, and all of this
means managing costs and optimizing processes is especially important, as
even small improvements can result in huge savings in expenses for the re-
tailer. Research by e.g. Angerer (2006) shows that there is a lot of potential
for improvement in the fast moving consumer goods industry by using dif-
ferent technological solutions for optimizing the store replenishment process.

Store and warehouse labor costs constitute a large part of the retail cost
structure, and it is also an area where large savings can be obtained by op-
timizing different processes. Effective space planning can save time for the
store employees in the shelf stacking process. The savings can come from
many different parts of the process, but one aspect is the shelf space alloca-
tion, which, if done optimally, can reduce the amount of time the employees
have to spend bringing stock from the backroom storage to the shelf. Opti-
mizing the use of shelf space brings many other benefits too, such as reduced
lost sales when customers are not met with an empty shelf where their pre-
ferred product should be, and overall increases in customer satisfaction when
the full assortment of products is presented in a clear way, without out-of-
stocks.

1



CHAPTER 1. INTRODUCTION 2

A review by Hübner and Kuhn (2012) shows that in the area of retail cat-
egory management, there is a large amount of high-quality research on how
to best manage the space and assortment aspects in the stores. However,
that research knowledge has not reached the software solutions that exist
today. Most systems still use simple rules and settings for making space and
assortment planning decisions, while the methods found in the literature are
more advanced. There is potential for closer cooperation between the two;
practical software solutions can become more intelligent by incorporating re-
search findings, and research studies can benefit from some real-life insights
about the use cases.

1.1 Problem Statement

In this thesis, the goal is to formulate a practical method to be used in shelf
space allocation planning. More specifically, the idea is to find a way to
divide the available shelf space between a given set of products so that the
need for restocking the shelves is reduced and the opportunity cost in the
form of lost sales is minimized.

The objective of this study can be formulated as follows:

What factors should be taken into account when allocating shelf space be-
tween products in a retail store, and how can the optimal allocation be solved
efficiently?

In order to answer this question, there are some steps that need to be taken.
Firstly, it is important to study the current available methods that have been
used for solving the shelf space allocation problem. After that, the shelf space
allocation is formulated as an optimization problem, which means deciding
what a good objective function is, as well as defining the optimization con-
straints. Then, based on the characteristics of the optimization problem, a
suitable solution method needs to be found and implemented. The selected
algorithm needs to be suited for the different requirements of the optimiza-
tion problem. Different variations of the algorithm are tested and compared
in order to find the most efficient method for the optimization.
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1.2 Scope of the Thesis

This study is focused on shelf space allocation in retail stores, and specifically
grocery retail. The findings can be applicable to some non-grocery retail
stores, but the examples and test data are from the grocery industry. Shelf
space optimization can only be done if the shelf space is, in fact, limited.
This is the case in most grocery stores, but excludes some specialty items
such as premium class watches or clothing. The space planning decisions of
those retailers typically do not concern a limited amount of space that needs
to be filled, so the approach is quite different.

The study is limited to products with previous sales history, so completely
new products that are being introduced are not included in the scope. It is,
however, possible to use the sales history of another product as a reference, if
there is a comparable reference product to be assigned. The products in this
study are also assumed to have regular and reasonably frequent deliveries to
the store, since the allocated shelf space is meant to satisfy enough demand
so that few refills of the shelf are needed before the next delivery. It could
also work in some situations with infrequent deliveries, but the main focus
of this thesis is the frequently delivered products, such as grocery products.

The changes in demand as a function of changes in the amount of space were
not included in the study, although the topic is discussed in Section 2.3 of
this thesis. Space elasticity was determined to be such a wide topic, that it
was excluded from the scope of the thesis. The same applied to substitution
effects and cross-space elasticity.

1.3 Structure of the Thesis

The thesis starts with a chapter on the general background of space and
assortment planning, with the key concepts presented. Shelf space planning
is specifically discussed in more detail, including some key concepts related
to replenishment and demand elasticity. After this, a review of relevant
literature on shelf space planning is presented. The chapter is concluded
with a section on the formulation of the shelf space allocation problem as an
optimization problem, with an objective function and constraints.

Next, in Chapter 3, a general introduction into optimization is given, after
which the different possible solution methods for this type of an optimiza-
tion problem are discussed. The selected method, the simulated annealing
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algorithm, and its advantages are presented in detail, along with descriptions
of the variations that are tested in this study. The results are presented in
Chapter 4, along with a description of the test data and other details re-
lated to the test setup. The chapter is divided into sections for the different
methods that were tested. In Chapter 5 the key findings of the study are
presented, and some analysis is provided on the quality and practical impli-
cations of the results. In the final section, some suggestions are presented for
future research possibilities.



Chapter 2

Shelf Space Allocation

In this chapter, a general overview of space and assortment planning is pre-
sented, along with definitions for some key concepts in this area. After that,
some previous approaches to solving the shelf space allocation problem are
reviewed.

In retail stores there are many space and assortment planning aspects to
consider. Assortment planning refers to determining the set of products that
the store should sell in each category, while space planning covers a wide
range of major and minor decisions related to the placement of the products
in the store.

2.1 Assortment Planning

Before deciding on where to place products in the store, an important step
is determining which products should be included in the assortment of each
store. The assortment planning process includes decisions about which prod-
uct groups should be included and how the product hierarchies with different
categories should be constructed. Larger stores such as grocery hypermar-
kets have the possibility to provide a larger assortment of different products,
whereas smaller stores have to limit the size of the assortment in order to
have enough room for the stock. Some stores might want a smaller number
of different products so that the core assortment is always covered and the
customer clearly sees what the options are in the store, and others prioritize
a large assortment to satisfy all the different customers’ needs. It has been
shown that in many cases reducing the size of the assortment can lead to an

5



CHAPTER 2. SHELF SPACE ALLOCATION 6

increase in sales (Boatwright and Nunes, 2001).

More detailed assortment decisions include the selection of brands and spe-
cific products for the assortment of each store. All these decisions can be
made locally at the store, centrally at chain level or as a combination of
these two. In the case of chains with regional variations in the demand, it
can be useful to let the local staff have some degree of influence in deciding
the assortment. The department store chain Macy’s in the USA saw signifi-
cant increases in sales when a local approach to the assortment was adopted
(Clifford, 2010).

When deciding the assortment for a store, the retailer needs to analyze the
decision making process of the customer. This can be done using a consumer
decision tree, that shows the different levels of decisions that the customer
is making in their mind before deciding on a specific product. The first level
of the decision tree is the first decision that a customer typically makes in
the process of purchasing a product. The different characteristics that the
customer can consider are the flavor or color of the product, price level (bud-
get, mainstream, premium), brand, package size and many different types of
subcategories that can be related to the intended target group (demographic
factors such as age or gender, other considerations). The decision tree can
be modified for different store locations, if there is variation in the decision
process of the customers.

In Figure 2.1 there is an example of a decision tree for the yoghurt category.
In this case, the first level in the decision hierarchy is the choice between
plain and flavored yoghurt. After that, the next decision is full fat or low fat
yoghurt, and other aspects come after that. This is only one example of what
the decision process may look like, but in any case, this type of analysis is
an important part of the assortment planning process. In this example case,
it is important to stock both plain and flavored yoghurts, both full fat and
low fat, but having many different package sizes and flavors is seen as less
important.

The optimal assortment for a store depends on the substitution decisions and
preferences of the customers. Customers can make substitution decisions be-
fore going to the store, knowing the store assortment, and not change their
decision based on availability. Thus, if they decide on product A and it is
out of stock, they do not purchase anything else instead. This type of substi-
tution behavior is called static or assortment-based. If the customer makes
their decision in the store, based on the availability of the products, that is
called stock-out-based or dynamic substitution behavior. It is important to
have a large enough variety in the assortment, so that the preferences of the
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Figure 2.1: Example of a decision tree

customers are satisfied, but it should also be noted that there is a possible
return to be had when one product is out of stock. If the retailer aims to
have enough stock to satisfy the demand of every product in assortment, the
customers will never have to resort to buying their second most preferred
product, which might have a higher profit margin. (Mantrala et al., 2009;
Honhon et al., 2010)

The stock-out-based substitution behavior depends on the category of prod-
ucts in question. Substitution mostly occurs within categories, so a customer
who wants to buy e.g. a specific type of cookies but discovers they are out
of stock will typically not substitute that choice for a box of cereal. There
are, however, some pairs of categories where cross-category substitution can
occur, but those are less common. An example of this would be chocolates
and chips; they are in separate categories but both are common choices for a
movie night snack. For some categories or products, stock-out-based substi-
tution might not occur almost at all, if the products are considered unique in
some way by the customers. On the other hand, there are many categories in
which the stock-out-based substitution is quite strong. In basic categories,
such as bread and milk, the customer most likely buys a substitute product
of a different brand or variety if their first choice is not in stock. The above
examples might not apply in all cases, since customer behavior is different in
different parts of the world, but they do illustrate the concepts.
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One aspect that grocery retailers need to consider when making decisions
about the assortment is the different product attributes related to dietary
requirements and preferences. The retailers need to be aware of all the avail-
able options of food items that are e.g. lactose free, gluten free or vegan, and
decide which ones should be part of the assortment. These attributes are
important to consider separately, since they affect the substitution behavior
in different ways.

All of these above-mentioned substitution effects are far from straightfor-
ward to consider in the assortment planning process. Sales history data can
be analyzed in order to find substitution relationships and other relevant in-
formation, which can then be used to support the decision making. Using
this data can be complicated, since it is often difficult to distinguish fluctu-
ations caused by substitution relationships from other types of fluctuations
in the sales. When the sales of product A decrease because its substitute
product B is on sale or because a new product C has been introduced into
the assortment, this effect is known as cannibalization. These events can
be detected from past sales data, if it is possible to isolate the cannibaliza-
tion effect from other effects on the sales during the same period. Besides
all the information received from the historical data, retailers typically also
have knowledge about their particular assortment of products, region and
customer base that they consider when making assortment decisions in their
stores.

The assortment planning does not include decisions about how much to order
of each product, how many facings1 of each product to stack on the shelf or
which product groups are placed next to each other in the store layout. Those
questions are addressed in the space planning process.

