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Analytical solutions are desirable because they can be computed practically 

instantaneously as opposed to Monte Carlo methods that require a significant 

amount of computing capacity when pricing path-dependent options. 

Accordingly, several approximate analytical methods – so called analytical 

approximations – have been suggested in literature.  

 

This thesis gives a literature review on what methods have been suggested to 

price Asian quanto-basket options when the underlying asset is the arithmetic 
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on nopeampaa kuin Monte Carlo-simulointiin perustuva hinnoittelu. Monte 

Carlo-simulointi vaatii runsaasti laskentakapasiteettia. Tästä syystä 
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1. Introduction 

Since the early 1990s, the spectrum of financial derivatives has grown quickly and 

today they are an important tool for many companies and investors. This thesis 

considers the pricing problem of arithmetic Asian quanto-basket options that are 

among the most popular exotic over-the-counter derivatives. As the name 

suggests, they combine the characteristics of Asian, basket and quanto options. 

Asian options are options whose payoff depends on the average of the underlying 

security over a pre-defined interval. The average can be either arithmetic or 

geometric and the time interval over which the average is calculated can be either 

continuous or subdivided into discrete observation points. Also, the exercise style 

may differ: there are both American-style Asian options in which early exercise is 

possible and European-style Asian options that can only be exercised at a pre-

defined exercise date. In this paper, by average, we mean arithmetic average 

calculated over a finite set of pre-defined observation points and we only consider 

European-style Asian options. 

Basket options are options whose underlying asset is a basket, that is, a weighted 

average of two or more underlying assets. Again, there are both American-style 

and European-style basket options; in this paper, we only consider European-style 

options. For example, a basket could consist of ten different stocks that are 

equally weighted.  

Assuming the underlying asset follows the geometric Brownian motion, which is 

a widely accepted assumption in the financial industry, the probability density 

function of the underlying security is log-normal and fully defined by its first two 

non-centered moments. Then, a closed-form solution exist for both call and put 

option prices and they can be obtained using the famous Black-76 [2] formula. In 

the case of an Asian-style option, the underlying security contains a term that is a 

sum of log-normally distributed random variables and is thus not log-normal.  

Several forms of simple functions have been suggested in the literature to be used 

as approximate density functions of the real distribution such as log-normal, 

reciprocal gamma and functions of the Johnson family [2]. Based on these 

approximate density functions analytical solutions can be derived for option prices 

and also for the Greeks that are the sensitivities of the option value to different 

market parameters. The main benefit of closed-form approximations over Monte 

Carlo simulation is calculation speed: they are almost instantaneous and, 

accordingly, allow quick pricing. 

The aim of this thesis is to give a review on different analytical approximations 

that have been suggested in the literature to value Asian quanto-basket options. 

Also, two of the approximations are implemented and their performance is 

compared to a reference price obtained by Monte Carlo simulation. The emphasis 

is put on sensitivity analysis on the main parameters affecting the option price 
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such as volatility, time horizon, strike price, correlations and the number of fixing 

points.  

 

2. Asian, Basket and Quanto Options 

An Asian quanto-basket option consists of several components. It combines the 

characteristics of Asian and basket options. Moreover, if some underlying assets 

are not quoted in the currency of the option payout, a so called quanto adjustment 

needs to be accommodated in the pricing model. This section considers the 

pricing of an Asian quanto-basket by examining its components first individually. 

 

2.1. The Price of a European vanilla call option  

Let’s assume that underlying   is a domestic, continuous-dividend paying stock 

quoted in euros and follows the geometric Brownian motion. Then, the dynamics 

of   are given by the stochastic differential equation 

              

 (     )                                              (     ) 

where   is the constant risk-neutral drift rate of the process,    is the risk-free 

interest rate in the euro economy,    is the continuous dividend rate in euros,   is 

the constant volatility of   and    is an increment of a standard Wiener process. 

Let  (   ) represent the value of a European vanilla call option on  . As shown 

in [17], we can build a risk-free portfolio consisting of  (   ) and   by selecting 

the amount of   in a suitable manner. Let us short an amount of   of the 

underlying stock  . Then, the value of our replicating portfolio   can be written 

   (   )                                                   (     ) 

The value of   changes over time because the value of the components of   

change and because we have to pay a continuous dividend for the stock S that we 

have sold short. An infinitely small change in the value of   can thus be written 

                         (   )                                              (     ) 

Using Itô’s lemma, we can expand term   (   ) and obtain 

               
  

  
   

  

  
   

 

 
    

   

   
                           (     ) 

If we seek to make   riskless, i.e., the change in the value of   deterministic 

given a change in time   , we must eliminate the stochastic terms in (2.1.4). This 

can be accomplished by setting the coefficient of    to zero over        
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                                                         (     ) 

Because   is now riskless over time horizon       , its return must match to the 

risk-free return rate    that is currently observed in the euro-zone economy. If we 

ignore transaction costs and if the return of the portfolio was bigger than   , we 

could borrow from a bank at rate   , invest it in portfolio   and delta hedge it 

gaining a risk free profit of       and, thus, make an arbitrage profit. Similarly, 

if the return of the portfolio were lower than that of a risk free account, we could 

sell the option  (   ), delta hedge it and invest the remaining cash in bank [17]. 

