
Aalto University
School of Science
Degree programme in Engineering Physics and Mathematics

Scheduling of Genetic Analysis Workflows in

Grid Environments

Bachelor's Thesis
29.4.2015

Arttu Voutilainen

The document can be stored and made available to the public on the open
internet pages of Aalto University.
All other rights are reserved.

AALTO UNIVERSITY
SCHOOL OF SCIENCE
PO Box 11000, FI-00076 AALTO
http://www.aalto.fi

ABSTRACT OF THE BACHELOR’S THESIS

Author: Arttu Voutilainen     

Title: Scheduling of Genetic Analysis Workflows on Grid Environments

Degree programme: Degree programme in Engineering Physics and Mathematics

Major subject: Systems Sciences Major subject code: F3010

Supervisor: Prof. Harri Ehtamo     

Instructor: Lauri Eronen, PhD, Biocomputing Platforms Ltd.   

Abstract:
The purpose of this work is to compare multiple well-known algorithms for workflow scheduling in grid
environments, such that execution times, resource requirements and file transfers are taken into account. Six
heuristics (Myopic, Min-Min, Max-Min, Suffrage, HEFT, Hybrid) and two metaheuristics (GRASP, Genetic
Algorithm) are studied, implemented and tested. An exact solution is investigated but not feasible due to NP-
completeness and large scale of the problem. The example workflows and environments used for testing are
provided by BC Platforms and represent usual use cases in the field of genetics.

The first workflow consists of 838 jobs in 22 parallel flows of three stages, the last of which is divided into 11-
62 parallel lines. The second workflow consists of 19200 jobs in 100 parallel flows of three stages with merging,
splitting and shuffling inside the flows. Both are quite regular and relatively computationally heavy compared to
file transfer times, but they are still different enough to test different aspects of the schedulers. The three example
environments range from one to 16 resources. Also a version of the third environment with heterogeneous
processing powers and bandwidths is used.

During testing, the algorithms are evaluated based on both the makespan of the produced schedule and the time
the algorithm required to produce it. Schedules are generated for each workflow on each environment, and the
schedules for the first workflow are confirmed using a simulator provided by BC Platforms. The heterogeneous
version of environment is used to test the effect of the information about the resources. The HEFT algorithm is
found to perform best or be very close to best on each test case in both makespan and scheduling time.

Date: 29.4.2015       Language: English      Number of pages: 23+12    

Keywords: scheduling, workflow, grid, cloud, heuristic, metaheuristic, HEFT, genetic algorithm     

Contents

1 Introduction 1

2 Theory and existing research 2
2.1 Optimization problem and exact solution 2
2.2 Heuristics . 4
2.3 Metaheuristics . 5
2.4 Scheduling strategies . 7
2.5 Comparison of methods . 8

3 Research problem and methods 9
3.1 Example work�ows . 10

3.1.1 Imputation with pre-phasing 10
3.1.2 BWA/GATK . 11

3.2 Example Environments . 12

4 Results 13
4.1 Imputation work�ow . 14
4.2 BWA/GATK work�ow . 16
4.3 Heterogeneous resources . 17
4.4 The Genetic Algorithm and GRASP 18

5 Conclusions 19

References 22

Appendix A Imputation Workflow 24

Appendix B BWA/GATK Workflow 26

Appendix C Results - Imputation 28

Appendix D Results - BWA/GATK 31

Appendix E Yhteenveto (in Finnish) 33

1 Introduction

Biocomputing Platforms Ltd. develops software for genetic research data
management and analysis. The company is developing a new work�ow engine
for executing data processing and analysis work�ows in distributed comput-
ing environments. The purpose of this work is to compare di�erent scheduling
algorithms, and select the best �t to be used by the BC Work�ow Engine.

The development of DNA sequencing technology has led to a massive increase
in the amount of data that is available to researchers (for the two example
cases used in this work, the input data sizes are 16TB and 450GB). Same
thing has happened in many other �elds also, increasing the the need of
calculation power and data storage. One answer to these problems is grid
computing (Foster and Kesselman [2003]), where computations are executed
in a network of globally distributed computers. Unlike traditional clusters,
grids usually consists of heterogeneous resources, meaning that the execution
time of a task may di�er signi�cantly from one resource to another. Grids
have also notable (and varying) communication costs (�le transfer times),
since two processing units can be located for example on di�erent continents,
and connected only by the Internet. These facts make scheduling even more
important and also harder.

Optimal work�ow scheduling is an NP-complete problem (Ullman [1975]), so
�nding the perfect solution is not computationally viable in all cases. How-
ever, there exists many heuristic and metaheuristic methods designed to �nd
a �good-enough� solution. In this thesis some of those methods will be imple-
mented and evaluated based on the makespan (the time from the beginning
of �rst task to the end of the last task) of the schedule they produce as well
as the time the method takes to execute (scheduling time). Two example
work�ows are provided by the company to be used for testing: BWA/GATK
and Imputation with pre-phasing.

Work�ow scheduling can be divided into best-e�ort and Quality of Service
-constraint based scheduling. Best-e�ort work�ow scheduling tries to min-
imize makespan at all costs. QoS-constraint based scheduling takes into
account also other things, such as execution costs, and fairness. For the
purpose of this thesis, only best-e�ort schedulers are considered. Also some
simplifying assumptions about the grid structure are made, and many factors
are left out to simplify the scheduling process. Still, the results are general
enough to be of use when comparing the algorithms.

2

2 Theory and existing research

A workflow can be de�ned as a directed acyclic graph (DAG). The graph has
vertices, representing tasks, and edges, representing communication between
the tasks, with edge weights representing the amount of communication re-
quired. The tasks have also execution times and some resource requirements.

The resources are represented as a complete graph, where vertices are pro-
cessing units and edges represent the communication speed between those
units. In a grid there might be multiple processing units connected to one
disk or multiple disks connected to one processing units, but in this work
the processing units and disks are consider as single entities that form the
vertices of the resource graph. The communication speeds are assumed to
be symmetric, so the graph is undirected. The vextices are associated with
processing powers and details about the resource. Scheduling is then an op-
eration of mapping (creating a schedule) the work�ow to the environment (a
set of resources) at a given time. (Yu et al. [2008])

Following the taxonomy by Yu and Buyya [2005], a grid work�ow system con-
sists of four parts: 1) Work�ow design, 2) Work�ow scheduling, 3) Fault toler-
ance and 4) Data movement. This thesis considers only work�ow scheduling:
the work�ow speci�cations are given by the BC Work�ow Engine, which also
takes care of fault tolerance and data movement. Data movement is presumed
to be peer-to-peer between the resources, and the scheduler architecture is
supposed to be centralized with performance-driven scheduling strategy.

Section 2.1 de�nes work�ow scheduling as an optimization problem and ar-
gues why it is not feasible to be solved exactly, motivating the need for
heuristics. The algorithms implemented for this work are Myopic, Min-Min,
Max-Min, Su�rage, HEFT, Hybrid, GRASP and a Genetic Algorithm, as
they are described by Yu et al. [2008] with possible improvements from other
papers. They are described in Sections 2.2 and 2.3. Sections 2.4 and 2.5
focus on existing results related to scheduling.

2.1 Optimization problem and exact solution

The work�ow scheduling problem can be stated formally as follows:

Let 𝛤 be the set of tasks 𝑇𝑖, and 𝛬 the set of directed edges (𝑇𝑖, 𝑇𝑗). The
edge (𝑇𝑖, 𝑇𝑗) is in 𝛬 if and only if task 𝑇𝑗 is an immediate successor of task 𝑇𝑖,
and the weight of the edge corresponds to the amount of data that has to be

3

transferred between the two tasks. The execution of task 𝑇𝑗 can only begin
after all of its parent tasks have been completed. Then the DAG 𝛺(𝛤,𝛬)
describes the work�ow completely.

Let ℛ be the set of available resources, or calculation nodes, and ℛ𝑖 be the
resource where job 𝑇𝑖 shall be executed. Let 𝑡(𝑇𝑖) be the starting time of
the job, 𝑝(𝑇𝑖) the time it takes to execute the job 𝑇𝑖 on the resource ℛ𝑖 and
𝑓(𝑇𝑖, 𝑇𝑗) the time it takes to transfer the output of job 𝑇𝑖 needed by 𝑇𝑗 from
resource ℛ𝑖 to ℛ𝑗. Let 𝐶𝑅 be the number of cores and 𝑀𝑅 the amount of
memory available on the resource 𝑅 ∈ ℛ. Denote by 𝑐(𝑇𝑖) and 𝑚(𝑇𝑖) the
number of cores and amount of memory used by the job 𝑇𝑖.

