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This thesis determines the feasibility of nonlinear multifactor models for predic-
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methodology is developed, applying machine learning methods to fit the factor
models. Their performance is examined in terms of classification and portfo-
lios created based on model predictions. Portfolio performance is furthermore
compared to benchmarks, including a replication of the industry standard Fama-
French Five-Factor Model.

Research applies data of US stocks covering a period from 2004 to 2016 for the
predictions and portfolios. The data consists of return and accounting data. A
three-month lag is imposed to accounting data to account for the reporting delay.
Thus all the data applied in the predictions is available to the market at the
time. The smallest companies are excluded from the data sample due to their
disproportionate number and small market value. The factors calculated from
the data are gathered from recent scientific literature.

The results provide weak support to the feasibility of nonlinear factor models to
the task examined in this thesis. Additionally, the results are less than robust
with respect to changing the model parameters. Moreover, options were identified
to extend the model fitting methodology with possibly significant performance
improvements.

The findings and the identified improvements are weakly in favor of the feasibility
of nonlinear multifactor models for predictive classification of share returns. The
conclusion inspires multiple directions for further research, which are presented
along with the conclusion.
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Tässä diplomityössä määritetään epälineaaristen multifaktorimallien soveltuvuus
osakkeiden tuottojen ennustavaan luokitteluun. Soveltuvuuden määrittämiseksi
kehitetään yksinkertainen mallinsovitusmetodologia, jossa sovelletaan koneoppi-
mista mallien sovittamiseen. Niiden toimintaa tarkastellaan luokittelun tarkkuu-
den ja luokittelun perusteella laadittavien osakeportfolioiden mukaan. Portfolioi-
den tuottoa ja ominaisuuksia vertaillaan yksinkertaisiin malleihin, joiden joukossa
on alalla laajasti käytetty Fama-Frenchin viiden faktorin malli.

Tutkimus hyödyntää yhdysvaltalaisten pörssilistattujen yritysten tilinpäätös-
ja osakedataa ja portfolioiden tarkastelu kattaa vuodet 2004-2016. Ti-
linpäätösdataan sovelletaan kolmen kuukauden viivettä raportointiviivästyksen
huomioimiseksi. Täten kaikki ennustamiseen käytetty data on markinnoiden saa-
tavissa ennusteen tekohetkellä. Pienimmät yritykset jätetään tarkastelun ulko-
puolelle niiden suhteettoman suuren lukumäärän ja pienen markkina-arvon ta-
kia. Datasta laskettavat faktorit koostetaan viimeaikaisesta tieteellisestä kirjalli-
suudesta.

Tulokset tukevat heikosti epälineaaristen multifaktorimallien soveltuvuutta
työssä tarkasteltavaan tehtävään. Tulokset eivät ole kuitenkaan robusteja mallien
parametrien muutoksille. Työssä tunnistettiin kuitenkin mahdollisuuksia kehittää
mallien sovitusmenetelmiä, joilla saattaa olla merkittäviä vaikutuksia suoritusky-
kyyn.

Työn tulokset ja tunnistetut kehitysmahdollisuudet puoltavat heikosti
epälineaaristen multifaktorimallien soveltuvuutta osakkeiden tuottojen en-
nustavaan luokitteluun. Yhteenvedon perusteella esitetään myös useita mahdol-
lisuuksia jatkotutkimukselle.
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Chapter 1

Introduction

An investor attempting to earn higher than average long-term returns in
the stock market faces a problem many consider impossible. In spite of the
justified doubt, many still try to beat the market both in academia and in
practice. Academic interest stems from achieving a greater understanding of
the financial markets. The motivation for an individual investor is obvious,
while a fund manager would be able to provide more attractive products to
their customers. Intuitively, an interested party should develop a method for
identifying the shares that are likely to yield high returns in the future and
invest in them. One method to accomplish this could be to start analyzing
individual companies in effort to identify the most likely high performing
ones. An alternative approach would be a systematic method to search for
and to exploit common factors that predict returns and differentiate the high
and low performing shares. The systematic approach has the interesting
advantage of providing a selection method that scales well with the number
of shares considered. An army of professional analysts would be required in
order to have the capacity to investigate the business and performance of
individual companies, whereas a factor model could tackle the same problem
using minimal labor and time once the model is developed. Regardless of the
approach, the problem of making any sophisticated predictions about the
stock market is extremely difficult.

Applying a factor model to the problem of explaining and predicting stock
returns is among the major innovations of 20th century financial economics
(Cochrane, 1999a). In principle, the factor model assumes that the return
of a share is a function of some systematic factors and the exposure of the
share to each factor. The most prominent factor models are linear, as in-
troduced by Pitsillis (2004). They are easy to interpret and have strong ties
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CHAPTER 1. INTRODUCTION 2

to economic intuition, but are poorly suited to capture any nonlinearity in
factor returns or interactions between the factors. This leads to the reason-
able assumption that a method able to exploit the information in nonlinear
returns or interactions could predict stock returns more accurately than a lin-
ear model. Motivated by these potential ”blind spots” of the linear model,
nonlinear and nonparametric approaches have been suggested. Early exam-
ples include applying neural networks to estimate a nonlinear factor model
for stock selection by Levin (1995) and nonlinear pricing kernels by Dittmar
(2002). Modern algorithms for fitting nonlinear models are included under
the popular machine learning umbrella, including neural networks applied
in Levin’s work. A common advantage of such algorithms is that an explicit
definition of the functional relationship between the input and output vari-
ables is not required. This makes them a flexible and efficient alternative
for complex problems, such as return prediction in the factor model frame-
work. However, literature on the feasibility of nonlinear factor models for
the problem is scarce.

Thus, the objective of this thesis is to determine the feasibility of nonlinear
factor models for classifying future stock returns. The objective is inter-
esting to the asset management industry in particular because a nonlinear
model could be implemented in investment products with reasonable effort
in the existing factor model framework. The determination of the feasibil-
ity is accomplished by implementing promising methods for fitting nonlinear
factor models to classify future share returns, comparing the models to a
linear benchmark in terms of prediction accuracy, and by comparing the per-
formance of portfolios created according to the predictions of the models.
Nonlinear models are assumed to exploit the information in nonlinear factor
returns and factor interactions, which are the two assumed sources of addi-
tional information a linear model captures poorly. Further motivation stems
from the flexibility and efficiency of nonlinear models in complex prediction
problems.

This thesis applies data on US stocks. Reflecting on the factor model frame-
work, the scope excludes both the exploration of new factors or the assess-
ment of the significance of documented factors. The factors applied in the
models are gathered from recently published scientific literature. Further-
more, extending economic models in the direction of nonlinear models or to
link the built models into economic intuition is excluded from the scope, re-
laxing the requirements for identifying the functional relationships between
the factors and returns. Similarly, the objective excludes exhaustive research
to the contribution of each phenomena to the relative performance of the
nonlinear models. The returns and characteristics of portfolios constructed
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based on the predictions of the models are compared, but the scope does
not include developing or analyzing any detailed investment or trading strat-
egy.

The rest of this thesis in organized as follows. In Chapter 2, the background
of the subject is introduced, including the most prominent factor models in
asset pricing, the current state of the factor research and the drawbacks of
current models. Since this thesis applies machine learning methods to fit
factor models, a brief introduction to machine learning is also provided, fo-
cusing on related applications and challenges in finance. Machine learning
methods used to fit the models, along with comparison methods, are pre-
sented in detail in Chapter 3. Chapter 4 describes the examined dataset,
including the source of the data, the selection of the shares included in the
analysis, and the selection and construction of the factor variables from the
data. The implementation of the experiments using the dataset is described
in Chapter 5. Moreover, Chapter 5 presents the results, including prediction
performance and portfolio performance metrics, characteristics and sensitiv-
ity analysis. Chapter 6 discusses the results reflecting on related research,
and Chapter 7 presents the conclusions of the thesis along with propositions
for further research.



Chapter 2

Background of Multifactor Mod-
els

This chapter presents the background of the subject of this thesis. The chap-
ter begins by discussing the related terminology and outlining the terminol-
ogy used in this thesis. The overview includes the most prominent factor
models in asset pricing as well as the current status of related research. As
machine learning methods are used to fit the nonlinear models, an introduc-
tion to machine learning with examples of factor model related literature is
presented.

2.1 Factor Models in Asset Pricing

2.1.1 Terminology

An unambiguous definition for a factor is lacking in related literature. In
this thesis, a factor is a systematic driver of asset returns, whereas a factor
model refers to a model explaining asset returns by exploiting one or more
factors. The ambiguousity could be viewed to arise from the lack of agreed
criteria for calling a driver of asset returns a factor. Ross (2017) points out
this concern by drawing attention to to the required statistical significance
for a factor as well as noting ”For me, perhaps even more troubling than the
empirical evidence is the lack of a strong economic foundation for many of
the factor candidates.” The term anomaly also appears in related literature
(Hou et al., 2017). Anomalies, when identified, can also be seen as drivers of

4



CHAPTER 2. BACKGROUND OF MULTIFACTOR MODELS 5

asset returns, but they may not meet the criteria of being accepted as factors.
They are usually referred to as factors where risk-based explanations do not
apply.

2.1.2 From Single to Multifactor Models

To focus on the most relevant theory, we skip the fundamental asset pricing
theory of risk and investor preference by appealing to the intuition behind
risk and return: higher risk must be compensated with higher expected re-
turns, also known as risk premium. With this principle, we introduce some
of the most prominent factor models in asset pricing. Ang (2014, Chapter
6) presents further details on factor models from a risk-premium perspec-
tive.

The Capital Asset Pricing Model (CAPM), based on the works of Sharpe
(1964), Lintner (1965) and Mossin (1966), is regarded as the first factor
model in asset pricing. Derived from market equilibrium conditions, the
CAPM explains the returns of an asset with a market risk premium:

E(r)− rf =
Cov(r, rm)

Var(rm)
(E(rm)− rf )

= β(E(rm)− rf ),
(2.1)

where Var and Cov denote the variance and covariance operators, E is the
expected value operator, r is the asset return, rf is the risk-free rate and rm
is the market portfolio return. The risk-free rate is defined as the interest
on a deposit with no counterparty default risk, a theoretical concept usually
approximated with US Treasury bond yields. The model states that the
expected return of an asset in excess of the risk-free rate depends on its
tendency to move with the market portfolio with return rm. Shares with
β = 1 behave like the market portfolio, whereas β > 1 implies the returns
tend to be greater in amplitude than those of the market portfolio, and the
opposite for β < 1 (Ang, 2014, Chapter 6).

According to Ang (2014, p. 202), the general basis for multifactor models
was set by the Arbitrage Pricing Theory (APT). The APT, published by
Ross (1976), states that the returns of an asset can be explained as a linear
combination of returns of several factors and the asset’s exposure to these
factors:

r = α +
∑

Fkxk, (2.2)
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where α is a constant, Fk is a systematic factor explaining asset returns and
xk is the factor loading.

Building on previous results in asset pricing, Fama and French (1993) intro-
duced their famous three-factor model (FF3). Referring to the introduction
to the FF3 by Ang (2014, Chapter 7), FF3 extends CAPM by adding two
factors capturing the size effect and the value effect, respectively the out-
performance of small companies relative to big companies and the outperfor-
mance of high value companies relative to low value companies. In FF3, size
is measured as the company market capitalization. Value, on the other hand,
is measured as the market capitalization of the company divided by the book
value of the equity of the company, also known as the book-to-market ratio.
The FF3 model is

E(r) = rf + α + β(rm − rf ) + sSMB + hHML, (2.3)

where α, β, s and h are regression coefficients. The first of the new factors,
small minus big (SMB), captures the size effect as the return differential
of small and big companies. Similarly, high minus low (HML) captures the
value effect as the return differential of high and low value companies. Factor
mimicking portfolios are used as proxies for these factors, which are designed
to capture the effects by averaging over many stocks. The construction of
these portfolios is described in detail in Section 3.2.1.

The FF3 model is the predecessor to two extensions. Carhart (1997) pub-
lished a four-factor model in 1997, extending the FF3 model by adding a mo-
mentum factor. Momentum quantifies the tendency of outperforming shares
to keep outperforming and underperforming to keep underperforming. It is
defined as the average return over the past year. Fama and French (2015)
extended their FF3 model to a five-factor model (FF5) by adding factors for
profitability and investment activity. The FF5 model is

E(r) = rf + α + β(rm − rf ) + sSMB + hHML + rRMW + cCMA, (2.4)

where α, β, s, h, r and c are regression coefficients. The first of the added
factors, robust minus weak (RMW), refers to robust and weak profitability.
The latter, conservative minus active (CMA) stands for conservative and
active investments, that is, low and high investment activity companies. The
two additional factors RMW and CMA are constructed by applying the same
principle as with the SMB and HML factors.
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The discussed factor models can be applied with monthly returns, follow-
ing the example set by Fama and French (2015). Moreover, the discussed
models do not explicitly impose a lookback on historical data, even though
in practice they rely on it. This reliance arises from the estimation of the
factor coefficients, which requires the historical returns of the asset, the mar-
ket portfolio, risk-free rate and the returns of the considered factors. On
the other hand, most company financials can be interpreted to contain an
implicit lookback to historical data, as for example the assets or the profits of
a company at a given time have accumulated over a historical period.

The most successful factor models and their performance has been put under
scrutiny and research indicates that the models cannot perfectly describe
asset returns, but also that the newer multifactor models outperform the
CAPM. Indeed, Ang (2014, p. 197) states that ”the CAPM is well known to
be a spectacular failure.”

2.1.3 The Zoo of Factors

The publication and success of the factor models has inspired research an-
swering the logical question: what factors exist and how can they be ex-
ploited? Cochrane discusses the so called new multifactor world and its
implications in two excellent companion articles ”New Facts in Finance”
(Cochrane, 1999a) and ”Portfolio Advice in a Multifactor World” (Cochrane,
1999b). Over a decade later, Cochrane (2011) notes that the research for new
factors has lead to a ”zoo of factors” to where he demands discipline to map
out the findings and examine the explanatory power of the found drivers of
returns.

