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Abbrevations and Acronyms

AR

MA
ARMA
ARIMA
ARIMAX
SARIMAX

t

¢(B)

(1-B)¢

¢(B*)

(1-BS)P

0(B)

AutoRegressive

Moving Average

AutoRegressive Moving Average

AutoRegressive Integrated Moving Average

AutoRegressive Integrated Moving Average with eXternal variables
Seasonal AutoRegressive Integrated Moving Average with eXternal variables
discrete time

the value of a time series at a discrete time t

seasonal length

backward shift operator defined by Bz, = z,_, and B¥z; = z;_g
mean level of the process (often u = 0)

normally independently distributed white noise residual with mean 0 and variance o2
(writtenas N(0,02))

=1-¢B—¢,B*>—--—¢,B” nonseasonal autoregressive (AR) operator or
polynomial of order p such that the roots of the characteristic equation ¢(B) = 0 lie
outside the unit circle for nonseasonal stationarity and the ¢;, i = 1,2, ...,p are the
nonseasonal AR parameters

= V% nonseasonal differencing operator of order d to produce nonseasonal
stationarity of the dth differences, usually d = 0,1, or 2

=1—¢1B° — $,B* —--- — ¢,B"* seasonal AR operator of order P such that the
roots of ¢(B%) = 0 lie outside the unit circle for seasonal stationarity and the ¢;,
i =1,2,..,P are the seasonal AR parameters

= V2V2z, stationary series formed by differencing z, series

=1-6,B—-6,B*>—-- ¢$qB? nonseasonal moving average (MA) operator or
polynomial of order g such that the roots of that the roots of 6(B) = 0 lie outside the
unit circle for invertibility and 6;,i = 1,2, ..., g are the nonseasonal M A parameters



0(B®) =1-0,B5—0,B°5—0,B% — ... — G)QBQS seasonal MA operator of order Q such
that the roots of ©(B%) = 0 lie outside the unit circle for invertibility and the ©;,
i=1,2,..,Q are the seasonal MA parameters

The notation (p,d, q) x (P, D, Q) is used to represent the seasonal ARIMA model.



1 Introduction

The justification of marketing spending almost always involves estimating the incremental effects
of the marketing or advertising procedure under evaluation. In order to model the effects of
marketing procedures we have to form a picture of the baseline sales levels. Estimates of baseline
sales levels establish a benchmark for evaluating the incremental sales generated by specific
marketing activities. This baseline also helps isolate incremental sales from the effects of other
influences, such as seasonality or competitive promotions [1].

The aim of this thesis is to model the baseline sales levels of a large Finnish food company’s
functional dairy product. The product is a dairy product with added health benefits, thus it bought
more during influenza seasons. For the estimation of the baseline sales levels product sales and
marketing expenditure data is used. By comparing marketing and advertising activities to the
difference between actualized and estimated sales one can form versatile models of marketing
functions. In order to model the influence of marketing expenditures, we have to build a model of
the sales, where marketing activities constitute as a variable. Marketing data often includes
measures on, for example, sales or marketing mix variables at equally spaced intervals over time.
Time series models are uniquely suited to capture the time dependencies in these variables [2].

The biggest challenges in modeling sales are the changing dynamics between the variables and the
problem of endogeneity. Market responsiveness may not be the same over time. Advertising
effectiveness might decline over the life cycle of a product, which means that the dynamics between
the variables will change over the life cycle of the product as well [3]. With the problem of
endogeneity is meant, that the exogenous variables such as price, promotion, advertising, etc., are
themselves endogenous. In statistics an exogenous variable affects a model without being affected
by it, and whose qualitative characteristics and method of generation are not specified by the model
builder [11]. In turn, an endogenous variable is generated within a model and, therefore, a variable
whose value is changed by one of the functional relationships in that model [12]. Marketing
managers set the marketing-mix variables based on market information which may be in part
unobservable to the researcher but which nevertheless affects consumer choice. This would create a
situation where the marketing-mix variables could be correlated with the error terms [2].

An extensively used model in marketing science, to describe effects of marketing activities on sales,
is a Vector AutoRegressive (VAR) model, as it takes in account the dynamic changes of variables.
Because of difficulties in getting the VAR package to function in the statistics software R, a
Seasonal AutoRegressive Integrated Moving Average with eXternal inputs (SARIMAX) model is
used instead [4, 5]. The theoretical background of the model is explained in Chapter 2 and the Box-
Jenkins methodology for fitting a model to a time series is described in Chapter 3.

In Chapter 4 the case study for the functional dairy product is presented. First the sales and
marketing data are described and after that the Box-Jenkins procedure is applied for the data. The
goodness of the model is evaluated with Akaike’s Information Criterion (AIC) and backtesting



experiments. We will arrive with a baseline sales model for the dairy product. Chapter 5 is for
discussion and conclusions.

2 Time Series in Marketing

The following theoretical background about time series in marketing is following closely the
presentation by Horvath et al. [2].