The work�ow scheduling problem can then be stated as the following opti-
mization problem:

minimize 𝐶𝑚𝑎𝑥 (1)

subject to: 𝐶𝑚𝑎𝑥 ≥ 𝑡(𝑇𝑖) + 𝑝(𝑇𝑖), ∀ 𝑇𝑖 ∈ 𝛤 (2)

𝑡(𝑇𝑖) + 𝑝(𝑇𝑖) + 𝑓(𝑇𝑖, 𝑇𝑗) ≤ 𝑡(𝑇𝑗), ∀ 𝑖, 𝑗 s.t. (𝑇𝑖, 𝑇𝑗) ∈ 𝛬 (3)∑︁
𝑇𝑖∈𝛤 s.t. 𝑅=𝑅𝑖

𝑡(𝑇𝑖)≤𝑡<𝑡(𝑇𝑖)+𝑝(𝑇𝑖)

𝑐(𝑇𝑖) ≤ 𝐶𝑅, ∀𝑡 ∈ [0, 𝐶𝑚𝑎𝑥), 𝑅 ∈ ℛ (4)

∑︁
𝑇𝑖∈𝛤 s.t. 𝑅=𝑅𝑖

𝑡(𝑇𝑖)≤𝑡<𝑡(𝑇𝑖)+𝑝(𝑇𝑖)

𝑟(𝑇𝑖) ≤ 𝑀𝑅, ∀𝑡 ∈ [0, 𝐶𝑚𝑎𝑥), 𝑅 ∈ ℛ (5)

Here equations (1, 2) mean that we want to minimize the makespan of the
schedule. Equation (3) makes sure that no job is scheduled to be started
before all of its predecessors have been executed. (4) and (5) make sure that
the resource constraints are not violated.

This problem, however, is NP-complete (Ullman [1975]) and as such no poly-
nomial time algorithms is known that would solve it. As the number of jobs
and the number of resources can range from just a few to many thousands, an
exhaustive search is not a viable option. For example, Binato et al. [2002] de-
�nes a disjunctive programming formulation for a Job Shop Problem, which
can be seen as a very restricted version of a work�ow scheduling problem:
it consists of multiple parallel execution lines composed of serial tasks, but
the lines are not allowed to interact, and for each task the machine used to
execute it is given. The JSP is also NP-hard, even with heavy restrictions.
Still, exact methods have been used to solve JSP for small tasks (10 lines x
10 machines) while problems from (15x15) upwards are considered to be too

4

big to solve exactly, according to Binato et al. The general multi-resource
work�ow scheduling is a much harder problem and thus heuristics are needed.

2.2 Heuristics

Heuristics are algorithms designed to search the solution space for a �good-
enough� solution. All the algorithms described here are constructive methods
(Blum and Roli [2003]), meaning that they construct a solution according
to some rule. These heuristics can be divided into individual task scheduling
and list scheduling, and the latter can be again divided into batch mode,
dependency mode and dependency-batch mode algorithms. A batch mode
algorithm considers only a set of independent tasks, while dependency mode
algorithm takes task dependencies into account when prioritizing tasks.

To facilitate the description of the algorithms, let Estimated Completion
Time 𝐸𝐴𝑇 (𝑡, 𝑟) be the time at which the task 𝑡 could complete execution on
resource 𝑟. It takes into account the �le transfer times between the task and
its predecessors, the availability of the resource and the execution time of
the task on that resource. Minimum Estimated Completion Time 𝑀𝐶𝑇 (𝑡)
is the minimum 𝐸𝐶𝑇 for task 𝑡 over all resources.

Myopic scheduler is the most simple and naïve of the implemented algo-
rithms. It is an individual task scheduling method: it takes one available
task and schedules it to the resource where its 𝐸𝐶𝑇 is smallest. As the My-
opic scheduler considers only one task at a time, it is not very e�ective. Also,
depending on the method used to select the task to schedule at each iteration,
Myopic may not always produce the same schedule for a given work�ow.

Min-Min, Max-Min and Suffrage are batch mode algorithms. Like Myopic,
they have been initially designed for scheduling independent tasks to a num-
ber of resources, so they only take dependencies into account when checking
tasks' availability. Instead of just selecting some available task, the Min-
Min scheduler picks the task whose 𝑀𝐶𝑇 is smallest and schedules it to
the resource that is able to �nish it earliest. This method may produce a
schedule with a long makespan if there are lots of short and some very long
tasks, as the short ones are scheduled to be executed �rst and the longest are
scheduled to be the last. To address this problem, the Max-Min scheduler
selects the task whose 𝑀𝐶𝑇 is biggest and schedules that task. The Su�rage
algorithm schedules at each round the task that has the biggest di�erence
between its 𝑀𝐶𝑇 and the second-best ECT. The idea is to schedule the task
which su�ers the most if left un-scheduled.

5

Heterogeneous-Earliest-Finish-Time (HEFT) (Topcuoglu et al. [2002]) is a
dependency mode scheduler. It ranks all tasks based on their properties
(execution and �le transfer times) and the ranks of their successors. The
tasks are then picked in descending order of rank and each task is scheduled
to the resource with minimum 𝐸𝐶𝑇 . In a heterogeneous grid the execution
and communication times wary depending on the used resources, so it is not
possible to know the exact processing times or �le transfer times beforehand.
The rank function used in this work is the one described by Yu et al. [2008],
which averages the execution and �le transfer times over all resources. Other
possibilities would include for example using minimum or maximum times.
The ranking can be made starting from the last job or the �rst job (the
HEFT algorithm requires the schedule to have a unique last or �rst job,
respectively, but a meta-job for that purpose can be created by the algorithm
if the work�ow does not have one). Di�erent ranking schemes have been
studied by Zhao and Sakellariou [2003]. Their study shows that the ranking
method may have a signi�cant impact on the result of the HEFT schedule
and that di�erent schemes perform well in di�erent cases.

A hybrid heuristic can be used to combine batch and dependency modes.
The Hybrid scheduler (Yu et al. [2008]) �rst ranks tasks like the HEFT
scheduler, after which it partitions them into groups so that all the tasks
in a group are independent of each other and have smaller ranks than tasks
in the previous group. The groups are then scheduled using a batch-mode
algorithm (Max-Min in this work).

2.3 Metaheuristics

Metaheuristics are general problem-solving tools. They combine problem-
speci�c heuristics to search the solution space in a way that allows them to
escape local optima in order to �nd a near-optimal solution. Metaheuristics
employ the heuristics to construct possible solutions and also to optimize
them with a local search. Instead of doing pure random search, a meta-
heuristic uses some intelligence to guide the construction of possible solu-
tions. (Blum and Roli [2003])

The Greedy randomized adaptive search procedure (GRASP) is a simple ex-
ample of metaheuristics. The idea is to construct a viable candidate schedule
by iteratively picking (job,resource) pairs from a Restricted Candidate List
(RCL) and then try to �nd the local optima for that candidate. If the op-
tima is better than the current global optima, the newly found local optima
is set as the new global optima. This procedure is then repeated for a certain

6

number of times. To construct the RCL, the (job,resource)-pairs are selected
that increase makespan no more than a given threshold, which is usually a
function of the smallest and biggest possible increases. The algorithm can
be controlled through two parameters: the threshold for the �ltering of the
RCL and the number of iterations.

A basic GRASP for work�ow scheduling problem is described by Blythe et al.
[2005]. The version used for this work combines the basic version with a local
search described by Binato et al. [2002], where GRASP was applied for the
Job Shop Problem. The local search phase tries to �nd the critical path of
jobs and check if swapping two jobs (not depending on each other) on the
path would produce smaller makespan. However, unlike in the Job Shop
Problem, here a single resource can process multiple jobs at a time, so the
operation is harder to implement well. Binato et al. [2002] also describes
two improvements, intensification-enhanced construction and Proximate Op-
timality Principle, that according to them make the GRASP �slightly better�,
the former by introducing memory of previous good solutions to the construc-
tion phase and the latter by doing local search periodically already during
the construction phase. These two improvements are not not implemented
in this work.

Genetic Algorithms (GA) are metaheuristic search procedures that try to �nd
a good solution by utilizing the methods that drive evolution in the nature:
survival of the �ttest, mutation, crossover and reproduction. According to
Hou et al. [1994], a genetic algorithm usually consists of three steps: 1)
initialization of solution population 2) evaluation of �tness of each solution in
the population and 3) generation of new solution population through the use
of genetic operations. Steps 2-3 are then repeated either for a certain number
of iterations or until some other convergence criteria is ful�lled. To develop
a genetic algorithm, they list four major decisions: 1) the representation of
a solution 2) the design of the genetic operations used 3) the goodness-of-�t
function and 4) the probabilities for the genetic operations.

Hou et al. [1994], after which the GA used here is designed, uses a height
criteria to facilitate the creation of new candidate schedules, both in the
initialization phase and the mutation and crossover stages. The height of
a job is the maximum of the heights of its predecessors plus one, or zero
if it has no predecessors. Hou et al. show that the candidates constructed
according to the height criteria (tasks are scheduled in ascending order of
height) are valid schedules, but the condition is not necessary: some viable
solutions, even good ones, do not respect height ordering. This prevents the
usage of other heuristics to construct the initial population (as the schedules

7

created by the heuristics might not conform to the criteria) and also means
that the GA might not be able to construct the optimal solution at all. They
also propose and improved version of the criteria, which assigns to each job
a random height between the maximum of the heights of its predecessors
(plus one) and the minimum of the heights of its successors (minus one). For
the work�ows used in this work the improved height criteria results in the
original heights, due to the structure of the work�ows.