The assumption of transaction costs being zero is an idealization. In practice, 

banks are market makers and there is a bid-offer spread in the interest rates they 

offer. However, based on these assumptions and substituting equations (2.1.2) and 

(2.1.5) into (2.1.4) we have 

      ( 
  

  
 

 

 
    

   

   
  

  

  
   )         
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   )     (  

  

  
 )   

    
  

  
 

 

 
    

   

   
  

  

  
(     )                        (     ) 

 

Equation (2.1.6) is the famous Black-Scholes partial differential equation for a 

continuous-dividend paying asset. When the underlying security follows the 

geometric Brownian motion, (2.1.6) can be written in the form of the standard 

one-dimensional heat equation 

  

  
  

   

   
                                                  (     ) 

 

and solved using standard calculus [12], [17]. The closed-form solution for a 

European call option is then 

 ( )      (   )[ ( ) (     )(   ) (  )    (  )]                   (     ) 

where  ( ) is the price of the underlying asset at time  ,   is the maturity time,   

is the strike price, and   is the cumulative normal distribution. The terms    and 

   are  

   
  (

 ( )
 

)  (      
  

 
)(   )

 √   
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  (

 ( )

 
) (      

  

 
)(   )

 √   
     √        (2.1.9) 

The cumulative normal distribution functions  ( ) arise because the derivation of 

(2.1.8) includes integration of terms of type               .  

Formula (2.1.8) can be used e.g. to calculate the Greeks i.e. the sensitivities of the 

option price to different parameters. The most important of these sensitivities is 

delta, that is, the sensitivity of the option price to change in the underlying price. 

Other sensitivities are gamma, speed, vega and theta which respectively represent 

the second derivative with respect to the underlying price, the third derivative 

with respect to the underlying price, the derivative with respect to the volatility 

parameter and the derivative of the option price with respect to time. The Greeks 

are used when hedging option positions and they can be obtained using standard 

calculus if there exists a closed-form expression for price.  

 

2.2. Asian Option 

Asian options are path dependent derivatives. Their payoff at maturity depends on 

the path that the underlying asset has taken to arrive at its state at the maturity 

date. Several variations of Asian options are traded in exchanges and over-the-

counter markets. This paper concentrates on Asian options that use arithmetic 

averaging and the payoff at maturity   is  

          (     )                                        (     ) 

where   is a constant strike price that is set when issuing the option contract and 

  is the arithmetic average of the underlying asset   over some pre-defined 

discrete and finite set of observation points. 

Let us now assume that underlying   follows the geometric Brownian motion 

described by (2.1.1). Then,    can be solved as a function of time  . This can be 

done correctly using Itô’s lemma. However, Willmott and Luenberger [12], [17] 

suggest as a practical tool using Taylor’s expansion of second order and then 

collecting all first-order terms. When using this approach, the terms involving 

    need to be replaced by   . As Willmott explains [17], this method is 

mathematically incorrect but yields the correct result. If we write  ( )      , a 

small increment in  ( ) is 

  ( )    ( )   
 

 
   ( )     (   ) 

 
 

 
   

 

   
     (   ) 
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(         )  

 

   
(         )   (   ) 

 
 

 
(         )  

 

   
         (   )                        (     )  

When replacing     by    and taking the limit as    approaches zero, the higher 

order terms go to zero and equation (2.2.2) can be written 

    
→   (  

 

 
  )                                            (     ) 

Now    ( ) can be solved from (2.2.3) by integrating both sides and we obtain an 

expression for   as a function of  .  

 ( )   ( ) (  
 
 
  )    ( )  

  ( ) (      
 
 
  )    ( )                                     (     ) 

where  ( ) is a standard Wiener process. The arithmetic average of (2.2.1) can 

now be written 

  
 

 
∑ (  )

 

   

 
 ( )

 
∑ 

(      
 
 
  )     (  )

 

   

                  (     ) 

If   is one, as is the case with a European vanilla call option, the probability 

density function of   at maturity time   is log-normal. When   is bigger than one, 

the probability density function of   still shows more log-normal behavior than 

e.g. normal behavior [13] but is no longer log-normal. 

Let us assume that (i) the market is complete so that investors may purchase any 

contingent claim, (ii) there is no arbitrage and (iii) the law of one price holds. This 

guarantees the existence of a unique discount factor [5]. Also, let the probability 

density function of   at time   be  ( ). Then, the price of an arithmetic Asian 

call option – before the averaging period – on the underlying asset   can be 

obtained by evaluating integral [2] 

     (   ) ∫  ( )     (  

 

  

   )                         (     ) 

Because the integrand in (2.2.6) is zero whenever      is negative, this 

simplifies to 

       (   ) ∫  ( )(

 

 

   )                                   (     ) 
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Unfortunately, for an Asian option, there is no closed-form solution for this 

integral, which is the central problem when pricing Asian options, basket options 

and their combinations. However, several approximate methods have been 

suggested in the literature [2], [3], [7], [8], [11]. They concentrate mainly on 

approximating the probability density function  ( ) by some other function so 

that the integral of (2.2.7) will have a closed-form solution. 

