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käsittää vertailua muihin vastaaviin teorioihin sekä havainnollistavia esimerk-
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Symbols and operators

Symbols

∅ the empty set
X the universal set, i.e. the set containing all possible elements
PX the power set of X, i.e. the set of all possible subsets of X, including the

empty set and the set X itself

Operators

x ∈ A the element x belongs to set A
A ∪B the union of the two sets A and B⋃
i∈I
Ai the union of all sets Ai whose indices belong to the index set I

A ∩B the intersection of the two sets A and B⋂
i∈I
Ai the intersection of all sets Ai whose indices belong to the index set I

A ⊆ X the set A is a subset of X, i.e. X contains at least all the elements of A
A ⊇ B the set A is a superset of B, i.e. B is a subset of A



1 Introduction

Many real-life situations involve uncertainty. For example, the weather of the
beginning day cannot be known for sure. Meteorologists try to predict the
upcoming weather with the help of information gathered from multiple sources.
The resulting forecasts are based on statistics and probabilities.

Most people believe that probabilities are the only tools for modelling situations
involving uncertainty. However, probability theory is quite difficult to use when
the available information is subjective or there is a great amount of uncertainty
involved. For instance when making decisions based on experts’ opinions or sensors
with poor accuracy. These kind of situations could be analysed via a framework
called evidence theory.

Instead of assigning probabilities to single events, evidence theory can study the
situation in bigger pieces. The available information often consists of more than a
single item at once, for example a radar can give information that the target is
moving, so the information regards all possible target types that can move. One
of the advantages of evidence theory is that in order to do further analysis, the
information does not need to be complete.

In evidence theory the values assigned to groups of events or items are called
beliefs and plausibilities instead of probabilities. This thesis introduces these
concepts in more detail and from a more mathematical point of view. The primary
aim is to present the background and basis of evidence theory as well as some of
its prospects. Its position among a few other frameworks is also included.

To enable better understanding of evidence theory as a presentation of uncertainty,
some detailed examples are portrayed. The prospects of this theory are discussed
via matters to improve as well as application areas, both current and future. The
goal is to provide an approachable overview of evidence theory.
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2 Background

Evidence theory is a mathematical theory developed for reasoning with uncertainty.
It was introduced by Arthur P. Dempster in 1967 and extended, refined and recast
by Glenn Shafer in 1976 [9]. Named after its creators, evidence theory is often
called Dempster-Shafer theory (DST) [7].

Some history and background of evidence theory are presented in this section. An
introduction to uncertainty is included. Additionally, the utility of using evidence
theory for reasoning with uncertainty compared to other frameworks is discussed.

2.1 Before evidence theory

An economist called G.L.S Shackle introduced the idea of a decision theory that
would account for different, less mathematical aspects in decision making [8]. At
the time, economics was increasing in precision and mathematical sophistication,
but predictions derived from it lacked the relation to economic reality [5]. Shackle
wanted decision making to include creativity and inventiveness, so he created a
decision theory for that during the 1950s and 1960s. However, the ideas by Shackle
were not taken to use at the time because of their lack of suitable formalisation.
Instead, probability theory gained more acceptance as an explanation in decision-
making. [3]

Decades later, in 2001, Fioretti showed in his article [3] that neither subadditive
probability nor infinite alleles model can handle uncertainty the way Shackle
wanted. Fioretti and Klir [5] pointed out in their articles, that Shackle’s idea
of dealing with uncertainty is compatible with evidence and possibility theories.
A couple of decades after Shackle’s theory, Shafer introduced his framework for
representing uncertainty in a way that was mathematically suitable for Shackle’s
theory. However, Shafer did not do research on the similarity of his ideas with
Shackle’s ideas. Shackle used different names in his ideas for uncertainty in decision
making, and approached the problem from the side of what is unknown, whereas
Shafer concentrated on the known parts of an event with uncertainty, but these
differences were insignificant. [3]

2.2 The framework

As opposed to probability theory, in evidence theory the ‘probabilities’ are assigned
to sets or intervals instead of singletons [7]. Singleton refers to a set with only one
element. The values are considered degrees of belief and are assigned based on the
body of evidence [9]. The model is designed such that the body of evidence can be
of any level of precision. The values for the degree of belief can be then assigned



3

to any subset of the event space and they can overlap with each other. With
evidence theory, imprecise information of a system can be directly represented
with sets or intervals [7].

Other frameworks for modelling uncertainty, especially interval-based represen-
tations, are possibility theory, probability theory and imprecise probabilities [1].
Even though evidence theory also gives a general framework for formulating these
other theories and it deals with intervals, it is based only on crisp sets. Crisp set
refers to the set in a classical sense: they have sharp boundaries that distinguish
their members from other objects. If the boundaries are not sharp, the set is
called fuzzy [1]. More about the different frameworks and the differences of using
crisp and fuzzy sets are discussed in Section 4.

So far, evidence theory has been largely developed among the non-traditional
theories for representing uncertainty. Evidence theory is fairly easy to understand
as it relates to classical probability theory and set theory. It is also versatile
in representing different evidence from multiple sources. Additionally, evidence
theory provides a method amendable to mathematical analysis [9]. With increased
computational power, the analyses of the surrounding world can be more complex
and a method for making use of that increased capacity is needed. These together
offer a greater depth of study into the scope of uncertainty. [7]

2.3 Uncertainty

There are two different kinds of uncertainty: aleatory or stochastic uncertainty
and epistemic or subjective uncertainty. The aleatory uncertainty results from
random behaviour of a system, whereas the epistemic uncertainty results from
the lack of knowledge of a system. Epistemic uncertainty is often the by-product
of an analyst or expert assessing the system or situation, as he usually does not
have knowledge of every part of the system. [7]

Classical probability has been used for both types of uncertainty, but the Bayesian
probability used for epistemic uncertainty is not completely suitable for that
purpose [7]. For classical probability, the probabilities of all events are needed,
but are often not available. In probability theory, this lack of information is
compensated by Laplace’s Principle of Insufficient Reason and axiom of additivity
[7].