2.2 Floor Space Planning

After the assortment decisions have been made, space planning is needed to
determine where in the store to place each product. Space planning deci-
sions can be roughly divided into two categories: floor planning (sometimes
referred to as macro space planning) and shelf space planning (also known
as micro space planning). Floor planning refers to store layout planning on

1A facing is a unit of a product that is visible at the front of a shelf or other type of
display. Having three units of the same cereal box next to each other on a shelf means
that the product has three facings, regardless of the number of units stocked behind the
front box.
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category level, whereas micro space is about shelf space allocation within a
category. An overview of shelf space planning is presented in Section 2.3.

Floor planning decisions are important to consider for optimal results in
the sales of a retail store and ensuring maximum utilization of each square
meter of floor space. When this process is started, it is assumed that the
assortment decisions have already been made. This usually means that the
different categories or product groups are defined, and typically these groups
somehow represent the groupings when it comes to allocating shelves to the
categories; the products in e.g. the cereals group will most likely be placed
together in one place, either on one shelf or on adjacent shelves.

At the floor planning stage, it is not necessary to know the list of specific
products that will be placed on the shelf, since the planning is done on
category level. Categories can be allocated one or more shelving units2 or
other fixtures, such as pegboards or racks for hanging items. For products
that require storing in cold temperatures, there are different types of cold
cabinets and freezer boxes. In Figure 2.2 there is an example of how the
floor layout of a grocery store can look. The floor plan is typically made on
department level first, and then on category level inside each department.
The example in the figure shows e.g. dairy products grouped together in
one section of the store, with the more specific categories yoghurts and milk
shown separately inside the department.

There are many aspects to consider in the floor planning process. Placing
certain categories next to each other can increase their sales, if there are
complementary products in the two groups or if the groups are otherwise
related in some aspect. It is important for the retailer to consider the foot
traffic paths of the customers in order to be able to influence them. One
common way of increasing sales in grocery stores in general is to place staple
items, such as milk, in the back of the store. This way the customers have
to walk through the whole store and pass by many categories and products
on the way. The retailer also has to decide how much space to allocate to
the shelves overall, and how much space should be left empty for customers
to be able to walk between the shelves.

2A shelving unit is a system of multiple shelves that are stacked vertically.
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Figure 2.2: Example of a floor plan in a grocery store
(Image: RELEX Solutions)

2.3 Shelf Space Planning

In shelf space planning, the categories and their specific assortments are
known beforehand. The decisions that need to be made usually include how
much shelf space to allocate to each product, which products to group to-
gether on the shelf and in which exact spot to place the products on the
shelf (vertical and horizontal location). The result of this planning is nor-
mally a planogram, i.e. a picture of the shelf or other fixture with all the
products placed on it. Planograms are used for communicating the layout of
the products to the store staff. In Figure 2.3 there is a generic example of a
planogram in a grocery store, in this case from the cereals category.

The three main decisions that need to be made concerning shelf space plan-
ning are (1) which products to place next to or near each other on the shelf,
(2) where on the shelf to place each product or group of products, taking
into account horizontal and vertical location and (3) how much shelf space
to allocate for each product (not necessarily in this particular order).

The retailer needs to decide (1) which criteria to use for grouping products
together in the shelf. For this, the retailer can use a consumer decision
tree. The decision tree and the decision making process are presented in
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Figure 2.3: Example of a planogram in a grocery store
(Image: RELEX Solutions)

more detail in Section 2.1 and Figure 2.1. The first level of the decision
tree represents the first decision that the customer makes, which means the
products should perhaps be grouped according to that aspect on the shelf.
This makes the shopping experience more convenient for the customer, as
they are more likely to find many valid options in the same place on the
shelf, and they might even find and purchase a new product that matches
their preferred criteria.

When it comes to the shelf location of the products (2), there are different
aspects that can be considered. Regarding the vertical location, a retailer
might want to place high-margin products on eye-level for them to be noticed
and thus hopefully increase sales, whereas budget alternatives are commonly
placed on the lower shelves. Another option to consider is placing the most
popular items around eye level, because that way customers do not have
to spend much time looking for the desired product and the customer sat-
isfaction increases. The horizontal location is in most cases less important
to consider than the vertical location (Hansen et al., 2010), but placing a
product right at the start of the aisle might still make a difference compared
to placing it further inside the aisle.

The amount of space (number of facings) to be allocated to each product (3)
depends on various factors. The decisions can be made on subcategory level
first, so the amount of space per subcategory can be decided before making
decisions for individual products. These subcategories or groupings are the
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ones that the retailer has determined to be the most relevant when analyzing
the customer’s decision making process (see point (1) above). When making
decisions about the shelf space allocation, the assortment of that category is
already determined. In addition to the list of products that are to be placed
on each shelf, it is necessary to know any possible minimum limits to the
shelf allocation, which can be general limits (”at least two facings of each
product”) or product-specific.

The forecasted demand of the products can be used to determine how much
space each product should be allocated. Other metrics can also be used, e.g.
past sales or the sales margin, or a combination of two or more of these.
Using the forecasted demand as a basis for the allocated space increases, for
example, the probability of a customer finding what they need in the shelf
(assuming that they find the correct shelf in the first place, but that has
to do with floor planning). The substitution behavior of the customers can
also be considered here, since there is often another optional product that the
customer will buy in the event of a stock-out of their most preferred product.

2.3.1 Replenishment Costs

One related aspect to consider in shelf space allocation is minimizing differ-
ent costs. The costs that are related to shelf space allocation include shelf
stacking costs (personnel costs), delivery costs and other inventory costs. Or-
ders from the supplier or warehouse to the store can be placed daily, weekly
or with some other suitable interval. Once an order is placed, the time it
takes until the order is delivered to the store is called the lead time. If the
lead time is 3 days and the orders are made once a week on Mondays, the
deliveries arrive on Thursdays.

If the goods are delivered less frequently, the delivery costs are lower, but as a
consequence the need for inventory space grows, as do the inventory handling
and storing costs. In the case of perishable goods (a majority of grocery
products, for example), the products are less fresh when they arrive at the
shelf and also at the customer’s home, which increases spoilage and possibly
makes the products less appealing to the customers in the store. Here it is
important to consider the different spoiling times of the products, since they
vary greatly between product categories. Taking into account the demand of
the products in the shelf space planning process helps in lowering costs. If the
shelf space is allocated in such a way that stock-outs are minimized, there is
less need for restocking the shelves from the backroom storage. In addition,
if the order quantity always fits in its allocated shelf space, there is no need
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for a backroom storage at all, which further streamlines the replenishment
process. A relevant metric to consider in the context of replenishment is the
number of days of supply. The number is calculated using an estimate for the
future demand, and the days of supply number represents how many days
the current stock will last before there is a stock-out.

2.3.2 Space Elasticity

The space elasticity of demand is often considered in decisions related to
shelf space allocation. Space elasticity is a factor that represents how much
the sales of a product increase as a result of increasing the allocated shelf
space for that product (or in reverse). Curhan (1972) presented the space
elasticity mathematically as follows:

E =
(U1 − U0)/U0

(S1 − S0)/S0

, (2.1)

where U is the unit sales of the product, S is the amount of space allocated
to the product and 0 and 1 refer to the moments in time before and after
making the change in the amount of space allocated. So for example a space
elasticity of 0.25 would mean that if the allocated shelf space for that product
was increased by 100 percent, the sales of the product would increase by 25
percent.

There are many complexities related to the space elasticity effect that need
to be considered when planning shelf space allocation. The space elasticity
of a product can vary depending on the product group, the location on the
shelf (horizontal, vertical), the location of the shelf in the floor plan, the price,
possible promotions and many other things. Space elasticity can be measured
empirically, but it is difficult to isolate the space elasticity effect from all these
other factors. Space elasticity is typically positive, but there can be cases
where the it is close to zero or even negative, if an increased shelf space area
makes the product seem less attractive to consumers. More research that
touches on the topic of space elasticity is presented in Section 2.4.

2.3.3 Cross-Space Elasticity

The cross-space elasticity is another, less investigated effect on the demand
of products in retail stores, where a change in the shelf space of one product
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affects the demand of another product (Corstjens and Doyle, 1981). Using the
same notation as Equation (2.1), the cross-space elasticity between products
i and j can be defined in the following way:

Eij =
(U1,i − U0,i)/U0,i

(S1,j − S0,j)/S0,j

. (2.2)

If the cross-space elasticity is −0.25, then if the shelf space allocated to
product j increases by 100 percent, the sales of product i decrease by 25
percent. In this case i and j can be considered substitutes. A real-life
example of substitutes is two different brands of a similar soft drink. If the
cross-space elasticity is positive, the products are complements (for example
pasta and pasta sauce).

Based on Equation (2.2) it can be seen that the cross-space elasticity between
i and j is not the same as the cross-space elasticity between j and i. In other
words, if the sales of pasta A increase by 75 percent after the shelf space of
pasta sauce B is increased by 100 percent (EAB = 0.75), that does not imply
that the sales of the pasta sauce would react in the same way to a change in
the shelf space of the pasta (EAB 6= EBA).

2.4 Shelf Space Planning in Literature

There are a number of approaches in literature for solving different problems
related to shelf space planning. Regarding shelf space allocation, there have
been some simple heuristic approaches in the 60’s and 70’s, that Zufryden
(1986) reviewed. These methods applied heuristic rules to allocate shelf space
simply based on past sales or sales margin, in order to make it operationally
practical to use.

Zufryden (1986) concluded that these methods were not leading to optimal
solutions, so he then approached the shelf space optimization problem with
dynamic programming. The objective function included space elasticity and
different cost components, as well as demand-dependent marketing compo-
nents. Zufryden enabled a general form of the objective function as well as
integer requirements for the solution. The shelf was divided into a number
of predefined slots, one shelf would be e.g. 40 slots and the number of slots
allocated for a product needed to be a multiple of the size of that product
(expressed in number of slots). He also brought up practical concerns related
to computational resources.
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Cox (1964) found that there was not much research available on the topic of
space elasticity at that time, so he conducted an experiment with four dif-
ferent products in six supermarkets. He did not find any conclusive results
regarding the importance of considering space elasticity, which is logical con-
sidering the small sample size. Curhan (1973) reviewed some of the research
on shelf space elasticity that existed at the time, and he concluded that al-
though there had been experiments on the topic, most of them were not good
enough to use in any general case. He also noted that the results had not
notably affected the way the shelf space is managed in retail businesses.