 

2.3. Basket Option 

A basket option is an exotic option whose underlying asset is a basket of stocks, 

commodities, or currencies for instance. The value of a basket is usually defined 

as the weighted average of a set of underlying assets at time  . Using different 

weights for different basket components, an investor can tailor a basket that suits 

her interest best. The payoff function of a basket option at maturity is  

          (       )                                    (     ) 

where    stands for the weighted average of the basket components at maturity 

and    is the strike price that can be set equal to the basket value at the issuance 

of the option for example. 

If each individual underlying asset in a basket follows the geometric Brownian 

motion in (2.1.1) and there are   underlying assets that are all quoted in euros,    

can be written 

            
 

 
∑    ( ) (   

 
 
  

 )      ( )

 

   

                       (     ) 

where    are the weights for each underlying asset and usually sum up to 1,   ( ) 

are the initial prices of the underlyings,    are the risk-neutral drift rates,    are the 

underlying volatilities and now   ( )             are correlated Wiener 

processes that satisfy correlation structure given by correlation matrix  . The 

correlations of the underlying processes can be estimated from historical data or 

implied correlations can be used. According to Walter [16], implied correlations 

are difficult to estimate, though. Again, if   is one, the basket consists only of 

one underlying asset and the probability density function of    becomes log-

normal. 

When a unique discount factor exists, the value of a basket option at time     

can be found by evaluating the integral in (2.2.7) when   has been replaced by    

and  ( ) has been replaced by the probability density function of the basket  

  ( )   This leads to the integral 
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     (   ) ∫   ( )(

 

  

     )                                 (     ) 

which cannot be evaluated in closed form because   ( ) is the probability 

distribution of a random variable that includes the sum of log-normally distributed 

random variables. 

 

2.4. Quanto Option 

Whenever an option payout is denominated in currency other than the underlying 

asset, the value of the option does not only depend on the performance of the 

underlying but also on the exchange rate between the payout currency and the 

currency of the underlying. Such options are often called quanto options. Geman 

[4] introduces in her book what she calls a commodity quanto option whose 

payoff function at maturity is 

            (   ( ) ( )    )                              (     ) 

Here  ( ) is the value of the underlying asset at maturity and  ( ) is the 

exchange rate so that the product  ( ) ( ) is in the same currency as the strike 

price   . For instance, if  ( ) is quoted in USD,  ( ) is the EUR-USD exchange 

rate at maturity and    is a pre-defined strike price in EUR, then the payoff of the 

above-mentioned quanto option is in EUR and is given by (2.4.1). 

Another form of quanto options suggested in the literature [2], [17] has a payoff 

function  

            (   ( )    )                               (     ) 

where  ( ) is the value of the underlying asset at maturity in its own currency,    

is a strike price in the same currency as the underlying asset and    is a pre-

defined exchange rate at which the payoff of the option is converted into the 

payment currency. 

The dependence of the payoff function on two variables affects pricing. Willmott 

[17] suggests that this dependence can be derived by building a risk-free portfolio 

that consists of a quanto option, a short cash position of the currency in which the 

underlying is quoted and a short position in the underlying itself. Let us assume, 

for example, that dividend paying stock   quoted in USD and the EUR-USD 

exchange rate   both follow the geometric Brownian motion 

                                                                     

                                                      (     ) 



8 
 

Let   be a portfolio of the quanto option, cash in the currency of the underlying 

and the underlying itself 

   (     )                                            (     ) 

Each term in (2.4.4) is in EUR,      is the size of the USD cash holding in USD, 

and    is the amount of stock   in the portfolio. Let    be the risk-free interest rate 

in the USD economy. Then the value of   changes over time because the value of 

  changes, the exchange rate changes, dividends have to be paid for the shorted 

underlying stock and interest has to be paid on the short USD cash position. Thus, 

an infinitely small change in the value of portfolio   is 

                        (        )     (  )                          

            (
  

  
 

 

 
  

   
   

   
        

   

    
 

 

 
  

   
   

   
                   

       )   (
  

  
         )    (

  

  
    )              (     ) 

 

where term            is the interest or cost of carry paid on the short USD 

position, term           represents the dividend that needs to be paid for the 

shorted stock and term             arises when  (  ) is expanded in (2.4.5). 

To make   risk-free over time horizon       , the coefficients of    and    must 

be equal to zero, so that  

   
 

 

  

  
 

     
  

  
     

  

  
 

 

 

  

  
                                    (     ) 

Because   is in EUR, the return of   must be equal to the risk-free return that 

prevails in the euro-zone economy. Let us mark this return   . Substituting (2.4.4) 

and (2.4.6) into (2.4.5) we get 

           (
  

  
 

 

 
  

   
   

   
        

   

    
 

 

 
  

   
   

   
 (        ) 
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(     )

  
  

  
(           )                                              (     ) 

 

Equation (2.4.7) can be used to price a quanto option when   is a function of     

and   [17] and S is a dividend paying stock. In the special case when the payoff 
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function is given by (2.4.2), the option value no longer depends on the exchange 

rate   directly [10]. Thus,    (   ) and (2.4.7) reduces to 

  