With the height ordering, to create an initial schedule the jobs are �rst
grouped by their heights. Then the jobs of each group, starting from the
group with height 0 jobs and continuing in ascending order, are scheduled in
random order to randomly selected resources. As all jobs of smaller height are
scheduled before a job of bigger height, also all of its predecessors must have
been scheduled and thus the schedule is valid. The crossover operation picks
randomly two schedules and a height, and for each resource swaps the parts of
the two schedules where the jobs' heights are bigger than the chosen height.
The mutation operation picks randomly two jobs of same height from the
schedule and swaps those jobs. After any of these operations the availability
times of each job must be recalculated, as the GA is only interested in the
distribution of jobs onto the resources and the order of jobs on any single
resource.

The optimal parameters for both metaheuristics depend on the work�ows
and environments, and each case must be studied separately to �nd the
parameters that give good results su�ciently fast. There are two kinds of
parameters: some have e�ect only on the schedules (like the RCL thresh-
old for GRASP and genetic operation probabilities for GA) and the e�ect is
hard to know without evaluating di�erent choices, while others (number of
iterations on GRASP and number of generations on GA) a�ect also schedul-
ing time. Increasing the number of iterations or generations monotonically
improve performance but also increase scheduling time. For this work, the
parameters were chosen by trial-and-error. For GRASP, a (job,resource)-pair
is included in the RCL if the increase in makespan is less than𝑚𝑖𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒+
0.15*𝑚𝑎𝑥 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 and 100 iterations are used. For GA, the mutation prob-
ability is set to 0.2, crossover probability is set to 1.0, two best schedules are
always copied to next generation, population size is 20 and 100 generations
are used.

2.4 Scheduling strategies

Wieczorek et al. [2005] discuss and evaluate di�erent scheduling strategies,

8

including full-ahead planning and partial scheduling strategies just-in-time
(JIT) scheduling and partitioning of the workflow (the partitions can then
be JIT-scheduled). In JIT scheduling, a task (or a partition of the work�ow)
is scheduled only when it becomes available, i.e. all predecessor jobs have
been executed. While with a partial scheduling strategy it is easier to take
into account the changing situations in the grid usage, a full-ahead strategy
gives always at least equally good schedules for the current situation. If
the situation changes, the scheduling can be re-done, given that the cost of
scheduling is relatively small, as is the case for for example HEFT. They �nd
that the HEFT algorithm performs best with the full-ahead strategy, and
that HEFT executes so fast even on the full work�ow that there is no need
for partitioning.

2.5 Comparison of methods

Wieczorek et al. [2005] compare Myopic, HEFT and a genetic algorithm on
the ASKALON grid environment using two work�ows, one of which was
fully balanced and in that respect similar to the work�ows in this work.
They also tested two estimates of execution time: all tasks on all resources
have the same execution time, or all tasks have individual execution times
on all resources, based on historical data. According to their results on the
balanced work�ow, all three algorithms perform equally well when there were
no estimates of execution time. With execution time estimates applied, the
makespan of each of the schedules drop, with HEFT's schedule being nearly
twice as fast as the no-estimate schedule, alleviating the importance of good
estimates. The genetic algorithm performs better than Myopic, but still
worse than HEFT. Also it was found to be slower than HEFT by 2−3 orders
of magnitude.

Having introduced the HEFT algorithm, Topcuoglu et al. [2002] compares it
with four heuristics not considered in this work: CPOP, DLS, MH and LMT.
They found that in general the HEFT scheduler performs best: on 87% of
their tests, it produces the best schedule

Braun et al. [2001] compare eleven scheduling methods, including Min-Min,
Max-Min and a Genetic Algorithm for scheduling independent tasks on a grid
environment. They �nd that for all of their test cases, the Genetic Algorithm
performs better than Min-Min or Max-Min, and that Min-Min outperforms
Max-Min. They also include other metaheuristics, such as Simulated Anneal-
ing, Genetic Simulated Annealing and Tabu search, but those are shown to
be inferior to the Genetic Algorithm.

9

3 Research problem and methods

The purpose of this thesis is to compare di�erent scheduling algorithms on
grid environments on both the makespans of the schedules they produce and
their scheduling times. In the previous section, eight scheduling algorithms
were described. This section presents the experiments used to evaluate their
performance.

To compare the algorithms, they have been implemented in Java by the au-
thor. Each algorithm takes as input a �le containing the work�ow DAG and
a �le containing the available resources, and as output produces a �le con-
taining the generated schedule. Also a utility provided by BC Platforms that
simulates the executions of jobs and �le transfers, called later the simulator,
is used to validate some of the schedules. It takes as input �les contain-
ing the work�ow, the resources and the schedule, and produces as output
a �le containing information about the simulation, including the simulated
makespan.

To analyze the performance of the schedulers, BC Platforms provided two
example work�ows commonly used with their product, as well as three ex-
amples of typical execution environments and their resource de�nitions. The
work�ows are described in Section 3.1 and the environments in Section 3.2.
Each scheduler is used to generate a schedule for both work�ows on each
environment.

To see how the algorithms behave in more heterogeneous situations, random-
ized version of one of the environments is also created. This means random-
izing the processing speeds, amounts of RAM and network bandwidths. The
Impute-work�ow is scheduled on both the non-randomized and randomized
environments, and the simulator is used to test both schedules on the ran-
domized environment, to get an idea of how much e�ect the knowledge of
the resources has on the real makespan.

As the scheduling times are implementation-speci�c and vary depending on
the computer where the schedulers are run, only their magnitude and relative
di�erences are of interest. Thus they are only run once and the time is
measured with the Unix program �time� (which measures the actual used
CPU time), even though this might not be the most precise timing method.
The schedulers are run on a 2 x Intel Xeon E5-2670 with 251GB of RAM.

10

3.1 Example workflows

The scheduling algorithms will be tested on two genetic data analysis work-
�ows: BWA/GATK and Imputation. Both share some characteristics: mul-
tiple non-interacting lines of jobs are processed in parallel, each line through
the work�ow has the same number of jobs and both work�ows consist of three
stages. Di�erences arise for example in the way jobs are split and merged
(Imputation has only splits, while BWA/GATK has also merges), but the
biggest di�erences are in the resource requirements and in the number of
jobs: while Imputation has 838 jobs, the BWA/GATK boasts 19200 jobs.
The requirements of a job are given as its execution time (on a resource with
CPU factor of 1), amount of memory it requires and the number of CPU
cores it uses.

3.1.1 Imputation with pre-phasing

In genetics, imputation is used to replace missing parts of a genotype (a set of
measured genetic variants for a single individual) using information contained
in a reference panel. It allows researchers to cheaply and quickly measure
only selected parts of DNA and then �ll in the rest, using statistical methods
(Howie et al. [2011]). Phasing is the act of inferring the how the genetic
variation of an individual is divided between the paternally and maternally
inherited chromosomes (Howie et al. [2012]). While it can be done during
the imputation process, it is often more e�cient to do it separately, as in the
example work�ow used here.

Figure 1 – A simplified sketch of the Imputation workflow for one chromosome.
22 of these are run in parallel. The number of Impute jobs depends on the
chromosome, ranging from 11 to 62. For more details, see Fig. 9.

The Imputation with pre-phasing (later just Imputation) work�ow consists
of three consecutive stages: phasing, splitting and imputation. Each chromo-
some is considered separately, so the work�ow has 22 parallel sub-work�ows.
The chromosomes have di�erent sizes, leading to di�erent CPU time usages
and �le sizes. The splitting stage splits the input into �le into 11-62 outputs
(depending on the size of the chromosome), for which the imputation step can

11

be done in parallel. A simpli�ed sketch of the work�ow for one chromosome
is depicted in Fig. 1 and a more detailed description of the whole work�ow is
in Appendix A. In total, the work�ow consists of 838 jobs and the total input
�le size is close to 450GB. Total execution time is approximately 17 000h
on a single core, so a single 4-core computer would process the work�ow for
almost 6months.

3.1.2 BWA/GATK

Figure 2 – A simplified sketch of the BWA/GATK workflow. For each sample,
16 Align jobs and 1 Merge job are executed. 10 samples form a callset, and
for each callset the workflow contains 22 Call jobs (one per chromosome). For
more details, see Fig. 10.

For the BWA/GATK work�ow (Van der Auwera et al. [2002]), the input data
is short genome reads from random locations in the genome. On average,
the data covers the whole genome 10 times (the coverage varies for each part
of genome due to the reads being from random locations), so most of the
data is redundant. As the reads come from random locations, they must be
aligned with respect to a reference genome before they can be used. Then a
process know as variant calling can be used to extract the di�erences between
the input genome and the reference genome. This results in a signi�cant
reduction of data, as the di�erence in the genomes between two (human)
individuals is on the order of 0.1% (Jorde and Wooding [2004]).

Also the BWA/GATK example work�ow consists of three consecutive stages:
alignment, merging and variant calling. The align-stages (Li and Durbin
[2009]) are run in parallel individually for each of the 16 input �les per
sample, after which the merge stage combines the aligned �les and splits
them by chromosome. The chromosome �les are grouped into callsets of 10
samples. Variant calling is then done for each chromosome in each callset,
so the stage consists of 22 jobs per 10 samples. Supposing that we have 1000

12

samples, this results in 19200 jobs, with input �les totaling around 16TB
and total execution time being on the order of 178 000h (over 20 years on
one core). The work�ow is shown in Fig. 2 and a more detailed description
of the whole work�ow is in Appendix B.