2.1  ARMA Processes

Let z, be the sales of a product in a period t. A common and fairly simple way to describe
fluctuations in sales over time is with a first-order autoregressive process. In this process, it is
assumed that sales at t-1, z,_,, affect sales at period t

Zie=u+ @z, +e,t=1,..,T, (1)

where u =a constant, &, =the error term, ¢ =a parameter, the starting condition is z, = 0, and T is
the sample length. The model is indicated as AR(1), which means ‘autoregressive process of order
1’. Tt is possible that there is a correlation between higher order lags as well. Values of variables
occurring prior to the current observation are called lag values [13]. The order p of an AR(p)
process is the highest lag of z; that appears in the model. The general p-order AR process is

op(B)zy = p+e,t=1,..,T (2)

where ¢, (B) = (1 — ¢,B — ¢,B*> — --- — ¢,BP). Here B denotes the backshift operator defined by
B*y: = ¢k

A first-order moving average process assumes that a random shock at t — 1, &;_;, affects sales
levels at time t

Zt =‘Ll+€t_0€t_1,t = 1,...,T. (3)

This model is indicated as MA(1). Notice that from here on the error term &, will be called a
random shock. Note also that the past shock does not come from past sales (past values of z;) as in
the AR(1) model, but it stems from the random component of &;_;. The order g of an MA(q)
process is the highest lag of ¢, that appears in the model. The general g-order MA process is

Zr = U + Hq(B)gt,t = 1, ...,T, (4)

where 6,(B) = (1 — 6,B — ,B% — ---— §,BY).



AR and MA processes can be combined into a single model to reflect the idea that both past sales
and past random shocks affect z;. For example, the ARMA(1,1) process

Zy = U + PZi_q + & — Hgt—lit = 1, ,T (5)

The orders (p, q) of a ARMA(p, q) process are the highest lags of z; and &, respectively that appear
in the model. For example, for an ARMA(1,1) process, p = 1 and g = 1. The general ARMA(p, q)
process is

op(B)ze =+ 0,(B)ep, t =1,...,T (6)

If we are interested in estimating the effects of marketing variables such as price, advertising and
competitive behavior on sales when the latter variable is also a subject to other complex patterns,
we can include these variables in an ARMA model, and obtain the following ARMA model with
eXogenous variables (ARMAX)

@,(B)z; =+ 0,(B)e; + mp(B)xy, t = 1,...,T. (7)

2.2  Stationary and Non-stationary Processes

In order to use statistical tests for an ARMA model selection, we need to estimate the underlying
stochastic process. We can do this by deriving the mean, variance, and co-variance of the sample
data. However, these quantities are only meaningful, for obtaining the probability distribution and
the statistical tests based on it, if they are independent of time. This is the case if the series is
stationary. There are different forms of stationarity. The most commonly considered is covariance
stationarity. A series z, is said to be covariance stationary if the following conditions hold:

E(z;) =m,forallt =1,...,T

E[(z, —m)?] =y, <oo,forallt =1, .., T

E[(z; —m)(z;—q —m)] =y, forallt=1,..,Tand forall i =---,-2,-1,0,1,2, ...
where m, y, and y; are all finite-valued numbers.

In practice, we often use the requirement that the roots of what are called the characteristic
equations, @,(.) = 0, “lie outside the unit circle”. For an AR(1) process this requirement implies
that the root is larger than one in absolute value. The characteristic equation is (1 — @B) = 0. The

root equals %, which is greater than one in absolute sense if |@| < 1. The root % is called a unit root

if || = 1. Thus, the AR(1) process is stationary if |@| < 1 and non-stationary (not stationary) if it
has a unit root.

A time series might exhibit a stochastic trend, which implies that the variation is systematic but
hardly predictable. If the time series is not stationary, because it has a stochastic trend, the series
can be formulated as a stationary ARM A process in differences. The differencing operation removes

3



the stochastic trend from the data. It may be necessary to take the differences of the series more
than once before it becomes stationary. A ARMA model for the differences of z, is called a ARIMA
(Auto Regressive Integrated Moving Average) model. As an example we consider a ARIMA(1,1,1)
model

Az, = u+ @Azp  + & — 04, t =1,...,T. (9)

2.3  Seasonal Processes

Many time series in marketing display seasonal patterns caused by managerial decisions, weather
conditions, events, holidays, etc. A seasonal model may apply, with orders P, D and Q respectively
for the AR, I and MA components, denoted by ARIMA(P, D, Q),, where s is the seasonal lag. To
illustrate, suppose there exists a seasonal pattern in monthly data, such that any month’s value

contains a component that resembles the previous year’s value in the same month. Then a purely
seasonal ARIMA(1,0,1),, model is

Zy = U+ QZp_qp & — 0815, t=1,...,T. (10)

In practice, seasonal and non-seasonal processes usually occur together. The examination of ACF
and PACF may suggest patterns in these functions at different lags. This general process is
indicated as an ARIMA(p,d, q)(P, D, Q),, process

@p (B9, (B)APA%z, = i+ 64, (B%)0,(B)e,, t = 1, ..., T. (11)

In Eqg. 11 the seasonal and non-seasonal AR, MA and differencing operators are multiplied. In
practice, the orders p,d, q and P, D, Q are small, ranging from O to 2 in most cases.