Corstjens and Doyle (1981) developed a model for shelf space allocation that
utilized space and cross-space elasticities, as well as product margins and
inventory costs. They investigated data from one retailer with 140 stores and
concluded that including space and cross-space elasticities in the optimization
problem yields higher profits than previous models that did not include these
demand components. However, the space and cross-space elasticities are not
simple factors to take into account. They vary greatly with factors such as the
location on the shelf, package color and product class, and thus it is difficult
to estimate the space and cross-space elasticities in a reliable way (Curhan,
1973; Drèze et al., 1994). Corstjens and Doyle (1981) did not include spoilage
of products as a factor in their model, in addition to other aspects such as
the location of the products on the shelf.

In their article Drèze et al. (1994) presented the results of experiments related
to the link of the sales profit to the allocated shelf space and the shelf location.
The research scope consisted of 60 stores from one retailer, all of them large
stores (> 4000 m2). Drèze et al. found that the location impacted the sales
more than the amount of allocated space, assuming there was some minimum
limit for the allocated space. The vertical location was shown to have a larger
effect on the sales than the horizontal location.

Desmet and Renaudin (1998) investigated the shelf space elasticity of dif-
ferent product groups. Their results indicated that the space elasticity is a
more significant factor for products that are classified as impulse-buy prod-
ucts. The type of store was not shown to have any significant impact.

Assortment decisions also have an impact on shelf space aspects. If there
are too few facings of a product on the shelf and the product runs out,
the outcome is normally affected by possible substitute products. The lost
profit depends on the existence of direct substitutes, the degree to which
customers choose substitutes instead of not buying any product at all, and
the profit margins of the substitutes. Urban (1998) presented a generalized
model of the shelf space allocation problem that includes inventory costs in
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addition to space elasticity effects. The article also includes the possible
effect of substitute products through a factor that represents ”the degree of
substitutability” between two products.

Yang (2001) presented a heuristic method for solving the shelf space alloca-
tion problem. In this method, a priority ranking is calculated based on the
profit to size ratio of each product, where the size is the width of one facing.
The allocation is then done step by step for each product in the determined
order, taking into account possible minimum and maximum limits for the
number of facings of the product. Here the profit is formulated as a linear
function of the number of allocated facings. Yang compares the problem to
a knapsack problem, which is something this thesis discusses more in depth
in Section 3.1.

These previous approaches used linear profit functions, but as Yang (2001)
mentioned in his conclusions and Hansen et al. (2010) explained more thor-
oughly, the increase in profit from adding a second facing of a product is nor-
mally greater than the profit that comes from adding a third facing (which is
greater than the added profit of a fourth, etc.). If this aspect is to be taken
into account, the profit function needs to be nonlinear.

One approach that includes a nonlinear profit function was presented by
Lim et al. (2004). The article compares different metaheuristic methods
as well as simple heuristics for solving optimization problems, with linear
and nonlinear profit functions (see Section 3.2 for more details on the topic
of metaheuristics). In addition to the nonlinear profit function, Lim et al.
presented a modification of the profit function that considered the effect of
grouping related products together on the shelf.

Hansen et al. (2010) built a model for shelf space decision making that in-
cluded shelf space allocation and location factors. As opposed to Lim et al.
(2004), Hansen et al. used an optimization model with a nonlinear profit
function that was modified so that it could be solved using linear program-
ming. The article also included the horizontal and vertical location aspects
in the profit function and concluded that they each had an important impact,
although the vertical location effect was approximately twice the size of the
horizontal location effect. This is fairly consistent with the findings of Drèze
et al. (1994).

Hansen et al. (2010) also discussed space elasticity, saying that the only
reason for retail stores to place more facings of some products on the shelf
is the increase in sales that is assumed to follow. This conclusion completely
ignores the labor costs that incur each time a shelf has to be restocked, as
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well as the opportunity cost of the lost sales that may occur with stock-outs.
Shelf stacking represents a significant share of the total labor, and labor costs
are in general quite a large part of the total expenses of a retail store. This
is supported by e.g. Hübner and Kuhn (2012).

Pricing aspects are in many cases useful to take into account when it comes to
space and assortment planning. Hübner and Kuhn (2012) presented a review
of some commercial models as well as scientific research related to different
category management areas. The article mentions that pricing, among other
things, has an influence on the substitution aspects, and that this has been
researched by McIntyre and Miller (1999) and Murray et al. (2010).

2.5 Shelf Space Allocation as an Optimization

Problem

There are many areas of category management that could be considered and
optimized in combination with shelf space. In this thesis, some assumptions
are made in order to limit the scope. The assortment of the products is
assumed to be predetermined, so the shelf space allocation starts with a
given list of products, usually from the same product category. Another
assumption is that the delivery schedule of each product is known.

In this thesis, the shelf space allocation problem is formulated as an opti-
mization problem with an objective function and a number of constraints.
The objective function expresses the quantity to be optimized as a function
of the allocated shelf space to each product i (i ∈ [1, N ], where N is the
number of different products to be placed on the shelf). The quantity can
be something that should be minimized or maximized.

A logical option for the objective is to directly maximize the (monetary)
profit, which is the model that Corstjens and Doyle (1981) followed. In this
model the objective function consists of a profit component and a cost com-
ponent. The profit component includes sales, profit margin, space elasticity
and cross-space elasticity of sales. The cost component consists of the inven-
tory costs of the product. The model by Corstjens and Doyle does not include
shelf stocking costs in any way, but there is a cost elasticity component.

One issue with the Corstjens and Doyle model is that it relies heavily on the
space elasticity components, while it has been shown that the importance
of space elasticity varies significantly depending on the characteristics of the
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store as well as the location on the shelf. The profit is also not a linear
function of the allocated space. The benefits from adding a facing of a
product to a shelf are extremely low after a certain threshold point. (Drèze
et al., 1994)

When choosing the objective for the shelf space allocation problem, the
specifics of the situation affect the priorities. Depending on various charac-
teristics of the specific market, country or region, store, etc., the objectives
can differ considerably. In some countries around the world the labor costs
are not part of the main considerations, whereas in other countries they are.

This thesis assumes the premise that minimizing shelf stacking labor is the
most important goal. It is not optimal to minimize these labor costs solely
by minimizing the number of times a shelf has to be restocked, since this
approach may lead to large amounts of lost sales. Instead, the allocation
should aim to provide enough stock of each product to the shelf, so that the
stock lasts for as long as possible and thus the required shelf stacking times
are reduced. If there is a backroom storage, shelf restocking can occur also in
between deliveries, but if there is no storage room, shelves are only restocked
when deliveries arrive. In both of those cases, the number of times the shelf
has to be restocked is minimized when the stock on the shelf satisfies the
demand for as long a time period as possible: if there is a backroom, the
number of restocking times between deliveries can be lowered, and both with
or without a backroom, the delivery frequency can in some cases be reduced.
In this study, the problem is approached by minimizing the lost sales in the
period between deliveries, because this approach considers the uncertainty
of the sales and leads to the highest level of satisfied demand. Regarding
the product availability, the optimal allocation is also a beneficial solution
for the shelf stacking labor, since a high level of availability between two
deliveries leads to less need for restocking during that period, and possibly
less frequent deliveries over all.

In conclusion, minimizing the risk of a stock-out was chosen as the priority,
and specifically minimizing the estimated lost sales quantity. The objective
function could have been set as the minimum of the days of supply of each
product, the goal being to maximize this (and thus maximize the time it
takes until the next stock-out), but as such it is not a suitable objective.
This approach only improves the days of supply of the ”worst” product on
the shelf (the one with the lowest days of supply), not the overall result. If
the days of supply of the ”worst” product can not be improved further, due
to e.g. the facing width being larger than the remaining empty space on the
shelf, the optimization does not seek to fill the remaining space with other
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products, even if there were some with a sufficiently small facing width. This
leads to a suboptimal solution.

In order to calculate the estimated lost sales that occur due to stock-outs,
one needs to have some kind of approximation for the future sales, as well
as the corresponding degree of uncertainty. For this, the average daily sales
and the corresponding sales standard deviation can be used, if one makes the
assumption that the sales follow the normal distribution. Some other known
distribution could also be used for this purpose, but the normal distribution
was chosen for the sake of simplicity. In addition to the sales estimates, the
number of days until the next delivery for each product is also needed for
minimizing the risk of stock-outs. In practice this could be represented by
the maximum number of days until the following delivery of each product,
since that way it represents the worst-case time until the next delivery. That
can be calculated as the sum of the number of days between orders and the
longest lead time of the product.

The approach of minimizing the lost sales assumes that when there is a stock-
out, the lost sales are equal to the unsatisfied demand for those days. If there
were no sales on the stock-out day, the lost sales are equal to the forecast
for that day, and otherwise they are equal to the difference between sales
and forecast. This method of determining lost sales ignores possible sub-
stitution effects, i.e. that a customer might choose another similar product
if the preferred product is not available. However, in this case the goal is
to minimize stock-outs in order to minimize labor costs from shelf stacking,
hence the substitution effects can be considered less important. Addition-
ally, the fact that one facing represents more than one unit when looking at
the depth of the shelf is ignored, since only the relative amounts between
different products matters, not the absolute numbers, and it is assumed all
products have room for roughly the same number of items per one facing.
This is also a simple factor to include in the model later if there are in fact
notable differences between the depth dimensions of different products.

2.5.1 Objective Function

In this thesis, the goal of the optimization is to minimize the lost sales. When
modeling the uncertainty of sales using the normal distribution assumption
with the average daily sales and standard deviation, there is some risk of
a stock-out on any given day. Of course, if the demand is quite stable and
there is plenty of stock to satisfy the demand, the risk is low, but it still exists
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assuming there is some variance in the sales. Based on this, the expected
quantity of the lost sales can be calculated.

Before introducing the lost sales calculations in detail, it needs to be men-
tioned that this approach to the objective function does not include many
aspects such as placement and grouping on the shelf, as well as the space
elasticity components. These aspects, which have been discussed in more
detail in Section 2.3, and more can be included in the objective function at
a later stage by adding new multiplicative or additive components in the
calculations.

The demand of a product during the days before the next delivery is denoted
as x. This variable x is measured in units sold. It is assumed to be normally
distributed with the mean µ = RA and the standard deviation σ =

√
RB,

where R is the maximum number of days until the next delivery, A is the
average daily sales of the product and B is the standard deviation of the
daily sales. The probability density function of this distribution is denoted
as fx(x), and the number of facings (items) of the product on the shelf as Z.
The latter is the quantity that will be varied in order to reach the objective.