3.2 Example Environments

The example work�ows will be scheduled to three di�erent environments,
details of which are provided by BC Platforms, representing typical calcula-
tion environments where BC Platform's software is deployed. To simplify the
modeling of �le transfers, each resource is assumed to have a disk of in�nite
capacity. The details for each resource are its CPU factor (assumed to be 1
unless stated otherwise), number of CPU cores, amount of memory (RAM)
and the bandwidths to other resources. The actual execution time of a given
job on a given resource depends only on the nominal execution time of the
job divided by the CPU factor of the resource. The amount of memory and
the number of CPU cores are only used to restrict the number of concurrent
jobs a single resource can process.

Figure 3 – The example environments. (A) is the single server environment.
(B) includes additional 8 processing nodes with 16 cores and 64GB of RAM.
All the nodes are connected to the server with 10MB/s links, and to each
other with 50MB/s links. For the third environment (C), the BC server is
replaced by a disk, so that all calculations are done on the cloud nodes. Also
the number of cloud nodes is doubled.

The �rst environment (set of available resources) (Fig. 3A) is a single server
with 32 processors, 256GB of memory and a 20TB disk. This is a really
simple environment corresponding to using just one server for the BC system.
As there is only one resource, there are no transfer costs, and as the schedulers
consider a calculation node as a single resource (cores are not considered
separately), the only decision the schedulers have to make in the single-server
environment is the order of jobs.

13

The B-environment is an expansion of the �rst one: in addition to the main
server, it includes 8 cloud nodes with 16 processors, 64GB memory and a
1TB disk on each node. The input �les are assumed to be on the server,
and the output �les should be there after the work�ow has been executed.
The data transfer speed between the cloud nodes is 50MB/s and between
the server and each node 10MB/s. This corresponds to using a local server
in addition to nodes from for example Amazon cloud. It is depicted in Figure
3B.

The C-environment is like the second, but with the local server replaced
by just a disk, and the number of cloud nodes doubled. This corresponds
to using calculation nodes from for example Amazon cloud with input and
output �les also being stored in the cloud (for example at an Amazon S3
disk). The disk-only resource is modeled with a really small CPU factor.

A randomized, heterogeneous version is created of the environment C by
multiplying the CPU factors of each node as well as all the transfer speeds
between disks by a random numbers from uniform distribution [0.5, 1.5]. The
number of nodes, the numbers of cores and the amounts of memory are kept
the same.

4 Results

In this section, the results (scheduling times and makespans) from the ex-
periments described previously are presented and analyzed. Sections 4.1 4.2
focus on the Imputation and BWA/GATK work�ows, respectively. The ef-
fect of heterogeneous resources is studied in Section 4.3, and the performance
of the metaheuristics is analyzed in Section 4.4.

The results shown here are of from a single scheduling run. The Genetic
Algorithm and GRASP are random in nature, but as both algorithms gen-
erate multiple random schedules (GRASP generates one per each iteration
and GA the initial population), the results are very similar from one run to
another. For Myopic, randomness may arise from the order on which jobs
are scheduled, while with the other schedulers, the order of the tasks that are
equal based on the criteria used by the scheduler may vary, depending on the
implementation. The implementations used for this work are deterministic,
so they produce the same schedule every time.

14

4.1 Imputation workflow

Figure 4 – The relative increases of the makespans of the schedules produced
by each algorithm for the Imputation workflow on all three environments as
well as the heterogeneous version of the environment C. The increases are cal-
culated with relatively to the best schedule produced for each environment.
The algorithms producing the best schedules are GA, HEFT, HEFT and Suf-
frage, respectively. The makespans were confirmed by simulating the workflow
using the produced schedules. Differences between the schedule makespans
and simulated makespans were negligible. GA was used with 100 generations
and a population size of 20 schedules, GRASP used 30 iterations. The values
of the makespans are listed in Tables 3-6.

Figure 4 shows a comparison of the makespans produced by each scheduler
for the Imputation work�ow on four di�erent environments. The �rst thing
to note here is that the makespans have a lot of variation, the longest taking
almost four times as long as the shortest for the same environment. HEFT
and Hybrid both produce schedules that are close to the shortest one on each
environment. The Genetic Algorithm manages to produce the best sched-
ule for the single-server case, but for other cases its makespans are around
50% longer than the shortest. Su�rage produces the best makespan for the
heterogeneous environment, but for the single-resource case it produces the
worst makespan together with Min-Min. The worst schedules are actually
identical, as in a single-resource environment the Su�rage scheduler picks
jobs in the same order as the Min-Min scheduler, due to its implementation.
Taking into account the fact that a single resource might be able to execute
multiple jobs in parallel would probably improve Su�rage's performance, but
it is not trivial to do.

For this work�ow, Min-Min produces the worst schedule on the three homo-
geneous environments, while the schedules given by Max-Min on the same

15

environments are really good. The reason is that the Imputation-work�ow
consists of tasks of di�erent length (notably in the Phasing-step), and the
longer tasks have much higher memory requirements than the shorter tasks,
so that not many of those can be run at the same time on one resource.
Thus, as the Max-Min schedules the longest tasks �rst, it can then �ll the
resources with smaller tasks and achieve higher parallelism. Min-Min, on the
other hand, begins by scheduling the short tasks and is then left with just
big tasks that take long time to execute and that cannot be run in parallel,
leaving some of the cores idle.

The good performance of the Genetic Algorithm on the single-server envi-
ronment is probably due to the height-ordering criteria, which forces each
schedule to �rst have all the Phasing-jobs, then all Split-jobs and �nally all
Imputation-jobs. Thus the expensive Phasing-jobs are scheduled �rst.

Figure 5 – The scheduling times for the Imputation workflow on all three
environments as well as the heterogeneous version of the environment C. The
scheduling times are listed in Tables 3-6.

Figure 5 shows the scheduling times for each algorithm and each execution
environment, on the Imputation work�ow. The heuristic algorithms are quite
fast, with each running under 5 seconds, while the two metaheuristics take
much longer (15 − 35 seconds). GA and GRASP use as much time as they
are allowed to (by the number of generations or iterations, or other stopping
criteria), so the results listed here are only meaningful with respect to the
schedules they produce.

16

Figure 6 – The relative increases of the makespans of the schedules produced
by each algorithm for the BWA/GATK workflow on all three environments A,B
and C. The increases are calculated relatively to the best schedule produced
for each environment - the one produced by HEFT, in each case. GRASP was
not able to produce a schedule in reasonable time for any of the cases. GA was
used with 100 generations and a population size of 20 schedules. The values
of the makespans are listed in Tables 8-10.

4.2 BWA/GATK workflow

The makespans for the BWA/GATK work�ow are shown in Fig. 6. Note
that the BWA/GATK was not tested on the heterogeneous version of the C-
environment, so there are just three values for each scheduler, corresponding
to environments A,B and C. Also note that the GRASP scheduler has been
left out as it was not able to produce a schedule in reasonable time (probably
due to implementation-speci�c reasons).

For BWA/GATK, the relative di�erences between di�erent makespans are
much smaller than for Imputation, ranging from 1% to 17%. Still, the di�er-
ences are not negligible: even for the single-resource environment the di�er-
ence between the shortest and longest makespans is over 4 days, and for the
B-environment it is over 8 days (Tbl. 8, 9).

The best schedules are produced by the HEFT scheduler, with Hybrid being
very slightly behind. The baseline for the makespan on the single-resource
environment is 231.7 days (178 000h divided by 32 cores), so HEFT's result
of 232.1 days (Tbl. 8) is really good. For the other schedulers, the relative in-
crease grows with the number of resources, except for the Genetic Algorithm
which performs worst on the slightly-heterogeneous environment B. The dif-
ferences between Myopic, Max-Min and Su�rage are small, but Min-Min
performs signi�cantly better. This is in contrast with the results attained

17

with the Imputation-work�ow, where Min-Min performed really badly com-
pared to Max-Min.

Figure 7 – The scheduling times for the BWA/GATK workflow on all three
environments. GRASP was not able to produce a schedule in reasonable time
for any of the cases. GA was used with 100 generations and a population size
of 20 schedules. The scheduling times are listed in Tables 8-10.

Figure 7 shows the scheduling times for the BWA/GATK -work�ow. Again
HEFT and Myopic are both really fast and the GA has quite a long running
time regardless of the set of available resources. Min-Min, Max-Min, Su�rage
and Hybrid have all similar running times that seem to be related to the num-
ber of resources, which is in accordance with their presumed computational
complexity (Yu et al. [2008]).