The current focus of the research in factor models is on exploring new factors,
and, on the other hand, on assessing which of the documented factors provide
additional information on asset prices. Traditionally the first problem has
been approached by deriving the factors from empirical evidence with strong
ties to economic theory, such as the FF3 model. During the last decades,
the traditional approach has been challenged by data mining for new factors
enabled by the increased availability of computational power and develop-
ment in data mining algorithms. Harvey et al. (2016) conduct an exhaustive
review on the existing literature on found factors and notice an exponential
increase in the number of documented factors starting from 1962 until 2012
leading to at least 316 factors. According to their work, the rapid increase in
the number of documented factors is at least partly caused by the advances
in machine learning and data mining. This imposes new requirements for
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a newly found driver of asset returns to be accepted as factor. Therefore,
Harvey et al. (2016) suggest a new hurdle of 3 for the t-statistic of the excess
returns of a factor to adjust for multiple testing usually occurring in data
mining.

2.1.4 Motivation for Nonlinear Models

As applied in asset pricing for example in the FF3 model (2.3), the linear
factor model presented in (2.2) does not account for nonlinear factor returns
or factor interactions. It should be noted, that such effects could be described
by the model by parametrization, but defining a functional form for all factors
and interactions would be a daunting task.

The idea of applying nonlinear models in the factor model framework is
not new. For example, McMillan (2001) tested the relationships of asset
returns with macroeconomic and financial variables using non-parametric
methods and found evidence supporting a nonlinear relationship between re-
turns and interest rates. However, such evidence was not found with other
tested variables and the increase in performance was marginal. Nonlinear
return-variable relationships have motivated the use on nonlinear models al-
ready in the early neural network example by Levin (1995). Furthermore
the monotonicity of asset returns under some conditioning variable has been
under examination and statistical tests for monotonicity have been devel-
oped, mainly by Romano and Wolf (2013) and by Patton and Timmermann
(2010). In summary, the nonlinearity of asset returns with respect to a condi-
tioning variable can be viewed as a reasonable extension to the factor model
framework.

While the return-factor relationships have been explicitly addressed in pre-
vious research, the literature on factor interactions is scarce. Intuitively the
task is more difficult than the simple return-variable relationship, because
there are many variables instead of two. Since the most popular factor mod-
els, such as the FF3, implicitly assume that the factors are independent,
the interactions are mainly ignored in the research considering these models.
On the other hand, approaches using a model that can handle interactions
barely characterize them, examples including the early work by Levin (1995).
One can conclude, that no widely accepted methods exist for characterizing
multiple factor interactions. However, interactions between specific factors
have been examined and the evidence suggests that some interactions exist,
as concluded for example by Fama and French (2008).



CHAPTER 2. BACKGROUND OF MULTIFACTOR MODELS 9

2.2 Nonlinear Multifactor Models via Machine

Learning

The umbrella term machine learning (ML) can be defined with varying ex-
tent. Lopez de Prado (2018, p. 15) describes a machine learning algorithm
via its function: ”An ML algorithm learns patterns in a high-dimensional
space without being specifically directed.” In other words, a machine learn-
ing algorithm estimates a function to map a usually high-dimensional input
data matrix to a target vector. Bishop (2006, p. 3) differentiates different
types of machine learning applications to supervised learning in cases where
the target vector is known, unsupervised learning when the target vector is
unknown and the algorithm attempts to discover patterns within the data
and reinforcement learning when the algorithm seeks a suitable action to
maximize a reward. He also presents a division of applications based on the
type of the target vector: in classification the target vector consists of cate-
gorical or discrete variables, whereas in regression the target is continuous.
For a thorough overview of machine learning, we refer to Bishop (2006), where
common algorithms are also presented making apparent that machine learn-
ing consists of both linear and nonlinear models. Combining the presence of
nonlinear models within machine learning with their common ability to learn
patterns from data motivate the selection of machine learning algorithms as
methods for fitting the nonlinear multifactor models in this thesis.

In contrast, major challenges follow. Reflecting on the concern of the lacking
economic foundation for factor candidates by Ross (2017), one could also
argue that a factor model should have rigorous economic intuition behind
it. This principle is violated by using machine learning to fit the nonlinear
models, as the methods are characterized by their ability to discover patterns
without directions. A major technical challenge is overfitting when seeking
for a model with the smallest prediction error, or loss. Bishop (2006, pp. 6
– 7) explains overfitting intuitively with an example, but the concept can be
described simply as a model being overfit, if it performs well on the input
data sample, but generalizes poorly to new observations from the same data
generating process. Overfitting is particularly difficult to avoid in financial
applications of machine learning, mainly due to a low signal-to-noise ratio,
as noted by Lopez de Prado (2018, p. 101).
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2.2.1 Related Research

Related research applies various machine learning algorithms for stock return
prediction with a factor model or a similar approach. Levin (1995) published
an early example applying neural networks. Later examples include the work
by Fan and Palaniswami (2001) applying Support Vector Machines (SVM)
for predicting outperforming stocks in the Australian stock exchange, and
the publication by Huerta et al. (2013) also applying SVMs for classifying
stocks according to high and low future returns. Research comparing mul-
tiple algorithms includes the work by Sugitomo and Minami (2018) with
SVMs, Gradient Boosting (GB) and neural networks as well as the compari-
son by Imandoust and Bolandraftar (2014) applying Decision Trees, Random
Forests (RF) and Näıve Bayes classifiers. Moreover, Ballings et al. (2015)
compares a number of different methods for predicting price movements of
European shares. The working paper by Gu et al. (2018) includes one of the
most exhaustive syntheses in related research. They formulate the predic-
tion problem as regression and document support for the high comparative
performance of nonlinear models. Furthermore they find that a small set of
momentum, liquidity and volatility variables dominate the predictions of all
models. In general, the related research reports positive findings in support
of various nonlinear algorithms being able to improve prediction accuracy
and portfolio performance with respect to the chosen benchmark.

However, the degree to which the related research seems to agree on the ad-
vantages from applying these algorithms to stock return prediction is rather
striking. Specifically, Harvey et al. (2016) point out that replication studies
are rarely published in finance, as opposed to other fields of science.



Chapter 3

Model Fitting and Comparison
Methods

This chapter describes the methods applied to determine the feasibility of
nonlinear multifactor classifiers for predicting share returns. This includes
an introduction to model fitting and selection as well as a description of
the benchmark models and the methods to fit the nonlinear models. More-
over, this chapter presents the model comparison methods, including the
classification performance metrics, the construction of model based portfo-
lios, and the metrics applied to compare the performance of those portfolios.
A model based portfolio hereafter refers to a portfolio constructed according
to a model introduced in this chapter.

The methods fall into two distinctive categories: classification and invest-
ment portfolios. Such a combination of methods is required, because we
are interested in the classification performance of the different models, but
also in the performance of the model based portfolios based on the classifier
outputs. An outline of the analysis procedure is the following:

1. Fitting of and predicting with a classifier

2. Measuring classification performance

3. Constructing portfolios based on the predictions of a classifier

4. Measuring model based portfolio performance

11
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3.1 Model Fitting and Selection

3.1.1 Model Fitting

The focus of this thesis is on classification. Therefore the following theoretical
background of model fitting, as well as the models introduced thereafter, are
applied in the context of classification, even though some parts of the theory
and models generalize also to regression. For the theory presented in this
section we refer to Bishop (2006).

Let x ∈ Rn×m be a matrix of model input data and τ ∈ Ln a vector of
class labels associated with x. Now there are n observations with input
data over m variables. Furthermore L is the set of class labels indicating
membership to a class Ck, where k = 1, . . . , K. Moreover, we denote the
data by D = {x, τ}. The aim of training a model is to find a function
y(x,w) : Rn×m → Ln, where w is model parameters, that maps x to τ as
accurately as possible. The modeling task can be formulated as a either a
discriminative or probabilistic problem.

In discriminative modeling we are simply interested in the agreement of the
model output labels y with the true labels τ . Assuming a probabilistic model
instead, we model the conditional probability of the class Ck given the input
data x:

y(x,w) = {p(C1|x), . . . , p(CK |x)}

In other words, we are now interested in modeling the probability distribution
defined by D. The output labels can also be obtained with a probabilistic
model. For an observation xi the output label corresponds to the class k that
maximizes p(Ck|xi). Bayes’ theorem is important for obtaining the probabil-
ities p(Ck|x), which states, that

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
.

where the term p(Ck|x) is called the posterior probability, p(x|Ck) the likeli-
hood and p(Ck) the prior.

The procedure of fitting a classification model depends on the type of the
selected model. Therefore the principles of fitting the function y(x,w) are
introduced later along with presenting the models applied in this thesis.
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However, one principle is applicable to both discriminative and probabilistic
modeling. First assume that we have fitted a model with parameters w on a
fixed data D. Moreover we are interested in the quality of the model fit to the
data, measured by a total error. With a fixed data, the error is dependent
only on the model parameters w and the total error can be measured with a
function E(w). The principle decomposes the total error to a data dependent
error ED(w) and to a parameter dependent error EW(w):

E(w) = ED(w) + λEW (w), (3.1)

where λ is a regularization parameter. The regularization parameter makes
the principle useful, since it allows controlling model complexity. This may
help in avoiding overfitting, as a less complex model tends to be less prone
to it.

3.1.2 Model Selection

In model fitting the focus was on finding the best version of the selected
model. Model selection, in contrast, addresses the question of finding the
best alternative from several fitted models of different type. As overfitting is
a major challenge both in model fitting and selection, the effect of overfitting
can be quantified by decomposing a model expected error to bias, variance
and noise as

expected error = bias2 + variance + noise,

where bias relates to the extent to which the average prediction deviates
from the underlying patterns in the data, variance to the sensitivity of the
predictions on the choice of the data sample and noise measures the intrinsic
noise in the data that cannot be learned by a model. Moreover, a trade-off
exists between bias and variance when minimizing error: models tend to have
either high variance and low bias, or low variance and high bias. An overfit
model would fall into the former group. We refer to Bishop (2006, Chapter
3.2) for further details.

The process of model selection tries to find the best model, that is, a model
with a minimal error provided a suitable bias-variance balance. The outline
for the process is presented in Bishop (2006, Chapter 1.3) with examples of
typical methods which are summarized here.
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For large quantities of data, a feasible approach is to partition the data
to a training set and a validation set. The training set is used to fit the
considered models, after which the independent validation set is used to
evaluate the error of the fitted models on previously unseen data. Model
selection can already be accomplished based on the validation set results, if
we are only considering models of the same type with different parameters.
However, if a selection has to be made between different types of models,
an additional step to the process is required. In the third step, we apply an
independent partition test set to evaluate the errors of the fitted models of
different types and select the model with the smallest error. In addition to
comparing different model types, the test set could be used to select between
models from the same family with different hyperparameters (Bishop, 2006,
p. 71). They are parameters of the model that are not learned from the
data, such as the degree of a polynomial function.

For limited data, cross-validation is a common alternative to data partition-
ing. In cross-validation the data is divided into S groups, after which one
group is reserved to be used as the validation set and the remaining S − 1
groups are used as the training set. The same procedure is repeated for all S
groups. The special case of cross-validation, where all of the S groups con-
sist of a single observation is known as leave-one-out validation. Lopez de
Prado (2018, Chapter 7) discusses the particular challenges of applying cross-
validation in finance and concludes that the standard cross-validation meth-
ods are poorly suited for financial applications.

3.2 Benchmark Models

We build three linear benchmark models to compare the nonlinear models to.
Two of the benchmarks, an FF5 based benchmark described in Section 3.2.1
and a simple benchmark described in Section 3.2.2 are not predictive models,
but rather follow deterministic rules to form portfolios. Therefore, they are
not explicitly subject to the model fitting and selection methods presented
in Sections 3.1.1 and 3.1.2. The third benchmark, logistic regression is a
predictive model, as described in Section 3.2.3.

3.2.1 Fama-French Five-Factor Model

The widely used FF5 is estimated by linear regression. In linear regression,
the problem is to find the parameters w that minimize the error for the
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model

y =
m∑
i=1

wixi + εi,

where εi is an error term. Common methods to fit a linear regression include
least squares and maximum likelihood Bishop (2006, pp. 4–6, 140–143). Lin-
ear regression is easy to interpret and computationally efficient, but by def-
inition cannot capture any nonlinear effects between the input features and
the inputs, unless explicit variable transformations are made, such as sub-
stituting x̂ := x2. Furthermore it performs poorly with a high-dimensional
data matrix, a phenomenon know as the curse of dimensionality (Bishop,
2006, Chapter 1.4).

The coefficients of FF5 in (2.4) can be solved as a linear regression problem,
if the market portfolio return and the factors SMB, HML, RMW and CMA
are known. The coefficient β is alike the CAPM β in (2.1), whereas the
other four factors are formed via factor mimicking portfolios. The following
method is based on so called 2 × 3 sorts, as defined by Fama and French
(2015). Firms are sorted by their size, and the New York Stock Exchange
(NYSE) companies median size is used to divide the firm into groups of small
and big. Both groups are subsequently and independently sorted by the book-
to-market ratios using the 30th and the 70th percentile of NYSE companies
as the breakpoints into three groups within each size group, forming six
portfolios used to construct the HML factor. A similar procedure is repeated
for operating profitability and investment activity to construct the RMW
and CMA factors, respectively. The resulting 18 portfolios as summarized in
Table 3.1.
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Table 3.1: The 2× 3 sorts used to construct the FF5 factor portfolios. The
shares are sorted by their size, book-to-market ratio, profitability and in-
vestment activity to form 18 subportfolios. The subportfolio accronyms are
formed by the following keys: S, small size; B, big size; H, high book-to
market; Nb, neutral book-to-market; L, low book-to-market; R, robust prof-
itability; Np, neutral profitability; W, weak profitability; C, conservative in-
vestment activity; Ni, neutral investment activity; A, aggressive investment
activity.