After calculating the expected quantity of the lost sales of a product, the
quantity needs to be divided by the number of days until the next delivery
R. This is necessary in order to scale the lost sales to be comparable between
the different products even though they may have different delivery schedules;
one unit of lost sales in one day has a greater impact than one lost sale in a
seven-day period.

The probability that the number of units x that are (or would have been)
sold is greater than the number of units on the shelf Z can be expressed using
the complementary cumulative distribution function of x:

P(x > Z) = F̄x(Z) =

∞∫
Z

fx(x) dx, (2.3)

in which x follows the normal distribution where µ is the mean and σ2 is the
variance. The cumulative distribution function Fx(Z) gives the probability
that a random value x is less than or equal to Z. Thus the complementary
cumulative distribution function F̄x(Z) = 1−Fx(Z) represents the probabil-
ity of x being greater than Z. The cumulative distribution function can be
calculated as the integral of the probability density function fx from 0 to the
limit Z, or in the complementary case, from Z to infinity.
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The expected quantity of the lost sales is then the sales that go over the limit
Z multiplied by the probability, as presented below:

E[xL] =

∞∫
Z

(x− Z)fx(x) dx, (2.4)

where xL is the quantity of lost sales. This can be further modified in order to
reach a more accurate solution in the calculations. The substitution t = x−µ
is used, so that the probability density function ft is centered around zero.
That gives the following function:

E[xL] =

∞∫
Z−µ

(t+ µ− Z)ft(t) dt, (2.5)

where t is normally distributed with the mean 0 and the variance σ2. Next,
the substitution u = −t is used so that the integral starts from negative
infinity, thus canceling out some terms and simplifying the equation. After
this, as well as separating the terms, the result is:

E[xL] = −
µ−Z∫
−∞

ufu(u) du+ (µ− Z)

µ−Z∫
−∞

fu(u) du, (2.6)

where u is normally distributed with the mean 0 and the variance σ2, similarly
to t. After integrating by parts and canceling out terms (using F (−∞) = 0),
the result is the final expression for the expected quantity of the lost sales:

E[xL] =

µ−Z∫
−∞

Fu(u) du, (2.7)

with u following the normal distribution with the mean 0 and the variance
σ2. This is what will be used as the basis for the objective function of the
optimization problem. The objective for this optimization is to minimize the
expected quantity of the lost sales, when taking the sum over all products i,
i ∈ [1, N ]. Here the lost sales is also divided by the number of days Ri before
the sum is calculated. The objective function is presented in its complete
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form below:

min
Zi

N∑
i=1

[ µi−Zi∫
−∞

Fu(u) du
/
Ri

]
. (2.8)

∀i ∈ [1, N ]

The objective function is not linear, and behaves in ways that may not be
intuitive at first. The number of facings allocated to each product depends on
the past sales of the products, but also on the uncertainty of the sales history.
If all of the products have the same average sales, but the sales have different
standard deviations, the objective function does not necessarily allocate more
facings to the products that have a higher degree of uncertainty. Doing that
would make it more likely for those products to have enough stock in the case
of high upward fluctuations in sales, but on the other hand it might cause
stock-outs for products with a more stable demand. In an example case like
this, optimizing the objective function in Equation (2.8) might lead to the
stable-selling products having more facings than the fluctuating ones, or vice
versa. The result depends on the specifics of the problem in question, but
the aim is in any case always to minimize the estimated lost sales.

The objective function in Equation (2.8) can be modified to include other
factors that may affect the shelf space planning decisions, such as the location
on the shelf, grouping and space and cross-space elasticity. This can be done
in different ways depending on what the effect in question is.

2.5.2 Constraints

In addition to the objective function, some constraints are needed for the
optimization. The constraints that are considered in the optimization are
presented in this section. The quantity that will be varied in the optimization
is the number of units of a product on the shelf, Z. One clear constraint is
that Z needs to be non-negative for all products:

Zi ≥ 0. (2.9)

It might be beneficial to add a minimum limit for Z for each product, or
the optimization can be allowed to find the optimal solution without any
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minimum limits. In practice, retailers often set minimum shelf fill levels for
each product.

Another essential constraint for this problem is that each Z should be an
integer, as presented below:

Zi ∈ Z. (2.10)

The most important constraint for the shelf space allocation problem is the
size of the shelf or shelves. Depending on the problem setup, one can explic-
itly include all dimensions of the shelf, but at least the width is a relevant
constraint to consider. The height of the shelf is also important, especially if
the plan is to not just stack the items next to each other but also on top of
each other in the same shelf. However, a choice can be made to ignore the
height dimension in the problem formulation if it can be assumed that items
are only placed next to each other on the shelf, and that the items all fit in
the shelf heightwise. That is what is done in this thesis. When it comes to
the depth of the shelf, in most cases it is possible to place multiple items
behind one another in the shelf. In this case, the choice has been made to
simplify the problem and only assume that the shelf contains as many items
of a product as there are facings. This way only the width dimension of the
shelf space is included.

The shelf space constraint is formulated as follows:

∑
i

wiZi ≤ S, (2.11)

where the width of each product i is represented by wi, the number of facings
is Zi, the total width of the shelf is S and the number of different products is
N . In order to simplify the problem further, the problem is limited to only
one shelf in this thesis. In reality, one would have multiple shelves and then
one would need to make a series of additional decisions when it comes to
shelf space allocation: how many different shelves can facings of one product
be placed on, which products should be placed close to each other, etc. If all
questions related to placement and grouping are ignored, the optimization
problem simply becomes the one-shelf problem copied x times, where x is
the number of shelves.



CHAPTER 2. SHELF SPACE ALLOCATION 24

Below is a summary of the optimization constraints:

Zi ≥ 0

Zi ∈ Z∑
i

wiZi ≤ S

∀i ∈ [1, N ]



Chapter 3

Solution Algorithm

The shelf space allocation problem can be solved using different optimization
methods. In this chapter, some general optimization techniques are intro-
duced first, and then some more specific options for solution algorithms are
investigated. The chosen simulated annealing algorithm is presented in more
detail, as well as some subfunctions and variations for the algorithm. The
specific test setup and the test data used for this thesis are also presented.

3.1 Optimization

Before deciding on what kind of optimization algorithm to use for solving
the shelf space allocation problem, some characteristics of the problem need
to be identified. The objective function, which is seen in Equation (2.8),
is nonlinear. The optimization problem is constrained by the limited shelf
space as well as possible minimum limits for each individual product. All
variables (numbers of facings) are required to be integers.

In nonlinear optimization, one common approach is to use the Karush-Kuhn-
Tucker (KKT) conditions for optimality (Karush, 1939; Kuhn and Tucker,
1951). The KKT conditions are first-order derivative necessary conditions
for any solution to be a local optimum. They are useful for solving many
nonlinear optimization problems, but in the case of the shelf space allocation
problem presented in Section 2.5, the variables are required to be integers.
This makes it unsuitable for solving using the KKT conditions, since they
assume differentiable functions. One option for the shelf space allocation
problem would be to use relaxation, i.e. to make the variables continuous,

25
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only include the maximum shelf space restriction, and solve it using the
KKT necessary conditions. Then, after an optimum is found, the variables
(numbers of facings of each product) are rounded to the nearest integer.
However, because the problem depends heavily on the integer requirement
and the varying facing sizes, the differentiable function approach is not likely
to be suitable for all the different forms of the problem.

For continuous variables Zi, the objective function of the shelf space alloca-
tion problem is likely to be a convex function, based on the fact that adding
a facing to any product always improves the result of the objective function,
but we cannot be sure solely based on this. Due to the shelf space constraint
as well as the integer requirement for the numbers of facings, the problem
has solutions where no more facings can be added while the solution is not
optimal. Being in one of these solution states means that in order to reach
the optimum, some facings have to be removed, thus temporarily increas-
ing the value of the function to be minimized, before adding facings to other
products and reaching a lower function value. For solving this kind of a prob-
lem, it is advantageous to use an algorithm that does not get easily stuck
on these non-optimal solutions. In addition, if the optimization problem is
to be generalized to include other aspects of shelf space planning such as
product groupings and location on the shelf, the objective function will have
a different form, which could possibly be non-convex. Based on this, it is
useful to choose a solution method that is suitable for non-convex problems
with integer variables, too. The topic of choosing an algorithm is discussed
in more detail in Section 3.2.

This type of problem, where a limited amount of space is distributed be-
tween a number of items that each have a different value, can be considered
a variation of the well-known knapsack problem. The knapsack problem is
a combinatorial optimization problem with numerous applications, and the
general form of the problem asks how the value of a knapsack can be max-
imized, given a knapsack with a maximum limit for the weight, along with
a set of items that each have a given weight and value. There are different
variations of the problem, the most simple being the 0-1 knapsack problem,
where each item can only be included once. The formulation of the 0-1
knapsack problem takes the following form (Kellerer et al., 2004):
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max
n∑
i=1

vixi (3.1)

s.t.
n∑
i=1

wixi ≤ W,

xi ∈ {0, 1},

where n is the number of items available, vi is the value of item i, xi is the
variable that determines if the item i is included or not (1 if included, 0 if
not), wi is the weight of item i and W is the maximum limit for the weight,
i.e. the capacity of the knapsack.

The shelf space allocation problem can be seen as a nonlinear knapsack prob-
lem with linear constraints. It is a nonlinear problem because the objective
function (the expected quantity of lost sales) is nonlinear, but the shelf space
constraint and the possible product-specific minimum quantity constraints
are linear. In the problem formulation used in this thesis, the goal is to mini-
mize the expected lost sales instead of maximizing the direct profits, but the
idea remains the same.

Thus, the shelf space allocation problem, as described in Section 2.5, can be
considered a nonlinear knapsack problem with linear constraints. However,
the most relevant characteristics of the problem are the nonlinear objective
function, the integer requirement for the variables and the linear constraints
defining the feasible set.

3.2 Possible Solution Methods

There are many different methods that have been used to solve knapsack
problems and other similar problems in the past. As discussed in Section 2.4,
previous approaches especially to the shelf space allocation problem include
some simple heuristic methods. In order to reach an optimal or near-optimal
solution while maintaining some level of computational efficiency, there are
different metaheuristic methods one can use, that have been implemented
to similar optimization problems. Metaheuristics is a collective name for
methods that are more general and problem-independent than heuristics, and
they provide a more thorough approach, thus they are more likely to reach
an optimal solution. Lim et al. (2004) present a metaheuristic method for
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solving a shelf space allocation problem that is based on the heuristic method
by Yang (2001). The method by Lim et al. optimized the search by proposing
more complex methods for the neighborhood moves of the algorithm. This
method is also mentioned in Section 2.4.