4.3 Heterogeneous resources

Figure 8 shows the importance of knowledge of the performance of the re-
sources. First, simulating a schedule where resources have been assumed to
be homogeneous on heterogeneous resources results in an signi�cant increase
in the makespan for Max-Min, HEFT and Hybrid schedulers � the schedulers
that found the best schedules for the homogeneous environment � while the
others are not that a�ected. Worth noting is that the simulator used does
not even try to execute a job before the time given in the schedule. Second,
on the heterogeneous environment, the schedules that are produced for it
are signi�cantly better than those produced for the homogeneous resources.
This is due to the schedulers being able to better exploit the faster resources
and avoid the slower ones. The biggest improvement is in the schedule by
Su�rage (from 19 days for the simulated makespan to 8 days), but also the
schedules produced by HEFT and Hybrid drop in half. Interesting to note

18

Figure 8 – The scheduled makespans for homogeneous environment C,
makespans from simulation on the heterogeneous version and makespans of
schedules made for the heterogeneous version, on the Imputation-workflow.
The makespans of the two different schedules are not directly comparable, as
the total processing power of the heterogeneous environment may differ from
the processing power of the homogeneous version.

is that while the makespans for HEFT and Su�rage schedules are shorter
than their homogeneous versions, Max-Min scheduler is not able to make use
of the heterogeneous resources as well and its makespan is longer than the
homogeneous one (while being still shorter than the homogeneous one when
simulated on heterogeneous resources).

Another case would be one in which the exact execution times of the jobs
are not known. It was not studied in this work, but it could be modeled in
a similar way than unknown resources: produce a schedule using estimates
of the execution times and evaluate the schedule with the simulator using
randomized execution times. The results would probably also be similar, i.e.
a signi�cantly better schedule can be made if the estimates of the execution
times are correct.

4.4 The Genetic Algorithm and GRASP

For the metaheuristics Genetic Algorithm and GRASP, in addition to the
�nal makespan, also the e�ciency of their iterations is of interest. If, for
example, the genetic algorithm's makespan would improve signi�cantly on
each generation, it might be worth running for a longer time. However,
from Table 1 we see that this is not the case. Thus, it is unlikely that
increasing the number of generations would have any other signi�cant e�ect
than increasing the scheduling time. Also, the good performance of the
GA scheduler on the Imputation work�ow on single resource (Fig. 4) can
be attributed to the height ordering criteria, which forces each schedule to
begin by executing the Phasing-jobs (on any single resource the jobs must be

19

executed in ascending order of height). In most cases, however, the height
ordering probably prevented the GA from reaching a good solution.

Work�ow Imputation BWA/GATK

Environment A B C C rand A B C

First generation 2176061 1419487 1364774 1197430 2849340 4755335 2883810
Last generation 2159798 1391166 1350046 1188484 2822835 4735594 2846408
Improvement 0.75% 2.04% 1.09% 0.75% 0.94% 0.42% 1.31%

Table 1 – The makespans of the best schedule in the first generation and in
the last generation (both in seconds) and their difference (relative to the final
schedule). The improvements are really small, suggesting that the genetic
operations do not work well on these cases.

For GRASP, the e�ect of the local optimization is harder to quantize, but it
seemed that for all test cases the local optimization was able to improve at
least some of the candidate schedules, and in most cases the �nal schedule
was a result of the local search (Tbl. 2). As GRASP is a random scheduler,
the results might vary from one run to another, but still it is clear that the
local search does improve the results.

Environment A B C C rand

Candidates improved 3 4 10 10
Total improving swaps 38 9 28 26
Final schedule improved yes yes yes no

Table 2 – The effects of the local search phase of the GRASP scheduler on the
Imputation workflow and each environment. The first row shows the number
of candidate schedules that were improved by the local search, out of the 30
candidates produced. Second row shows the total number of swaps done by
the local search in total for all candidate schedules. Third row indicates if the
best of the candidate schedules was improved by the local optimization.

5 Conclusions

The aim of this work was to investigate di�erent work�ow scheduling algo-
rithms, implement some of them and compare them on two example work-
�ows and three example environments (sets of resources). The work�ow
scheduling problem was formulated as an optimization problem, but it was

20

noted to be NP-complete and not feasible to be solved exactly. To �nd an ap-
proximate solution, eight algorithms ranging from a really simple heuristic to
full-blown metaheuristics were studied and implemented: Myopic, Min-Min,
Max-Min, Su�rage, HEFT, Hybrid, GRASP and a Genetic Algorithm.

The algorithms were tested on two work�ows, Imputation and BWA/GATK,
both of which are commonly used analysis work�ows in genetics. They share
some properties, but also di�er in many ways, showing di�erent aspects of
the scheduler algorithms. For resources, three di�erent sets were used: a sin-
gle server, the main server plus calculation nodes and just calculation nodes.
The three examples represent common calculation environments where Bio-
computing Platform's products are deployed.

The results from the experiments show that the choice of scheduler really
matters, with the di�erence between the makespans of the worst and the
best schedules being at worst close to 300% and over 10% in most cases.
Big di�erences were also noted in the schedulers' running times when the
number of jobs and resources were large, with the fastest being in the order
of seconds and slowest taking tens of minutes. Still, scheduling times were
found to be small compared to the makespans of the work�ows, and as such
no scheduler is too slow to be usable, even if in a real grid environment it
would probably have to be run quite often as the availability of the resources
may change over time and new jobs may need to be scheduled.

Based on the results, the Heterogeneous-Earliest-Finish-Time (HEFT) algo-
rithm seems to both be the fastest and produce the best schedules, on the
average. Even in the cases where some other scheduler produced a shorter
makespan, the di�erence to the schedule produced by HEFT was negligible,
meaning that HEFT is very robust with respect to the work�ow and the re-
sources. The results of the Hybrid algorithm were almost as good as HEFT's,
but it is computationally much more expensive. The other algorithms that
produced good schedules for some case produced really bad schedules for
some other case, an example being Min-Min which was clearly the worst
scheduler for the Imputation-work�ow but came third for BWA/GATK.

Many simplifying assumptions had to be done to make the implementation
of the schedulers possible in the given time frame. Most of the assumptions
are related to �le handling, as optimizing the �le storage and transfers would
probably be worth its own thesis. Most likely these assumptions do not play
a signi�cant role in the results, but it would still be interesting to con�rm
the performance of the schedulers on a real-world grid environment with real
work�ows and jobs. In a case where perfect information about the jobs and
resources is not possible to get, the schedule will never perform exactly as

21

assumed by the scheduler unless the scheduler adds some slack time between
jobs to account for longer-than-expected executions. The e�ect and optimal
amount of slack time could also be studied in the future.

In addition to producing best schedules, the HEFT algorithm is also fastest.
The running times, however, are very implementation-speci�c. By optimizing
the implementations, it would probably be possible to reduce the running
times of all other heuristics to be of the same magnitude as HEFT. Still,
the HEFT algorithm's advantage is that it is really easy to implement in an
e�cient way: out of all the algorithms here, least time was probably used on
implementing and optimizing the HEFT and Myopic schedulers.

When it comes to metaheuristics, based on these results the GRASP algo-
rithm is not suitable for work�ow scheduling on multi-resource environment.
The Genetic Algorithm would require much work to be both more e�ective
and to produce better schedules, but there is room for improvement. For
example, the height criteria now prevents the GA from reaching the opti-
mal solutions in some cases, but not using the criteria would mean much
longer running time for the algorithm itself unless some other measure could
be found to enforce the validness of the schedules produced by the genetic
operations.

When using a so called utility grid, the user must usually pay for used re-
sources. It is often cheaper to use less-capable resources, so a user might
want the scheduler to also consider the cost of operations, meaning that the
scheduling should be performed with these Quality of Service -constraints
in mind, instead of just minimizing the makespan. The most usual QoS-
constraints are budget and time constraints: for a budget constraint, the user
wants a schedule that minimizes the makespan while costs stay under a given
budget, while a time constraint means that the scheduler should minimize
costs while keeping the makespan under the given time. Genetic algorithms
can give a solution to both constraints, and there are also heuristics-based
methods (Backtracking, deadline distribution for DL-constraint, LOSS and
GAIN for budget-constraint) (Yu et al. [2008], Sakellariou et al. [2007]). For
HEFT, no QoS-extensions were found.

To conclude, after comparing the algorithms both in theory and in practice, it
would seem that the Heterogeneous-Earliest-Finish-Time (HEFT) algorithm
would be the best choice as a scheduler for the situations tested in this
work. Further study could focus on implementing improvements for the
HEFT algorithm and testing their e�ects, as well as investigating the impact
of di�erent ranking methods to the makespan.

22

References

S Binato, W.J. Hery, D.M. Loewenstern, and M.G.C. Resende. A grasp for
job shop scheduling. In Essays and surveys in metaheuristics, pages 59�79.
Springer, 2002.

C. Blum and A. Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Comput. Surv., 35(3):268�
308, September 2003.

J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy.
Task scheduling strategies for work�ow-based applications in grids. In
Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE International
Symposium on, volume 2, pages 759�767. IEEE, 2005.

T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Maheswaran, A.I. Reuther,
J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen, et al. A comparison
of eleven static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems. Journal of Parallel and
Distributed computing, 61(6):810�837, 2001.

I. Foster and C. Kesselman. The Grid 2: Blueprint for a new computing
infrastructure. Morgan Kaufmann, 2003.

E.S.H. Hou, N. Ansari, and Hong R. A genetic algorithm for multiprocessor
scheduling. Parallel and Distributed Systems, IEEE Transactions on, 5(2):
113�120, Feb 1994.