  
 

 

 
  

   
   

   
  

  

  
(           )                    (     ) 

Equation (2.4.8) can be interpreted as the Black-Scholes equation with constant 

dividend yield and, thus, a closed-form solution exists within the Black-Scholes 

framework. For the purposes of this thesis, we only need to find what dynamics 

need to be used for the underlying asset when pricing a quanto option. Kwok and 

Wong [10] note that the risk-neutral drift rate is the coefficient of the third term 

           . Thus, when pricing a quanto option on a dividend paying stock 

and the payoff function is as in (2.4.2)
1
, the following dynamics can be used  

   (           )                                                     

The asset value S can be solved as a function of time, as was done in (2.2.3) and 

(2.2.4) 

 ( )   ( ) (            
 
 
  

 )     ( )                            (     ) 

 

2.5. Pricing Framework for Arithmetic Asian Quanto-Basket Options 

Let us summarize the results of the earlier sections and define the pricing 

framework for arithmetic Asian quanto-basket options that is to be used as a basis 

for Monte Carlo simulations and later in the discussion on analytical 

approximations. 

      ( )       price of a share that is quoted in currency    

      ( )       exchange rate between the currency of underlying i 

  and the option payoff 

    risk-neutral drift rate of underlying asset i 

    volatility of underlying asset i  

   correlation matrix that describes the mutual  

  correlations between underlying assets                    

  and exchange rates               

   correlation matrix of underlying assets i,           

    risk-free interest rate in the currency of underlying  

  asset i 

                                                           
1
 The dynamics given in (2.4.9) should apply when pricing quanto options with other forms of 

payoff functions as well [18]. 
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    continuous dividend rate of underlying asset i 

    risk-free interest rate in the domestic (EUR) economy 

 

The underlying assets    and the exchange rates    are assumed to follow the 

geometric Brownian motion as follows 

                                                           (     ) 

         
                                                   (     ) 

Furthermore, the underlying assets and exchange rates are assumed to have 

correlations 

    (     )                                                  (     ) 

    (     )                                                   (     ) 

According to the results obtained in sections 2.1-2.4, pricing an Asian quanto-

basket option is equivalent to using the dynamics of (2.4.9) for all underlying 

assets    

  ( )    ( ) (             
   

 
 
  

 )      ( )                        (     ) 

Combining equations (2.2.5), (2.3.2) and (2.5.5), we get 

     
 

 
∑  (  )

 

   

 

 
 

 
∑∑    ( ) 

 

   

(             
   

 
 
  

 )      ( )

        

 

   

         (     ) 

As noted earlier, the term        
   arises due to the quanto property of the option, 

or more mathematically, due to the  (  ) term in (2.4.5). This result (2.5.6) will 

be used in our Monte Carlo simulations. 

 

3. Approximate Pricing methods 

No closed-form solutions exist for pricing arithmetic Asian quanto-basket options 

because the probability distribution of the underlying average      is not log-

normal. Figure 1 illustrates the differences between the cumulative probability 

distribution function of      and that of a log-normal distribution when the two 
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first non-centered moments of the distributions have been equalized. Figure 2, in 

turn, shows the probability density functions of the distributions. 

 

Figure 1: The CDFs of the real distribution and an approximate log-normal distribution. 

The first two moments of the approximating distribution have been set equal to those of the 

real distribution. The data concerning the real distribution was simulated. 

 

 

Figure 2: PDFs of log-normal approximation and the real distribution  

Asian-style options are a very important derivative class and, consequently, 

several approximate methods have been developed. One of them was already 
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illustrated in Figures 1 and 2. This section aims at introducing a few of the 

popular analytical approximate methods mentioned in the literature. 

 

3.1. Levy’s Approximation 

Let  ( ) be the real probability density function of      that was defined in 

formula (2.5.6). The idea of Levy’s method is to approximate  ( ) with a log-

normal density function     ( ). This is done by setting the first two non-centered 

moments of  ( ) equal to the corresponding moments of     ( ). Then, Black’s 

call option formula can be utilized.  

The first two moments of  ( ) can be calculated based on formula (2.5.6) for 

     and using identity [2] 

            
 
 
  

                                                 (     ) 

 The first moment is  
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The second moment is [2] 
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The derivations of the second and higher moments are omitted from this paper. If 

     is assumed log-normal, the approximating log-normal probability density 

function of      can be written 

    ( )  
 

 √    
 

 
(     ) 

                                    (     ) 

where   and    are the mean and variance parameters of the normally distributed 

natural logarithm of     . By definition the first two non-centered moments of 

the approximating log-normal distribution are 

  
   

 ∫  
 

 √    
 

 
(     ) 

   

 

 

      
 
 
  

                       (     ) 

  
   

 ∫   
 

 √    
 

 
(     ) 

   

 

 

          
                      (     ) 

For the numerical purposes, it is sufficient to solve for the parameters   and    as 

functions of the moments of the real distribution. The real moments    and    

can be calculated on the fly using (3.1.2) and (3.1.3). Let us set the first two 

moments of the approximating distribution and the real distribution equal: 