Size
Small Big

Book-to-market
High SH BH
Neutral SNb BNb
Low SL BL

Profitability
Robust SR BR
Neutral SNp BNp
Weak SW BW

Investment
Conservative SC BC
Neutral SNi BNi
Aggressive SA BA

The FF5 factors are calculated from the subportfolios presented in Table 3.1
as follows:

SMB =
((SH + SNb + SL)− (BH + BNb + BL)

3

+
(SR + SNp + SW)− (BR + BNp + BW)

3

+
(SC + SNi + SA)− (BC + BNi + BA)

3

)
/3,

HML =
(SH + BH)− (SL + BL)

2
,

RMW =
(SR + BR)− (SW + BW)

2
,

CMA =
(SC + BC)− (SA + BA)

2
.

While FF5 is usually applied as a regression model on asset returns, in this
thesis we also construct a benchmark model based on the FF5 as an equal
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weighted portfolio of replications of the factors SMB, HML, RMW and CMA.
The resulting benchmark is denoted by BMFF5.

3.2.2 A Simple Benchmark

By definition, the FF5 model is specified only for five factors, whereas a
larger number factors is considered in this thesis. Comparing the perfor-
mance of the nonlinear models only to FF5 would raise the question if the
possible outperformance of the other models could simply be explained by the
greater number of variables included in the models. Therefore, a simple lin-
ear benchmark containing all considered factors is included and constructed
as follows.

A subportfolio is formed with respect to each considered factor by sorting
the shares according to the variable and substracting the return of the lowest
decile shares from the top decile shares. This corresponds to taking a long
position in the top decile and a short position in the bottom decile. The top-
bottom difference return is similar to the method used by Hou et al. (2017).
The simple benchmark portfolio is formed by equal-weighting the individual
factor subportfolios. The resulting benchmark is denoted by BMsimple.

3.2.3 Logistic Regression

Logistic regression (LR) is a probabilistic linear classification method, despite
its name refers to regression. Bishop (2006, p. 198) writes logistic regression
for as a model of the posterior probability of class Ck as

p(Ck|φ) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(3.2)

where ak = wT
k φ and exp(·) denotes e(·). Here φ(x) is a vector of basis

functions, which are nonlinear functions of the input data. Indeed, logistic
regression can be constructed as a linear combination of nonlinear transfor-
mations of the data, but in this thesis we consider only the most simple case
of φ(x) = x. Now the weights wk are the model parameters that need to
be learned, which can be done by maximizing a log-likelihood function. We
refer to Bishop (2006, pp. 196 – 210) for the derivations of (3.2) and for the
method of learning the parameters wk, which are both omitted here.
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Logistic regression, as described, is subject to similar limitations as linear
regression. To address the performance of logistic regression especially with
high-dimensional data, a lasso method introduced by Tibshirani (1996) can
be applied, alike many other models. The lasso is a regularization method,
that adds the following regularization term in the model error in (3.1):

1

2

∑
|wj|,

as described by Bishop (2006, p. 145). Thus the lasso includes a penalty term
on the absolute value of the parameters to the model error, effectively forcing
some of the model coefficients to zero and yielding a simpler model.

Since logistic regression is used as a linear predictive benchmark model, it is
denoted by BMLR.

3.3 Machine Learning Methods

3.3.1 K-Nearest Neighbors

K-NN (K-Nearest Neighbors) is among the simplest methods to fit a clas-
sification model. It is a nonparametric method based on distances between
the observations in the feature space so that a new observation is classified
according to the classes of the K nearest neighbors.

Suppose that the dataset D consist of Nk observations in class Ck, so that∑
kNk = N , and that Kk points from class k are included in the K nearest

neighbors of x. Now the posterior probability of class k for x is

p(Ck|x) =
Kk

K
.

Consequently, ”fitting” a classifier via K-NN consists simply of storing the
dataset. Calculations are made only when predicting with the classifier as the
distances of the new observations to the stored data need to be calculated,
in order to determine the K nearest neighbors. In practice, K-NN is quick
to ”fit” but requires substantial memory capacity for large data sets and can
be slow to predict with.

While the K-NN has no parameters to fit, there are hyperparameters that can
be optimized. Hyperparameters include the distance metric, the parameter
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K and the method of obtaining the class of the new observation from the
nearest neighbors’ classes. Common distance metrics include the Euclidean
distance and the Manhattan distance, whereas a usual choice to derive the
class of a new observation is to choose the majority class of the K nearest
neighbors.

The simple nonparametric specification of K-NN can be considered both an
advantage as well as a drawback. It is very flexible, but computation is
increasingly resource demanding as the dataset increases in size. In financial
applications, however, data tends to be rather limited in quantity. Therefore,
the K-NN is considered a suitable option for fitting nonlinear classifiers.

Bishop (2006, pp. 124 – 127) provides additional details on the K-NN, in-
cluding the derivation of the class posterior probability for an observation
x.

3.3.2 Support Vector Machine

SVM is a method for fitting a linear classifier in a feature space defined by a
transformation φ(x) (Cortes and Vapnik, 1995). The transformation can be
nonlinear, making the SVM suitable also for fitting nonlinear models.

To present the principle behind the SVM, let us first consider a linear binary
classifier

y(x) = wTφ(x) + b, (3.3)

where b is a bias term and φ(x) is a fixed transformation of x. Moreover,
assume that the training data D consists of observations x and corresponding
target values τ , where τi ∈ {−1, 1}. The classification of a new observations
x is done according to the sign of y(x).

The SVM fits a hyperplane in the feature space that separates the observa-
tions in two classes with a maximum margin, that is, maximizes the distance
to the closest points. For now, assume that there exists a hyperplane, that
perfectly separates the two classes in the feature space φ(x). This means that
all observations of a given class are located on one side of the hyperplane with
no observations of another class on the same side. and Now for some w and
b there exists a hyperplane of the form (3.3) that satisfies y(xi) > 0 for all
τi = 1 and y(xi) < 0 for all τi = −1. The two inequalities impose a require-
ment that all observations must be correctly classified. The margin is defined
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by the perpendicular distance from y(x) = 0, where y(x) is of the form in
(3.3), to the closest data points. It can be shown that the distance of an ob-
servation x to y(x) is given by |y(x)|/||w||. Requiring that all obseravations
are correctly classified, the distance of an observation x to the hyperplane is
given by

τiy(xi)

||w||
=
τi(w

Tφ(x) + b)

||w||
.

The desired hyperplane is obtained by maximizing the minimum distance to
the closest data point:

argmax
w,b

{
1

||w||
min
i

[τi(w
Tφ(x) + b)]

}
. (3.4)

The problem (3.4) is complex to solve, but can be manipulated to a form for
which an easy solution exists. This is accomplished by scaling the parameters
w and b so that the closest point to the hyperplane satisfies

τi(w
Tφ(xi) + b) = 1,

and consequently all points satisfy the condition

τi(w
Tφ(xi) + b) ≥ 1. (3.5)

Furthermore, it can be shown that minimizing

1

2
||w||2 (3.6)

with respect to the constraints (3.5) is equivalent to solving (3.4). Solving
(3.6) is a quadratic optimization problem, for which exist efficient solution
algorithms. The resulting SVM perfectly separates the two classes in the
original input space x.

For cases when the classes overlap, a soft margin approach has been de-
veloped. Overlapping classes cannot be separated by the hyperplane, that
is, some observation are located on the wrong side of the hyperplane. The
soft margin allows some points to be misclassified by the hyperplane, but
penalizes any points located within the margin or on the wrong side of the
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hyperplane. This is accomplished by adding a slack variable ξi ≥ 0 for each
observation such that ξi = 0 for points that are on or inside the correct
margin boundary, and ξi = |τi − y(xi)| for other points. The classification
constraints in (3.5) can then be replaced with

τi(w
Tφ(xi) + b) ≥ 1− ξi

to formulate the soft margin optimization problem to minimize

C
∑
i

ξi +
1

2
||w||2. (3.7)

A computationally efficient solution algorithm exists also for (3.7), alike for
(3.6).

The freedom to select the function φ along with the soft margin approach
make SVM already a flexible tool for classification. As described, the SVM
falls into the category of discriminative classifiers. Probabilistic outputs can
be obtained by fitting a logistic regression to the classifier outputs. Moreover,
a common method to extend the binary SVM to a multiclass problem is
the one-versus-one approach, where binary classifiers are estimated on all
C(C − 1)/2 pairs of classes, assuming C classes, and the output label is
decided by a voting scheme among the binary outputs.

Bishop (2006, pp. 326 – 339) presents further details on SVM, where the
reader can refer to for details.

Findings in related scientific literature indicate the SVM is a powerful tool
even in application related to this thesis. For example Huerta et al. (2013)
apply SVMs with a radial basis function to stock return prediction. They
note that the use of the nonlinear radial basis function increases model per-
formance, but is computationally more demanding. These findings motivate
the selection of the radial basis function for the SVM. Promising findings in
literature, along with the detailed specification of the method motivate the
inclusion of the method in this thesis.

3.3.3 Random Forest

RF is an ensemble method consisting of decision trees (Breiman, 2001). It
applies bagging to form a committee of the individual decision trees, as in-
troduced by Breiman (1996).
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Bagging, (bootstrap aggregation), generates several samples of the training
data and trains a copy of the same base learner on each generated data
set. The committee is a combination of base learners that are used as an
ensemble model to produce predictions often significantly more accurate than
a single base learner. Under certain assumptions with M base learners, it
can be shown that the committee reduces the error by a factor of M when
compared to the average error of a single base learner. A simple average of
base learner predictions is a common voting scheme to form the ensemble
prediction, which the RF also applies. In a case of decision trees as base
learners, bagging results in an RF.

Classification and Regression Trees algorithm (CART) is a common variant
of decision trees (Breiman et al., 1984). A CART tree consists of a sequence
of binary splits along some variable in the feature space. For selecting this
variable, a metric is needed to measure the ”purity” of output classes with
respect to the real training classes. Typical metrics for classification include
cross entropy and Gini-index. The binary split is made by selecting a variable
and a threshold, that result in the greatest increase in the ”purity” of the
model output, when splitting the observations along the selected variable at
the selected threshold. This sequence of binary splits can be visualized as a
tree graph, bringing intuition to the model name. Bishop (2006, pp. 663 –
666) provides further details on CART models.

Tree-based methods, including RF, are also present in related literature. For
example, Imandoust and Bolandraftar (2014) apply methods including RF
to forecasting the direction of stock market index movements. On the other
hand, Lopez de Prado (2018, pp. 100 – 101) discusses the preference of bag-
ging over boosting in financial applications, concluding that bagging would
likely provide better results in such applications. The inclusion of RF is moti-
vated by published related applications, as well as rationale behind the model
specification implying it would be a suitable method for this thesis.

3.3.4 Gradient Boosting

GB is a specific application of a general boosting ensemble method (Friedman,
2001). Both the GB and boosting are applicable to several types of base
learners, including decision trees. In boosting, the base learners are trained
in sequence, each time reducing the ensemble model total error. Finally, a
voting scheme is applied to the predictions of the base learners to produce the
committee prediction. Bishop (2006, pp. 657 – 663) introduces the general
boosting framework with further details.
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Friedman (2001) describes the specific GB algorithm in detail, including the
sequential training, for different types of base learners such as decision trees.
The GB exploits the negative gradient of the error function in the sequen-
tial training process. The algorithm begins with calculating the initial base
learner, then performing iterations including the calculation of the negative
gradient and generalizing it in order to perform and update step in the model.
Because of the exploitation of the negative gradient when performing the up-
dates, GB can be called a gradient descent algorithm. The update step in
GB is analogous to adding new weak learners to the ensemble.

A boosting method is also included, even though the selection of RF is based
on the rationale that bagging methods could be a better option for financial
applications. The inclusion of GB as a boosting method is justified as a test
to the hypothesized preference of bagging methods.

3.4 Comparison of Classifier Performance

The comparison of classifier performance is based on the output labels. The
metrics applied are precision and recall, which are summarized to an F1 score.
Sokolova and Lapalme (2009) provide definitions for these metrics.

The metrics are calculated with per class true positive, true negative, false
positive and false negative counts, denoted respectively by tp, tn, fp, and
fn. For each class k, true positive counts the observations, for which the
predicted label is k and agrees with the true label t. True negative, on the
other hand, counts the cases where y 6= k and the true label t 6= k. False
positive counts the cases where y = k, but t 6= k, whereas false negative
counts the cases where y 6= k, but t = k.

Precision measures the degree to which the output labels for class k agree
with the true labels for those observations. Moreover, we measure precision
as the simple average of per class precisions, given by

Precision =

(
K∑
i=1

tpi
tpi + fpi

)
/K. (3.8)

Recall measures the proportions of observations in class k that were detected
by the classifier. As precision in (3.8), recall is also measured as an average
over the K classes, given by
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Recall =

(
K∑
i=1

tpi
tpi + fni

)
/K. (3.9)

Fβ score summarizes (3.8) and (3.9) as a harmonic average, given by

Fβ =
(β2 + 1) · Precision · Recall

(β2 · Precision) + Recall
, (3.10)

where β is a chosen coefficient. We select β = 1 in order to give precision
and recall an equal weight in the score, and denote the resulting measure as
the F1 score.

A beneficial property of the selected measures is that they are robust to
an uneven class distribution. Moreover, precision and recall have a clear
interpretation with relevance to the specific task. Precision could be viewed
as the most important metric in terms of forming portfolios based on the
classifier output, since a high precision implies that a high proportion of
correctly classified shares are included in the portfolio. A high recall, on the
other hand, implies that the classifier notices most of the shares in a given
class. While a high recall is also a desirable property for a classifier, we can
deduct that an investor would likely prefer a classifier with a high precision
over one with a high recall. For example, assume a binary classification to
high and low returns and an investor constructing a portfolio of the shares
with high predicted returns. An investor would likely prefer the classifier that
provides portfolios with a greater proportion of correctly classified shares,
corresponding to a greater precision, while being relatively indifferent to the
classifier failing to detect some shares with high returns.