B. Howie, J. Marchini, and M. Stephens. Genotype imputation with thou-
sands of genomes. G3: Genes, Genomes, Genetics, 1(6):457�470, 2011.

B. Howie, C. Fuchsberger, M. Stephens, J. Marchini, and G.R. Abecasis.
Fast and accurate genotype imputation in genome-wide association studies
through pre-phasing. Nature genetics, 44(8):955�959, 2012.

L.B. Jorde and S.P Wooding. Genetic variation, classi�cation and'race'.
Nature genetics, 36:S28�S33, 2004.

H. Li and R. Durbin. Fast and accurate short read alignment with burrows�
wheeler transform. Bioinformatics, 25(14):1754�1760, 2009.

R. Sakellariou, H. Zhao, E. Tsiakkouri, and M.D. Dikaiakos. Scheduling work-
�ows with budget constraints. In Integrated Research in GRID Computing,
pages 189�202. Springer, 2007.

23

H. Topcuoglu, S. Hariri, and M. Wu. Performance-e�ective and low-
complexity task scheduling for heterogeneous computing. Parallel and
Distributed Systems, IEEE Transactions on, 13(3):260�274, 2002.

J. D. Ullman. Np-complete scheduling problems. Journal of Computer and
System Sciences, vol. 10, pages 384�393, 1975.

G.A. Van der Auwera, M.O. Carneiro, C. Hartl, R. Poplin, G. del Angel, A.
Levy-Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, E. Banks,
K.V. Garimella, D. Altshuler, S. Gabriel, and M.A. DePristo. From FastQ
Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best
Practices Pipeline. John Wiley & Sons, Inc., 2002.

M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of scienti�c work-
�ows in the askalon grid environment. ACM SIGMOD Record, 34(3):56�62,
2005.

J. Yu and R. Buyya. A taxonomy of scienti�c work�ow systems for grid
computing. Sigmod Record, 34(3):44, 2005.

J. Yu, R. Buyya, and K. Ramamohanarao. Work�ow scheduling algorithms
for grid computing. In Metaheuristics for scheduling in distributed com-
puting environments, pages 173�214. Springer, 2008.

H. Zhao and R. Sakellariou. An experimental investigation into the rank
function of the heterogeneous earliest �nish time scheduling algorithm. In
Euro-Par 2003 Parallel Processing, pages 189�194. Springer, 2003.

24

Appendices

A Imputation Workflow

The Imputation work�ow, as it was given by BC Platforms and used in this
work. Assumes whole genome imputation of 10000 subjects genotyped using
a chip with 2.5𝑀 markers, imputed using 1000𝐺 imputation reference panels.

1. Phasing: 22 jobs, one per chromosome

Input A study genotype �les (one for each chromosome) with 10000
subjects. File size corresponds to chromosome size, in gigabytes:
34.80,35.34, 34.53, 29.86, 27.01, 30.79, 25.22, 23.09, 20.77, 21.48,
20.26, 22.44, 17.10, 15.90, 14.05, 15.65, 13.27, 13.56, 10.66, 11.01,
6.91, 6.30

Output one phased genotype �le per job, same size as input

RAM corresponds to chromosome size, in gigabytes: 49.68, 50.46,
49.30, 42.63, 38.57, 43.96, 36.00, 32.97, 29.66, 30.67, 28.92, 32.05,
24.42, 22.70, 20.06, 22.35, 18.95, 19.37, 15.22, 15.71, 9.86, 8.99

CPU 4 cores, execution time corresponds to chromosome size, in sec-
onds: 850561, 863861, 844061, 729852, 660265, 752541, 616368,
564485, 507723, 525062, 495176, 548640, 418117, 388638, 343472,
382637, 324499, 331563, 260564, 269040, 168876, 153998

2. Splitting: 22 jobs, one per output of Phasing

Input A phased genotype �le (output of Phasing)

Output The input splitted into chunks of 568MB, resulting in a dif-
ferent number of �les, corresponding to chromosome: 61, 62, 61,
53, 48, 54, 44, 41, 37, 38, 36, 40, 30, 28, 25, 28, 23, 24, 19, 19, 12,
11

RAM negligible

CPU 1 core, execution time negligible

3. Imputation: 794 jobs, one per output of Splitting. 𝑀𝐴𝑅𝐾𝐸𝑅𝑆 mod-
els the variable marker density in the reference panel chunks and is
distributes according to the normal distribution with a mean of 49993
and variance of 7253.

25

Input A chunk of a phased genotype �le (output of Splitting) and the
respective chunk of the reference panel �le (𝑀𝐴𝑅𝐾𝐸𝑅𝑆/50000 *
3.9MB).

Output Genotype �le of size 𝑀𝐴𝑅𝐾𝐸𝑅𝑆 * 9GB

RAM 𝑀𝐴𝑅𝐾𝐸𝑅𝑆/50000 * 10GB

CPU 1 core, execution time 𝑀𝐴𝑅𝐾𝐸𝑅𝑆/50000 * 6 h

Figure 9 – Imputation workflow for one chromosome. 22 of these are run in
parallel. Each parallel line has its own input file and results in 11− 62 output
files. First operation is Phasing, after which the file is split into almost same-
sized segments. Each segment is then imputed separately. Total number of
jobs is 838, with total execution time around 17 000 h.

26

B BWA/GATK Workflow

The BWA/GATK work�ow, as it was given by BC Platforms and used in
this work. Assumes 1000 samples, 16 raw read �les per sample and a callset
of 10 samples.

1. Align: 16000 jobs, 16 per sample

Input A raw read �le (1GB) and a reference sequence �le (3GB).

Output Aligned read �le (1GB)

RAM 4GB

CPU 1 core, execution time 3 h

2. Merge: 1000 jobs, 1 per sample

Input Aligned read �les for each sample (outputs of 16 Align-jobs)

Output 22 �les, one per chromosome, sizes corresponding to chromo-
somes (in gigabytes): 1.22, 1.24, 1.21, 1.05, 0.95, 1.08, 0.88, 0.81,
0.96, 0.75, 0.71, 0.79, 0.60, 0.56, 0.49, 0.55, 0.47, 0.48, 0.37, 0.39,
0.24, 0.22

RAM 4GB

CPU 1 core, execution time 10 h

3. Variant Call: 2200 jobs, 22 per 10 samples

Input A chromosome �le of 10 samples

Output VCF �le, sizes corresponding to chromosomes (in megabytes):
53.36, 54.19, 52.95, 45.78, 41.42, 47.21, 38.66, 35.41, 41.83, 32.94,
31.06, 34.42, 26.23, 24.38, 21.55, 24.00, 20.36, 20.80, 16.34, 16.88,
10.59, 9.66

RAM 4GB

CPU 1 core, execution time varies corresponding to chromosome (in
hours): 91.47, 92.90, 90.77, 78.49, 71.00, 80.93, 66.28, 60.70, 71.70,
56.46, 53.25, 59.00, 44.96, 41.79, 36.94, 41.15, 34.90, 35.65, 28.02,
28.93, 18.16, 16.56

27

Figure 10 – The BWA/GATK workflow consists of 19200 jobs in three phases:
Align, Merge and Call. As input files it has 1000 samples and 16 raw read files
for each sample. Each input file is first aligned separately according to a
reference file, and then the files for each single sample are merged and divided
to chromosomes. Finally, for each chromosome in each callset (a set of 10
samples), variant calling is done. This gives in total 19200 jobs (16000 Align,
1000 Merge, 2200 Call), totaling at around 20 year’s worth of CPU time.

28

C Results - Imputation

The results of scheduling the Imputation work�ow for each environment are
listed below. The scheduling time is as measured by the Unix program �time�,
as the sum of user and system times (CPU times taken by the process in
user mode and kernel, respectively). Makespan is the time when the last
job �nishes. The simulation-column shows the simulated makespan, and
the difference between simulation and makespan is the simulated makespan
minus scheduled makespan (simulated makespan is always at least as long as
the scheduled makespan).

Scheduling
time (s)

Makespan (s)
Makespan
(days)

Relative
increase over
best schedule

Simulation
(days)

Di�erence
(days)

Myopic 1 3443542 39.86 59.44% 39.86 0.00
Min-Min 2 8019889 92.82 271.33% 92.82 0.00
Max-Min 1 2330022 26.97 7.88% 26.97 0.00
Su�rage 1 8019889 92.82 271.33% 92.82 0.00
HEFT 1 2293101 26.54 6.17% 26.54 0.00
Hybrid 2 2293451 26.54 6.19% 26.54 0.00
GRASP 21 5789468 67.01 168.06% 67.01 0.00
GA 35 2159798 25.00 0.00% 25.00 0.00

Table 3 – The results of scheduling the Imputation workflow on the environ-
ment A. The best schedule is produced by the genetic algorithm.