3 Methodology

When applying an ARIMA model it is recommended to use the three stage Box-Jenkins procedure.
The description of the procedure in this chapter widely follows [4]. In order to understand the Box-
Jenkins procedure the theory behind correlation functions is first described by following closely the
representations in [6] and [7].



3.1 Correlation functions

The cross-correlation between two time series describes the normalized cross-covariance function.
Let (X,,Y;) represent a pair of stochastic processes that are covariance stationary. Then the cross-
covariance is given by

ny(T) = E[(Xt - /lx)(YHr - lfly)]’ (12)
where i, and p,, are the means of X, and Y; respectively.

The cross-correlation function p,, is the normalized cross-covariance function

Yxy (D)

) (13)
0x0y

Pxy () =

where o, and g, are the standard deviations of processes X, and Y; respectively. If X, = Y;, then the
cross-correlation function is simply the autocorrelation function [6].

We are often interested in the relationship between two points in time in a time series. One way to
measure the linear relationship is with autocorrelation, i.e., to determine the correlation between
these two variables. Another way to measure the relationship between variables X, and X, is to
filter the linear dependency that is caused by the variables X;,, ..., X;4+,—1 between the variables X,
ja X¢4., and after that to calculate the correlation between the random variables. This is called
partial autocorrelation, autocorrelation of k:th degree is

brk = CO”(Xt — P(Xel X1y s Xewk—1)s Xeake — PXesre| X1, ---rXt+k—1))' (14)

where P(W|Z) is the best linear projection from W to Z, i.e. P(W|Z) = 2y, ;2;2Z Where X,; =
Var(Z) is the covariance matrix of the regressors and X,,, = Cov(W, Z) is the variance between W
and Z. With the best linear projection we mean a linear projection, which minimizes the square sum
of the errors.

An equivalent definition is the solution to the equation system

P = p(k), (15)
where
1 py e Pk-1
p, = P:1 1 pk:—z ’
et prop - 1

and ¢ = (dPra, - Pra)” and px = (Pr --» Pri)’ - This equation system is also called the Yule-
Walker equations for an AR(k) process. The last coefficient ¢y is the autocorrelation of kth
degree. Because we are only interested in this coefficient, the equation system can be solved with
regards to ¢y, using the Cramer rule. We get



[Py
P

(16)
[Pkl

brr =

where Py corresponds to the matrix Py, where the kth column has been replaced by p. In this

context |-| means the determinant. Because this can be applied to different values of k, we can
construct a partial autocorrelation function (PACF).

From the definition of PACF we can see that there is no difference between the first degree PACF
and ACF:

$h11 = p1-

3.2  The Box-Jenkins procedure

The first step in the procedure is to identify the form of model that may fit the given data. The
second stage is to estimate the model parameters by employing the method of maximum likelihood.
The third stage is to employ diagnostic checks to check the model for possible inadequacies

3.2.1 Identification

The purpose of the identification stage is to transform the data so that it becomes stationary and
determine the number of parameters in the ARIMAX model. The first stage is to plot the original
time series, it’s ACF (autocorrelation function, PACF (partial autocorrelation function) and CCF
(cross-correlation function) with external inputs, and check for seasonality, trends either in the
mean level or in the variance of the series, long-term cycles and extreme values and outliers.

Whether the data is stationary can be checked with the Augmented Dickey-Fuller test. It’s a test for
a unit root in a time series sample [5]. After the data have been differenced just enough to produce
nonseasonal stationarity for a nonseasonal time series and both seasonal and nonseasonal
stationarity for seasonal data, then the ACF and PACF of the stationarized series are inspected to
determine the number of AR and MA parameters required in the model [4]. The lagged effects of
the external inputs in the ARIMAX model can be determined from the CCF.

3.2.2 Estimation

The model parameters are estimated with the maximum likelihood method. Given a sample and a
parametric distribution, the method estimates the parameters in the distribution so that the sample is
most likely to be drawn from the distribution.



If the distribution of Y; is F(y,8) where F is a known distribution function and 6 € 0 is an
unknown m X 1 vector, we say that the distribution is parametric and that 6 is the parameter of the
distribution F. The space © is the set of permissible value for 6. In this setting the method of
maximum likelihood is the appropriate technique for estimation and inference on 6.

If the distribution F is continuous then the density of Y; can be written as f(y,8) and the joint
density of a random sample ¥ = (Y3, ..., Y;,) is

fu(¥,0) =TT, £ (Y, 0). (17)

The likelihood of the sample is this joint density evaluated at the observed sample values, viewed as
a function of 6. The log-likelihood function is its natural log

Ln(6) = ) Inf(¥,0). (18)
i=1

If the distribution F is discrete, the likelihood and log-likelihood are constructed by setting
f(,0) =P =y,6).