3.5 Construction and Comparison of Model

Based Portfolios

3.5.1 Portfolio Construction

While classification accuracy provides a measure of the classifier performance,
it fails to capture the economic impact of the predictions, which is important
when reflecting to the motivation of producing portfolios with higher returns.
The impact can be assessed by constructing model based portfolios from
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the classifier predictions and inspecting the performance of these portfolios.
The focus is on long-short portfolios constructed according to the classifier
predictions.

A long-short portfolio is constructed by combining long and short positions
(Luenberger, 1998, pp. 137 – 141). A long position means simply buying
and holding the share. If the share is bought at time 0 at price X0 and held
until time t, when it is sold at a price Xt, the return of the position would
be

r =
Xt −X0

X0

.

Note, that in practice the prices must be adjusted for corporate events such
as dividend payouts and changes in the number of shares outstanding. Now
r is positive, in case the share price increases, and negative otherwise. A
short position means borrowing, for example from a brokerage firm, and
then selling the share at time 0 for a price x0. At time t the share is bought
back at a price Xt and returned to the lender. The investor now receives X0

at time 0 and pays Xt at time t. Therefore, the return of the short position
is

r =
X0 −Xt

X0

,

which is positive in case the share price declines. In practice, short positions
include an interest cost, because borrowing is involved.

Portfolio return is a function of the individual share weights and returns.
The weight wi of a share i in a portfolio is simply its fraction of the portfolio
value, so that

∑
iwi = 1. The realized portfolio return is given by

r =
∑
i

wiri,

where ri is the realized return of share i. As shown by Luenberger (1998, pp.
14 – 15) for interest, returns alike can be compounded to obtain the return
from time t to t+ k:

1 + rt,t+k =
t+k∏
i=t

(1 + ri). (3.11)
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In this thesis, long-short portfolios are constructed based on classifier pre-
diction according to the following principle. Long positions include only
the shares with a predicted class corresponding to high returns, whereas the
short positions include shares with a predicted class corresponding to low
returns. In addition to selecting the shares, a weighting also needs to be
determined. Typical weighting schemes include market equity weighting and
equal weights. Market equity weighting has the advantage of limiting the dis-
proportionate impact of shares with a very small market equity, but a similar
effect can be achieved by excluding the smallest companies when using equal
weights, as noted by Hou et al. (2017).

Controlling the number of shares in a portfolio is accomplished by exploiting
the output class posterior probabilities. A predetermined number of shares
with the highest posterior probability of class k is selected to the portfolio
with a position corresponding to the class k. This approach, however, holds
in a problem where it is possible for a share to be selected both to the long
and short portfolio. This problem is mitigated by imposing a condition that
the share can be selected only once according to the class with the greatest
posterior probability.

3.5.2 Portfolio Performance Metrics

Portfolio performance is measured in terms of returns, risk, risk adjusted
returns, and turnover. Return r is measured simply as the rate given by
(3.11), and risk as the standard deviation of the returns, often referred to as
volatility and denoted by σ. The interest in these quantities in finance stems
from the portfolio theory by Markowitz (1952), summarized for example by
Luenberger (1998, Chapter 6).

An investor’s attitude towards the combination of risk and return is reflected
by their individual risk preference (Luenberger, 1998). In general, an investor
valuates a combination of risk and return when comparing different invest-
ments: an investment with a higher expected return may not be preferred
in case it is too risky, whereas the less risky out of two alternatives with the
same expected return would be chosen. This is the intuition behind measur-
ing risk adjusted returns, which is measured by the Sharpe Ratio, denoted
by SR. Luenberger (1998) defines the Sharpe Ratio of a portfolio as

SR =
E(r)− rf

σ
, (3.12)
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where E(r) estimates the true expected return as the simple mean of the
individual share returns. In this thesis, the definition in (3.12) is modified
to omit the risk-free rate. Consequently, σ is the volatility of the portfolio
return. The SR applied in this thesis is given by

SR =
E(r)

σ
.

In addition to the risk-return characteristics, the turnover is of interest since
there are no constraints on how much the model based portfolio differ be-
tween consecutive months, likely leading to a high turnover. In practice, a
portfolio with a high turnover is subject to high transaction costs, although
the cost varies greatly by between investors and trades, see Carhart (1997)
for discussion. In this thesis, turnover is measured as the sum of the absolute
changes in the portfolio constituents not attributable to returns. Therefore
turnover measures the implied trading activity of the portfolio over time. For
a portfolio of N shares, the turnover at time t is given by

TOt =
N∑
i=1

|wi,t−1ri,t−1 − wi,t|.

Return, volatility, risk adjusted returns and turnover provide insight on the
comparative performance of the model based portfolios. In addition to simply
comparing these metrics, the model based portfolio returns are examined
with the standard FF5 model. This is accomplished by fitting the linear
regression model in (2.4) with standard FF5 factor returns on the model
based portfolio returns.

The regression fit is evaluated by the following characteristics: the regres-
sion coefficients, their statistical significance and the coefficient of multiple
correlation, denoted by R2. Examining the coefficients dissects the model
based portfolio returns in term of exposure to the standard FF5 factors. The
significance is related to the probability of finding a coefficient as great or
greater in the regression, in case the real coefficient is equal to 0. R2, on the
other hand, measures to the degree of variation explained in the model based
portfolio returns. Allison (1999) provides details on the significance of the
coefficients, and the R2.

As one of the benchmark models specific to this thesis, BMFF5, is based on
a replication of the FF5 factors, the differences between the replication and
the standard FF5 factors are discussed in Section 5.1.1.



Chapter 4

Data and the Selection of Fac-
tors

This chapter describes the following data specific matters: the source of
the examined return and fundamental data, combining them, selecting the
included shares, return labeling for classification as well as the selection and
definitions of the applied factors.

4.1 Database

The data used in this thesis is obtained from the Center for Research in Se-
curity Prices (CRSP) from CRSP (2019) and Compustat by Standard and
Poor’s datasets via the CRSP/Compustat Merged (CCM) database from
CRSP/Compustat (2018). The data applied covers the period starting from
January 1988 to December 2016. The used CRSP dataset includes mainly
the security monthly prices and returns, whereas the used Compustat data
includes the quarterly company fundamental data. It should be noted, that
the coverage of the datasets by the two providers differs and that they use
different proprietary company and share identification regimes. The CCM
database includes a linking table from CRSP identifiers to Compustat iden-
tifiers, making it convenient to combine data by the two providers.

To support the experiments made with the constructed database, the data
available at the database of French (2019) is used to validate the constructed
database. Moreover the database of French (2019) includes the standard FF5
factor returns.

28



CHAPTER 4. DATA AND THE SELECTION OF FACTORS 29

4.2 Combining Price and Fundamental Data

To coherently combine return and fundamental data, different fundamental
data reporting regimes and a reporting delay must be accounted for. US listed
companies report their accounting data mostly on a quarterly frequency, but
the reporting period is not necessarily aligned with the calendar year. The
fiscal year can be defined, for example, to begin at July 1st of year t and
end at June 30th of year t + 1. Therefore, for companies that report their
accounting data with respect to a fiscal year ending in any other month than
December, the fiscal year and fiscal year quarter end dates are converted to
calendar year dates.

In addition to the different reporting regimes, a reporting delay must also
be taken into account. Easton and Zmijewski (1993) discuss and examine
the reporting delays for US companies. They usually do not report their
accounting data for a given period at the end period end date, resulting in a
reporting delay. Therefore, the information cannot be immediately reflected
in the share price, since it is not yet public to the market. The length of
the reporting delay can vary, but in this thesis a 3 month delay is applied
to ensure that the fundamental data is reflected on the share prices. As
discussed by Asness and Frazzini (2013) while, the literature standard delay
of six months using annual data is a conservative and justified choice, it is not
optimal. The findings of Easton and Zmijewski (1993) and the conclusion of
Asness and Frazzini (2013) motivate the selection of a shorter than standard
delay in this thesis.

4.3 Included Shares

The included shares are restricted only to common shares of US companies
publicly traded in NYSE, American Stock Exchange (AMEX) and Nasdaq.
Companies with less than two years, or eight quarters, of data in Compustat
are excluded to mitigate a survivorship bias. Early examples discussing the
bias include the work by Kothari et al. (1995). Furthermore, only the shares
found in both CRSP and Compustat data are included.

The impact of microcaps, shares of companies with a very small relative mar-
ket equity (ME), is mitigated by excluding them using monthly ME break-
points. As Fama and French (2008) point out, microcaps constitute only
approximately 3% of the combined NYSE-AMEX-Nasdaq ME, but make up
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for 60% of the number of shares. Following their definition of microcaps as
companies with ME below the 20th percentile NYSE ME, such companies
are excluded from each monthly share universe. The universe for month t
is constructed using the market equities and breakpoints from month t− 1.
ME is calculated as the number of shares outstanding times the share price.
Figure 4.1 presents the 20th percentile NYSE breakpoint over time for the
included shares in comparison to the breakpoints available at the database
of French (2019).
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Figure 4.1: The breakpoints calculated from the constructed dataset are very
close to the breakpoints available at the database of French (2019), indicating
that similar sets of shares are included.

Furthermore, financial companies are excluded each month from the share
universe, because of their differing nature of fundamental data. Moreover
firms with a negative BE (book equity) value or missing ME are excluded.
BE is measured as shareholders’ equity minus the book value of preferred
stock. The counts of total shares as well as the counts of shares included after
excluding financial companies and applying the market value breakpoints are
presented in Figure 4.2. The total count of shares exhibits a decreasing trend,
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while the count of included shares is fairly stable, leading to an increasing
trend in the fraction of shares included in the analysis. This is possible,
because the ME breakpoint is calculated based on only NYSE shares.
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Figure 4.2: The total number of shares exhibits a decreasing trend, while the
number of shares included after excluding financial companies and applying
the market value breakpoints is relatively stable. This results in an increasing
trend in the fraction of included shares.

4.4 Return Labeling

Since we are predicting future returns by classification, we transform the t+1
return of each observation to a class label using rank percentiles. Note that
this implies the use of historical data, so that the realized data for t and t+1
are available. Let l and u be the percentile breakpoints for labeling. The t+1
future returns are labeled within monthly cross-sections as follows:
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1, if rank percentile ≥ u

0, if l ≥ rank percentile < u

−1, if rank percentile < l

(4.1)

The simplest way to label the returns is binary labeling, for example using
the median as the breakpoint. Then we would simply select l = u in (4.1),
leaving the middle class empty. On other hand, applying three-class labeling
allows excluding the middle class from the portfolios. This focuses the long
and short positions to, respectively, the shares with the highest and lowest
expected returns, which could yield better portfolio performance.

4.5 Factor Selection and Scaling

The selection of the factors is an important step in constructing a multifactor
model. When applying a factor model to the problem of stock return pre-
diction, two possible approaches for selecting the factors can be considered.
The first is to apply a data mining method to extract the factors from the
data, and the other is to gather a set of documented factors based on empir-
ical finance. While both can be justified, the factors are summarized from
literature in this thesis to maintain a connection to economic and financial
theories.

The selection is based on the replication work done by Hou et al. (2017).
They replicate a large number of documented anomaly variables and test for
the significance of the difference in returns between the highest and the lowest
decile according to each variable. Their nonparametric approach is robust,
but applying only the differential of the two extreme deciles fails to reveal
any possible nonlinearity in the returns. This can, however, be interpreted as
a choice of variables favorable to linear models, creating a rather pessimistic
case in terms of the performance of the nonlinear models. Referring to the
results of Hou et al. (2017), the variables are screened by excluding complex
variables and variables related to analyst forecasts. Consequently variables
with a reported t-statistic of at least three are chosen. However, in this thesis
all selected variables are computed with quarterly data, differing from Hou
et al. (2017) using both quarterly and annual variables. Moreover, we apply a
one year sum of the quarterly income statement items, such as revenues. The
sum mitigates the quarterly seasonal variation commonly found in company
income items. This results in a set of 30 factors applied in this thesis. From
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this set, we identify a subset of 5 factors that are applied in the FF5 model,
as described in Section 3.2.1.

Table 4.1 presents the applied factors along with their accronyms. The factors
are grouped into six categories: momentum, value-versus-growth, investment,
profitability, intangibles and trading frictions factors.
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Table 4.1: Factors used in this thesis. They are gathered from the replication
work by (Hou et al., 2017). Factors marked with an asterisk (*) belong to
the identified set of 5 factors applied in the FF5 model.

Factor Accronym Category

6-month prior return R6 Momentum
11-month prior return R11 Momentum
Book-to-market* Bm Value-vs-growth
Earnings-to-price Ep Value-vs-growth
Enterprise multiple Em Value-vs-growth
Cash flow-to-price Cp Value-vs-growth
Operating cash flow-to-price Ocp Value-vs-growth
Investment-to-assets* Ia Investment
Changes in gross property, plants and
equipment and inventory-to-assets

dPia Investment

Changes in net operating assets dNoa Investment
Net stock issues Nsi Investment
Composite equity issuance Cei Investment
Inventory changes Ivc Investment
Changes in net non-cash working capi-
tal

dWc Investment

Change in net non-current operating
assets

dNco Investment

Change in non-current operating assets dNca Investment
Change in financial liabilities dFnl Investment
Return on equity Roe Profitability
Changes in return on equity dRoe Profitability
Changes in return on assets dRoa Profitability
Gross profits-to-lagged assets Gla Profitability
Operating profits-to-equity* Ope Profitability
Operating profits-to-lagged equity Ole Profitability
Operating profits-to-lagged assets Ola Profitability
Cash-based operating profits-to-lagged
assets

Cla Profitability

12 month lagged return R1
a Intangibles

Years 2-5 lagged returns R
[2,5]
a Intangibles

Beta* Beta Intangibles
Asset liquidity Alm Intangibles
Market equity* ME Trading frictions
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The factor values for each month t are normalized by a percentile transfor-
mation to restrict the values of each factor score to a fixed interval and to
control outlier observations. One should notice, that the normalization is
already a nonlinear transformation of the data, but it preserves the order of
the observations.