{    
 
 
  

   

       
   

                                                            

 {
             

               
                                   (     ) 

Now, the parameters of the approximating log-normal distribution are known, and 

the approximate closed-form solution for the option price within the Black-

Scholes framework is 

       [   (  )       (  )]                             (     ) 

where      is the strike price of the option and    and    are  
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      √                                                    (     ) 
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3.2. Vorst’s Approximation 

Vorst and Kemna [8] suggest that Asian-style options can be priced by replacing 

the arithmetic average of the payoff function of (2.2.1) with geometric average. If 

this is done, (2.2.1) can be re-written 

          (   )     (∏  ( )
 
 

  

    

  )                       (     ) 

Assuming that the underlying asset S follows the geometric Brownian motion in 

(2.1.1) the probability density function of A is also log-normal at any time t. This 

can be seen by taking the logarithm of A: 

  ( )    (∏  ( )
 
 

  

    

)  
 

 
  ( (  ))    

 

 
  ( (  ))            (     ) 

 Because the sum of normally distributed random variables is also normal, the 

sum of the logarithms on the right side of (3.2.2) is normal. Thus, the logarithm of 

A is normal, which implies that A is log-normally distributed and there exists a 

closed form solution within the Black-Scholes framework.  

Vorst’s approximation has been applied also to Asian basket options by 

modifying it accordingly. According to several sources in the literature [4], [7], 

[9], however, it does not perform as well as the best approximations for arithmetic 

Asian-style options. Thus, it will not be considered further here. For options, 

whose underlying security is the geometric average of a time series, Vorst’s 

method is a natural choice. 

 

3.3. Edgeworth expansion: The Turnbull and Wakeman’s Approximation 

Edgeworth expansions were first introduced by Jarrow and Rudd in [6] to value 

options whose underlying security had an arbitrary probability distribution. 

Turnbull and Wakeman suggest an Edgeworth expansion of fourth order to value 

Asian options [15]. This method is applied by Datey, Gauthier and Simonato in 

[2] to value Asian quanto-basket options. According to their research the 

approximation works well. However, Ju points out [7] that an Edgeworth 

expansion may not converge and, thus, the approximation may not always reliable 

results. 

Let us assume that underlying asset S has an unknown probability distribution 

function  ( ) and C is the price of a call option on S. Edgeworth expansion is a 

method where the centered and non-centered moments of the real distribution 

 ( ) and an approximate distribution     ( ) are used to price an option on S. 
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Basically, an Edgeworth expansion consists of the Black-Scholes option price 

summed with correction terms. 

Let the non-centered (  ) and centered (  ) moments of the real distribution be 

defined as  

   ∫    ( )  

 

  

 

   ∫(    )
  ( )                                      (     )

 

  

 

Turnbull and Wakeman suggest approximating the real probability distribution of 

an Asian-style underlying with a log-normal distribution     ( ) by using the first 

four moments of the distributions. Log-normal probability density function is 

completely defined when the mean and variance parameters   and    are known 

in (3.1.4). The first two non-centered moments of the approximating distribution 

and the real distribution are thus set equal as in Levy’s approximation. Then, the 

price of a call option can be approximated 

          
     

   

  

     (    )

  
      

     
   

  

      (    )

   
       (     ) 

where    is the price given by the Levy approximation  

       [   (  )       (  )]                               (     )  

and    and    are as in (3.1.9).  

As can be seen from (3.3.2), moments of third and fourth order are needed to 

calculate the approximation. The first two moments are given in this paper by 

equations (3.1.2) and (3.1.3). Datey, Gauthier and Simonato [2] present the third 

and fourth non-centered moments of the real underlying security       
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,             (3.3.5) 

where e.g.     (   
    

    
    

) means the second smallest of the set of numbers 

    
    

    
    

 . 

 

3.4. Reciprocal gamma approximation 

Milevsky and Posner [13] show that under certain conditions, an infinite sum of 

correlated log-normally distributed random variables converges asymptotically to 

an inverse gamma distribution. Datey, Gauthier and Simonato apply this result to 

price Asian quanto-basket options [2] when the number of underlying assets is 

limited. Their method uses an Edgeworth expansion where the approximating 

distribution is the inverse gamma distribution. In this thesis we evaluate the two-

moment version of the inverse gamma approximation without the correction terms 

that Edgeworth expansion gives. 

Let   ( ) be the probability density function of the gamma distribution [2] 

  ( )  
        

 
 
 

 ( )
                                         (     ) 

Then, the probability density function of        is [2] 

    ( )  
    

 
 

  

     ( )
            (   )                     (     ) 

For an inverse gamma distributed random variable y moments can be calculated 

using the formula [18] 

 [  ]  
 

  (   )(   )  (   )
                            (     ) 

Matching the first two moments of     ( ) to those of the real distribution  ( ) 

both   and   are defined. Then, the price of a call option is 
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      [   (
 

    
|      )       (

 

    
|    )]            (     ) 

where   is the cumulative gamma distribution function. 