The maximum likelihood estimator or MLE @ is the parameter value which maximizes the
likelihood (equivalently, which maximizes the log-likelihood). We can write this as

0 = argmax L, (0). (19)
6e0

In some simple cases, we can find an explicit expression for 8 as a function of the data, but these
cases are rare. More typically, the MLE 8 must be found by numerical methods [8].

3.2.3 Diagnostic Checks

Diagnostic checks are designed to test model adequacy. We are mainly interested in testing if
including parameters improves the fit and also to test if the residual assumptions hold. The residuals
& should be independent, homoscedastic, and normally distributed. Residual estimates are needed
for the tests. The estimates for ¢, are automatically calculated at the estimation stage along with the
MLE for the parameters.

Transforming the data cannot correct dependence of the residuals because the lack of independence
indicates the present model is inadequate. Rather, the identification and estimation stages must be
repeated in order to determine a suitable model [4].

a. Overfitting

Overfitting involves fitting a more elaborate model than the one estimated to see if including one or
more parameters greatly improves the fit. Extra parameters should be estimated for the more
complex model only where it is feared that the simpler model may require more parameters. A



common approach to model selection is a selection criterion. One popular choice is the Akaike
Information Criterion (AIC). The AIC for a model m is

AIC,, =log(6%) + 2 kTm, (20)

where 62, is the variance estimate for model m, and k,, is the number of coefficients in the model.
The AIC can be derived as an estimate of the Kullback-Leibler information distance K(M') =
E(logf(Y|X) —log f(Y|X,M)) between the true density and the model density. The rule is to
select M, if AIC, < AIC,, else select M,.

Another method of testing model adequacy is by calculating the likelihood ratio. Let ; denote the
maximum likelihood estimator of 6; for the likelihood function. L(6) = [Ti%, f(xi; 64, -, 6k),
where the likelihood function is treated as a function of the parameters and the x; are fixed.
Similarly, let 8/ denote the maximum likelihood estimator of §; when H, is true; that is, for the
likelihood function L(0) = [IiX, f (x;; 61, ... ;). Now, form the ratio

_ LoD (21)
L(8)

This is the ratio of the two likelihood functions L(8") and L(6) when their parameters have been
replaced by their maximum likelihood estimators. Since the maximum likelihood estimators are
functions of the random variables x, ..., x; the ratio A is a function of x,,...,x; only and is
therefore an observable random variable.

The test statistic is

D = -21n(%) (22)
The model with more parameters will always fit at least as well (have a greater log-likelihood).
Whether it fits significantly better and should thus be preferred is determined by deriving the
probability or p-value of the difference D. In many cases, the probability distribution of the test
statistic is approximately a chi-square distribution with degrees of freedom equal to df2-df1, if the
nested model with fewer parameters is correct. Symbols dfl and df2 represent the number of free
parameters of models 1 and 2, the null model and alternate model, respectively [8].

b. Test for whiteness of the residuals.

To determine whether the residual &, are white noise, an appropriate procedure is to examine the
residual autocorrelation function. Another way to check for white noise is to perform the Ljung-Box
test.

To test the hypothesis that the residuals are independent and identically distributed random
variables we can use the portmanteau test. We consider the statistic

h
Q=n) (. 23
j=1

0o



If Yy, ..., Y, is a finite-variance iid sequence, Q is approximately distributed as the sum of squares of
the independent N(0,1) random variables, Vnp(j),j = 1, ..., h, i.e., as chi-squared with h degrees of
freedom. A large value of Q suggests that the sample autocorrelations of the data are too large for
the data to be a sample from i.i.d. sequence. We therefore reject the i.i.d. hypothesis at level « if
Q > x?_,(h), where y?_,(h) is the 1 — a quantile of the chi-squared distribution with h degrees of
freedom. The program ITSM conducts a refinement of this test, formulated by Ljung and Box
(1978), in which Q is replaced by

n(n + 2) Z?=1 Pwrw (k) (24)
LB = n—k ’

whose distribution is better approximated by the chi-squared distribution with h degrees of freedom

[8].
c. Homoscedasticity checks of the residuals.

The check for homoscedasticity of residuals is done in this thesis, by only observing the residual
plot.

d. Tests for normality of the residuals.

The normality assumption of the residuals is tested to examine the goodness of the fit. The
normality assumption is tested by testing for skewness and kurtosis of residuals. Skewness is tested
with D’ Agostino skewness test and kurtosis with Anscomble-Glynn kurtosis test [9].

4  Case study: Functional Dairy Product

4.1 Description of data

In this thesis the baseline sales of a functional dairy product is modeled, with data from weeks
2/2009-16/2011. There was a vast amount of data available of different marketing expenditures,
which could be used as external variables in the model, the advertising of the product in different
media, the advertising of substitute products and price promotions. But after examination of the
correlation matrix between the sales data and the possible external variables the conclusion was that
the price promotion was the only variable with a significant correlation.

