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Abstract

Digital imaging is constantly growing and is being applied into various new fields of technology.
While digital image sensors are improving every day, they still involve digital noise in the obtained
images. Many applications, including photography, require the use of noiseless images for better
results. Thus it is of great importance to have variety of powerful noise reduction methods availa-
ble. Whereas most techniques concentrate on removing noise from single image file, it is possible
to utilize information from several images in order to acquire noise-free image. In this thesis, we
focus on noise reduction methods that merges together information from multiple exposures of
the same stationary subject.

The introduced merging methods (average and median based) are compared to more conventional
single-image denoising techniques. In order to analyze the performance of the methods, a total of
252 images were captured using a regular consumer DSLR camera. Due to the requirements of
merging methods, the images were taken such that the consecutive exposures would be identical,
excluding the noise. The effectiveness of the methods is compared using pixel variance as a meas-
ure of noise. In addition to the variance in the processed images, visual effects of methods are also
considered, since noise is essentially visual aberration of the subject.

The results propose strong applicability of both merging methods. That is, both of the methods
were able to significantly reduce the pixel variance in the test images, indicating apparent reduc-
tion in the noise. The visual comparisons of the methods illustrated the advantages of merging
methods in noise reduction, as the merging methods outperformed the conventional ones in terms
of edge and feature preservation. The merging methods even sharpened the test images, which is
an important property in many noise reduction applications, such as medical imaging.

Keywords noise reduction, image processing, image averaging, noise model, Gaussian noise, pix-
el variance
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Tiivistelma

Digitaalinen valokuvaaminen ja kuvantaminen on alati kasvava ala, jota hyodynnetaan yha laa-
jemmin uusissa teknologian kayttokohteissa. Nopeasta kehityksesta huolimatta digitaalisilla ken-
noilla otetuissa kuvissa esiintyy edelleen digitaalista kohinaa, eli satunnaista vaihtelua signaalissa.
Perinteisen valokuvauksen lisdksi monet sovellusalat vaativat kayttoonsa lahes kohinavapaita ku-
via, mika luo tarpeen tehokkaille kohinanpoistomenetelmille. Perinteisesti kohinanpoistomene-
telmat pyrkiviat vihentamian kohinaa yksittaisistd kuvista, mutta kohinavapaan kuvan aikaan-
saamiseksi on myos mahdollista hyodyntda useampaa kuvaa. Téassa tutkielmassa keskitytaan me-
netelmiin, jotka hyodyntiavat useammasta samanlaisesta kuvasta saatua lisainformaatiota yhden
kohinavapaan kuvan luomiseksi.

Tutkielmassa kasiteltivat menetelmat perustuvat useamman kuvan yhdistdmiseen keskiarvon ja
mediaanin avulla. Niita yhdistelymenetelmia verrataan tavanomaisempiin yhden kuvan kohinan-
poistomenetelmiin. Jotta esiteltyji menetelmia voitaisiin vertailla, tyota varten otettiin 252 valo-
kuvaa kayttden tavanomaista jarjestelmakameraa. Kuvia yhdistelevien metodien luonteesta johtu-
en kuvat otettiin siten, ettd ne eroaisivat toisistaan vain kohinan verran. Kohinanpoistomenetel-
mien toimivuutta vertailtiin tarkastelemalla kasiteltyjen kuvien pikseleiden valistd varianssia, mi-
ka antaa kasityksen kohinan maarasta. Koska digitaalinen kohina on lopulta vain kuvan vaaristy-
maai, tarkasteltiin myos menetelmien silminniahtavaia paremmuutta.

Tutkielman tulokset osoittavat yhdistelymenetelmien olevan tehokkaita kohinanpoistomenetel-
mid. Molemmat tutkitut menetelmét onnistuivat pienentamaan pikseleiden varianssia, mika tar-
koittaa lopullisen kohinan vahenemistd. Myos silmamaaraisissa vertailuissa yhdistelymenetelmat
osoittautuivat tavanomaisia metodeja paremmiksi, pystyessdan sidilyttimaian enemman informaa-
tiota, kuten reunoja ja muita ominaisuuksia. Yhdistelymenetelméit jopa paransivat alkuperaisten
kuvien tarkkuutta, mika tekee niistd varteenotettavan vaihtoehdon monissa sovelluksissa, kuten
ladketieteellisessa kuvantamisessa.

Avainsanat kohinanpoisto, kuvankasittely, keskiarvomenetelma, kohinamalli, Gaussinen kohina,
pikselin varianssi
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1 Introduction

Digital image sensors have revolutionized photography and its applications
in the past decade. The growth of digital imaging tends to increase as sensor
technology develops and digital cameras are being applied into more various
types of technological applications.