An optimization method for solving an assortment planning problem was
presented by Kök and Fisher (2007). The assortment planning problem in
their research is nonlinear and discrete in a similar way as the shelf space
allocation problem, and Kök and Fisher solved it as a series of nonlinear
knapsack problems. The method is an iterative heuristic that models the
different substitution effects in the assortment.

Bretthauer and Shetty (2002) mention several possible solution methods
to the nonlinear knapsack problem. One of them, the branch-and-bound
method, works by solving a series of subproblems separately (see e.g. Brett-
hauer and Shetty, 1995). This method is for a nonlinear integer problem and
it assumes a convex objective function. While the chosen function in this
thesis is likely to be convex, because of the constraints and possible future
extensions of the function, a method should be chosen that is suitable for
non-convex problems as well, so the branch-and-bound method is not suit-
able in this case. The same problem is found with the method presented
by Hochbaum (1995), in which the nonlinear integer knapsack problem is
converted into a linear 0-1 knapsack problem.

One method that was considered for solving this shelf space allocation prob-
lem is the particle swarm optimization (PSO). It starts by initializing a set of
initial candidate solutions, i.e. a swarm of particles, and the position of each
particle is then improved based on the best known position of the particle
itself and of the whole swarm. As PSO is a metaheuristic, an optimal solu-
tion is not guaranteed to be found, but the algorithm is simple to implement
and reaches near-optimal solutions. (Kennedy and Eberhart, 1995)

Instead of the particle swarm optimization, a decision was made to implement
a version of an optimization algorithm called simulated annealing and focus
on improving that for solving the shelf space allocation problem presented
in this thesis. The advantages of the simulated annealing algorithm are
discussed in Section 3.3.
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3.3 Simulated Annealing

Simulated annealing (SA) is an optimization algorithm, a metaheuristic, that
is considered to have been invented almost simultaneously by Kirkpatrick
et al. (1983) and Černý (1985). The method is an analogy of the process of
annealing in metallurgy. The technique of annealing involves heating a metal
and then cooling it in a controlled fashion in order to improve its structure.
The SA algorithm can be used to solve many different kinds of optimization
problems, including nonlinear and non-convex problems, since the objective
function does not need to be differentiable. The objective function value rep-
resents the energy of the system, and the objective is to minimize the energy
level. The variables of the optimization problem represent the ”state” of the
system. There have been various applications of the simulated annealing al-
gorithm in fields such as image processing, molecular biology and chemistry
(Eglese, 1990). Simulated annealing has also been applied to the job shop
scheduling problem by van Laarhoven et al. (1992).

3.3.1 Algorithm Description

In more detail, the simulated annealing algorithm works as follows: it begins
with an initial state s0, which is the first ”current state” s. A new state
snew is then generated using some chosen neighbor function, and the current
”temperature” of the system is calculated based on how far in the cooling
process the algorithm has advanced. The temperature typically describes
how close the algorithm is to reaching the maximum number of iterations; in
the beginning the temperature is high, and it reaches zero at the end. Next,
a probability of acceptance for the new state is generated. The probability is
a function of the energy level (objective function value) of the current state s,
the energy level of the new state snew and the current temperature T . If the
new energy level is lower, then the new state is always accepted (assuming
the problem in question is a minimization problem). If the new energy level
is higher, the probability of acceptance depends on the temperature; a higher
temperature results in more accepted moves. This process is then repeated
until the maximum number of iterations kmax is reached, or until some possi-
ble other condition for terminating the algorithm is met. A simplified version
of the algorithm logic is presented below.
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# pseudocode for the simulated annealing algorithm

s = s0

for k in 1:kmax

snew = neighbor(s)

T = temperature(k)

if probability(E(s),E(snew),T) >= random(0,1)

s = snew

output: s

A significant advantage of the simulated annealing method compared to it-
eratively improving methods is that the algorithm is less likely to get stuck,
since it is always possible to jump away from a local optimum while the
temperature is above zero (Kirkpatrick et al., 1983). In the beginning of
the process, at higher temperatures, moves to higher energy levels are more
likely to be accepted. Towards the end it is unlikely (but possible) that those
moves will be accepted, since at that stage the algorithm is likely to be ap-
proaching the global optimum or some value near it. Another advantage of
the simulated annealing algorithm is the simplicity of implementation. It is
easy to implement once the subfunctions have been determined. It is also
adaptable to many different kinds of combinatorial optimization problems.
However, in some cases the algorithm can be computationally heavy if all
the parts are not constructed carefully. (Eglese, 1990)

The neighbor, temperature and probability functions can be selected in dif-
ferent ways. In this thesis, the probability function is only used in its
recommended standard form. The probability function exists to determine
whether a move from the current state s to a new state snew should be ac-
cepted or not. Kirkpatrick et al. (1983) presented the idea of a probability
function that accepts all moves that decrease the objective function value
(downhill moves), but in the case of moves that increase the result (uphill
moves), the probability is determined based on the difference in energy levels
as well as the current temperature. The function by Kirkpatrick et al. uses
the Boltzmann factor e−∆E/(kBT ) as a basis for the probability of acceptance
in cases where ∆E > 0 (uphill moves). This has later been simplified to the
form e−∆E/T (e.g. Eglese, 1990), since T is a control parameter that can be
scaled as needed. In conclusion, the probability function is of the following
form:

P (∆E) =

{
1, if ∆E < 0

e−∆E/T , otherwise.
(3.2)
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The temperature function is used to generate the current temperature
used in the probability function. Its purpose is to be a control parameter
that follows a cooling schedule, typically starting from a high number and
always ending in zero. It is a relevant part to modify since it controls the
cooling schedule, so it is possible to make the algorithm converge towards
the optimum faster by choosing the right kind of temperature function. A
higher temperature corresponds to a higher probability of acceptance of a
new candidate state. This leads to more uphill moves being accepted in the
beginning of the process, when it should be more likely to jump out of a
local optimum. Correspondingly, at the end of the process, the temperature
is low and less uphill moves are accepted, which is favorable as the algorithm
approaches the optimal solution. There are different options for choosing
the temperature function, and these can be either strictly decreasing or not.
However, due to the nature of the simulated annealing algorithm, they still
reach zero at the end. Three different cooling schedules were tested in this
thesis: the two simpler variations are discussed in more detail in Section 3.3.2
and the more complex variation is presented separately in Section 3.3.3.

An important part of implementing the simulated annealing algorithm is
selecting the neighbor function. It is used to generate a candidate for the
next state that the algorithm moves to, using some kind of stochastic process.
In the case of the shelf space allocation problem, the decision can be made to
either increase or decrease the number of facings of a product, as long as the
resulting state stays within the constraints of the problem setup. Another
choice to be made in the neighbor function is either modifying the number of
facings of multiple products at once or just one at a time, as well as choosing
which one(s) to modify. In addition, the step size of the increase or decrease
in facings can be chosen, and it can be static or dynamic. These choices can
all be determined randomly, or they can be defined experimentally based on
some rules (see Section 3.3.2 for more information).

The constraints of the optimization problem can be considered in differ-
ent ways in the simulated annealing algorithm, either by simply having the
neighbor function only generate candidates that are within the constraints,
or by introducing some penalty to the cost function that would make it ex-
tremely unlikely to end up choosing candidates outside the boundaries. For
this thesis, it was decided that a penalty function would be unnecessarily
complicated, and just limiting the possible candidates from the beginning
would be the best choice in this case. This was also supported by Zhang and
Wang (1993).
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3.3.2 Test Setup

There are many possibilities to vary the simulated annealing algorithm in
order to reach optimal results for different kinds of optimization problems.
For this thesis, it was decided to test out different options for the neighbor
function as well as the temperature function. The probability function is
only used in its standard form, as presented in Equation (3.2).

Regarding the neighbor function, the choice of modifying multiple facings or
just one was selected to be constant for all the tests; due to the shelf space
allocation being a constrained problem, it was decided that modifying only
one facing at a time was the best option. This was based on the research by
Zhang and Wang (1993), and the method in question is called the orthogonal
move approach. The choice of increasing or decreasing the number of facings
and the selection of the product to modify were chosen to be random in
all the experiments. For the step size, different methods are tested to find
optimal performance of the algorithm (see Chapter 4, Results). First a simple
neighbor function, where the step size is 1 throughout the algorithm, is tested
and evaluated. In every iteration, one of the products is randomly selected
to have the number of facings either increase or decrease by 1. This new
state then becomes the candidate state for the next move if it complies with
all the constraints of the optimization problem. If it does not comply, then
the process is repeated until a valid candidate state is found.

In addition to the neighbor function with the constant step size, a more
dynamic approach to the step size is implemented. A suitable method to
test is found in the article by Zhang and Wang (1993). The basic principle is
to observe the ratio between accepted and rejected moves in the probability
function and try to keep it close to 1 by modifying the step size. If there are
too many accepted moves, the step size is increased and vice versa; the step
size is decreased if the number of accepted moves decreases significantly. In
practice, this is done by starting with a large initial value for the step size,
generated based on the shelf size, product width and number of different
products. This is then adjusted after every iteration based on the ratio of
accepted versus rejected moves of the last 100 iterations. The moving time
window of 100 iterations was chosen as opposed to taking the ratio of the all
time history, since this way the impact of a single iteration stays constant
throughout the algorithm, even if the total number of iterations would be
105. The step size is increased by 1 if the share of accepted moves is over
0.7, and decreased by 1 if the share is under 0.3. However, in the case of an
increase in step size, the adjustment is only done if the restrictions of the
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shelf allow it, i.e. if it is possible to use that step size for at least one of the
products while still being within the problem constraints. In the case of a
decrease in step size, the minimum limit for the step size value is 1.

In addition to the different versions of the neighbor function, some variations
of the temperature function are also implemented. The first and most simple
form to test out for the temperature setup is a linear cooling schedule:

Tk = T0 ·

(
1− k

kmax

)
. (3.3)

Here T0 is the initial temperature, k is the current iteration count and kmax

is the maximum number of iterations.

The second version of the temperature function to be implemented in this
thesis is a logarithmic temperature function:

Tk =
c

ln (k + 1)
. (3.4)

This approach was introduced by Geman and Geman (1984) and again pre-
sented by Nourani and Andresen (1998). Nourani and Andresen came to the
conclusion that the logarithmic cooling schedule was not to be recommended
for the simulated annealing algorithm, but it is nevertheless included in the
analysis in this thesis for comparison. Different values of the parameter c are
tested in order to find the most suitable one for this particular problem.