The missing observation percentages for the calculated factors over all ob-
servations are presented in Table A.1, Appendix A. In general the factor
coverage is satisfactory, ranging from no missing items for Market equity,
to 47.76% missing for Changes in gross property, plants and equipment and
inventory-to-assets.



Chapter 5

Experiments and Results

Experiments are conducted to determine the feasibility of nonlinear mul-
tifactor classifiers for predicting share returns. This chapter describes the
experiments that apply the methods introduced in Chapter 3 on the data
described in Chapter 4, as well as how the methods are compared to each
other. The experiment results are presented and evaluated both in terms
of classification performance and model based portfolio performance. More-
over, the experiments motivate a sensitivity analysis, which is described and
for which the results are presented following the experiment results.

5.1 Implementation of the Experiments

5.1.1 Modeling and Portfolio Parameters

The experiments cover the period of 12 years from January 2004 to December
2016. While the data starts already from 1988, the first 16 year are only
used to construct the factors, the reporting delay and the modeling lookback
period. The classifiers are fit monthly in a rolling window approach. It means
the classifiers are fitted at month t on normalized factor scores available
at month t − 1 to predict month t return labels. Returns for t + 1 are
predicted with the fitted model using the normalized scores from month t.
The prediction is repeated for all months. The lookback period determines
how many months of historical panel data is used per each month to fit the
models. The experiments are made with loockback periods of 36 and 120
months. Any missing observations in factor scores in the constructed data
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set are replaced by the median for fitting the predictive models. Classification
performance measurement is based on the performance of each classifier to
predict t + 1 return labels with t data. This means that the performance
is always measured using data not used in model training. Moreover, the
predictive classifiers are always fitted with the same hyperparameters, that
is, no hyperparameter optimization is conducted.

The applied hyperparameter values are the default values in the computa-
tional implementation packages described in Section 5.1.2. Only the K for K-
NN has to be determined, since it lacks a default value. An odd K is preferred
to prevent even votes in binary classification, but otherwise the selection of
K without model selection methods is rather arbitrary and K = 49 was
selected. This selection reasonable as it considers a great number of neigh-
boring observations, yet it is relatively small in comparison to the monthly
counts of included shares, which are illustrated in Figure 4.2. This approach
was selected due to practical limitations in thesis scoping and computational
resources. For BMLR, the lasso approach is applied in experiments, where
the whole set of 30 factors is considered. Furthermore, to make computation
times feasible, random training data downsampling is applied to restrict the
sample to a maximum of 5000 for SVM and RF and to a maximum of 50000
for GB.

The portfolios based on the predictive classifiers are formed by selecting
shares with a high (low) predicted return, label 1 (-1), for long (short) po-
sitions. Class posterior probabilities provided by the predictive models are
exploited in portfolio construction by selecting the top 200 shares to the po-
sition corresponding to the class. The shares are equal weighted within long
(short) positions, meaning an equal amount is invested in the long and short
positions. Moreover the total long and short positions are given equal weights
in the long-short portfolio. Alike the deterministic benchmark portfolios, the
classifier based portfolios are updated each month.

The deterministic benchmark models do not require fitting alike the predic-
tive models and are not used for prediction, but only to construct benchmark
portfolios. BMFF5 is constructed by replicating the methodology presented
in Section (3.2.1) with two differences from the standard method: the repli-
cated factor mimicking portfolios are updated monthly using the constructed
data set, and the breakpoints are calculated from the whole monthly sets of
included shares as opposed to updating the portfolios annually using NYSE
breakpoints as in the standard methodology of Fama and French (2015). The
original methodology does not apply the 20th percentile NYSE ME break-
points on the monthly sets of included shares, as done in this thesis. There-
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fore, we opt to use the breakpoints of the whole universe in the replicated
factor mimicking portfolio construction. This difference in the methodology
is important, because the standard FF5 factors are applied in the analysis of
model based portfolio returns with the FF5. This means the FF5 model in
(2.4) is fitted to explain the model based portfolio returns with the standard
FF5 factor returns, available at the database of French (2019). Since the
modeling yields monthly predictions and monthly returns, the analysis of
the model based portfolio returns with the FF5 model is also conducted with
monthly returns. Figures B.1 and B.2 in Appendix B illustrate the monthly
returns of the replicated FF5 factors and their standard counterparts.

Four experiments are conducted with the models and the resulting portfolios
by changing one modeling parameter at a time: the lookback period; the
number of factors; and the return labeling breakpoints. The experiments
and the varied parameter values are presented in Table 5.1. They provide
an overview of model performance in terms of accuracy and portfolio per-
formance, as well as examining the sensitivity of the results with respect to
different modeling parameters. However, the experiments are fairly different
in terms of the parameters. The arguably scarce set of experiments was se-
lected to compromise between computational requirements and coverage of
different modeling parameters.

Table 5.1: Modeling parameters in each experiment. The number of factors
refers to the use of either the whole set of 30 factors or the subset of 5 factors
as described in Section 4.5. Return breakpoints state the percentiles applied
in return labeling. If a single number is given, there are only two classes
for return labeling. Panel data length describes the lookback period of data
included in model training each month, while portfolio weighting states the
method of weighting individual shares in a portfolio.

Experiment 1 2 3 4

Number of factors 30 5 30 30
Panel length [months] 120 120 36 120
Breakpoints [%] 30;70 30;70 30;70 50

Experiment 1 applies all 30 factors with a long training data lookback pe-
riod and three-class labeling. The second experiment is identical to the first,
except applying only the subset of five factors. The predictive models in
Experiment 1 are expected to outperform their counterparts in Experiment
2 due to the greater number of factor applied in the first experiment. Exper-
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iment 2 is included to test, how the predictive models perform applying the
same factor information as the FF5 model. Experiments 3 and 4 continue
with the whole set of 30 factors, where the third experiment applies a short
training data lookback, and the fourth experiment tests a binary labeling.
Experiment 1 is expected to yield better results than Experiment 3 because
of the longer training data lookback in the first experiment. Similarly, the
binary labeling in Experiment 4 is could yield weaker results to the other-
wise identical Experiment 1, provided that the predictive models exploit the
additional information of the three-class labeling in Experiment 1.

A baseline value for the classifier performance metrics precision, recall and F1

can be deducted from the return labeling breakpoints in Table 5.1, since they
determine the return class prior probabilities. A ”predictive” model simply
reflecting the class prior distribution can be defined as randomly assigning
the class labels according to their prior distribution. The distributions of the
true and ”predicted” labels are independent. Applying this random model,
a randomly selected observation belongs to class Ck with probability p(Ck).
This observation is labeled with k with probability p(Ck), and in with some
other label with probability 1 − p(Ck), leading respectively either to a true
positive result with probability p(Ck)p(Ck), or a false negative result with
probability p(Ck)(1 − p(Ck)). On the other hand, the randomly selected ob-
servation belongs to class h 6= k with probability 1− p(Ck) and is labeled in
class k with probability p(Ck), leading to a false positive result with prob-
ability (1 − p(Ck))p(Ck). Moreover, we notice that a false positive has the
same probability as a false negative. This deduction can be summarized to
estimate the true positive, false positive and false negative rates in terms of
the class prior probabilities as

tpk = p(Ck)p(Ck),
fpk = (1− p(Ck))p(Ck) = fnk.

(5.1)

This can be applied to precision in (3.8), recall in (3.9) and the F1 score
in (3.10) in order to determine the threshold values for these metrics. In-
tuitively, any predictive model in required to exceed this value as a sign of
providing predictive power.

In Experiments 1 to 3 the return labeling yields class prior probabilities of
0.3, 0.4 and 0.3 for classes 1, 0 and -1, respectively. The threshold values are
obtained by placing the true positive, false positive and false negative rates
in (5.1) in the metric definitions as follows:
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PrecisionBL =

(
0.32

0.32 + 0.3 · 0.7
+

0.42

0.42 + 0.4 · 0.6
+

0.32

0.32 + 0.3 · 0.7

)
/3

= (0.3 + 0.4 + 0.3)/3 =
1

3
,

RecallBL = PrecisionBL,

F1,BL =
(1 + 1)(1/3)(1/3)

1/3 + 1/3
=

2/9

2/3
=

1

3
,

(5.2)

that is, a value of 1/3 for all of the three metrics. In Experiment 4, the prior
probabilities are (0.5, 0.5), and all metrics are 1/2 as a result of a similar
calculation as in (5.2).

5.1.2 R Implementation

R is used to carry out the experiments mainly due to its ease of use and avail-
ability of high-level packages for statistical analysis and modeling. Table 5.2
lists the most important R packages used for data handling and implementing
the methods.

Table 5.2: The R packages used in the experiments containing the predictive
model implementations.

Package Description

glmnet LASSO Logistic Regression (Friedman et al., 2018)
caret K-NN with posterior probabilities (Kuhn, 2018)
e1071 Implementation of SVMs (Meyer et al., 2019)
gbm Implementaion of GB (Greenwell et al., 2019)
randomForest Implementation of RF (Breiman et al., 2018)

The computations for the experiments are performed with a standard laptop
computer and all methods are required to be computed within reasonable
time. While this imposes restrictions on the modeling methods, the require-
ments are justified not only from a practical point of view for conducting the
research, but also because computationally extremely heavy methods would
be more demanding to apply in the industry. In this sense, methods feasible
with standard equipment and reasonable time are in the focus.
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5.2 Results

The results of the four experiments, including the deterministic benchmarks,
are presented in Table 5.3. The results are expressed in terms of the F1 score,
precision and recall for classifier performance. Note that the classifier perfor-
mance metrics are not applicable to the deterministic benchmarks, which are
not used for classification. Classifier based portfolios are inspected in terms
of accumulated returns, volatility, Sharpe Ratio and turnover.
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Table 5.3: Experiment results. A bold typeface indicates the preferred value
for the column metric per experiment. The F1 score, precision and recall are
all medians of monthly values over the time period. For interpretation, note
that Experiment 4 uses a binary return labeling with a median breakpoint,
as opposed to the other experiments applying a three-label regime with 30th

and 70th percentile breakpoints. SVM F1 score and precision are not defined
in Experiment 1 for two occurrences, in Experiment 2 for two occurrences, in
Experiment 3 for one occurrence, and in Experiment 4 for 13 occurrences due
to SVM predicting no observations to some of the classes. These occurrences
are omitted from the SVM precision and F1 score. r is the cumulative return,
σ the sample volatility and TO the mean of monthly turnovers.

Model F1 Precision Recall r σ SR TO

Benchmark
BMsimple -0.29 1.98 0.00 25.49
BMFF5 33.10 4.87 0.48 14.83

Experiment 1
BMLR 0.3709 0.3746 0.3677 1.77 4.58 0.05 36.69
K-NN 0.3704 0.3745 0.3684 3.04 2.99 0.09 59.81
SVM 0.3316 0.3321 0.3301 -25.76 5.22 -0.42 87.47
GB 0.3815 0.3868 0.3780 6.56 5.31 0.12 51.99
RF 0.3770 0.3789 0.3757 21.50 3.09 0.50 72.68

Experiment 2
BMLR 0.3647 0.3707 0.3599 12.79 5.77 0.19 28.29
K-NN 0.3677 0.3677 0.3671 7.99 2.87 0.22 52.44
SVM 0.3339 0.3383 0.3337 -9.30 5.72 -0.10 87.42
GB 0.3699 0.3756 0.3650 0.20 4.18 0.02 47.58
RF 0.3587 0.3589 0.3588 -1.53 2.37 -0.04 80.64

Experiment 3
BMLR 0.3722 0.3765 0.3696 1.93 4.06 0.06 37.02
K-NN 0.3706 0.3733 0.3671 -8.81 3.36 -0.20 58.49
SVM 0.3402 0.3432 0.3400 -12.09 6.44 -0.12 87.54
GB 0.3856 0.3906 0.3785 24.89 4.58 0.40 44.72
RF 0.3751 0.3757 0.3735 12.12 3.36 0.28 74.01

Experiment 4
BMLR 0.5021 0.5021 0.5021 35.23 5.44 0.46 43.69
K-NN 0.5013 0.5013 0.5012 3.22 2.77 0.10 69.42
SVM 0.4998 0.4997 0.5000 8.57 4.44 0.17 91.01
GB 0.5047 0.5048 0.5046 27.77 5.20 0.39 58.67
RF 0.5053 0.5053 0.5053 -4.32 3.33 -0.09 81.60
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Section 5.2.1 examines the results in Table 5.3 in terms of classifier perfor-
mance, and Section 5.2.2 examines them in terms of model based portfolio
performance.

5.2.1 Classifier Performance

A few main findings and general patterns are found in the classifier perfor-
mance metrics in Table 5.3. The differences between respective precisions
and recalls are small. Therefore we focus the analysis of classification per-
formance on the F1 score. All classifiers except the SVM constantly pro-
vide a mean F1 metric above the class prior probability based threshold of
1/3 ≈ 0.3333, as determined in Section 5.1.1, in Experiments 1 to 3. In
Experiment 4 the corresponding threshold is 1/2 = 0.5000, which all classi-
fiers except the SVM achieve. However, the margins to the thresholds are
small. The highest F1 score is 0.3856 for GB in Experiment 3 out of Experi-
ments 1 to 3 with comparable labeling classification metrics. In Experiment
4 the highest score is 0.5053 for RF. The lowest F1 scores are produced by
SVM: 0.3316 in Experiment 1 and 0.4998 in Experiment 4, the only instances
where the thresholds are not met. In general the predictive classifiers seem
to have at least some predictive power. Evidence is stronger in Experiments
1 to 3, where the margins to the corresponding threshold are greater than in
Experiment 4.