The time series of the product’s sales is plotted in Figure 1. The sales are the amount sold to a
specific retailer. The sales of the product are measured in kilograms. The data has been partitioned
into estimation and forecasting intervals. The 104 first weeks are used to estimate the model, the 16
last weeks are used for backtesting of the model. Unfortunately, the time series is relatively short
for determining seasonal patterns. Even though, it would be reasonable to assume that the functional



dairy product would be bought more during typical influenza seasons. Thus the time series will not
be seasonally differentiated in this case study.
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Figure 1: The sales of the functional dairy product to a retailer during weeks 2/2009-16/2011 measured in
kilograms.

The products price promotion time series in the retailer chain is plotted in Figure 2. Price promotion
is a variable, assuming the value 4 if the prices are at highest and the value O if the prices are at
lowest.
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Figure 2: The product’s price promotions in the retail chain during weeks 2/2009-16/2011.

4.2 Results

Identification

First a logarithmic transformation of the data was used to stabilize the variance in the data [10]. The
log-transformed sales data is plotted in Figure 3.
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Log-transformed Sales
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Figure 3: Log-transformed sales of the product in the retailer chain during weeks 2/2009-16/2011 measured in
kilograms.

Using the ADF-test we can check if the log-transformed sales data is stationary. We use the ADF-
test with 4 lags. The p-value of the test statistic is 0.1397, so we can’t reject the null that a unit root
exists and the data is non-stationary. We need to remove a stochastic trend of first degree by
differencing the data in order to be able to estimate an ARIMAX model. The differenced and log-
transformed sales data is plotted in Figure 4.
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Figure 4: Differenced and log-transformed sales of the product in the retailer chain during weeks 2/2009-16/2011
measured in kilograms.

Now the time series seems relatively stationary. We use the ADF-test again with 4 lags to check the
stationarity assumption. The p-value of the test statistic is 0.01, which means that we can reject the
null that there exists a unit root and assume that the data is stationary.

From looking at the ACF and PACF functions (Figure 5) for the stationary data, we can identify the
model parameters. It’s not however that unambiguous to determine the order of AR and M A parts. It
looks like the PACF function abates exponentially and that the ACF function cuts at the first lag.
This indicates, that one should use a ARIMAX(0,1,1) model.
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Figure 5: ACF and PACEF of the differenced and transformed sales data.

The cross-correlation function (CCF) between the transformed sales data and external variables
helps us to determine at which lag the external variable affects sales. The CCF can only be counted
for wide-sense stationary series, so we need to differentiate the price promotion time series first.
From Figure 6 we see that the correlation between sales and price promotion. Price promotion is
highest at the zero lag.
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Cross-correlation Function

Figure 6: CCF between sales and price promotion data.

Estimation

The next step is to estimate the ARIMAX(0,1,1) model parameters with maximum likelihood
method. The time series model was estimated with several parameter combinations because of the
ambiguity of the model parameters. The log-likelihood and AIC was calculated for all these models
in Table 1.
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Table 1: Model statistics.

(p,d,q) Loglikelihood AIC

(1,1,0) 69,35 -132,7

(1,1,1) 74,15 -140,29
(0.12) 74,27 -140,55
(2,100 74,7 -141,4

(1,1,2) 75,89 -141,79
(11 74,71 -139,42
(2,1,2) 7591 -139,83
(0,1,3) 74,84 -139,68
(3,100 74,7 -139,41
(1,1,3) 75091 -139,82
(3.1,1) 7524 -138,48
(2,13) 75,92 -137,83
(3.12) 75,88 -137,77
(3.13) 759 -135,79
(0,1,4) 75,98 -139,96
(1,14) 76,03 -138,06
(2,14) 76,1 -136,2

(4,14) 7815 -136,3

(4,1,0) 7552 -139,03
4,11 7592 -137,85
(412) 7593 -135,86
(4,13) 75,93 -133,86
(3.14) 77,67 -137,34

It seems that the ARIMAX(0,1,1) has the lowest AIC, so it’s considered as the best model.

Diagnostic Checks

After the most suitable model is chosen, we have to check for model adequacy. The residuals
should be white noise. In Figure 7 we see that the residuals have a constant mean, the variance is
also relatively constant except for few spikes.
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Figure 7: The residual time series.

For the residuals to be white noise, we also need to make sure that they are not autocorrelated. From
both the residual ACF (Figure 8) and Ljung-Box test (Figure 9) we see that the residuals aren’t
autocorrelated.
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Figure 8: Residual ACF.
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Ljung-Box Test p-values

ol
-
o
fosd
O% °
© _| o0 o
o (o]
o
° «©
o o o
o o
o o &
©
g ° °
© (e}
3
a o]
o
< |
o
(o]
N
o ©
o]
o}
T T T T T T
0 20 40 60 80 100

lags

Figure 9: The p-values corresponding to the Ljung-Box test statistic plotted against number of lags.