Lastly, a temperature function based on the thermodynamic simulated an-
nealing (TSA) approach by de Vicente et al. (2003) was tested. A combined
method using the linear cooling schedule together with the TSA tempera-
ture function was also included in the study. These methods are presented
in detail in Section 3.3.3.

3.3.3 Thermodynamic Simulated Annealing

de Vicente et al. (2003) introduced a new variation to the simulated annealing
algorithm called thermodynamic simulated annealing (TSA). It provides a
new way to configure the cooling schedule of the algorithm using the logic of
thermodynamic laws, the goal being to improve the performance of the SA
algorithm. The article by de Vicente et al. is used as a reference for this
entire section.
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The cooling schedule, or how quickly the temperature is lowered, is an impor-
tant part in the performance of the algorithm, especially for avoiding getting
stuck in local minima. In the basic version of simulated annealing described
in Section 3.3.1 the cooling schedule is linear; the temperature function starts
from a value t0 and decreases by an equal amount with every iteration, un-
til reaching zero at the last iteration. This is a valid option, however, in
many cases the algorithm reaches the optimum (or near-optimum) faster if
the temperature function is modified experimentally during the execution of
the SA algorithm.

Thermodynamic simulated annealing uses a specific temperature function
where the temperature is adjusted according to the progress of the algorithm
up until each iteration. The temperature is not restricted to be strictly de-
creasing in the TSA algorithm, instead it can move freely up and down based
on thermodynamic laws. If there are two states A and B, the temperature
after the transformation from A to B can be presented as:

T =
EB − EA
HB −HA

, (3.5)

where EA and EB are the energy levels, i.e. the values of the cost function,
at the corresponding states, and HA and HB are the levels of entropy at the
states A and B.

In information theory, the difference in information when receiving a message
with a probability P is defined as:

∆I = − lnP. (3.6)

The TSA algorithm by de Vicente et al. (2003) uses this relation to represent
the variation in entropy ∆H when the transition has a probability P :

∆H = lnP. (3.7)

The transformation from A to B can then be analyzed as a series of k trans-
formations, with Pi as the probability of step i being accepted. Ti is the
temperature at the transformation and ∆Ci is the difference in the energy
levels before and after the transformation. The difference in entropy between
states A and B can then be presented as in Equation (3.8), where there are k
steps in the transformation from A to B. The same equation can be expressed
as a sum, as seen in Equation (3.9):
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∆HAB = ln (P1 · P2 · ... · Pk) (3.8)

= lnP1 + lnP2 + ...+ lnPk;

∆HAB =
k∑
i=1

lnPi. (3.9)

In the simulated annealing algorithm, the probability function, in the case
of uphill moves is e−∆E/T ; with the acceptance probability of downhill moves
being 1, and thus the corresponding logarithms being zero. Equation (3.9)
can then be formulated using the probability function in Equation (3.2) as:

∆HAB =
∑
i∈Mk

+

ln e−∆Ei/Ti

= −
∑
i∈Mk

+

∆Ei
Ti

. (3.10)

Here Mk
+ is the set of candidate moves that increase the energy level, i.e.

moves where ∆E > 0, until iteration k. Both accepted and rejected moves
are included.

Regarding the variation in the energy level EB−EA, or ∆E, that is found in
Equation (3.5), it can also be expressed as a sum of individual moves. When
all accepted moves until iteration k are denoted as Mk

accepted, the energy level
difference between A and B can be formulated as:

∆EAB =
∑

i∈Mk
accepted

∆Ei. (3.11)

When inserting Equation (3.10) and Equation (3.11) into Equation (3.5), the
result is the temperature after all the moves up until the kth iteration, i.e.
the temperature at iteration k+1. Following the process by de Vicente et al.
(2003), a control parameter kA is introduced, which can be used to adjust the
temperature function for different problem setups. The resulting function is:
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Tk+1 = −kA

∑
i∈Mk

accepted
∆Ei∑

i∈Mk
+

∆Ei/Ti
. (3.12)

In order to avoid negative values for the temperature, as well as dividing
by zero, the temperature is set to the initial value T0 if

∑
i∈Mk

accepted
∆Ei

is positive or if
∑

i∈Mk
+

∆Ei

Ti
is equal to zero. Thus the final form of the

temperature function is:

Tk+1 =



T0, if
∑

i∈Mk
accepted

∆Ei ≥ 0 or
∑
i∈Mk

+

∆Ei
Ti

= 0,

−kA

∑
i∈Mk

accepted
∆Ei∑

i∈Mk
+

∆Ei/Ti
, otherwise.

(3.13)

Another variation of the TSA cooling schedule is also implemented in this
work. It was found during the testing that the temperature seemed to drop
quite quickly when using the TSA temperature function, so a new approach
was introduced in an attempt to slow down the cooling. It is a combination
of the temperature function in Equation (3.13) and the linear temperature
function in Equation (3.3). It works as the TSA temperature function, but
with the linear function as a lower limit:

Tk+1 =



T0, if
∑

i∈Mk
accepted

∆Ei ≥ 0 or
∑
i∈Mk

+

∆Ei
Ti

= 0,

max

[
− kA

∑
i∈Mk

accepted
∆Ei∑

i∈Mk
+

∆Ei/Ti
, T0

(
1− k

kmax

)]
, otherwise.

(3.14)
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Results

A summary of all the variations of simulated annealing that are tested in this
thesis is presented in Table 4.1. In this chapter, the results of all those tests
are presented. The results are grouped into sections based on the variations
that were tested.

For all test cases, the convergence of the algorithm is investigated by running
the tests multiple times for different values of kmax. For each chosen value of
kmax, the test is run from the start, since the temperature function depends
on the kmax value, and thus it is not possible to simply run the algorithm once
with a large kmax while saving intermediate results for different values of k.
The chosen kmax values range from 102 to 105 with different intermediate steps
in between. The objective function value (the lost sales quantity) is plotted as
a function of kmax, and these plots illustrate if and how the different variations
of the SA algorithm converge towards some optimum when the number of
iterations is increased. In some test cases, some additional information is
also presented in the plots.

Because the performance of the algorithm depends on stochastic components
to some extent, the experiments are conducted multiple times with different
seed numbers for the probabilistic functions. The code uses a list of 10
predetermined seed numbers, runs each test 10 times with different seed
numbers and finally computes the average value of the objective function
of those 10 results. This is then the final result. Some of the figures in
this chapter have error bars included in the plots. The error bars show the
equivalent of one standard deviation in either direction based on the 10 tests
with different seed numbers. Some additional information that is received in
the experiments, such as the temperature as a function of the iteration k, is

37
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not averaged since in those cases it is important to look at the development
during a single run, not the averages. In those cases the first seed number in
the list is used.

The data used for the SA algorithm tests comes from a European grocery
retailer. The data contains a number of products and the following informa-
tion about those products: product group, average daily sales and standard
deviation of sales. All of the products are from the cereals category.

Three product groups were chosen for testing, containing 5, 10 and 20 prod-
ucts respectively. Each of these three groups was tested with three different
values for the shelf width1 S, making nine test sets in total. The tested com-
binations were: 5 products and S = 25, 50 and 100; 10 products and S =
50, 100 and 200; and 20 products and S = 100, 200 and 400. The product
width was set as 3.7 for each product, and the maximum days to the next
delivery was 5 for all products. All the product groups consist of products
with average daily sales of the same order of magnitude, so there are no sig-
nificant differences between the different product groups, except the number
of products in each group (5, 10 or 20).

In each section below, some example cases of the results are presented in
more detail, even though all of the tests were conducted for all 9 test cases
mentioned above. The rest of test results can be found in Appendix A. There
the summary plot is included for all test cases, and for the rest, selected plots
are presented.

4.1 Linear Cooling Schedule

The first tests were run using the simple neighbor function with step size
1, randomized direction (add or remove facing) and product selection. The
temperature function was linear in the first tests, and different initial values
for the temperature were tested. The difference in energy ∆E that is used in
the calculations has a value of around 0.1-0.2 units for the first iteration round
in these tests. This set of tests was executed for multiple different values of
T0 in order to find the optimal setting. The results of the comparison are
presented in Figure 4.1 for one of the shelf setups. A lower value of T0 = 0.01
was also included in the tests, but the lost sales results were in most cases not
converging at all, so it was excluded from the plot for clarity. Based on the

1The widths of the products and the shelf could be considered as centimeters, so S =
200 would be 2 m of shelf space.
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Table 4.1: List of test setups

Neighbor Temperature T0 kA c

step size 1 linear 0.01
step size 1 linear 0.05
step size 1 linear 0.1
step size 1 linear 0.3
step size 1 linear 0.5
step size 1 linear 1
dynamic linear 1
step size 1 logarithmic 0.1 0.1
step size 1 logarithmic 0.1 0.5
step size 1 logarithmic 0.1 1
step size 1 logarithmic 0.1 10
step size 1 TSA 1 0.1
step size 1 TSA 5 1
step size 1 TSA 10 1
step size 1 TSA 20 1
step size 1 TSA-linear 0.1 0.1
step size 1 TSA-linear 0.1 0.5
step size 1 TSA-linear 0.1 0.9
step size 1 TSA-linear 0.1 1
step size 1 TSA-linear 0.1 1.1
step size 1 TSA-linear 0.1 2
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Figure 4.1: Lost sales results using the linear cooling schedule, the static
step size 1 and different values for the initial temperature T0.

result in Figure 4.1 as well as the other tests presented in Appendix A, the
value of T0 = 0.1 was found to be optimal for this variation of the simulated
annealing algorithm.

As an example of the final allocation, the minimum lost sales in Figure 4.1
is obtained with T0 = 0.05, and in the plot the lost sales is 6.90 units. Since
this is an average of 10 tested seed numbers, there is no allocation of facings
that corresponds directly to that. The best result of the 10 test in this case
was 6.87 units of lost sales, and the corresponding allocation of facings was
the following: 6, 1, 1, 4, 2, 4, 2, 1, 4, 3, 2, 4, 4, 4, 3, 3, 1, 1, 3 and 1 (20
products). The amount of space this set of products occupied was 199.8 (out
of 200).