A general pattern over all experiments appears that SVM has the lowest clas-
sifying performance on all metrics without exception. In addition the SVM
classification metrics are very close and even below to the prior probabil-
ity based thresholds. These findings indicate that the SVM provides little, if
any, predictive power. This is likely to be related to the heavy downsampling
of the SVM training data sample, or the implementation default hyperpa-
rameters poorly suited to this specific task. GB, on the other hand, is the
strongest classifier on all metrics in Experiments 1 and 3, and the strongest
in Experiment 2 based on the F1 score and precision. This indicates that GB
is the most powerful predictive classifier in this set of experiments. RF is the
strongest classifier in Experiment 4 on all three metrics. In fact, RF provides
fairly high classification performance, especially considering it is subject to
the same heavily downsampled training data sample as SVM. This could be
explained with the ensemble structure of RF, where the bagging procedure
mitigates the impact of the training data downsampling on the classification
performance.

Comparing the Experiments 1 to 3 to one another, Experiment 3 yielded
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overall the highest classifier performance metrics, whereas Experiment 2 in
general the lowest. Recall that Experiments 1 and 3 are identical, except
for the training data lookback period. The longer lookback in Experiment
1 surprisingly produces weaker classification metrics than the shorter period
in Experiment 3. Possible causes are pure coincidence and that the longer
lookback contains historical events not reflected in the returns anymore. A
suspect cause for the relatively poor performance in Experiment 2 is the
smaller set of factors used, implying that the classifiers are able to exploit
additional information from the more extensive set of factors applied in the
other experiments. A direct comparison cannot be made between Exper-
iments 1 to 3 with Experiment 4 because of the differing return labeling.
However, it seems that the labeling in Experiment 4 is more difficult for
the classifiers, because the classifier metric margins to the thresholds are
relatively small in Experiment 4, as noted earlier.

Fitting and predicting with the methods is fairly quick. This is affected by
the downsampling of SVM and RF training data. A monthly cycle of fitting
the classifiers and predicting with them takes under two minutes with the
specified implementation.

5.2.2 Portfolio Performance

Portfolio performance measures return, volatility and Sharpe Ratio seem to
display less obvious patterns than the classification performance measures.
The overall highest return is 35.23% generated by BMLR in Experiment 4
and the lowest −25.76% by SVM in Experiment 1. The benchmark BMsimple

yields poor returns of −0.29%, while BMFF5 provides high returns of 33.10%.
Within the experiments, the highest return is attributed to BMLR in two
experiments, and to GB and RF in one pear each model. SVM provides the
lowest return in all experiments, except Experiment 4.

Interestingly, Experiment 4 produces relatively high returns, even though the
classification performance is barely above the threshold of predictive power.
The median breakpoint labeling unique to Experiment 4 is likely the cause,
even though it was expected to be more difficult to the classifiers than the
three-class labeling in the other experiments. A possible explanation for the
high returns in Experiment 4 lies in the model fitting methodology, which
considers all misclassifications equally bad. In the binary classification of
Experiment 4 it makes no difference, but likely has an effect on the other
experiments. Intuitively, it is a worse error to misclassify a true 1 as a −1,
than it is to misclassify it as a 0. The model fitting does not account this
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”order” of the classes, which could explain the higher returns in Experiment
4. Missing the ”order” is a characteristic of simple classification methods
applied in this thesis, where the classifier output is of categorical rather than
of ordinal type.

Out of the predictive models, RF produced the globally lowest volatility of
2.37% in Experiment 2, while the highest volatility of 6.44% is measured for
SVM in Experiment 3. The least volatile portfolios are provided by RF in
three experiments, while K-NN provides it in one. On the other hand, BMLR

produces the most volatile portfolios in two experiments.

The Sharpe Ratios are in general low and in some cases even negative. The
BMsimple SR is zero, whereas BMFF5 yields a relatively high SR of 0.48.
The highest SR in all experiments is 0.50 produced by RF in Experiment
4, while the lowest attributes to SVM at −0.42 in Experiment 1. Within
experiments, the highest SR is produced along with the highest return in
three experiments. BMLR, K-NN, GB and RF all provide it in one of the
experiments. Comparing all predictive models to BMFF5 in terms of SR, only
RF in Experiment 1 manages to beat the it, while BMLR in Experiment 4
and GB in Experiments 3 and 4 come close.

Differing from the other metrics, turnover exhibits fairly strong patterns.
First, however, we notice that BMFF5 has the lowest average monthly turnover
of 14.83% with a great margin. All other portfolios have considerably greater
turnovers, ranging from 25.49% for BMsimple to 91.01% for SVM in Experi-
ment 4. The highest turnovers for all models are produced in Experiment 4.
Out of the models, SVM generates the highest turnover in all experiments,
while BMLR the lowest respectively. The significant differences in turnover
have severe implications in practical applications. A high turnover generates
high transaction costs, which are covered from portfolio returns. Taking the
portfolio based on RF predictions in Experiment 1, Figure B.3 in Appendix
B illustrates the effects of various levels of constant transaction costs. The
presence of costs dramatically lowers the returns of a high turnover portfo-
lio.

While this thesis focuses on equal weight portfolios, market weighted port-
folio performance metrics respective to the four experiments are presented
in Table A.2, Appendix A. Volatility and turnover are similar to the equal
weight results, but return and therefore the Sharpe Ratios differ significantly.
In general, the market weight portfolio performance is weaker than their
equal weight counterparts, even though some exceptions exist. A possible
cause is that the classifier fitting equally weights the observations making
the predictions a poor basis for market weighted portfolios. The discussed
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market weighted portfolio performance serves as a robustness check to the
main equal weight results.

5.2.3 Accumulation and Correlations of Returns

In addition to the summary performance metrics, the over time accumulated
returns of the equal weight portfolios are examined. The over time develop-
ment of returns is fairly flat for BMsimple, whereas BMFF5 shows an upwards
trend.

The first part of Figure 5.1 presents the cumulative return series of the model
based portfolios of Experiment 1. The poor performance of SVM is clear,
since the returns are nearly constantly the lowest. GB generates relatively
very high returns until 2008, when the portfolio suffers dramatic losses. In
fact, most model portfolios suffer from the 2008 financial crisis, except the
SVM and BMFF5. However, it could be argued that the predictive power
of SVM is so weak, that the portfolio is comparable to random selection.
Opposite to most of the portfolios, BMFF5 gains substantial returns during
the financial crisis. After the crisis, RF accumulated returns are constantly
high compared to those of other portfolios and it is the only portfolio that
experiences a clear upwards trend in returns. Furthermore, the predictive
classifier based returns seem fairly correlated, especially GB and BMLR.

Experiment 2 returns, presented in the second part of Figure 5.1, are fairly
different than those of Experiment 1. A peak in returns alike GB in Exper-
iment 1 does not appear. On the other hand, the crash in returns during
the 2008 crisis is far less severe, but all portfolios exhibit a mostly flat trend
in returns after the ciris, except BMFF5. K-NN is constantly among the
highest in terms of returns, unlike in the other experiments. Moreover, GB
and BMLR appear again fairly correlated, except for the period starting from
2015. Also in common to the former experiment, SVM underperforms con-
stantly. Moreover, we notice that BMFF5 dominates the cumulative returns
after the 2008 crisis and that the other model based portfolios seem to display
fairly different patterns in returns. Since the predictive models are trained
using only the subset of five factor containing the same information that is
applied in the FF5 model, it can be concluded that the predictive models do
not learn a similar model to the FF5 from the same information.
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Figure 5.1: Cumulative returns for the model based portfolios in Experiments
1 and 2. BMsimple is denoted by bm, BMFF5 by ff5, BMLR by lr, K-NN by
knn, SVM by svm, GB by gb and RF by rf in the figure legend.

Experiment 3 cumulative returns for the model based portfolios, illustrated in
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the first part of Figure 5.2, exhibit a 2008 crash less severe than Experiment
1, and the portfolios recover from the crash faster. GB exhibits very high
returns for most of the period, with cumulative returns even higher than
BMFF5 until the last years of the period. Once again, SVM has almost
constantly the lowest returns. Alike in Experiment 2, the portfolios exhibit
a rather flat trend starting from 2010. Interestingly, the cumulative returns
in Experiment 3 are in general higher than in Experiment 1, even though the
first experiment uses a longer training data lookback expected to yield better
results. This assumption is not supported by the evidence from comparing
Experiments 1 and 3.

The results from Experiment 4 show, in turn, fairly similar patterns to Ex-
periment 1, as presented in the second part of Figure 5.2. GB and BMLR

seem again highly correlated and both exhibit the peak followed by a dra-
matic crash in returns before and during the 2008 crisis. Furthermore, both
follow the BMFF5 cumulative returns closely. RF exhibits an upwards trend
prior to the 2008 crisis similar to GB and BMLR, but weaker. Moreover,
RF cumulative returns exhibit a downwards trend after the crash during the
crisis. The comparison of the returns in Experiment 4 to those of Exper-
iment 1 indicates that the binary labeling of the fourth experiment yields
higher returns than the three-class labeling in the otherwise identical first
experiment.
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Figure 5.2: Cumulative returns for the model based portfolios in Experiments
3 and 4. BMsimple is denoted by bm, BMFF5 by ff5, BMLR by lr, K-NN by
knn, SVM by svm, GB by gb and RF by rf in the figure legend.

In general, BMFF5 dominates the other model based portfolios in terms of
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portfolio performance, especially when judged by the results in Table 5.3.
The examination of the cumulative return series in Figures 5.1 and 5.2 re-
veals, that other model based portfolios generate higher cumulative returns
during some subperiods of the whole examined period. Especially GB clearly
beats BMFF5 prior to the 2008 financial crisis in Experiments 1, 3 and 4. Fur-
thermore, the inspection of the cumulative returns reveals that BMFF5 tends
to generate the gap to the other model based portfolios during the financial
crisis, where it generates outstanding returns while others suffer losses.

Since the return graphs indicate substantial correlations between portfolio
returns, the correlations of the portfolio returns within experiments calcu-
lated and are presented in Table A.3, Appendix A. Indeed the correlations
between BMLR and GB are high in Experiments 1, 3, and 4: 0.70, 0.79,
and 0.87, respectively. The correlations confirm, that GB and BMLR pro-
duce similar returns in these three experiments. The other correlations are
in general substantially lower than the few discussed exceptions.

5.2.4 Analysis of the Model Based Portfolio Returns
with the Fama-French Five-Factor Model

The FF5 model in (2.4) is estimated for the monthly model based portfolio re-
turns to examine how well the industry standard model explains the returns.
The regressions describe how exposed the model based portfolios are to the
standard FF5 factors, if there are any excess returns generated and how well
the FF5 factors explain the portfolio returns. In summary, the objective of
the regressions is to present the model based portfolio returns in terms of
the industry standard FF5 model. The regressions conducted with the stan-
dard FF5 factors, available at the database of French (2019), as opposed to
the replicated FF5 factors. Figures B.1 and B.2 in Appendix B illustrate,
respectively, the replicated factors and their standard counterparts.

Table 5.4 presents the regression coefficients obtained by fitting the model
in (2.4) with monthly returns of the standard FF5 factors, available at the
database of French (2019), to the monthly returns of each model based port-
folio. In addition to the coefficients, the table presents their statistical sig-
nificance and the coefficient of multiple correlation R2. In general, Table 5.4
exhibits low coefficients and low values of R2. A notable exception is BMFF5,
for which the regression R2 is 57%. This is naturally explained by the similar
construction of the model to the standard FF5. Relatively high values of R2

are also obtained for Experiment 4, except for the SVM, which indicates that
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the return labeling in that experiment leads to portfolios more alike the FF5
factors in returns.

Table 5.4: Regression coefficients and R2 from regressing the returns of each
portfolio against the FF5 factor returns obtained from the database of French
(2019) over the whole sample period. The significance of the coefficient is
denoted with asterisks as follows: ’**’ for significance at 99%, and ’*’ for
significance at 95%.

Model α rm − rf SMB HML RMW CMA R2

Benchmark
BMsimple -0.00** 0.01 -0.04** -0.03* 0.11** -0.06* 0.23
BMFF5 -0.00 0.07** 0.12** 0.31** 0.31* 0.15** 0.57

Experiment 1
BMLR -0.00* 0.03 -0.05 0.04 0.30** 0.14* 0.16
K-NN -0.00* 0.01 -0.03 -0.00 0.16** 0.03 0.10
SVM -0.00** 0.05 0.12** -0.10* 0.17* 0.02 0.06
GB -0.00 0.01 -0.01 -0.05 0.26** 0.07 0.09
RF -0.00 0.01 -0.01 -0.03 0.14** 0.10* 0.08

Experiment 2
BMLR -0.00 0.04 -0.08 0.17** 0.32** 0.06 0.16
K-NN -0.00 0.01 -0.00 0.07 0.16** -0.03** 0.11
SVM -0.00 -0.03 0.15** -0.03 0.05 -0.01 0.03
GB -0.00** 0.02 0.05 0.06 0.32** 0.05 0.17
RF -0.00** 0.02 -0.06** 0.07** 0.11** 0.08* 0.18

Experiment 3
BMLR -0.00* 0.05* -0.06 0.02 0.21** -0.04 0.09
K-NN -0.00** 0.01 -0.06 -0.05 0.13** -0.02 0.12
SVM -0.00 -0.01 0.03 -0.20** -0.04 0.20 0.06
GB -0.00 0.04 -0.01 -0.01 0.28** -0.06 0.10
RF -0.00 -0.02 0.00 -0.01 0.18** 0.03 0.13

Experiment 4
BMLR -0.00 0.02 -0.20** 0.13** 0.42** 0.07 0.34
K-NN -0.00 -0.03* -0.05* 0.00 0.15** 0.01 0.23
SVM -0.00 -0.02 -0.04 -0.05 0.01 0.13 0.04
GB -0.00 -0.01 -0.12* 0.06 0.36** 0.06 0.26
RF -0.00* -0.02 -0.05 -0.03 0.11** -0.26 0.14

A key interest in Table 5.4 are the coefficients α. A statistically significant
α > 0 for a portfolio would indicate that the portfolio earns excess returns
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the FF5 is unable to capture. However, no values of α different from zero
when rounded to two decimals are found. This implies that none of the
portfolios is able to generate excess returns compared to the FF5. On the
other hand, the overall low values of R2 indicate that the FF5 factors cannot
explain the returns of the classifier based portfolios to a high degree. These
two implications could be synthesized as the classifier based portfolios not
generating excess returns with respect to the FF5, but that any return gen-
erated is based on fairly different factors. The synthesis is logical, since the
classifiers exploit more factors than the FF5, except in Experiment 2. In
common to the values of α, the market factor coefficients in column rm− rf ,
which are the FF5 β coefficients, are very low. This is likely explained by
the long-short portfolio construction, that mitigates the effects of market
movements on the portfolio returns.