Digital camera sensors are essentially photon counting devices which are not
ideal by any means. In fact, all digital images captured by a digital sensor
contain some degree of noise. Noise is random degradation in an image that
can be caused by a number of different sources. As noise always reduces
the amount of information provided by the image, noise is usually unwanted
phenomenon which is desired to be removed [1].

Noise can be removed in various different ways. Some methods use linear
filtering across the whole image, while others take advantage of non-linear
operations, such as low pass filtering, in order to denoise the image [14].
Whereas the aforementioned methods apply the denoising into one single
image, it is possible to take advantage of several exposures while attempting
to obtain a noiseless image [3].

In this thesis, we concentrate on denoising methods that make use of con-
secutive exposures. These multi-image denoising methods have some major
advantages compared with the more traditional single-image denoising tech-
niques [3]. On the other hand, multi-image methods are practical in very few
situations. Multi-image methods can be practical when the frames are reg-
istered and the photographed subject remains stationary [I], 6]. Despite the
restrictions, multiple stationary exposures can be taken for noise reduction
purposes in fields such as medical imaging or astrophotography [15]. Our
objective is to compare these image merging methods to more conventional
alternatives, by means of variance as well as visual properties of the processed
images.

2 Digital image noise

2.1 Noise models

It is usually beneficial to have prior knowledge of the underlying model of the
noise, before it can be removed. Therefore, noise can be divided into different
models based on its source and mathematical form. As noise is typically



caused by numerous different sources, it can be very diverse. Noise is often
emerged during the image digitization by altering light levels and high sensor
temperature, both of which cause variations in the signal. Transmission is
another part where noise is produced. Usually, the signal interferes in the
channel which can cause noise in the final image as well [4].

A noisy image, g(z,y), can be decomposed into two components: the under-
lying real image f(z,y) and the added noise n(zx,y), where (z,y) corresponds
to the spatial coordinates of the image. This decomposition is written as

9(z,y) = f(z,y) +n(z,y). (1)

The decomposition is often referred to as an additive model, which is used in
companion with many other noise models [3]. Most noise models assume that
the noise is uncorrelated with the image. This means that the noise values
n(x,y) cannot depend on the real values of f(z,y). Another assumption
is that noise is independent of spatial coordinates, (z,y), across the whole
image area. In this section we introduce yet two more noise models, which
are relatively common in traditional photography that uses CMOS-sensors.
These noise models are called Gaussian noise and Salt and Pepper noise,
respectively.

The Gaussian noise model is the most used in practice, since it models real
noise well and it is mathematically very pleasing. Gaussian noise is used
to model noise that arises from electric circuit and sensor, which are one
of the most significant components to contribute to the final noise in the
image. Gaussian model explains the noise the better the higher the sensor
temperature is during the exposure and the weaker the lighting is. Gaussian is
very well modeled with the additive model in Equation , where each noise
component n(x,y) is normally distributed [3]. That is, each noise component
n(x,y) follow the normal distribution with mean p and standard deviation
o. The probability density function is given by

pln) = (2mo?) 2¢O )

In Equation , n corresponds to the gray level value of the noise component
n(z,y). Furthermore, in the context of the additive model, the mean of the
Gaussian noise is zero, that is yu = 0.

Another common, but not so visually apparent, noise model is the Salt and
Pepper noise. Salt and Pepper noise is typically caused by errors in data



transmission in camera. The errors may be caused by faulty image sensor or
damaged memory. Since data is stored in bit form in the camera, Salt and
Pepper noise is usually 0-1 noise. That is, Salt and Pepper noise degrade
the image by adding minimum and maximum gray scale values in the image,
most often values 0 and 255, as images are usually stored in 8-bit format.
Due to this behaviour, Salt and Pepper noise cannot be modeled with the
additive model. It is common that various types of noise occur simultane-
ously in images. Therefore, Gaussian and Salt and Pepper can be observed
concurrently. The probability density function of Salt and Pepper is given in
Equation ({3]).

p(g = f) =1- a,
plg = maz) = «/2, (3)
p(g = min) = /2

Here the value a corresponds to the probability of having a faulty pixel in
the image. The probability « is typically very low [14]. Figures show the
effect of Gaussian and Salt and Pepper noise models compared to original
image.

Figure 1: Original im- Figure 2: Gaussian noise Figure 3: Salt and Pep-
age. corrupted image with per noise corrupted im-
pw=0and c =0.1. age with o = 0.05.