If the model fit is good the residuals should be normally distributed. The residual histogram is
plotted in Figure 10. The residuals seem to be relatively normally distributed, but we check the
normality assumption by performing D’Agostino skewness test and Anscomble-Glynn kurtosis test.
The p-value of the skewness test is 0.1978 meaning that there doesn’t exist skewness in the data.
But the kurtosis test p-value is equal to 0.0003801, which means that the kurtosis is not equal to that
of a normal distribution. But when the Anscomble-Glynn kurtosis test was performed to other
model parameter combinations, they didn’t either have the kurtosis of a normal distribution. Thus,
the model is not going to be rejected based on this test.

19



Histogram of Residuals

(o J
g
o _
™
3
&
g 7
-
(IS
o
o - l_[_‘— —|_|
I T T T ]
-4000 -2000 0 2000 4000
residual

Figure 10: Residual histogram.

The value of the parameter coefficients, standard errors and variance are listed in Table 2.

Table 2: Parameter statistics.

\ MA(1) ppvaliokeskotehojuoma
coefficient 0.5471 0.177
standard error |0.0936 0.014
variance 0.00876096 0.000196
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Thus, the final model takes the form
Az, = —0.5471g,_4 + 0.177x,+&,t = 1,...,T,

or (25)
Zt = Zy_1 — 0'5471£t—1 + 0177xt + &ty t = 1, ey T.

The original and fitted time series are plotted in Figure 11 to demonstrate the goodness of the fit.
The pseudo- adjusted R? statistic was also calculated for the goodness of fit [14]. The statistic value
is 0.89 which means that the model describes the sales data relatively well.

Original and Fitted Time Series
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Figure 11: Original (black) and fitted (red) time series.

Backtesting

After fitting the model to the data, the model was used to predict the sales of the 16 next weeks. The
forecast was compared to the actualized sales of the 16 next weeks. The ex-post forecast and 95%
confidence intervals are plotted with the actualized sales in Figure 12. It can be noticed that the
forecast is quit poor since the actualized sales doesn’t even stay inside the 95% confidence
intervals.
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Ex-post Forecast and 95% Confidence Intervals
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Figure 12: Ex-post forecast (red) with 95% confidence intervals (blue) and the actualized sales (black).
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5 Discussion

The aim of this thesis was to model the baseline sales of a large Finnish food company’s functional
dairy product. The baseline sales level was needed for measuring the effect of marketing and
advertising functions. Sales data from the manufacturer to a retail chain and marketing and
advertising expenditures for end-customers in the retail chain was available for estimation of the
model. Because the variables were equally spaced in time, a time series analysis was used to model
the baseline sales level.

The preferable time series model to model baseline sales would have been a VAR model, as it
would have been able to take product life cycle into account. That is, the fact that the effect of
advertising on sales changes through product life cycle. But, there were difficulties in getting the
package in R statistics software to function. Thus a ARIMAX model was used instead. A SARIMAX
model would have been more preferable, because of the seasonal nature of the product, but the time
series was too short for seasonal differencing of the model.

The Box-Jenkins procedure was used to identify, estimate and validate the model. The best model
derived from the Box-Jenkins procedure was Az, = —0.5471¢&,_; + 0.177x;+¢;. The model is a
ARIMAX(0,1,1) model, meaning that it is a pure first order Moving Average model that has a first
order integrated part. There was no remarkable difference in how well the different ARIMAX
models described the data and the model with smallest AIC was chosen. The model described the
data relatively well, with a pseudo- adjusted R? statistic of 0.89.

After finding the best model, the sales for the next 16 weeks were forecasted and compared to the
actualized sales. The forecast was pretty poor, since the actualized sales didn’t even fit in the 95%
confidence interval of the forecast. The difference in the forecasted and actualized sales can
however be explained by the marketing and advertising activities that occurred during the forecast
interval. During the forecast interval there was an advertising campaign, which could not be
explained by our model, since price promotion is the only external variable in the model.

The interpretation of the model is that a random shock at time t — 1 affects the difference in sales
between t and t — 1 negatively. This means that the random shock causes a descending stochastic
trend in the sales. It can be difficult to state what the random shock represents, but it could be the
product life cycle or some competing product that is eating up the market share of this functional
dairy product. Obviously, the price promotion of the dairy product affects the difference in sales
positively. This means that price promotions create an ascending stochastic trend in the sales. The
reason for this could be that customers buy more of the product during price promotion and this
simultaneously creates a brand awareness, which makes the customers want to buy of the product in
the future, even though the product is then not price promoted.