SMB coefficients, in turn, exhibit some relatively great absolute values that
often are statistically significant. A positive SMB coefficient can be inter-
preted as portfolio weighting small companies, whereas a negative coefficient
relates a greater weight in big companies. The greatest absolute significant
coefficient value is −0.20 for BMLR in Experiment 4. Interestingly, SVM has
significant SMB coefficients of 0.12 and 0.15 in Experiments 1 and 2, respec-
tively. However, no apparent reason is identified for these findings.

HML coeffients have an interpretation similar to the SMB: a positive HML
coefficient indicates a value company portfolio, while a negative coefficient
relates to a growth company portfolio. Most portfolios have very small HML
coefficients. In contrast, BMFF5 yields the greatest significant HML coef-
ficient of 0.31, and BMLR based portfolios in Experiments 2 and 4 have
relatively great significant coefficients of 0.17 and 0.13, respectively. SVM
has the lowest significant coefficient of −0.20 in Experiment 3.

The RMW coefficients can be interpreted as a positive value indicating the
portfolio weights high profitability companies, while a negative value indi-
cates weight on weak profitability companies. Intuitively, high profitability
should reflect as decent returns. Agreeing with this intuition, the RMW co-
efficients are positive, except for one exception. Moreover, the coefficients
are significant, except for three exceptions and in general relatively great in
value. It appears that the RMW factor has a large impact in the share re-
turns during the examined period. In fact, the RMW factor has generated the
greatest returns of the standard FF5 factors during the sample period, which
can be seen in Figure B.2 in Appendix B. Furthermore, GB and BMLR have
the highest RMW coefficients in all experiments, implying that they have
exploited RMW returns the most. The BMLR yields the greatest significant
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coefficient of 0.42 in Experiment 4. The last of the factors, CMA, exhibits no
clear patterns. The coefficients are in general small in absolute value, save
for a few exceptions.

In summary, the FF5 factor regressions imply that the predictions do not
generate significant excess returns not captured by the FF5 model. On the
other hand, the returns generated by the predictions are poorly explained by
the FF5. Out of the FF5 factors, RMW seems to have had the greatest im-
pact, although it is also the factor with the greatest returns and fluctuations
during the sample period, which Figure B.2 in Appendix B exhibits. This
may have an inflating effect on the RMW coefficients.

5.2.5 Sensitivity to the Training Data Lookback Length

Since the results are less than robust from the four experiments, we conduct
sensitivity analysis of the results with respect to the training data look-
back period length. The sensitivity analysis is specifically motivated by the
findings from Experiments 1 and 3, indicating that the shorter training data
lookback period in Experiment 3 (36 months) could yield higher performance
than the otherwise identical Experiment 1 (120 months).

Therefore, we conduct sensitivity analysis by experimenting with training
data lookback periods that fall in between those applied in Experiments 1
to 4, covering lookbacks from 36 to 120 months with 12 month intervals.
Moreover, the whole set of 30 factors is applied. Differing from the four ex-
periments, SVM and K-NN are excluded from the sensitivity analysis, since
their respective results indicate little to no evidence of satisfactory perfor-
mance. Consequently, the sensitivity analysis is applied with BMLR, GB
and RF. The sensitivity analysis differs also in terms of performance metrics.
Since the respective precisions and recalls in Experiments 1 to 4 are gener-
ally very close to each other, we examine only the F1 score in the sensitivity
analysis. Moreover, turnover is also excluded from the analysis since it pro-
vides little patterns of interest based on the results form Experiments 1 to 4.
Sensitivity analysis results are presented in terms of the F1 score, cumulative
returns, volatility and Sharpe Ratio.

Sensitivity is analyzed both under the three-class labeling applied in Exper-
iments 1 to 3, as well as with the binary labeling applied in Experiment 4.
First we examine the results obtained by applying the three-class labeling,
followed by the respective results obtained by applying the binary labeling.
Table 5.5 presents the results of the sensitivity analysis applying three-class
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labeling in terms of the F1 score, return, volatility and Sharpe Ratio.
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Table 5.5: Sensitivity analysis results applying three-class labeling. Bold
typeface denotes the preferred value for the column metric per experiment
The F1 score is the median of monthly values over the time period. r is
the cumulative return and σ the sample volatility. Note, that the results
for lookbacks of 36 and 120 months are obtained from Experiments 3 and 1,
respectively.

Panel data length [months] F1 r σ SR

36 (Experiment 3)
BMLR 0.3722 1.93 4.06 0.06
GB 0.3856 24.89 4.58 0.40
RF 0.3751 12.12 3.36 0.28

48
BMLR 0.3746 -2.87 4.59 -0.03
GB 0.3798 10.17 4.96 0.18
RF 0.3752 12.04 3.63 0.26

60
BMLR 0.3713 -8.50 4.30 -0.14
GB 0.3784 -9.49 5.23 -0.12
RF 0.3747 18.51 3.24 0.42

72
BMLR 0.3712 -2.71 4.09 -0.03
GB 0.3834 1.90 4.70 0.05
RF 0.3770 9.87 3.55 0.22

84
BMLR 0.3719 -10.00 4.03 -0.18
GB 0.3826 6.25 4.77 0.12
RF 0.3757 -0.04 2.94 0.01

96
BMLR 0.3701 -0.29 4.01 -0.01
GB 0.3820 1.77 4.88 0.05
RF 0.3763 -1.75 3.05 -0.03

108
BMLR 0.3719 2.25 4.38 0.06
GB 0.3831 -1.86 5.15 0.00
RF 0.3763 8.63 2.94 0.23

120 (Experiment 1)
BMLR 0.3709 1.77 4.58 0.05
GB 0.3815 6.56 5.31 0.12
RF 0.3770 21.50 3.09 0.50
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The F1 scores indicates that the training data lookback has little effect on
classification accuracy. However, GB produces the highest score for all look-
back periods. The stability of the BMLR F1 scores implies that the model
fails to exploit the incremental information provided by a longer lookback.
The scores for RF are similarly stable, which could be caused by the heavy
training data downsampling. Since the downsampling was done by limiting
the number of observations, it excludes proportionally more data as the look-
back period increases. GB is also subject to training data downsampling, but
it is allowed to apply substantially more observations than RF, which could
also allow the increasing trend in the GB F1 scores.

Returns, alike the Sharpe Ratios, display less apparent patterns than classifi-
cation performance. Perhaps the clearest are, that BMLR never produces the
highest portfolio performance, and that RF always yield the lowest volatility.
The highest performing portfolios are obtained with the extreme values of
the lookback period, while the performance obtained with the intermediate
values tends to be less than satisfactory.

Figure 5.3 illustrates the F1 scores and returns obtained from the sensitivity
analysis in terms of the training data lookback period length. The F1 scores
do not display clear trends. However, it clearly presents the order of the
three models in terms of classification performance, as GB has constantly
the highest F1 score, RF constantly the second highest, leaving BMLR the
weakest without exception. Such a pattern is not visible in the model based
portfolio returns in Figure 5.3, and, in fact, a prominent relationship between
the F1 score and returns is not apparent.
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Figure 5.3: The F1 scores and model based portfolio returns as a function
of the training data lookback period. The figure is based on the results
of sensitivity analysis applying three-class labeling presented in Table 5.5.
BMLR is denoted by lr, GB by gb and RF by rf in the figure legend.

The results from sensitivity analysis applying the binary labeling are pre-
sented in Table 5.6. GB dominates the F1 scores by yielding the highest
score for all but the longest lookback, where RF provides the highest scores.
Overall, the F1 scores are barely above the threshold of predictive power of
0.5, but returns are substantially higher than in the three-class regime, where
the scores clear the respective threshold with a greater margin. The highest
returns, on the other hand, are provided by BMLR for four lookbacks, by GB
for three and by RF for one. The highest Sharpe Ratios are also distributed
among the models. RF constantly provides the lowest volatility, which in
some cases explains the high Sharpe Ratios even with intermediate returns.
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Overall, the binary labeling yields substantially higher portfolio performance
than the three-class labeling. Especially, GB provides the overall highest
return of 36.61% with a lookback of 96 months, and RF yields the maxi-
mum obtained Sharpe Ratio of 0.71 with a lookback of 108 months. Alike
the results obtained with the three-class labeling in Table 5.5, the binary la-
beling results do not indicate a clear relationship between classification and
portfolio performance.
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Table 5.6: Sensitivity analysis results applying binary labeling. Bold type-
face denotes the preferred value for the column metric per experiment The
F1 score is the median of monthly values over the time period. r is the cu-
mulative return and σ the sample volatility. Note, that the results for the
lookback of 120 months are obtained from Experiment 4.

Panel data length [months] F1 r σ SR

36
BMLR 0.5060 25.47 5.52 0.35
GB 0.5092 17.60 6.15 0.23
RF 0.5040 3.41 3.36 0.25

48
BMLR 0.5064 16.97 5.72 0.24
GB 0.5096 13.44 6.45 0.18
RF 0.5031 15.43 3.36 0.35

60
BMLR 0.5063 8.87 5.60 0.15
GB 0.5083 15.14 6.13 0.21
RF 0.5035 1.48 2.93 0.05

72
BMLR 0.5042 21.83 5.34 0.31
GB 0.5061 8.70 5.39 0.15
RF 0.5042 25.88 3.16 0.58

84
BMLR 0.5059 10.38 5.30 0.17
GB 0.5073 28.80 5.51 0.38
RF 0.5045 6.29 3.08 0.17

96
BMLR 0.5031 27.39 5.14 0.39
GB 0.5078 36.61 4.83 0.52
RF 0.5032 19.53 2.87 0.50

108
BMLR 0.5036 30.84 5.18 0.43
GB 0.5057 28.02 5.22 0.39
RF 0.5039 26.84 2.65 0.71

120 (Experiment 4)
BMLR 0.5021 35.23 5.44 0.46
GB 0.5047 27.77 5.20 0.39
RF 0.5053 -4.32 3.33 -0.09
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Figure 5.4 illustrates the results presented in Table 5.6 in terms of the F1

score and returns as a function of the training data lookback period length.
The F1 scores for BMLR and GB displays slightly decreasing trend, whereas
RF displays a weakly increasing trend. Alike the scores obtained with the
three-class labeling, GB dominates the classification accuracy. However, the
order of the three models is not as strict like with the three-class labeling.
Fluctuation is substantial in returns, however a weakly increasing trend can
be seen. Moreover, Figure 5.4 fails to illustrate a clear relationship between
classifier and portfolio performance.
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Figure 5.4: The F1 scores and model based portfolio returns as a function
of the training data lookback period. The figure is based on the results of
sensitivity analysis applying binary labeling presented in Table 5.6. BMLR is
denoted by lr, GB by gb and RF by rf in the figure legend.
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The sensitivity analysis for the two labeling regimes can be summarized as
follows. Classification performance does not seem to improve as the training
data lookback period increases, since the little evidence was found support-
ing positive relationship. On the other hand, portfolio performance exhibits
some evidence of improvement as the lookback period increases. These two
implications are intuitively contradictory, as one could reasonably expect
returns to increase along with classification performance. Intuitively this
means, that the applied metrics fail to accurately capture how the classifica-
tion performance translates to portfolio performance. As a byproduct of the
sensitivity analysis, the additional data obtained on model performance sup-
ports the findings of the four initial experiments: the predictive models have
predictive power, but only occasionally beat the BMFF5 presented in Table
5.3. Furthermore, the binary labeling yields substantially higher portfolio
performance with than the three-class labeling.

Therefore we take the high performing GB with binary labeling as an exam-
ple, and examine the effect of the training data lookback length on accumula-
tion of returns in the sensitivity analysis. Specifically, we are interested in the
return accumulation during the 2008 crisis, where the BMFF5 was identified
to generate high returns, unlike the predictive models. Figure 5.5 illustrates
the return accumulation of GB with different lookbacks in comparison to
BMFF5.
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Figure 5.5: The return series of GB with binary labeling from the sensitivity
analysis with different lookbacks. In the figure legend, BMFF5 is denoted by
ff5, whereas 36, 96, and 120 denote GB with respective lookbacks.

The accumulation of returns for GB in Figure 5.5 is similar regardless of the
lookback length. However, we notice that the shortest lookback of 36 months
generates a very high peak before the crisis, but results with the smallest
returns at the end of the period. In general, Figure 5.5 supports the evidence
obtained from the four experiments, that the predictive models outperform
the BMFF5 prior to the 2008 crisis, lose dramatically to the benchmark during
the crisis and generate similar returns after the crisis.
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Discussion

Summarizing the four experiments, the obtained classification and portfolio
performance measures are rather weak with positive exceptions. The results
indicate at least some predictive power for most models, but the industry
standard FF5 based benchmark is difficult to beat in terms of portfolio per-
formance. The benchmark generates outstanding returns over the course
of the 2008 financial crisis, while other models tend to generate dramatic
losses, partly explaining the dominance of the benchmark. The results re-
garding classification performance are more harmonious than the portfolio
performance results, where deviance is substantial. It can be concluded that
the results are not very robust with respect to the parameters experimented
with. Out of the nonlinear classifiers, GB and RF are arguably the highest
performing methods, while SVM fails on most metrics and the performance
K-NN is unsatisfactory. The comparison of LR, the linear classifier bench-
mark, to the nonlinear models provides less than strong evidence in support
of superior performance of the nonlinear models.