2.2 Image data

The image data used in this thesis was captured purely for needs of this
study. In total of three different image setups were arranged, and for each



setup, 84 exposures were taken consecutively in order to analyze the methods
properly. The images were taken with Nikon D7100 DSLR (digital single-
lens-reflective) camera which has a 24-megapixel CMOS-sensor. Due to the
high pixel count in the images, the corresponding file sizes tend to be large.
Therefore, 84 exposures of each image were taken for maintaining the ability
to process and analyze the images relatively efficiently. The three different
images are shown in Figure [4]

Figure 4: The three images used in this study.

As noted in the Introduction, one of the disadvantages of multi-image denois-
ing methods is the requirement for stationary subject. In order to accomplish
this requirement, the camera setup was designed such that it would minimize
movement between separate exposures. One of the most important tools of
this demand was a sturdy tripod, which was used in every setup. Another
aspect of reducing the camera shake was the use of a wireless remote shutter,
which eliminates movement of the camera that might occur while pressing
the physical shutter of the camera. In addition to the stationarity of the
camera, exposure settings play an important role in obtaining identical im-
ages successively. The camera was put to manual exposure settings (shutter
speed, aperture and ISO) and manual white balance setting for this purpose.
This procedure excludes the possibility of exposure settings to change be-
tween shots. Finally, all the images were taken indoors to reduce changes in
lighting during taking images. As indoor lighting such as halogen lamps do
not provide stable lighting, a smartphone constant flash was used to light the
setups.

The images were captured in RAW format, which is lossless format to store
image data. Unlike JPEG format, RAW format maintains all data the sensor
captures and do not compress the data by any means. Actual RAW data is
important in this study, since noise can transform during image file compres-
sion done by the camera, when using other formats than RAW. As can be
seen from Figure [4] all the images are slightly underexposed. The reason for



capturing darker images is due to the noise being more intensive in dark areas
of images. The images were also shot using higher ISO-values (ISO 100-1600)
to amplify the noise even more, which is beneficial when comparing different
denoising methods. Exposure settings used in each image are listed in Table
After capturing the images, they were imported to RStudio. In order to
simplify analysis of the noise, the files were converted to greyscale images us-
ing R-package ’'OpenlmageR’ [13]. Finally, the greyscale images were saved
as data matrices using the package.

Table 1: Exposure settings of the images.
‘ Image 1 Image 2 Image 3
Shutter speed | 1/60s  1/60s  1/15s
Aperture | f/3.5 f/3.8 f/5.3
ISO | 1600 1100 100

2.3 Distribution tests

In this section we test the captured image data, aiming to get an idea of
what type of noise model does the noise actually resemble. Furthermore, we
calculate some interesting characteristics of the observed noise. In order to
justify the dominant noise model in the captured images, a few normality
tests were performed to find out whether the dominant noise is actually
Gaussian noise or not.

Normality of the noise was tested by using an extension of Shapiro and Wilk’s
W test for normality to large samples [16]. The test was performed by using R
function that calculates the test statistics and p-values for the aforementioned
test. Testing was done individually for the three images. For each image, 4000
random pixel coordinates (of the 24 million possible) were calculated and the
p-value of the test was computed for each 4000 pixels coordinates using the 84
corresponding pixels as a sample. After obtaining the 4000 p-values for each
image, the percentage of significantly non-normal pixels was calculated using
two different significance levels (1 — «). The corresponding percentages are
listed in Table 2| In addition, the corresponding histograms of the p-values
are given in Figure [o]



Table 2: Percentages of non-normal pixels on different significance levels (1 —
Q).
‘ Image 1 Image 2 Image 3
a=5%|160% 234% 79%
a=1%| 61% 123% 2.0%
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Figure 5: Histograms of p-values for normality test.

Due to the relatively high percentages of the significantly normal noise val-
ues of the images, the dominant noise model appears to be quite Gaussian.
According to Table [2] the noise in Image 2 was the least normal. As Image
2 is the darkest one, it might be that there is some other noise model more
present in darker lighting situations. Another observation from Table [2] is
that noise is the most Gaussian in Image 3, which is taken with the lowest
ISO-value. ISO-value controls the sensitivity of the sensor. The result thus
indicates introduction of other noise models when using higher sensitivity set-
tings of the sensor. Despite the slight non-normality of Image 2, the results
yield great applicability of additive and Gaussian noise models in all three
images, which suggest the usefulness of multiple image denoising techniques.