 

3.5. Approximating the real distribution with a Johnson family 

distribution 

Datey, Gauthier and Simonato [2] also suggest approximating the real probability 

density function  ( ) with a function of the Johnson family   ( ). Let N be a 

standard normal random variable. If variable X is defined as  

        (
   

 
)                                            (     ) 

it is said to have a Johnson distribution where       and   are the parameters of 

the distribution and   is selected to be of form   ( ) or of form       ( ).  

As discussed earlier in (2.2.6), (2.2.7) and (2.3.3), if  ( ) is the probability 

density function of the real distribution of     , the price of a call option is [2] 
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Approximating function  ( ) with a function of form   ( )        ( ), Datey, 

Gauthier and Simonato [2] obtain 
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4. Implementation and computational results 

The details of the test option used in this section are elaborated in Table 1. There 

are 5 underlying assets that are assumed to be continuous-dividend paying stocks. 

The strike price is set equal to the option’s intrinsic value at the beginning, that is, 

the intrinsic value of the option at the time when it is issued. The domestic risk-

free interest rate is assumed to be constant at 2 % per annum and the maturity of 

the test option is set to 6 months unless otherwise mentioned. The foreign risk-

free interest rates are assumed to be 5 % per annum for each underlying asset in 

the basket. Also, the weights, initial prices, volatilities, exchange rate volatilities 

and dividend rates are assumed to be the same for each underlying asset for 

simplicity. The correlations between the returns of the underlying assets and 

exchange rates are assumed individual for each underlying asset. Lastly, Table 1 

presents the correlation matrix that is to be used in the simulations to capture the 

correlations between each pair of underlying assets. 

Table 1: The parameter set used in simulations 

Number of underlying assets 5         

Strike as per cents of the initial basket 

price 100 % 
   

  

Domestic interest rate 0.02 
   

  

Maturity 6 months 
  

  

            

  Underlying assets     

  1 2 3 4 5 

Foreign interest rate 0.05 0.05 0.05 0.05 0.05 

Weights 0.20 0.20 0.20 0.20 0.20 

S(0) 100 100 100 100 100 

Volatilities 0.20 0.20 0.20 0.20 0.20 

FX rate volatilities 0.14 0.14 0.14 0.14 0.14 

Dividend 0.03 0.03 0.03 0.03 0.03 

Correlation between instruments and 

their currencies 0.07 0.10 0.10 0.15 0.30 

  
    

  

Correlation matrix 1.00 0.10 0.35 0.35 0.15 

  0.10 1.00 0.10 0.20 0.35 

  0.35 0.10 1.00 0.25 0.06 

  0.35 0.20 0.25 1.00 0.00 

  0.15 0.35 0.06 0.00 1.00 
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4.1. Convergence analysis of Monte Carlo 

Let us first test the convergence of the selected benchmark pricing method by 

gradually increasing the number of simulated paths N and calculating the option 

price each round. The purpose of the analysis is to find a sufficient number of 

simulated paths. We can estimate the simulation error SEM using the standard 

deviation of the simulated option price as follows 

    
         

√ 
                                                (     ) 

in which           is the standard deviation of the simulated option price and N 

the number of simulated paths. The convergence analysis is performed using 

Monte Carlo with antithetic variance reduction. The results are shown in Figure 3 

below. 

 

Figure 3: Convergence of simulated option price using normal Monte Carlo method. The red lines are 

the mean +/- two standard deviations. The simulation was performed with 6 fixing dates. 

Reasonable accuracy can be obtained when the number of simulated paths is over 

6 million. In the simulations of Figure 3 the number of fixing dates was set to 6. 

In the following analysis the number of fixings does not exceed 6 except for 

section 4.2.4 in which the number of fixing dates are varied from 2 to 12. The 

variance reduction method does not seem to give a clear advantage over ordinary 

Monte Carlo methods. 
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4.2. Comparison of accuracy 

In this section the accuracy of Levy’s approximation and Milevsky and Posner’s 

two-moment approximation are compared in different scenarios. It is required of 

an analytical approximation that pricing error is not sensitive to parameter values, 

that is, the approximations produce correct prices and price changes within the 

parameter space observed in real life. For example, good accuracy with large 

parameter set is beneficial for the purposes of hedging based on the Greeks. 

 

4.2.1   Varying volatilities of the underlying instruments 

In this thesis we employ the Black-Scholes framework where each underlying 

asset is assumed to have a constant volatility. In practice, if the underlying assets 

are publicly traded stocks, the constant volatilities can be replaced by volatilities 

implied by market data. Hedging can then be performed based on the implied 

volatilities. However, in order for the model to produce correct values of vega, it 

is essential that the model produces correct prices when volatility is varied within 

a reasonable range. Figures 5 and 6 show how the two models compare against 

Monte Carlo when the volatility of each underlying stock is gradually increased. 

Figures 6 and 7, in turn, show how accurate the two pricing methods are when 

volatilities are varied asymmetrically. 

 

Figure 4: Option price when the volatilities of the underlying assets are gradually increased. The 

maturity was 6 months and number of simulated paths 6 million. 
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Figure 5: Comparison of the errors of Levy's approximation and the reciprocal gamma approximation 

when volatility was varied symmetrically. The maturity was 6 months and number of simulated paths 6 

million. 