The sensitivity analysis of the results with respect to the training data look-
back period length supports the findings of the four experiments and ex-
hibits little evidence of a clear pattern between performance and the lookback
length. Moreover, the additional measurements of performance display less
than clear patterns between classification and portfolio performance, while a
reasonable assumption would be that higher classification accuracy translates
to higher portfolio performance. In addition to coincidence, we identify two
possible causes for this, which may coexist. The first is the calculation of the
classification performance metrics over the whole set of shares per month,
while only a subset of shares is selected in the portfolios. Now the selected
shares may be accurately classified, while the excluded ones are not, which

63
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can lead to low overall classification performance metrics together with sat-
isfactory portfolio performance. The opposite effect is equally possible. To
examine the effect of this possible phenomenon, the classification perfor-
mance should be measured separately for the subset of selected shares. The
other possible cause is the measurement of classification performance with
respect to the class labels. The labels lose information about the magnitude
of the share returns. The lost information affects the portfolio performance,
but is not reflected on the classification performance metrics. However, this
is rather a characteristic of the selected classification approach.

Moreover, the results suggest, that the binary labeling yields higher portfolio
performance, although the three-class labeling produces stronger evidence of
predictive power. A suspect cause for this phenomenon is the calculation
of the classification performance metrics as an average over the classes. If
the the middle class in the three-class labeling is the easiest for the clas-
sifiers, it could inflate the class-average classification performance metrics
when applying the three-class labeling. However, it would not translate to
portfolio performance, since the middle class is excluded from the portfolios.
A detailed analysis of the per-class classification metrics would be required
in order to capture and examine this suspected phenomenon.

The classification performance results indicating predictive power in future
return classification agree in general with the related scientific literature,
which mainly includes positive findings on performance. However, method-
ologies, data and the specification of the classification problem differ sub-
stantially. For example, Huerta et al. (2013) consider only the extreme tails
of the returns in the classification and even drop out the middle section of
the data from model training. Moreover they examine daily data, as op-
posed to monthly data used in this thesis, but similarly fit the models each
month. Ballings et al. (2015), on the other hand, apply return thresholds
on labeling of future returns to conduct binary classification to high and low
return stocks using European data, and predicting returns one year ahead.
Differences between approaches exist, in addition to differing problem spec-
ification, in the applied classification and portfolio performance measures.
One logical explanation lies in the classification type, whether it is binary
or multi-class problem. Common metrics such as receiver operating charac-
teristics curve (ROC) and area under the curve (AUC) applied by Ballings
et al. (2015), apply better to binary problems rather than multi-class prob-
lems. The classification measures applied in this thesis are equally suited
to both types of classification tasks, even though the metric values may be
incomparable directly. In fact, Huerta et al. (2013) provide no detailed anal-
ysis on classification performance, but present only portfolio performance
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metrics.

Metrics of portfolio performance are, on the other hand, more similar between
publications: return, volatility and the Sharpe Ratio are widely applied in the
literature, with additional metrics varying between publications. Alike clas-
sification performance metrics, the specification of the classification problem
affects the criteria for assessing the portfolio performance metrics. Further
impact stems from the portfolio construction methodology. Values of portfo-
lio performance measures for long-short portfolios constructed in this thesis
can be assumed to be quite different from long-only portfolios. The choice
of the shares included, as well as the time period examined, also affect the
metrics, making direct comparisons between the results of the publications
challenging. Further examining the aforementioned articles by Huerta et al.
(2013) and Ballings et al. (2015) reveals that the former reports an annual
α of 15% indicating substantially higher performance than the α values ob-
tained in this thesis. Fan and Palaniswami (2001), in turn, apply SVMs
to detect shares with exceptional returns using data from the Australian
stock exchange, which are used to construct long-only portfolios. They com-
pare the SVM produced portfolios to a ”market” benchmark constructed as
an equal weight portfolio of all examined shares, and report SVM provid-
ing approximately three-fold returns over the five-year period from 1995 to
1999. Compared to the results of this thesis, the related literature documents
findings considerably stronger in favor of superior performance of nonlinear
multifactor models.

A common property to related research, that is different to this thesis, is
the inclusion of a cross-validation step in model fitting. The step dismissed
in this thesis is usually performed in related research. It is likely to im-
prove the performance metrics reported in the publications, and it can be
assumed that the results obtained in this thesis would improve by imple-
menting cross-validation. In addition, the selection of the factors could be
done systematically by including a feature selection step, where only the fac-
tors with the most predictive power are selected for predicting. Moreover, a
possible extension to the model fitting methodology with possibly significant
effects on performance is to account the different cost of misclassification in
multi-class problems. The methods in this thesis consider all misclassification
equal, while it is obviously more dangerous to mistake a high-return share for
a low-return share, instead of a neutral-return share. The implementation
of this extension is not considered in this thesis, but most machine learning
methods applied are likely extendable in this direction.

Notably, GB is relatively a well performing method, even though it is subject
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to downsampling of the training data done in order to decrease computation
time. SVM and RF are subject to heavier training data downsampling than
GB, which likely the cause for the unsatisfactory performance of SVM. How-
ever, RF performs substantially better than the SVM, which could be due to
the ensemble construction of the RF, mitigating the effect of the downsam-
pling. The results obtained would likely be positively affected by omitting
the training data downsampling.

The set of selected methods as well as the highly simplified fitting proce-
dure can be viewed to as a base case regarding the methods. Moreover, we
identified multiple approaches to enhance the performance of the methods.
In conclusion, the results of this thesis combined with the improvement po-
tential regarding the nonlinear methods weakly support the feasibility of the
nonlinear multifactor models in classification of future share returns.



Chapter 7

Conclusion

The objective of this thesis was to determine the feasibility of nonlinear
multifactor models for predictive classification of future share returns. The
findings provide weak support to the feasibility. However, the model fitting
methodology of this thesis is highly simplified. Extending the methodol-
ogy with cross-validation or feature selection is expected to improve model
performance. The findings and the identified extensions to the methodol-
ogy indicate that the nonlinear multifactor models are feasible to the specific
problem, but careful development and further research is required to possibly
outperform the industry standard factor model FF5.

The feasibility was determined examining models fitted with four nonlinear
machine learning methods: K-Nearest Neighbors, nonlinear Support Vector
Machine, Gradient Boosting Machine and Random Forest. The methods
were applied to fit classifiers for predicting future share returns using past
data, and the predictions were in turn applied to construct long-short port-
folios. The examination included a comparison of classification performance
to thresholds indicating predictive power and to Logistic Regression, a linear
predictive method. Moreover, the classifier based portfolios were compared
in terms of performance to assess the economic impact of the classifier pre-
dictions. The comparison of portfolio performance was based on benchmarks
including a replication of the industry standard FF5 factors. Moreover, the
portfolio returns were analyzed with the widely applied standard FF5 factors
by regression. The regressions indicate no excess returns were generated with
respect to the FF5. On the other hand, the regressions are unable to explain
the portfolio returns to a high degree.

The methodology was applied to monthly return and quarterly fundamental
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data from 1988 to 2016 on US stocks to construct portfolios from 2004 to
2016. A lag of three months was imposed on the fundamental data to account
for the reporting delay. This ensures that all data used to fit the classifiers
was available to the market at the time. The effect of small stocks on the
results was mitigated by excluding the smallest stocks from the analysis. The
resulting dataset was used to construct 30 factors, on which the factor models
were based. The factors were gathered from recent scientific literature.

Feasibility is further supported by readily available implementations of the
machine learning methods. The implementations proved efficient enough in
terms of computational requirements, even though some methods required
considerable data downsampling. The machine learning methods applied in
this thesis vary in complexity, but in general a machine learning model is
difficult to interpret. This makes the interpretability of models alike FF5
hard to beat, which may discourage some practical applications of nonlinear
multifactor models. Another practical limitation considering the prediction
based portfolios is their high turnover, which generates high transaction costs,
that eats away returns.

The findings of this thesis inspire a number of directions for further research.
Most importantly the effects of including cross-validation and feature selec-
tion to the classifier fitting procedure should be examined, since it is expected
to improve performance. Moreover, the methodology could be extended to
account for different costs for misclassifications in multiclass model training:
intuitively mistaking a high-return share for a low-return share, instead of a
neutral-return share should have a high cost. On the other hand, the port-
folio construction methodology of this thesis includes some fairly arbitrary
decisions, such as the return labeling breakpoints and the number of shares
in the portfolio, or how often and for what period the returns should be
predicted. Moreover, the feasibility should be inspected with different data,
for example with European or Asian shares, in addition to including other
factors to the models. Moreover, as there is an identified need to map out the
numerous findings of factors, the results of this thesis imply a similar need to
map out the true potential of nonlinear multifactor models. Since the current
related literature is scarce, most new findings contribute to the knowledge.
Simultaneously, a question of common comparison methodology arises, not
forgetting the impact the so far rare replication studies may have.
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Table A.1: Missing observation percentages for the factors. The percentages
are calculated over the whole data.

Factor Accronym Missing

6-month prior return R6 5.07
11-month prior return R11 8.26
Book-to-market* Bm 1.03
Earnings-to-price Ep 0.79
Enterprise multiple Em 12.06
Cash flow-to-price Cp 9.31
Operating cash flow-to-price Ocp 10.87
Investment-to-assets* Ia 9.29
Changes in gross property, plants and
equipment and inventory-to-assets

dPia 47.76

Changes in net operating assets dNoa 9.69
Net stock issues Nsi 8.02
Composite equity issuance Cei 32.83
Inventory changes Ivc 11.85
Changes in net non-cash working capi-
tal

dWc 28.94

Change in net non-current operating
assets

dNco 26.88

Change in non-current operating assets dNca 26.84
Change in financial liabilities dFnl 9.16
Return on equity Roe 3.55
Changes in return on equity dRoe 12.40
Changes in return on assets dRoa 12.14
Gross profits-to-lagged assets Gla 15.62
Operating profits-to-equity* Ope 19.10
Operating profits-to-lagged equity Ole 15.37
Operating profits-to-lagged assets Ola 18.94
Cash-based operating profits-to-lagged
assets

Cla 31.28

12 month lagged return R1
a 8.02

Years 2-5 lagged returns R
[2,5]
a 34.66

Beta* Beta 19.64
Asset liquidity Alm 22.22
Market equity* Me 0
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Table A.2: Performance metrics for market weighted portfolios. They are
based on the same predictions as the examined equal weight portfolios.

Model r σ SR TO

Benchmark
BMsimple 5.83 1.89 0.24 29.07
BMFF5 28.64 4.82 0.43 14.18

Experiment 1
BMLR -14.27 5.77 -0.18 39.88
K-NN 1.85 5.56 0.05 67.23
SVM -5.19 6.46 -0.03 89.74
GB -4.81 6.51 -0.03 58.47
RF 16.11 4.30 0.29 81.81

Experiment 2
BMLR 17.31 6.62 0.22 27.88
K-NN -7.90 4.72 -0.11 57.80
SVM -12.71 6.74 -0.12 90.36
GB -11.47 6.03 -0.13 51.58
RF 6.57 3.71 0.15 88.19

Experiment 3
BMLR -19.18 5.45 -0.27 40.74
K-NN -24.87 4.96 -0.42 48.09
SVM 10.35 6.82 0.15 89.71
GB -2.13 6.62 0.01 48.09
RF 10.35 5.01 0.14 48.09

Experiment 4
BMLR 27.67 6.63 0.32 48.77
K-NN 3.24 3.36 0.09 71.38
SVM 27.48 4.62 0.43 93.58
GB 0.23 5.70 0.03 69.06
RF -5.53 3.59 -0.10 85.38
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Table A.3: Return series correlations.

BMsimple BMFF5 BMLR K-NN SVM GB RF

Benchmark
BMsimple 1
BMFF5 -0.41 1

Experiment 1
BMLR 0.47 0.02 1
K-NN 0.46 -0.01 0.45 1
SVM 0.05 -0.06 -0.01 -0.03 1
GB 0.63 -0.25 0.70 0.45 -0.05 1
RF 0.50 -0.04 0.45 0.45 0.00 0.51 1

Experiment 2
BMLR 0.27 0.27 1
K-NN 0.17 0.31 0.28 1
SVM -0.12 0.06 -0.01 -0.05 1
GB 0.33 0.11 0.40 0.34 -0.17 1
RF 0.05 0.28 0.23 0.21 0.02 0.15 1

Experiment 3
BMLR 0.29 0.05 1
K-NN 0.39 -0.34 0.56 1
SVM 0.24 -0.26 -0.09 0.04 1
GB 0.39 -0.05 0.79 0.56 -0.07 1
RF 0.33 -0.05 0.52 0.54 -0.13 0.58 1

Experiment 4
BMLR 0.62 0.05 1
K-NN 0.57 -0.26 0.62 1
SVM 0.23 -0.17 0.15 0.21 1
GB 0.66 -0.10 0.87 0.66 0.19 1
RF 0.52 -0.38 0.54 0.57 0.13 0.61 1
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Figure B.1: The returns of the replicated FF5 factors SMB, HML, RMW and
CMA. BMFF5 is the equal weighted mean of these four factors. Note, that the
replicated factors are based on equal weighted factor mimicking portfolios.
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Figure B.2: The returns of the standard FF5 factors SMB, HML, RMW and
CMA from French (2019) used in the regression analysis of the model based
portfolio returns. The factors are based on market weighted factor mimicking
portfolios.
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Figure B.3: The effect of various levels of constant transaction costs on the
cumulative returns of RF based portfolio in Experiment 1.
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