Another interesting aspect of the noise is whether it depends on the grey level
values of the underlying image f(z,y). To test this hypothesis, variances of
the pixels were calculated in both bright and dark areas of the image. In this
test, only the Image 1 was considered since it provided very varying grey
levels across the image. Bright pixels were considered those with grey level



values in range from 0.7 to 0.9. Similarly, dark pixels were those in range
from 0.1 to 0.3. Both the brightest and the darkest values were left out of
consideration due to the absence of variance in blown-out pixels. That is, in
very bright areas the pixel values might all be at the maximum of 1.0, and
the variance should thus be zero. The test was performed by first selecting
1500 bright and dark pixels, as defined above, randomly from Image 1. For
each pair of bright and dark pixel, the variance of the corresponding pixel
was calculated among the 84 available images. In addition, the variances of
the two pixels were compared using Bartlett test, in order to verify whether

the variances were the same or not [2]. The results of the variances are shown
in Table [3

Table 3: Variances of bright and dark pixels.
‘ Bright  Dark
Sum | 1.59 1.29
Mean | 0.0011 0.0009
Median | 0.0007 0.0009

According to the Bartlett test, the variances between bright and dark pixels
are different. 60.9% of the 1500 tests resulted in a p-value less than 5%,
which suggests rejecting the null hypothesis of equal variances. Thus it can
be stated that in general, bright pixels have more noise, in terms of variance.
To visualize this result, 500 random pixel coordinates were evaluated from
each three images. The variances of these pixels were calculated and plotted
as a function of grey level values. The resulting plot is shown in Figure [6]



o Image 1 (ISO 1600)
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Figure 6: Noise variance as a function of grey level value.

As can be seen from Figure [6] variance of the pixel values, or noise, tends to
increase as pixels get brighter, which agrees with the Bartlett test performed
earlier. Yet another relatively interesting phenomenon is visible in Figure [6]
One of the widely known principles of exposure is that higher sensitivities
(ISO-values) result in greater amount of noise. This behaviour is apparent in
the figure. Image 1 is taken with ISO 1600 and it introduces roughly ten times
more noise compared to Image 3, which is taken with ISO 100. Figure [6] also
justifies the fact that all the three images are considerably under-exposed, as
the brightest pixels lie somewhere around grey level value of 0.6.

The third, and final noise test was used to examine whether the noise de-
pended on the neighbouring pixel noise or not. That is, it was tested if two
adjacent pixels shared the same variance in comparison to two random pix-
els. The test was executed as follows. A random pair of pixel coordinates
were calculated and their variances were compared by using the aforemen-
tioned Bartlett test [2], with 95 % significance level. A third random pixel



was compared to its neighbour pixel, which was obtained by adding one to
the z-coordinate, thus yielding the right-hand side neighbour. This process
was repeated 1500 times and the corresponding Bartlett test p-values were
saved into an array. The results are shown as histograms in Figure
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Figure 7: P-values of Bartlett test comparing variances of random and adja-
cent pixels.

As Figure [7] suggests, the noise appears to be dependent on the noise of its
neighbouring pixel. Moreover, 9.7 % of the neighbouring pixels were classified
as having unequal variances, according to Bartlett test, whereas the corre-
sponding percentage for random pixels was 47.3 %. This result agrees with
the earlier result of the variance dependency on grey levels, as neighbouring
pixels typically have similar brightness values.
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3 Noise reduction

The fundamental purpose of image noise reduction is to scale down the un-
wanted noise while preserving information like texture or edges. The motiva-
tion for noise reduction, or denoising, might be purely aesthetic or denoising
might be first step of image enhancement before use of some other method,
such as computer vision. On the other hand, a noisy image was taught to
be composed of the real image and the noise, as in the additive model in
Equation . Noise reduction thus aims to minimize n(x,y), when the ad-
ditive model is considered. There are a vast number of different noise reduc-
tion methods, a few of which are introduced in [14]. Most of these methods
considers a single image by attempting to minimize effects of noise in the
given image. Along with these conventional single-image denoising methods,
there are methods that use information of multiple consecutive exposures and
combine these images to obtain one less noisy image. In this section we will
introduce two relatively simple multi-image denoising methods and compare
them to more traditional ones.