Scheduling
time (s)

Makespan (s)
Makespan
(days)

Relative
increase over
best schedule

Simulation
(days)

Di�erence
(days)

Myopic 1 1763581 20.41 92.62% 20.41 0.00
Min-Min 2 3622948 41.93 295.69% 41.94 0.01
Max-Min 2 927523 10.74 1.30% 10.77 0.03
Su�rage 2 1270555 14.71 38.77% 14.71 0.01
HEFT 1 915592 10.60 0.00% 10.62 0.02
Hybrid 2 917716 10.62 0.23% 10.65 0.03
GRASP 14 1872757 21.68 104.54% 21.68 0.00
GA 19 1391166 16.10 51.94% 16.10 0.00

Table 4 – The results of scheduling the Imputation workflow on the environ-
ment B. The best schedule is produced by HEFT.

29

Scheduling
time (s)

Makespan (s)
Makespan
(days)

Relative
increase over
best schedule

Simulation
(days)

Di�erence
(days)

Myopic 1 1655173 19.16 82.06% 19.16 0.00
Min-Min 2 2717888 31.46 198.96% 31.47 0.01
Max-Min 2 912080 10.56 0.33% 10.61 0.06
Su�rage 2 1653114 19.13 81.84% 19.13 0.00
HEFT 2 909123 10.52 0.00% 10.54 0.02
Hybrid 3 912072 10.56 0.32% 10.57 0.02
GRASP 24 2603902 30.14 186.42% 30.14 0.00
GA 18 1350046 15.63 48.50% 15.63 0.00

Table 5 – The results of scheduling the Imputation workflow on the environ-
ment C. The best schedule is produced by HEFT.

Scheduling
time (s)

Makespan (s)
Makespan
(days)

Relative
increase over
best schedule

Simulation
(days)

Di�erence
(days)

Myopic 1 1239591 14.35 89.83% 14.35 0.00
Min-Min 2 1716462 19.87 162.86% 19.90 0.03
Max-Min 2 1029247 11.91 57.62% 12.02 0.10
Su�rage 3 652995 7.56 0.00% 7.61 0.05
HEFT 2 657257 7.61 0.65% 7.65 0.04
Hybrid 3 664739 7.69 1.80% 7.72 0.03
GRASP 27 2064691 23.90 216.19% 23.90 0.00
GA 19 1188484 13.76 82.01% 13.80 0.04

Table 6 – The results of scheduling the Imputation workflow on the hetero-
geneous version of environment C. The best schedule is produced by Suffrage.

30

Makespan
(days)

Simulation
(days)

Simulation on
randomized

environment (days)

Makespan on
randomized
environment (days)

Myopic 14.35 14.35 19.32 14.35
Min-Min 19.87 19.90 31.57 19.87
Max-Min 11.91 12.02 15.74 11.91
Su�rage 7.56 7.61 19.27 7.56
HEFT 7.61 7.65 15.74 7.61
Hybrid 7.69 7.72 15.74 7.69
GRASP 23.90 23.90 30.95 23.90
GA 13.76 13.80 15.75 13.76

Table 7 – The difference between scheduling under performance guidance and
without it, when scheduling the Imputation workflow on environment C. The
”makespan“ is the makespan of the schedule for the homogeneous version of the
environment, and ”simulation“ is the simulated makespan. The ”simulation on
randomized environment“ is the same schedule simulated on the heterogeneous
version of the environment, and ”makespan on randomized environment“ is the
makespan of the schedule generated for the heterogeneous version.

31

D Results - BWA/GATK

The results of scheduling the BWA/GATK work�ow for each environment
are listed below. The scheduling time is as measured by the Unix program
�time�, as the sum of user and system times (CPU times taken by the process
in user mode and kernel, respectively). Makespan is the time when the last
job �nishes.

Scheduling
time (s)

Makespan (s) Makespan (days)
Relative increase
over best schedule

Myopic 18 20421623 236.36 1.84%
Min-Min 97 20157354 233.30 0.53%
Max-Min 101 20332891 235.33 1.40%
Su�rage 85 20157354 233.30 0.53%
HEFT 4 20051760 232.08 0.00%
Hybrid 83 20067195 232.26 0.08%
GA 913 20140075 233.10 0.44%

Table 8 – The results of scheduling the BWA/GATK workflow on the envi-
ronment A. The best schedule is produced by HEFT.

Scheduling
time (s)

Makespan (s) Makespan (days)
Relative increase
over best schedule

Myopic 18 4369401 50.57 8.28%
Min-Min 487 4142365 47.94 2.66%
Max-Min 494 4391147 50.82 8.82%
Su�rage 479 4253780 49.23 5.42%
HEFT 5 4035209 46.70 0.00%
Hybrid 454 4048207 46.85 0.32%
GA 956 4714934 54.57 16.84%

Table 9 – The results of scheduling the BWA/GATK workflow on the envi-
ronment B. The best schedule is produced by HEFT.

32

Scheduling
time (s)

Makespan (s) Makespan (days)
Relative increase
over best schedule

Myopic 17 2837565 32.84 11.80%
Min-Min 854 2671762 30.92 5.27%
Max-Min 837 2832215 32.78 11.59%
Su�rage 813 2827545 32.73 11.41%
HEFT 5 2538067 29.38 0.00%
Hybrid 786 2540586 29.40 0.10%
GA 992 2822835 32.67 11.22%

Table 10 – The results of scheduling the BWA/GATK workflow on the envi-
ronment C. The best schedule is produced by HEFT.

Yksi nykyaikaisen tieteellisen tutkimuksen ominaispiirteitä on erittäin suuret tietomäärät, joiden
analysointi vaatii tehokkaimmaltakin tietokoneelta paljon aikaa: tunteja, päiviä, viikkoja tai jopa
kuukausia. Yhdeksi ratkaisuksi on esitetty analyysien jakamista pienempiin osiin (töihin) ja näiden
osien suorittamista yhtäaikaisesti usealla tietokoneella (resurssilla). Samalla Internetin kehitys on
mahdollistanut eri puolilla maailmaa sijaitsevien erilaisten resurssien liittämisen yhdeksi
kokonaisuudeksi, jolla useat tutkijat voivat suorittaa analyysejansa. Jotta töiden suorittaminen
yhtäaikaisesti onnistuisi järkevästi ja nopeasti, työt täytyy jakaa käytössä olevien resurssien kesken ja
niiden suoritusjärjestys täytyy määrätä. Tätä kutsutaan aikataulutukseksi.

Kandidaatintyössä tutkittiin eri menetelmiä aikataulutuksen tekemiseen työnantajan, Biocomputing
Platforms Ltd:n, antamassa viitekehyksessä. Esimerkkianalyyseinä käytettiin kahta genetiikan
menetelmää, joista toisen tarkoituksena on täydentää puuttuvia mittaustuloksia perustuen tilastolliseen
mallintamiseen ja toisen löytää poikkeavuuksia vertailukohtana olevaan tietokantaan. Kumpikin
analyysi voidaan jakaa osiin, jotka voidaan suorittaa rinnakkain ja peräkkäin; tätä jakoa kutsutaan
työnkuluksi. Työnkulku voidaan esittää suunnattuna asyklisenä graafina, jonka viivat kuvaavat töiden
riippuvuussuhteita. Ensimmäisen menetelmän työnkulku koostuu noin 800 työstä jaettuna 22
rinnakkaiseen linjaan. Toinen työnkulku sisältää 19 200 työtä sadassa rinnakkaisessa linjassa.
Esimerkkiympäristöinä, joille työnkulkuja aikataulutettiin, käytettiin seuraavia malleja: ”yksi tehokas
tietokone”, ”yksi tehokas tietokone + 8 samanlaista, pienempitehoista tietokonetta”, ”16 samanlaista
tietokonetta” ja ”16 erilaista tietokonetta”.

Tavoitteena oli löytää menetelmä, jonka tuottamien aikataulujen kokonaispituus on mahdollisimman
lyhyt, mutta myös aikataulun luomiseen kestävä aika huomioitiin. Tehtävän mukaisten
laskentaympäristöjen tila voi muuttua kesken työnkulun suorituksen, esimerkiksi jos jokin tietokoneista
joudutaan sulkemaan tai verkkoyhteys johonkin koneeseen katkeaa. Tällöin aikataulutus täytyy tehdä
uudestaan.

Aikataulutus on NP-täydellinen ongelma, eli sen ratkaisemiseen tunnetaan vain eksponentiaalisen ajan
vaativia algoritmeja. Menetelmän tulisi kuitenkin toimia nopeasti suurillakin työmäärillä, eikä
eksponentiaalinen algoritmi siten ole käytännössä mahdollinen ratkaisu. Tarvitaan siis menetelmiä,
jotka löytävät riittävän hyvän ratkaisun lyhyessä ajassa, eli niin kutsuttuja heuristiikkoja.

Työtä varten testattavaksi valitut menetelmät toteutettiin käyttäen Java-ohjelmointikieltä. Toteutuksen
helpottamiseksi tiettyjä asioita jätettiin huomioimatta, esimerkiksi useiden yhtäaikaisten tiedonsiirtojen
vaikutusta tiedonsiirtonopeuteen ei huomioitu ja tietokoneiden tallennuskapasiteetit oletettiin
äärettömiksi. Yksittäisen työn kestoon oletettiin vaikuttavan ainoastaan tietokoneen

33

E Yhteenveto (in Finnish)

suorituskykykertoimen, muiden resurssivaatimuksien rajoittaessa yhtäaikaisten töiden määrää. Lisäksi
päätettiin keskittyä ainoastaan aikataulun minimoimiseen. Monimutkaisempia tavoitteita olisivat
esimerkiksi tietokoneiden ja tiedonsiirtoväylien käytöstä syntyvien kustannusten minimoiminen siten,
että aikataulun pituus on rajoitettu, tai pituuden minimointi siten, että kustannuksilla on yläraja. Näitä
rajoitteita kutsutaan palvelunlaatukriteereiksi.