As can be seen from the ex-post forecast the model is not that reliable in forecasting, but can be
used to model baseline sales. When there is a noticeable difference in the actualized sales and
estimated sales, the effect can be attributed to a marketing or advertising function. However, it
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would be advisable to perform the Box-Jenkins procedure with a longer time series if possible. That
way the seasonal effect might also be captured.
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7 Appendix

7.1 Summation of the Thesis in Finnish

Markkinointitoimenpiteiden  perustelu  siséltdd niiden myynnin lisddmisen arvioimista.
Markkinointitoimenpiteiden vaikutuksen arvioimiseksi taytyy ensimmaiseksi muodostaa estimaatti
perusmyynnin tasosta, jonka perusteella luodaan vertailuindeksi myynnille. Taman estimaatin
avulla on myods mahdollista eristdd muiden myyntiin vaikuttavien seikkojen, kuten kausivaihtelun ja
kilpailijoiden hintakampanjoiden vaikutukset [1].

Taman tyon tarkoitus on mallintaa suuren suomalaisen elintarvikeyhtion tehojuoman perusmyynnin
taso. Tuote on maitotuote, johon on lisatty terveysvaikutuksia. Myonteisten terveysvaikutuksien
takia tuotetta ostetaan selkedsti enemman influenssakausina. Perusmyynnin mallintamiseksi
kaytetddn seka tuotteen myynti- ettd mainospanosdataa. Mainospanosdata kuvaa paljonko varoja eri
markkinointitoimenpiteisiin  on kaytetty. Varojen kayton tehokkuutta voidaan mallintaa
vertailemalla markkinointitoimenpiteitd toteutuneen seka arvioidun myynnin erotukseen.
Markkinointidata sisaltdd usein aikariippuvaista dataa, jonka takia aikasarjamallit soveltuvat
erinomaisesti kuvaamaan datan muuttujien riippuvaisuuksia. Aikasarjamalleissa mallin muuttujat
riippuvat ajasta [2].

Kaksi suurinta ongelmaa myynnin mallintamisessa ovat vaihtelevat dynamiikat muuttujien vélilla ja
endogeenisyyden ongelma. Eli markkinoiden reagointikyky ei véalttaméattd ole vakio ajan suhteen.
Mainonnan vaikutus saattaa hiipua tuotteen elinkaaren ajan, mika puolestaan johtaa muuttujien
valisten dynamiikkojen vaihteluun tuotteen tarkasteluvalilla [3]. Endogeenisyyden ongelmalla
tarkoitetaan, ettd eksogeeniset muuttujat kuten hinta, hintapromootiot ja mainonta ovat tosiasiassa
endogeenisid. Tilastotieteen maaritelmien mukaisesti eksogeeninen muuttuja on muuttuja, joka
vaikuttaa malliin ilman, ettd malli vaikuttaa siihen. Eksogeenisen muuttujan kvalitatiiviset
ominaisuudet ja tuottamismenetelmét eivat ole mallinrakentajan méarittdmia [11]. Endogeeninen
muuttuja on taas tuotettu mallin sisélla ja taten sen arvo vaihtuu mallin funktionaalisten suhteiden
kautta [12]. Markkinointijohtajat asettavat markkinointimuuttujien arvot markkinainformaation
pohjalta, joka saattaa osittain olla piilevad tutkijalle mutta kuitenkin vaikuttaa asiakkaiden
kayttaytymiseen. Tama luo tilanteen, missd markkinointitoimenpidemuuttujat voivat olla
korreloituneita virhetermien kanssa [2].

Markkinointitutkimuksessa yleisesti kaytetty malli on vektoriautoregressiomalli (VAR), mita
kaytetddn kuvaamaan markkinointitoimenpiteiden vaikutusta myyntiin. Tassd tyossd péaadyttiin
kuitenkin kayttdamaan SARIMAX-mallia, koska sen jatkokehitysmahdollisuudet ovat huomattavasti
laajemmat [4, 5].

SARIMAX-malli on aikasarjoihin perustuva tilastollinen malli. Kun SARIMAX:ia sovelletaan
myynnin perustason mallintamiseen, selitettdvdnd muuttujana on tuotteen myyntitulot. Myyntituloja
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selitetddn myyntitulojen omalla historialla. Lisdksi myynnin satunnaisshokkien historiallista dataa
kaytetddn selittgjand. Mallissa on my6s mahdollista kayttad ulkoisia muuttujia, Kkuten
mainospanosdataa [2].

Selitettdvdn muuttujan datan on oltava stationaarista, jotta SARIMAX-mallia voidaan k&yttaa.
Stationaarisuus tarkoittaa, ettd selitettdvan muuttujan aikasarjan keskiarvo seké varianssi ovat aina
vakioita. Toisin sanoen aikasarjan tilastolliset ominaisuudet pysyvét vakiona ajan suhteen. Malli
ottaa myds huomioon stokastiset trendit myynnissé seka myynnin kausivaihtelut. Datan stokastinen
trendi voidaan ottaa huomioon differentioimalla data, eli laskemalla erotus perédkkéisten aika-
askelien valilta [2].