3.1 Conventional noise reduction

There are numerous single-image denoising techniques available. The reason
for this is that typically it is not possible to acquire multiple images of the
same source. Thus all the information available is limited to the single image.
These methods can be sub-categorized based on the domain where the de-
noising filtering takes place [14]. Spatial domain handles pixel values as they
are in the image plane, whereas frequency domain filtering transforms the
spatial domain into frequencies, which is sometimes referred to as wavelet
domain [I1I]. In this section, we will concentrate on the simpler spatial do-
main methods. The methods of interest are one of the most widely known
ones. We will introduce two methods, or filters, which are linear smoothing
filter and non-linear smoothing filter, both of which we will compare with
the multi-image methods in Section []

The linear smoothing filter reduces noise by averaging neighbouring pixels
using a square convolution mask [5]. The mask, or window, is used to replace
the center pixel with a weighted sum of pixel values within the mask area.
The mask is shifted across each pixel in the image and the center pixel is
replaced by the obtained value. The size of the mask is typically from 3 x 3
to 7 x 7. The bigger the mask area is, the more noise reduction is applied.
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Figure 8: Linear spatial smoothing weights and mask.

Figure |§] illustrates the weight distribution and mask when the new pixel
value is calculated for pixel (z,y). The windows size used in Figure [8is 3 x 3.
The new value for the center pixel, ¢(z,y), is thus calculated as

C(l‘, y) =W19(z—1,y+1) + W29(z,y+1) + W3G(z+1,y+1)
TWaG(z—1,y) T W5Y(ay) T W6G(x+1,) (4)

FW7G(z—1,y—1) T WsYG(z,y—1) T WoG(z+1,y—1)-

In a pure mean filter, the weights in Figure |8| are all equal and their sum is
1, which ensures that the overall brightness of the image is preserved. As the
mask considers adjacent pixel values from all directions of the center pixel,
image borders have to be handled separately. There are a couple of ways to
treat the border. One option is to duplicate the pixel values closest to border
and place them beyond the image area. Another approach is to assign zero
weights to those pixels outside the image margins. In this case, the remaining
weights have to be scaled so that the sum of the weights remains constant.

The result of linear spatial smoothing filtering is visible noise reduction and
smoothing. However, as the filter takes averages of the neighbouring pixels, it
can be seen as a type of low-pass filter, since the procedure reduces intensity
variations within the mask area. While the noise is significantly reduced,
edges and other sharp features of the images are also blurred. Due to these
side effects, such as the edge blurring, more sophisticated methods have been
developed to prevent this issue. For example, the above-mentioned frequency
domain denoising methods as well as multi-image methods are superior in
preserving features [14) [17].

The linear spatial smoothing filter is relatively good for handling Gaussian
noise. However, in some cases non-linear smoothing filters might be more
applicable. A widely known example of a non-linear filter is the median filter.
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Spatial median filter is implemented as the linear smoothing filter, but the
center pixel is replaced by the median value of the pixels within the mask.
Median filter is considered the best performing order statistic filter, since it
is very good at eliminating extremely distinctive noise values in an image.
Due to the quality of removing extreme values, median filter is exceptional
for removing Salt and Pepper noise [17].

3.2 Merging methods

In this section we introduce two important multi-image noise reduction meth-
ods, which merges together multiple images. These methods utilize the addi-
tional information provided by different exposures, in order to reduce noise
efficiently. The methods to be covered are called image averaging method and
median method. Both of these techniques are relatively simple to implement,
yet they are very powerful methods in certain situations.

Image averaging over multiple consecutive frames is widely known technique
for attaining noise-reduced images. Image averaging is also a very intuitive
way of reducing random variations between different exposures. In addition,
the method is often used as a preprocessing action on various image enchant-
ment algorithms when multiple frames are available [7]. On the other hand,
image averaging can be employed even in applications where only a single
image is considered, as a process to merge phases of more advanced image
denoising techniques [12].

Image averaging is a straightforward method. The noise-reduced image is
obtained by taking averages of the N available images pixel-wise. That is,
each pixel in the resulting image is obtained by taking the mean of all the
pixel values corresponding to the same spatial location to that pixel [10].
Before the method can be applied, the images must be aligned to prevent
blurry results. The data used in this study was acquired such that there is
no need for further alignment, as described in Subsection

The idea behind image averaging is based on the additive model . The
resulting image, denoted here by G(z,y), is obtained by taking the average
of the N images, that is

Glr.y) = Do) )
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Since the image can be decomposed into two parts, the denoised image can
be expressed in terms of the underlying image f(x,y) and the noise n(x,y),

Gla.y) = 5 D filey) + 5 > mlay) ©)

Because the underlying image f(x,y) is constant, G(z,y) can be written as

N

Gl y) = flom) + 5 Somil,y). (7)