4.2 Dynamic Neighbor Function

The results of the dynamic step size tests are found in Figure 4.2, with the
lost sales as a function of kmax. The initial value for the temperature was set
to T0 = 1 for these tests. The variant with the static step size 1 is included
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Figure 4.2: Comparison of the lost sales results using the dynamic and
static neighbor functions.

in the plot for comparison, also with T0 = 1. Here Figure 4.2 shows that
the dynamic neighborhood function converges significantly slower than the
method with the static step size. This was the case in most of the tests
conducted, and the dynamic function did not produce improved results in
any of the test cases. The uncertainty in the results in Figure 4.2 is quite
high, but when all the results are taken into consideration, it is still clear
that the dynamic method does not provide an improvement to the simulated
annealing method.

In Figure 4.3 the development of the step size in one example case is shown,
as well as the share of accepted moves out of all candidate moves in the
probability function, as a function of the iteration k. The data points have
been taken every 100 iterations.

Figure 4.4 shows the duration in seconds for the tests presented in Figure 4.2.
As can be seen in Figure 4.4, the more complex dynamic method is more com-
putationally heavy than the simple method with the step size of 1. Because
of this and the comparison of convergence in Figure 4.2, the following tests
after this were chosen to only use the static neighbor function with the step
size 1.
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Figure 4.3: The share of accepted moves and the step size during the SA
algorithm with the dynamic neighbor function.

Figure 4.4: Comparison between the durations of the static and the
dynamic neighbor functions (using mean and standard deviation of 10

different seeds).
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4.3 Logarithmic Cooling Schedule

After the decision was made to keep the neighbor function as the simple
version with the static step size, the temperature function was modified.
The goal of this new cooling schedule would be to improve the performance
of the SA algorithm by finding the optimum, or a value near the optimum,
faster. First, the logarithmic temperature function was implemented. The
approach is presented in more detail in Section 3.3.2 and Equation (3.4). The
results of two of the test sets with the SA algorithm using the logarithmic
cooling schedule are found in Figure 4.5 and Figure 4.6. The tests were run
with different values for the parameter c, and the linear cooling schedule
results are included in the plots for comparison.

In Figure 4.5 it seems that the optimal value is c = 0.1, while in Figure 4.6
that particular parameter value gives far from optimal results. It seems,
based on all the test sets for the logarithmic method found in Appendix A,
that for problem setups with more shelf space per unique product, the low
values for the parameter c resulted in lower lost sales. On the other hand, the
problems with little shelf space per unique product, the higher ones (0.5 and
1) gave lower results for the lost sales. When considering all of the different
test cases, the optimal parameter value was determined to be c = 0.5, since
it gave consistently either the lowest or second lowest lost sales results for all
the setups (not including the linear cooling schedule).

The linear cooling schedule results in lower lost sales than the logarithmic
method with c = 0.5 in Figure 4.5. With the parameter value c = 0.1,
however, the lost sales converge faster than with the linear cooling schedule
in that particular case.

4.4 TSA Cooling Schedule

Besides the logarithmic cooling schedule, another option for improving the
simulated annealing algorithm was the thermodynamic simulated annealing
(TSA) method introduced in Section 3.3.3. The TSA algorithm was run until
kmax iterations each time, so no additional stopping criteria were introduced.
The initial value for the temperature T0 was set to different values (1, 5, 10
and 20) for the TSA tests. The results are presented in Figure 4.7, and the
original linear cooling schedule is included for comparison.
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Figure 4.5: Comparison of the lost sales using the logarithmic and linear
cooling schedules with different values for c (log10 scale).

Figure 4.6: Comparison of the lost sales using the logarithmic and linear
cooling schedules with different values for c (log10 scale).
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Figure 4.7: Comparison of the lost sales results using the TSA and linear
cooling schedules, with different values for the initial temperature T0.

In Figure 4.7 the results show that the objective function does not converge
towards any value, at least within the given range of kmax. In the test case
with 20 products and S = 400 in Figure 4.8, the TSA results do converge,
but it is the only case where that happens.

In Figure 4.9 the temperature is plotted as a function of the iteration k for
one of the test rounds with T0 = 10. Here one can see that when using
the TSA method, the temperature drops to near zero quite early in the
process. The k scale in Figure 4.9 is logarithmic, since most of the variation
in the temperature happens for low values of k. Because of the drop in the
temperature, the TSA cooling schedule was modified for the next tests (see
Section 4.5).
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Figure 4.8: Comparison of the lost sales results using the TSA and linear
cooling schedules.

Figure 4.9: The temperature of the TSA algorithm as a function of the
iteration k (log10 scale).
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Figure 4.10: Lost sales results using the TSA-linear combination cooling
schedule with different values for the control parameter kA (log10 scale).

4.5 Adapted TSA Cooling Schedule

The adapted TSA cooling schedule is otherwise similar to the TSA cooling
schedule, but the lower limit for the temperature is set as the linear tem-
perature function value. This is also presented in Section 3.3.3 and Equa-
tion (3.14). The results of the combined TSA-linear temperature function are
presented in Figure 4.10. Different values for the parameter kA were tested,
and the optimal value for this problem seemed to be kA = 0.1 when taking
into consideration all of the test cases. The tests were done using the initial
temperature T0 = 0.1, which was the selected value based on the results in
Section 4.1.

However, when the initial temperature is T0 = 0.1 and the parameter kA =
0.1, the combined TSA-linear cooling schedule uses the linear cooling sched-
ule almost exclusively. This happens when the temperature of the TSA
function would be lower than the linear function value, and in the tests only
some of the cases contained small individual spikes above the linear function
line. As a consequence, the lost sales results of the adapted TSA cooling
schedule are nearly identical with the linear results presented in Section 4.1.
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Figure 4.11: Comparison of the lost sales results using the TSA-linear
combination cooling schedule and the linear cooling schedule (log10 scale).

Because of this result, it was decided to not extend the study further on this
method. In Figure 4.11 the TSA-linear combination method is compared to
the results of the linear cooling schedule from Section 4.1, and as expected,
the results are almost identical.

The temperature T as a function of the iteration k is presented in Figure 4.12
for one of the tests using the TSA-linear combination cooling schedule with
kmax = 10 000. The horizontal axis scale is logarithmic, so the curved line
in the plot is the linear temperature function. As mentioned previously, the
temperature stays on the linear curve at nearly every iteration k.

4.6 Summary

In Figure 4.13 all the different versions of the simulated annealing algorithm
are compared until kmax = 10 000. The variations are, in the order of the
plot: the dynamic neighbor function with T0 = 1, the linear cooling schedule
(and static step size) with T0 = 0.1, the logarithmic cooling schedule with
T0 = 0.1 and c = 0.5, the adapted TSA-linear cooling schedule with T0 = 0.1
and kA = 0.1, and the TSA cooling schedule with T0 = 10 and kA = 1.



CHAPTER 4. RESULTS 49

Figure 4.12: The temperature of the combined TSA-linear cooling schedule
as a function of the iteration k (log10 scale).

Figure 4.13: Comparison of all the different versions of the SA algorithm
that were tested (log10 scale).



Chapter 5

Conclusions

In this section, the key findings of the research are summarized. Then the va-
lidity and reliability of the results are evaluated, and finally some suggestions
for possible future research are presented.

5.1 Key Findings

The goal of this thesis was to formulate the shelf space allocation problem as
an optimization problem and find a suitable method to solve it. Minimizing
lost sales by optimizing the allocation of shelf space means there is less need
for restocking the shelves as well as a higher availability level, which in turn
can lead to savings for the retailer. The objective function to be minimized
was formulated as the expected quantity of lost sales.

The selected method for solving the shelf space allocation problem was the
simulated annealing (SA) algorithm. It was chosen for its simplicity and
ability to jump out of local minima, which was suitable for the combination
of a nonlinear objective function, the integer requirement and the restriction
of shelf space. Different versions of the simulated annealing algorithm were
tested, and the end value of the objective function was recorded for varying
iteration counts in order to see if and how fast the algorithm converged. The
subfunctions of the SA algorithm that were varied were the neighbor function
and the temperature function.

The simple, static neighbor function with the step size 1 proved to give stable
results for all of the tested data sets. The dynamic version of the neighbor

50
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function did not improve the results for this type of a problem, as is shown
for example in Figure 4.2.

The most relevant part of the investigation became the comparison between
the results of the different temperature functions, or cooling schedules. The
linear cooling schedule converged well for all of the tested cases, and it is the
simplest one of the temperature functions to implement. It is important to
note that the selection of the initial temperature T0 had a great impact on
the performance of the optimization algorithm. Varying the value of T0 gave
different results, as can be seen in Figure 4.1. The probability function in
the SA algorithm uses the ratio of the jump in energy ∆E (the difference in
the objective function value) to the temperature T in deciding whether or
not to move to a new candidate state. The difference in energy between the
initial state and the first candidate state was around 0.1-0.2 for these tests,
and the best value for T0 was 0.1. Based on this, it can be seen that for this
type of a problem, values for T0 that are nearly equal to the initial energy
difference ∆E are to be preferred, since this seems to produce more optimal
solutions on average.

A logarithmic function was implemented for the cooling schedule. It was
fairly simple to implement, and the results were quite promising. The ad-
justment of the control parameter c in the logarithmic temperature function
proved to be significant for the convergence of the lost sales. If the parameter
c is chosen carefully, the lost sales can converge faster with the logarithmic
cooling schedule than with the simple linear function. Figure 4.5 shows an
example of this, with c = 0.1. When looking at all the test results of the
SA algorithm with the logarithmic cooling schedule, one finding was that
the optimal choice of the parameter c can depend on the amount of avail-
able shelf space in relation to the number of unique products on that shelf.
More specifically, the number of unique products does not necessarily matter
for the calculations, but it is the need to cover more demand that changes
the situation. All of the products in the test data had average daily sales
of roughly equal volume, and the item widths were also set as identical, so
10 unique products will need more space than 5 unique products in order
to cover the demand for the same number of days. Based on the results,
lower values of the parameter c (e.g. 0.1) result in lower lost sales and faster
convergence in cases with a high amount of space per product, and higher
values of c (e.g. 1) work better in situations with less space per product, at
least in situations similar to these test cases.

The thermodynamic simulated annealing (TSA) cooling schedule was imple-
mented and tested extensively, but it did not improve the results. In fact,
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the lost sales did not even converge towards any value in most of the tests.
The combined TSA-linear cooling schedule did converge, however, the best
results were obtained when the temperature function only used the linear
schedule. Hence it can be seen that for this kind of a problem formulation,
the thermodynamic simulated annealing does not offer improvements com-
pared to the simple linear cooling schedule, especially since the linear cooling
schedule is notably simpler to implement.