SARIMAX-mallin soveltaminen dataan ei kuitenkaan ole taysin triviaalia, vaan se suoritetaan ns.
Box-Jenkins menetelman avulla. Box-Jenkins menetelma voidaan jakaa kolmeen vaiheeseen; mallin
identifiointi, estimointi sek& validointi. Identifioinnin tarkoitus on muokata data stationaariseksi
seka maaritella SARIMAX-mallin parametrien lukumaéra. Datan stationaarisuutta voidaan tutkia ns.
taydennetyllda Dickey-Fullerin testilla. Parametrien lukumaaré taas saadaan maariteltya tutkimalla
muuttujien korrelaatiofunktioita. Korrelaatiofunktioista néhdaan milla viiveelld muuttujat
korreloivat itsensa ja toisten muuttujien kanssa [4].

Kun mallin parametrit on identifioitu, ne estimoidaan suurimman uskottavuuden menetelmalla.
Suurimman uskottavuuden menetelméssa kdytetddn tilastollista otantaa ja arviota siitd, mista
parametrisoidusta jakaumasta kyseinen otanta on otettu. Suurimman uskottavuuden menetelma
estimoi jakaumalle sellaiset parametrit, ettd otanta on otettu suurimmalla todennakdisyydelld
kyseisesta jakaumasta [4].

Mallin validointi koostuu l&hinna residuaalien tutkimisesta. Residuaalien kuuluisi olla
riippumattomia, homoskedastisia sekd normaalijakautuneita. Homoskedastisuus tarkoittaa, etta
residuaalien varianssi ja keskiarvo ovat vakioarvoisia. Liséksi tarkastellaan parantaako
lisaparametrien lisdédminen malliin huomattavasti mallin tarkkuutta [4].

Tyodssa kaytettiin  SARIMAX-mallia tehojuomatuotteen myynnin perustason mallintamiseen.
Myyntitulodatana kaytettiin yhtion myyntituloja jalleenmyyjille. Huomattavaa on, etta
myyntitulodatana ei siis kdytetd maaraa, joka loppukayttdjalle on myyty. Koska tarkastelukohteena
on tassa tapauksessa maitotuote, jonka hyllyika on hyvin lyhyt, voidaan olettaa, etta jalleenmyyjat
osaavat mitoittaa tilauksensa niin, etta se vastaa suhteellisen hyvin loppukéyttajan kulutusta. Talldin
jalleenmyyjiltd saadut myyntitulot toimivat hyvénd approksimaationa loppukayttdjiltd saadusta
myynnista.

Tuotteen myynnissé esiintyi selkedd kausivaihtelua, mutta sitd ei pystytty mallintamaan datan
Iyhyen aikajakson takia. Ulkoisiksi muuttujiksi oli mahdollista valita tuotteen mainospanosdata eri
medioissa, tuotteen hintatiedot, tuotteen hintapromootiotiedot ja substituuttituotteiden
markkinointitoimenpidedata. Korrelaatiomatriisin perusteella kuitenkin huomattiin, ettd tuotteen
hintapromootiodata on yksinaan tarpeeksi merkittava selittdmaan myyntituloja.

Myyntitulodata muutettiin stationaariseksi ja sen korrelaatiofunktiosta paateltiin, ettd sopivin
SARIMAX-malli olisi sellainen, jossa myyntituloja selitettiin edellisen viikon myyntituloilla,
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satunnaisshokilla ja tuotteen hintapromootiodatalla. Mallin validointivaiheessa todettiin, ettd tdmé
oli oikea paattely.

Parhaaksi SARIMAX-malliksi saatiin Az, = —0.5471¢&;_; + 0.177x; + &, missd Az, on
myyntitulojen erotus ajanhetkilld t ja t — 1, &, on myynnin satunnaishokki ajanhetkelld t ja x; on
mallin ulkoinen muuttuja, joka tassa tapauksessa on tuotteen hintapromootiodata. Mallin tulkinta on
se, ettd myynnin satunnaisshokki ajanhetkelld t vaikuttaa myynnin erotukseen aikavalilla ¢t ja t — 1
negatiivisesti. Tama tarkoittaa sitd, ettd satunnaisshokki aiheuttaa laskevan stokastisen trendin
myyntituloissa. On vaikea sanoa, mista satunnaishokki johtuu. Se voi esimerkiksi johtua tuotteen
elinkaaresta tai siitd, ettd kilpaileva tuote syo tuotteen markkinaosuutta. llmeisesti hintapromootio
vaikuttaa tuotteen myyntiin positiivisesti. Tassé tapauksessa se kuitenkin vaikuttaa myds myynnin
erotukseen aikavélilla t ja t — 1 positiivisesti. Tama tarkoittaa sitd, etta hintapromootiot luovat
nousevan stokastisen trendin myyntituloihin. Selitys tdh&n voisi olla, ettd hintapromootiot saavat
asiakkaat ostamaan enemmaén tuotetta, joka taas lisdd bréanditietoisuutta, mikd saa asiakkaat
ostamaan liséa tuotetta tulevaisuudessa.
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