Judging by the results of Figure 4, when volatility increases, Levy’s 

approximation starts to diverge up compared to Monte Carlo as opposed to the 

reciprocal gamma approximation that seems to give too low prices compared to 

the reference price. Figure 5 shows the absolute errors of the approximations, 

when volatility is restricted under 100 %. It seems that Levy’s approximation 

produces errors of less than 0.01 (0.2 %) when volatility does not exceed 45 %. 

However, when volatility does exceed 78 %, Levy’s error is over +0.05 (0.6 %). 

Prices obtained using the reciprocal gamma approximation diverge quicker 

downwards but are still reasonably accurate with small values of volatility. The 

two methods perform almost equally well when volatility is under 45 %. After 

this, the error of the reciprocal gamma approximation starts to grow quicker than 

that of the Levy approximation. 
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Figure 6: Option price when the volatilities of 4 of the 5 underlying assets are gradually increased. The 

maturity was 6 months and number of simulated paths 6 million. 

 
Figure 7: Comparison of the errors of Levy's approximation and the reciprocal gamma approximation 

when volatilities were varied asymmetrically. The maturity was 6 months and number of simulated 

paths 6 million. 

When volatilities are varied asymmetrically so that they are gradually raised for 

four stocks and kept constant for one stock, the results are as shown in Figures 6 

and 7. In this specific scenario the accuracy of the Levy approximation seems to 

be worse than that of the reciprocal gamma distribution. In fact, Milevsky and 

Posner’s method turns out to be very accurate so that the absolute pricing error is 

of size 0.01 which roughly translates to 0.05 %. The Levy approximation error is 

about the same size as in the symmetric case when volatilities are at most 57 % in 
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Figure 8. For volatilities bigger than that Levy’s error is larger in the asymmetric 

case. 

4.2.2   Varying strike prices 

An option can be in-the-money, at-the-money or out-of-the-money depending on 

what the current price of the option’s underlying asset is relative to the strike 

price. In section 4.2.1 the option that was studied was set at-the-money. In this 

section focus is put on testing how accurate the two approximate pricing methods 

are when strike prices are varied.  

 

Figure 8: Option price when the strike price is varied. The maturity was set to 6 months, number of 

fixings once per month and the number of simulated paths to 6 million. 
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Figure 9: Comparison of the errors of Levy's approximation and the reciprocal gamma approximation 

when strike price was varied. The maturity was 6 months and number of simulated paths 6 million. 

  

The results are shown in Figures 8 and 9. Both methods perform well for all strike 

prices. Levy’s method yields an error whose absolute value is less than 0.005 (0.1 

%). The maximum error of the reciprocal gamma method is 0.006 (0.1 %) in 

terms of absolute value. Funnily, pricing errors are only observed near the at-the-

money point. Also, when one method overprices, the other underprices and vice 

versa. 

 

4.2.3   Varying maturity  

In this scenario, we vary the maturity time of the test option while keeping the 

number of fixing dates constant. The results are shown in Figures 10 and 11. 

Based on them, varying maturity does have an effect on accuracy. This is intuitive 

because the greater the maturity the greater is the variance of the probability 

distribution representing the option payoff. That is, increasing maturity should 

affect accuracy similarly as increasing volatility. 
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Figure 10: Option price when maturity time was varied. The number of simulated paths was set to 6 

million. 

 

Figure 11: Comparison of the errors of Levy's approximation and the reciprocal gamma 

approximation when maturity time was varied and the number of fixing points was held constant. 

As was the case in Figure 5, Levy’s approximation yields more accurate results 

but overprices more and more when maturity increases. The maximum error of 

Levy’s approximation is about +0.2 (1 %) when maturity time is set to 15 years. 

The maximum error of the reciprocal gamma approximation is likewise attained 

when maturity is at its highest: -0.26 (-2 %). 
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4.2.4   Varying the number of fixing dates 

Fixing dates are the dates over which the average is taken in Asian options. 

Generally, when the  number of fixing dates increases,  an Asian option becomes 

cheaper. This scenario tests if varying the number of fixings has an effect on 

pricing error. 

 

Figure 12: Option price when the number of fixing dates was varied. The maturity was set to 3 months 

and the number of simulated paths to 6 million. 

 

Figure 13: Comparison of the errors of Levy's approximation and the reciprocal gamma 

approximation when maturity time was held constant and the number of fixing points was varied. 

As shown in Figure 12, price decreases as the number of fixings increases. There 

is a limit that the price approaches when the number of fixings approaches 

infinity, that is, the price of a corresponding option that uses continuous 

averaging. According to Geman [4] there exist a Laplace transform method that 

can be used to calculate this asymptotic limit. 
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In view of Figure 13 both methods yield good results: The approximate prices are 

within the Monte Carlo 95 % confidence interval apart from one exception. No 

clear distinction can be done between the two methods in this scenario. 