Overall, the linear temperature function works well in all of the test cases.
The TSA method did not show improvements to the lost sales results, neither
on its own nor as a combined method with the linear function. The loga-
rithmic temperature function showed good results when the parameter c was
chosen carefully. The choice of the initial temperature T0 had a significant
impact in all of the tested methods.

5.2 Discussion

This study was conducted in order to find a method for solving the shelf space
allocation problem in a way that considers replenishment in the process and
lowers costs for the retailer. The results show that the simulated annealing
method is a good option for solving the shelf space allocation problem where
the goal is to minimize the expected lost sales. When discussing the validity
of the results, it is important to note that some assumptions were made in this
study. The sales were assumed to be normally distributed, but the problem
formulation can easily be modified to use another distribution instead. Some
type of distribution is in any case required to be assumed in this setup. There
is no assumption regarding the existence of a backroom storage in the store,
since the minimization of lost sales leads to benefits for the retailer in both
cases. If there is a backroom, the optimized allocation reduces the need for
moving stock from the storage to the shelf, as well as the size of the total
inventory in the backroom. If the full delivery is placed directly on the shelf,
then the optimization can lead to a need for less frequent deliveries, which
also applies if there is a backroom. In both cases, the revenue increases for
the retailer if the amount of lost sales is reduced. Related to this, another
assumption of this study is that if the stock on the shelf is not enough to
satisfy the demand for the day, then the unsatisfied demand becomes the lost
sales for that day. If we assume that the sales follow the normal distribution,
then that is the logical conclusion that follows.
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The lost sales formula used sales quantity (units) instead of sales value (euros
or other currency) as the metric in the calculations. When considering the
possible shelf stacking work needed in the case of a stock-out on the shelf, the
costs that incur are dependent on the quantity of products needed, or more
specifically, the product size also affects the time it takes to move and stack
the products. This also applies in the case of a reduced need for deliveries,
although in that case the delivery costs are relevant, too. On the other hand,
for minimizing the loss in sales that occur when there is a stock-out, the
sales value is perhaps the more relevant metric to use. With that in mind,
the objective function could be modified to include the lost sales value in
addition to the quantity, but the general idea of the optimization problem
remains the same. Regardless, the lost sales quantity provides a good enough
approximation for the purposes of this thesis, since minimizing the restocking
labor is a priority.

In the test data, all products were set to be the same width. The algorithm
was built to handle different product widths, but those were not tested in this
thesis. The delivery schedules, i.e. the number of days to the next delivery
that is used in the calculations, was also set as equal for all of the products.
In addition, the model did not include the shelf depth as a dimension, but
assumed for simplicity that only the visible facings were available on the
shelf, whereas typically there is room for multiple items in the space that is
occupied by one facing. These aspects were not considered to heavily change
the outcome of the results, however, this was not studied. The lack of these
variations in the test setup is one of the limitations of this study.

This study uses a somewhat simplified model of the shelf space allocation
problem. Especially having only one shelf in the model instead of dividing
the space into several shelves is an unrealistic situation in most cases. The
choice to do this was justified by the added complexity that dividing the
space into multiple shelves would entail. If there are multiple shelves, it is by
consequence necessary to decide if one product can have facings on only one
of the shelves, or two, or all of them. Then questions regarding the placement
and grouping of the different products will appear, since placing facings of a
product on two different shelves means having to know where the products
are placed (so the chosen shelves are one top of the other, and the facings
are placed adjacently). If no restrictions are placed on the number of shelves
a product can be on, the end result of the optimization may be a series of
identical shelves with the same set of products each. All these aspects of
placement and grouping are quite complex to take into account, therefore
a simplified model was chosen. It is important to note that the solution
algorithm has not been tested with a comprehensive shelf space allocation
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model including these different components, however, the results of this study
remain valid as a basis for future research.

The goal for this study is lowering operating costs for retailers by optimizing
the shelf space allocation. Shelf space planning can also be utilized to actively
increase sales by taking advantage of the concept of space elasticity. Another
factor that can impact sales is the cross-space elasticity, which describes the
different substitution patterns that occur (typically) within product groups.
These effects all play a part in the complex retail shelf space picture, but for
the sake of this study, it was considered most important to focus on lowering
the lost sales.

The results of this study can be utilized when approaching other shelf space
allocation problems with similar specifications, where the required assump-
tions are valid. This study is mostly focused on the field of grocery retail,
since grocery volumes are large and shelf space planning typically plays a
larger role there than in other fields of retail. Spoilage problems also occur
much more in the grocery field. However, the results are applicable to any
type of retail store, as long as the required assumptions are fulfilled.

The utilization of the simulated annealing algorithm for the shelf space alloca-
tion problem is a valid possibility for similar situations as the ones described
in this study. There are variations of the algorithm that are suitable for
different situations, and by optimizing the values of the different parameters
one can improve the results further. However, this study is only done on a
small set of test data, with some specific assumptions, so it is important to
note that further research is still needed before using these results in real-life
applications.

5.3 Future Research

The results of this study showed that the simulated annealing algorithm is a
useful method for solving one version of the shelf space allocation problem.
In order for the results to be useful in practical applications, some testing
is needed on the areas that were not covered by this study. One additional
aspect that can easily be tested is the different product sizes and delivery
schedules, which would provide more data for confirming the validity of the
model in different use cases.

One area that can clearly be recommended for future research studies is the
different placement and grouping aspects, which would also imply a model
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with multiple shelves included in the calculations. Extending the model in
this way would make it more useful for practical use, since the placement of
the products is a meaningful part of shelf space planning in real-life situations,
as are the other related factors.

Another future step after this study could also be a more extensive testing
study of the same methods that were presented in this thesis. Even though
several tests were conducted, the scope of the test data was still quite lim-
ited. It could be beneficial to perform tests on product groups from different
categories besides cereals, with different sales volumes with higher or lower
variance in the sales, etc. In addition, the models that were tested in this
study could undergo even more extensive testing, with more fine-tuning of
the parameters, since it was found that those can impact the results in a
significant way. This would give a wider base of results to use in the shelf
space planning process.
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Nielsen. Päivittäistavarakaupan myymälärekisteri 2018, 2019. URL https://
www.nielsen.com/fi/fi/press-room/2019/grocery-store-register-2018.html.
Accessed: 2019-05-08.

Y. Nourani and B. Andresen. A comparison of simulated annealing cooling
strategies. Journal of Physics A: Mathematical and General, 31(41):8373–
8385, 1998.

United States Department of Agriculture. Retail trends, 2018. URL https:
//www.ers.usda.gov/topics/food-markets-prices/retailing-wholesaling/
retail-trends.aspx. Accessed: 2019-05-08.

https://www.nielsen.com/fi/fi/press-room/2019/grocery-store-register-2018.html
https://www.nielsen.com/fi/fi/press-room/2019/grocery-store-register-2018.html
https://www.ers.usda.gov/topics/food-markets-prices/retailing-wholesaling/retail-trends.aspx
https://www.ers.usda.gov/topics/food-markets-prices/retailing-wholesaling/retail-trends.aspx
https://www.ers.usda.gov/topics/food-markets-prices/retailing-wholesaling/retail-trends.aspx


BIBLIOGRAPHY 59

T. L. Urban. An inventory-theoretic approach to product assortment and
shelf-space allocation. Journal of Retailing, 74(1):15–35, 1998.

P. J. M. van Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job shop schedul-
ing by simulated annealing. Operations Research, 40(1):113–125, 1992.

M. H. Yang. Efficient algorithm to allocate shelf space. European Journal of
Operational Research, 131(1):107–118, 2001.

C. Zhang and H. P. Wang. Mixed-discrete nonlinear optimization with sim-
ulated annealing. Engineering Optimization, 21(4):277–291, 1993.

F. S. Zufryden. A dynamic programming approach for product selection
and supermarket shelf-space allocation. The Journal of the Operational
Research Society, 37(4):413–422, 1986.



Appendix A

Complete Test Results

Figure A.1: Linear cooling schedule, static step size 1, different values for T0
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Figure A.2: Linear cooling schedule, static step size 1, different values for T0

Figure A.3: Linear cooling schedule, static step size 1, different values for T0
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Figure A.4: Comparison between dynamic and static step size, linear
cooling schedule

Figure A.5: Comparison between dynamic and static step size, linear
cooling schedule
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Figure A.6: Comparison between dynamic and static step size, linear
cooling schedule

Figure A.7: Logarithmic cooling schedule with different values for the
parameter c, linear cooling schedule for comparison (log10 scale).
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Figure A.8: Logarithmic cooling schedule with different values for the
parameter c, linear cooling schedule for comparison (log10 scale).

Figure A.9: Logarithmic cooling schedule with different values for the
parameter c, linear cooling schedule for comparison (log10 scale).
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Figure A.10: Comparison of the lost sales results using the TSA and linear
cooling schedules, with different values for the initial temperature T0.

Figure A.11: Comparison of the lost sales results using the TSA and linear
cooling schedules, with different values for the initial temperature T0.
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Figure A.12: Comparison of the lost sales results using the TSA and linear
cooling schedules.

Figure A.13: Comparison of the lost sales results using the TSA and linear
cooling schedules.
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Figure A.14: Lost sales results using the TSA-linear combination cooling
schedule with different values for the control parameter kA (log10 scale).

Figure A.15: Lost sales results using the TSA-linear combination cooling
schedule with different values for the control parameter kA (log10 scale).
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Figure A.16: Lost sales results using the TSA-linear combination cooling
schedule with different values for the control parameter kA (log10 scale).

Figure A.17: Summary of all the different versions of the SA algorithm that
were tested (log10 scale).
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Figure A.18: Summary of all the different versions of the SA algorithm that
were tested (log10 scale).

Figure A.19: Summary of all the different versions of the SA algorithm that
were tested (log10 scale).
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Figure A.20: Summary of all the different versions of the SA algorithm that
were tested (log10 scale).

Figure A.21: Summary of all the different versions of the SA algorithm that
were tested (log10 scale).
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Figure A.22: Summary of all the different versions of the SA algorithm that
were tested (log10 scale).

Figure A.23: Summary of all the different versions of the SA algorithm that
were tested (log10 scale).
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Figure A.24: Summary of all the different versions of the SA algorithm that
were tested (log10 scale).

Figure A.25: Summary of all the different versions of the SA algorithm that
were tested (log10 scale).
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