Työssä toteutettiin ja testattiin kahdeksan eri menetelmää, jotka kaikki ovat tunnettuja aikataulutukseen
käytettyjä algoritmeja. Näistä osa on heuristiikkoja, jotka pyrkivät rakentamaan mahdollisimman hyvän
ratkaisun jonkin ennalta määrätyn säännön mukaan, ja osa metaheuristiikkoja, jotka etsivät
mahdollisimman hyvää ratkaisua kokeilemalla erilaisia vaihtoehtoja. Jokainen heuristiikka käy läpi työt
valiten yhden kerrallaan ja asettaa sen suoritettavaksi tietokoneelle, jolla se valmistuu nopeimmin.
Erona menetelmissä on se, miten ne valitsevat työt: Myopic valitsee satunnaisen työn, Min-Min
lyhimmän, Max-Min pisimmän ja Suffrage sen, joka kärsisi eniten jäädessään valitsematta sillä kertaa.
Hieman monimutkaisempia heuristiikkoja ovat HEFT ja Hybrid, jotka ensiksi järjestävät työt
tärkeysjärjestykseen niiden vaatimuksien sekä niitä seuraavien töiden mukaan ja sitten aikatauluttavat
ne tämän järjestyksen mukaisesti. Tapoja tärkeyksien laskemiseen on useita, ja eri tapojen on havaittu
toimivan hyvin eri tilanteissa. Metaheuristiikkoja toteutettiin kaksi: GRASP ja geneettinen algoritmi.
GRASP luo satunnaisia ratkaisuja, pyrkii parantamaan ratkaisuja esimerkiksi vaihtamalla peräkkäisten
töiden paikkoja ja valitsee lopulta parhaan. Geneettinen algoritmi pohjautuu nimensä mukaan
genetiikkaan ja pyrkii löytämään ratkaisun käyttämällä evoluutiobiologian keinoja, jotka ovat
rekombinaatio, mutaatio ja valinta.

Koska kaikki algoritmit ohjelmoitiin kandityötä varten, niihin tulee suhtautua sen mukaisella
kriittisyydellä. Metaheuristiikat ovat toteutukseltaan huomattavasti heuristiikkoja monimutkaisempia,
ja erilainen toteutus olisi voinut antaa erilaisia lopputuloksia. Erityisesti menetelmien käyttämät ajat
ovat hyvinkin toteutuksesta määräytyviä. Osaa menetelmistä voi säätää erilaisilla asetuksilla, jotka
vaikuttavat sekä aikataulun pituuteen että sen luomisen viemään aikaan. Työssä käytetyt parametrit on
säädetty testauksen aikaisten kokemuksien mukaan sopiviksi.

Testissä huomattiin, että aikataulutusmenetelmän valinnalla voi olla todella suuri merkitys aikataulun
pituuden kannalta: pahimmillaan pisin aikataulu oli neljä kertaa lyhimmän pituinen, ja useimmissa
tapauksissa eroa oli vähintään 10 %. Menetelmien toimivuuteen vaikutti sekä työnkulku että ympäristö,
ja useimmat menetelmistä toimivat hyvin ainakin yhdessä tilanteessa. Poikkeuksena Myopic ja GRASP
loivat melko pitkiä aikatauluja kaikissa testitapauksissa, mistä voidaan todeta Myopicin olevan liian
yksinkertainen ja GRASPin sopivan huonosti tähän tehtävään.

HEFT-algoritmi puolestaan tuotti jokaisessa testissä joko parhaan tai hyvin lähelle parasta olevan
aikataulun. Lisäksi se oli nopein yhdessä Myopic-heuristiikan kanssa, ja tuotti aikataulun kaikissa
tapauksissa alle 10 sekunnissa. Aikatauluttaessa jälkimmäistä, suurempaa työnkuvausta yhdelle
tietokoneelle HEFT:n luoma aikataulu on lähellä teoreettista alarajaa, eli töiden yhteenlaskettua pituutta
jaettuna tietokoneen prosessorien määrällä. Hybrid-menetelmän aikataulujen pituudet ovat jokaisessa
testitapauksessa hyvin lähellä HEFTin aikataulujen pituuksia, mutta itse algoritmi vaatii paljon
enemmän aikaa aikataulun tuottamiseen kuin HEFT.

Mielenkiintoinen pari vertailtavaksi on Min-Min ja Max-Min, joiden pieni ero johtaa hyvin erilaisiin
lopputuloksiin. Kirjallisuuden perusteella Min-Min toimii yleensä hieman paremmin, mutta Max-Min
voi antaa parempia tuloksia, mikäli työnkulku koostuu suuresta määrästä pieniä töitä ja muutamasta
suuresta työstä. Tällaisessa tapauksessa Min-Min aikatauluttaa ensiksi pienet, lyhyet työt. Mikäli
kaikkia suuria töitä ei voi suorittaa yhtä aikaa, rinnakkaisuus kärsii, sillä pieniäkään töitä ei ole enää
jäljellä suurien töiden sekaan asetettavaksi. Tällainen tilanne on esimerkeistä ensimmäisessä
työnkulussa, ja se näkyy tuloksissa: Max-Minin aikataulut ovat huomattavasti Min-Minin aikatauluja
lyhyempiä. Min-Min puolestaan pärjää paremmin jälkimmäisessä työnkulussa, jossa töiden
resurssivaatimukset eivät ole yhtä rajoittavia. Suffrage-algoritmi puolestaan vaikuttaa toimivan
parhaiten silloin, kun käytössä olevat tietokoneet ovat erilaisia.

Geneettinen algoritmi (GA) onnistui tuottamaan parhaan aikataulun yhteen testitapauksista, jolloin ero
toiseksi tulleeseen aikatauluun oli noin 6 %. GA:n voitto ei kuitenkaan ollut geneettisten operaatioiden
ansiota, sillä ensimmäisen ja viimeisen sukupolven parhaiden aikataulun välillä oli vain noin 1 % ero,
eli GA:n toimivuus kyseisessä tilanteessa johtui hyvästä alkupopulaatiosta. Geneettinen algoritmi
laskee jokaiselle työlle ”korkeuden”, joka kuvastaa sen etäisyyttä työnkulun alusta. Geneettiset
operaatiot käyttävät tätä korkeuslukua hyväkseen tuottaakseen aikatauluja, jotka ovat käypiä eli joissa
töiden väliset riippuvuussuhteet toteutuvat. Esimerkiksi kahden samalla korkeudella olevan työn täytyy
olla toisistaan riippumattomia, joten aikataulu pysyy käypänä, vaikka mutaatio vaihtaisi niiden paikat
päittäin. Jokaisessa geneettisen algoritmin tuottamassa aikataulussa työt suoritetaan
korkeusjärjestyksessä, ja käytännössä tämän järjestyksen pakottaminen johtaa joissain tapauksissa
hyvään aikatauluun ja toisissa tapauksissa huonoon. Huomattavaa on, että geneettinen algoritmi
voitaisiin toteuttaa myös ilman korkeusjärjestystä, jolloin lopputulokset saattaisivat olla parempia,
mutta geneettisten operaatioiden toteutus tehokkaasti olisi huomattavasti haastavampaa.

Työssä todettiin, että tarkastelluissa, melko yksinkertaisissa tapauksissa, HEFT-algoritmi tuottaa
nopeasti parhaan tai ainakin hyvin lähelle parasta olevan aikataulun. Seuraavaksi tulisi varmistua
algoritmin toimivuudesta todellisessa ympäristössä ja todellisilla työnkuluilla sekä tutkia eri
tärkeysjärjestyksen laskentatapojen vaikutusta aikatauluun. HEFTin perusversio ei kuitenkaan ole
kykenevä huomioimaan palvelunlaatukriteerejä, toisin kuin esimerkiksi metaheuristiikat. Mikäli
tulevaisuudessa halutaan ottaa huomioon muitakin kriteerejä kuin pelkkä aikataulun pituus, myös
geneettisen algoritmin jatkokehitys voi olla hyödyllistä.

	Introduction
	Theory and existing research
	Optimization problem and exact solution
	Heuristics
	Metaheuristics
	Scheduling strategies
	Comparison of methods

	Research problem and methods
	Example workflows
	Imputation with pre-phasing
	BWA/GATK

	Example Environments

	Results
	Imputation workflow
	BWA/GATK workflow
	Heterogeneous resources
	The Genetic Algorithm and GRASP

	Conclusions
	References
	Appendix Imputation Workflow
	Appendix BWA/GATK Workflow
	Appendix Results - Imputation
	Appendix Results - BWA/GATK
	Appendix Yhteenveto (in Finnish)