=1

From Equation @ it is visible that averaging multiple images reduce the
noise term n(z,y) as it tends closer to its mean, which is assumed to be
zero. Due to the law of large numbers, increasing the number of averaged
images causes the noise term to disappear [9,[8]. As this result suggests, image
averaging can be very effective noise reduction method when its assumptions
hold. The image data used in this thesis is mostly corrupted with Gaussian
noise. Since Gaussian noise obeys the additive model fairly well, there is a
reasonable change that image averaging works very well for the test data.
One of the advantages of image averaging method is the great ability to
preserve actual details of the image. Since the method does not consider the
neighboring pixel values at all, image averaging can maintain edges up to one
pixel wide, whereas the aforementioned filtering techniques will always soften
edges that narrow. Visual comparison between the methods is performed in
Section Ml

Another multi-image noise reduction method is the median technique. Like
image averaging, median method is a pixel-wise merging procedure that is
also remarkably applicable in some situations. As the name suggests, median
method replaces each pixel in the resulting image by taking the median of all
the N grey level values that share the same pixel coordinates. This technique
is powerful for removing strong deviations from the captured images. Due to
the robustness of this method, median is particularly effective of removing
Salt and Pepper noise that is present in some of the merged images. The
reason for efficient Salt and Pepper noise removal is the low probability of
corrupted pixels, as discussed in Subsection The probability that a cor-
rupted pixel is observed is a. For merging three images together thus requires
two corrupted pixels among the three, both having either the maximum or
minimum value. The probability of having two corrupted pixel of the same

value is then (3)(%)2. Since the corrupted value can be either minimum or
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maximum, the probability has to be multiplied by two. Finally, the probabil-
ity of preserving Salt and Pepper noise, after median method is applied for
three images, is 2(;’) (%)2 For a typical value of o = 0.05, the probability is
then 0.4%. This yields remarkably good performance for removing Salt and
Pepper noise in the resulting image, since the probability further decrease as

the number of merged images is increased.

Both of the methods introduced in this section were implemented in R, using
the package ’OpenlmageR’ [13]. The image data was manipulated as matrices
and the merged matrices were exported back to image files using the package.

4 Analysis of different methods

In this section we test the noise reduction methods in action, using the ac-
quired data. Traditionally, image noise reduction methods are tested and
compared by simulating artificial noise on top of noise-free test images.
The methods are then compared by calculating statistics, such as signal-
to-noise ratios, to determine which methods come closest to the noise-free
image [3, 12, [I7]. In this study, however, the image data is already noise-
contaminated, as the images were taken with a regular consumer camera.
That is, no additional noise is generated to the images, but the existing
noise is to be removed by applying the introduced methods. Since the un-
derlying noise-free image of the test images is unknown, the comparison are
performed by analyzing the variance that is left present after the method
has been employed on a set of images. This comparison method is based on
the assumption that the variance among the test images is the closer to zero
the closer the noise-reduced image is to the underlying noise-free image. In
addition to this more quantitative comparison approach, each of the methods
are assessed by visual perception, as visual enchantment is often the motiva-
tion for noise reduction. In the following section, both the single-image and
multi-image methods are used to reduce noise from the test images and the
methods are later compared. For the spatial filtering methods, a 5 x 5 mask
size was used. Similarly, the multi-image methods were applied using five
image average or median. The reason for the use of larger mask and higher
number of images is the more visible differences between the methods.
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4.1 Noise reduction

We begin with the more conventional single-image methods. Since the multi-
image methods combine five exposures into one image, only one fifth of the
images were processed with the single-image methods. The reason for this is
the ability to compare the conventional methods to the multi-image counter-
parts. In order to compare the methods reliably, the image to be processed
was picked randomly among the five images used in multi-image methods.
Thus every method yields 16 resulting images per image setup (e.g. Image
1). As described above, the tests were based on pixel variance across the
processed images. For each image setup, 1500 random pixel coordinates were
computed and the variances of these pixels were analyzed among the 16 pro-
cessed images for each method. Figure [9 shows the distribution of the cal-
culated 1500 pixel variances of the original images and the images processed
with the single image methods, spatial averaging and spatial smoothing fil-
ters, respectively. The image used in Figure [9] is Image 1, due to the large
amount of noise in the image. As can be seen from Figure [9] both single-
image methods reduce noise remarkably well, in terms of decreased variance.
Judging by the variance, average filter appears to be slightly more effective.
Figure [10] on the other hand, shows the visual effect of the methods. The
image used in this figure is Image 2 and it is cropped to 300 x 300 pixels
so that the effects are easily visible. Again, by looking at Figure [I0, both
methods reduce noise effectively. The spatial smoothing behaviour is also
visible, since the edges of the images are smoothed and the texture of the
fabric is less detailed. Both figures suggest that the averaging method might
be slightly better method for reducing noise, considering the smaller variance
and smoother surface in Figure [I0]
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Figure 9: Variance on Image 1 after applying spatial smoothing filters.
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Figure 10: The effect of spatial smoothing filters on Image 2.