4.2.5  Varying correlations 

Correlations between underlying assets have a significant effect on the price of  an 

option whose underlying asset is a basket. There are baskets of high-correlated 

assets such as distillates of oil and baskets with low-correlated assets such as 

stocks from different industries. Also, correlations might change quickly 

according to market movements so it is essential that a model is able to price 

correctly a basket irrelevant of what the level of correlation is. In this section the 

effect of varying correlations is studied so that the average correlation is gradually 

increased. The correlation matrix of Table 1 is replaced with an identity matrix 

that is then modified by increasing the correlations of each pair of assets at the 

same pace. The results are shown in Figures 14 and 15. 

 

Figure 14: Option price when the correlation between each pair of assets was increased at the same 

pace. The maturity was set to 6 months and the number of simulated paths to 6 million. 
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Figure 15: Comparison of the errors of Levy's approximation and the reciprocal gamma 

approximation when correlations are gradually increased at the same pace. 

Both methods seem to perform well. The maximum error of the Levy 

approximation is now +0.0055 (0.2 %) and the maximum error of the reciprocal 

gamma method -0.0095 (-0.2 %). As expected, Levy’s method overprices slightly 

on average and the reciprocal gamma method underprices. When correlations are 

very high, the error of the reciprocal gamma approximation is a little higher than 

that of the Levy approximation. Otherwise, the test does not show clear distinction 

between the compared methods. From Figure 15 we can see that there exist a 

maximum price for the test option and it is achieved when the underlying assets 

are perfectly correlated.  

 

5. Conclusion 

The first objective of this thesis was to review what methods have been suggested 

in the literature to price Asian, quanto and basket options and their combination 

Asian quanto-basket option. The second objective was to test their performance 

against Monte Carlo pricing. The distribution of a finite sum of correlated log-

normally distributed random variables is yet unknown [13], which is the reason 

why no exact analytical pricing methods exist. However, several approximate 

tools were found. Two moment matching methods were implemented in Matlab 

and their accuracy was compared in several scenarios. The scenarios were meant 

to test sensitivity against changes in model parameters. 
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In the first scenario, volatilities of underlying assets were varied both 

symmetrically and asymmetrically. In the symmetric scenario the volatility of 

each of the five underlying assets was increased gradually at the same pace. The 

asymmetric scenario was otherwise the same but the volatility of the first 

underlying asset was held constant. In the symmetric case the Levy approximation 

seemed to yield more accurate pricing. Its maximum error the volatility being at 

most 100 % was +0.1 which in relative terms translates to 1 %. For all values of 

volatility, Levy’s approximation seemed to give slightly too high option 

premiums. The Milevsky and Posner’s reciprocal gamma approximation seemed 

to underprice slightly for small values of volatility in the symmetric scenario but 

when volatilities exceeded 45 %, the underpricing became more pronounced. 

However, in the asymmetric scenario, the reciprocal gamma approximation turned 

out to be more accurate. For volatilities smaller than 100 % its error was of size 

0.01 in absolute terms which was only 0.1 % of the test option’s Monte Carlo 

price. The error was not negative for all values of volatility but seemed to change 

its sign as opposed to the symmetric case. Levy’s approximation overpriced also 

in the asymmetric case the maximum error being approximately 0.155 (1 %) when 

volatility was 100 %.  

The second scenario was meant to test if varying strike prices would have an 

effect on the accuracy of the selected pricing methods. Both approximations 

performed well and errors were only observed near the at-the-money point. The 

maximum error of the reciprocal gamma approximation was 0.006 (0.1 %) and 

Levy’s 0.005 (0.1 %) in terms of absolute value.  

In the third scenario, the maturity time of the test option was varied. The results 

were quite similar to the results of the first test: Levy’s approximation produced 

more accurate pricing. Both methods were accurate when maturity was short but 

the greater the maturity time the bigger was the error. The maximum error of the 

Levy approximation was +0.2 (1 %) when maturity was set to 15 years. 

The fourth scenario tested how varying the number of fixing dates would affect 

accuracy. Both methods seemed to perform equally well. However, it took a 

considerable amount of time to run Monte Carlo simulation when the number of 

observation points exceeded 10.  

In the fifth and final scenario the correlations of the underlying assets were 

increased symmetrically up until 0.999999999. Both methods performed well for 

weak correlations. For very high values of correlation the Levy’s method turned 

out to give slightly more accurate results. 

Based on the tests performed in this paper, the Levy approximation yields slightly 

more accurate results on average and – with few exceptions – overprices 

consistently. The only scenario in which Levy’s method turned out to be inferior 

was the asymmetric volatility test that is elaborated in Figure 7. Both 

approximations are quick to implement on a personal computer and can be used to 
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approximate different underlying distributions without modifying the calculation 

formulas. Figure 16 summarizes the main shortcomings of Levy’s approximation: 

overpricing when volatility is high or maturity is long. 

 

Figure 16: The absolute error of the Levy approximation as a function of volatility and maturity. The 

bigger is the volatility or longer the maturity, the larger is the error of Levy’s approximation. 

In the future Ju’s approximation could be compared with Levy’s in the case of an 

Asian quanto-basket option. Ju’s approximation has been praised in many articles 

as probably the most accurate analytical method to price arithmetic Asian and 

basket options. However, implementing the method for an underlying security that 

is the average value of a basket over some discrete set of points involves 

challenges such as re-deriving some of the formulas. This paper will not address 

those challenges. 
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