The tests were performed similarly for the multi-image denoising methods.
One distinction to the single-image methods was that instead of picking im-
ages randomly, all of the five images were merged together. Thus, this method
provided 16 images per image setup. Corresponding figures were plotted for
the merging methods as well. Figure [11| shows the variances calculated from
Image 1 for each method. The variance is again smaller in both methods
compared to the unprocessed image. Even though the result is less effective
compared to the single-image ones, the difference to the original image is
obvious. This time, averaging seems to be significantly better than median
method. The undeniable advantages of the merging methods are clearly vis-
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ible in the Figure [T} The noise is reduced by vast amount, yet the features
of the image, like the text and the stitches of the badge, are well preserved.
While both the averaging and median perform sufficiently well, the averaging
method outperforms the median method by some degree. In Subsection 4.2
we compare the results of each method by means of variance as well as vi-
sual properties. We also test how well the methods affect the different image
setups, given the various exposure settings, like sensitivity.
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Figure 11: Variance on Image 1 after applying merging methods.
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Figure 12: The effect of merging methods on Image 2.
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4.2 Comparison of the applied methods

All applied methods are capable of reducing unwanted noise from the test
images. Now we concentrate on the differences of these methods, emphasizing
the differences between the single-image and multi-image methods. We keep
on analyzing the variances left in the images after applying the methods.
Since 1500 random pixel variances were calculated from each image and for
each method, we have total of 4500 variance measurements per method, cor-
responding to all three images. Some descriptive statistics of these variances
are collected into Table [l Similar conclusions can be drawn from Table [l as
from Figures [9] and [I1] The variability among the pixels decreases in all the
methods applied on the test images. It can be seen as well that the spatial
single-image methods reduce the noise by greater extent in terms of variance.
In addition, averaging versions of the methods seem to exceed the median
ones across all the statistics, which indicates better performance for averaging
methods at least for the test data used in this study.

Table 4: Variance across images after different methods applied.
Original = Spatial Spatial Merge  Merge
Average Median Average Median

Sum 1.9 0.086 0.15 0.39 0.62

Mean [1074] 4.2 0.19 0.33 0.87 1.4

Median [1074] 2.1 0.14 0.20 0.45 0.64

Figure illustrates the variance present in the processed images as well
as the effect of the methods on different images and sensitivity levels. In
Figure only the averaging methods have been taken into consideration
with the original image, since the results between average and median are
very similar. Furthermore, in order to simplify the plot, only 900 values of
the 4500 have been randomly chosen per image setup. The placement of the
data points along x-axis is arbitrary except the arrangement into image cate-
gories. The conclusions drawn from Figure [13] coincides with the conclusions
made earlier. Spatial filter produces better noise reduction results compared
to merging method, variance-wise. However, Figure [13| provides evidence for
the stability of the order between different images. Particularly, the spatial
filter appears to be the best option in all three images, being significantly su-
perior on decreasing noise. As Figure [13] suggests, it seems that the methods
are considerably independent on the sensitivity of the sensor and thus the
intensity of the noise. In order to further examine this hypothesis we calcu-
late percentages of the variances to see how much noise there is left after the
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methods have been employed. Table [§] shows the percentages of the variance
that is left in the test images compared to the original variance. According
to Table |5 the effectiveness of the methods is remarkably independent of
the noise strength. Especially the merging methods appear to obey this hy-
pothesis well, whereas the spatial methods tend to perform better on higher
sensitivities (or noise levels).
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Figure 13: The effect of methods on different images.
Table 5: Variance left in images after methods applied.
Original = Spatial Spatial Merge  Merge
Average Median Average Median
Image 1 [%] 100 4.1 74 21 32
Image 2 [%] 100 5.4 8.5 21 31
Image 3 %] 100 5.5 9.7 21 32

In terms of variance in the resulting images, the spatial single-image meth-
ods provide a better outcome for noise reduction. However, the purpose of
noise reduction is essentially on the visual side. Hence, it is at least equally
important to compare the visual effects of the methods. Figures and
indicated both pleasing visual results for reducing the apparent noise in the



original test image. In Figure [I4] we have emphasized the differences of the
methods. Figure [14] shows a 300 x 300 crop of the Image 1 with each method
applied.

Original Spatial Average Spatial Median

Merge Average Merge Median

Figure 14: The effect of each method on Image 1.

From Figure [I4]it is again obvious that each method manage to reduce noise
in visual manner. This can be best seen by examining the light grey surface
above the badge. Both merging methods produces even surface with almost
indistinguishable noise left in the images. The little noise visible in the merg-
ing method images looks similar to the original image, but with less intensity.
On the other hand, the spatial methods seem to have modified the structure
of the noise. Particularly, the noise grains are visibly larger compared to the
original image or merge processed images while the intensity has decreased.
This is most probably due to the fact that spatial methods include values
from neighbouring pixels as well, with a filter of size 5 x 5, in this case. The
same effect is also visible in Figure [I0] where the flat surface shows similar
grain noise. By analyzing the even gray surface in Figure [14] further, it can
be stated that the noise reduction performs better using the averaging alter-
native of both spatial and merging methods. However, the superiority of the
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averaging versions only applies for the test data, which was earlier considered
to be corrupted by mainly Gaussian noise. The results might be better for
median methods for some other test images or setups.

Figure [14] also provides excellent opportunity to compare the feature preserv-
ing properties of the methods. The disadvantages of these smoothing filters
are definitely visible, when comparing the spatial methods to the original
image. The text in the badge is blurred and the hard edges between the
differently colored areas are smoother. Overall, both images processed with
spatial methods are blurred and less detailed compared to the original. For
the merged images in Figure [14] however, the feature preserving properties
are apparent. The edges are sharp and the text is legible throughout the
images. The sharpness of the merged images is even greater compared to the
unprocessed image, which can be justified by looking at the undermost text
in the badge. The text is more detailed in the merged images. This result
is one of the biggest advantages of using image merging methods for noise
reduction purposes.

5 Conclusions

In this thesis, we have studied several noise reduction techniques for removing
noise from photographs taken with a standard consumer DSLR camera. The
aim was to compare multiple image merging methods to some conventional
denoising algorithms that only process single images. Before the methods
were applied, the noise of the test images was analyzed. The tests suggested
that the test images were mostly degraded by additive Gaussian noise, which
is desirable taking into account the additive nature of the noise reduction
methods employed in this thesis. The merging methods were tested along
with the conventional ones by analyzing the remaining noise and the visual
properties of the processed images. The experiments indicated very appli-
cable performance for the multi-image averaging method, with the median
alternative not far behind. While the conventional single-image methods con-
sidered in this thesis were very elementary, the potential of merging methods
proved to be significant compared to single-image methods. One must keep in
mind, though, that the state-of-the-art single-image methods are extremely
effective and they might outperform these merging methods. However, the
leading modern noise reduction methods utilize rather complex procedures
such as wavelet transforms and Al In contrast, the proposed merging meth-
ods are really simple to implement.
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Due to the advantages and disadvantages, merging methods turn out to be
suitable for applications such as astrophotography, landscape photography
or medical imaging. The reason for the narrower field of applications proved
obvious in this thesis. The test setups were rather sensitive to changes in
lighting or movement, when acquiring the test data. However, when these re-
strictions can be overcome, the results are pleasant. In this study, we merged
together five consecutive images, which yielded notable reduction in the noise.
The number of images to be merged is not limited, though. Figure [15| shows
the behaviour of noise when more images are averaged. From Figure [15|it is
visible, that improvement can still be made, from eight images, all the way
to 20 merged images.

Original Merge 3 Merge 8 Merge 20

Figure 15: Example of increasing the number of images to be averaged.

In this thesis we found out that the averaging approach provided slightly
better results compared to the median approach. However, this observation
is highly correlated with the test data. For example, it is known that the
median is superior of removing Salt and Pepper noise. This emphasizes the
importance of choosing the right noise reduction technique for specific noise
type. Particularly, the results in this thesis suggest choosing the averaging
alternative over median, if the images are taken with a consumer DSLR
camera, that features a CMOS-sensor.

The objective of this thesis was to compare the benefits of multiple image
noise reduction methods to traditional noise reduction techniques. The ap-
proach to this objective was to concentrate on the visual performance and
purely noise reduction in terms of variance. The analysis of the methods
could be expanded to include more theoretical comparisons. This could be
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done by generating theoretical noise on top of noise-free images and compar-
ing statistics of the remaining noise, such as signal-to-noise ratio, which is a
relatively standard tool in signal processing. In future research, the merging
methods could also be compared with the more complex modern noise re-
duction algorithms in order to justify the use of merging methods over other
methods.
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