The Principle of Insufficient Reason can be interpreted to allow using uniform
distribution for events with unknown probability distribution because they are
assumed equally likely. The axiom of additivity introduces an assumption that
all probabilities must add to one. These assumptions can lead to precise-looking
information about events that are unknown. For example, if an expert gives
information about one part of a three-part system, the information for the other
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two parts are then derived using the principle and axiom presented. This derived
information regarding the two other parts can be completely false in a situation
of subjective uncertainty.

Evidence theory offers an alternative, more general representation for epistemic
uncertainty. It can be used in situations when there is not enough information
to evaluate probabilities of events or when the information is non-specific or
subjective, e.g. an expert’s opinion. In evidence theory, complete information
about a system is not necessary, and there is no need for further assumptions
[7]. Instead of probabilities a degree of belief based on the body of evidence is
assigned, and the focus is on the combination of them based on evidence instead
of how the values are determined [9].
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3 Mathematical formalisation

First, normalised monotone measures are introduced for better intelligibility of the
following definitions. Normalised monotone measures are measures that exhibit
a weaker property of monotonicity with respect to the set inclusion instead of
the usual additivity property [1]. This substitution is necessary when working
within the framework of uncertainty. A monotone measure µ is a mapping from
a nonempty family C of subsets from the power set PX of an universal set X to
the range [0, 1]. A normalised monotone measure must also satisfy the folliwing
conditions [1]:

1. Boundary conditions: µ(∅) = 0 and µ(X) = 1

2. Monotonicity: ∀Ai, Aj ∈ C : Ai ⊆ Aj ⇒ µ(Ai) ≤ µ(Aj).

Furthermore, in the continuous case the following two conditions are also required:

3. Continuity from below: for any increasing sequence A1 ⊆ A2 ⊆ ... of sets in
C, if

⋃
i Ai ∈ C then limi→∞ µ(Ai) = µ (⋃i Ai)

4. Continuity from above: for any decreasing sequence A1 ⊇ A2 ⊇ ... of sets in
C if

⋂
i Ai ∈ C then limi→∞ µ(Ai) = µ (⋂i Ai).

Evidence theory is based on belief and plausibility measures [1]. Another important
function is the basic probability assignment which does not, however, refer to
the classical probability [7]. A more mathematical approach as well as proofs for
the following definitions and properties can be found in a book on generalised
measures by Wang and Klir [13].

This section provides the mathematical formulations for the functions used in
evidence theory. These formulations are necessary for the use of evidence theory as
a mathematical tool in situations involving uncertainty. Additionally, some rules
of combination for situations with multiple sources of information are presented.

3.1 Belief measures

A belief measure (Bel) is defined as a function that maps the power set of an
universal set X to the range [0, 1]:

Bel : PX → [0, 1], (1)
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where PX is the power set of X [13]. A belief measure has to meet also the
following conditions:

Bel(∅) = 0 (2)
Bel(X) = 1 (3)

Bel

(
N⋃

i=1
Ai

)
≥

∑
I⊂{1,...,N},I 6=∅

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
, (4)

where {A1, . . . AN} is any finite subclass of X [13]. Conditions (2) and (3) are
normalisation factors for the belief measure. The third condition (4) is similar to
the additive axiom of probability but it features an inequality. This also means
that a belief measure is monotone and superadditive:

Bel(A1 ∪ A2) ≥ Bel(A1) +Bel(A2) ≥ max{Bel(A1), Bel(A2)}, (5)

where A1, A2 ⊂ X and A1 ∩ A2 = ∅ [1].

3.2 Plausibility measures

A plausibility measure is also defined as a function that maps the power set of an
universal set X to the range [0, 1]: Pl : PX → [0, 1]. A plausibility measure has
to meet conditions similar to the belief measure [13]:

Pl(∅) = 0 (6)
Pl(X) = 1 (7)

Pl

(
N⋂

i=1
Ai

)
≤

∑
I⊂{1,...,N},I 6=∅

(−1)|I|+1Pl

(⋃
i∈I

Ai

)
, (8)

where {A1, . . . AN} is any finite subclass of X. The first two conditions are
normalising factors and the third condition (8) is again similar to the additive
axiom of probability. This also means that a plausibility measure is monotone
and subadditive:

Pl(A1 ∪ A2) ≤ Pl(A1) + Pl(A2), (9)

where A1, A2 ⊂ X [1].

Belief and plausibility measures form a duality:

Pl(A) = 1−Bel(Ā) (10)

Pl(Ā) = 1−Bel(A) (11)

Bel(A) = 1− Pl(Ā) (12)

Bel(Ā) = 1− Pl(A), (13)
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for any A ⊂ X [1]. With the help of the dual equations (10)–(13), belief can be
calculated if plausibility is known and vice versa. Another important property is
that the value of plausibility is always greater than or equal to the value of belief:

Pl(A) ≥ Bel(A) ∀A ⊂ X. (14)

3.3 Möbius representation

The conditions and properties for belief and plausibility measures are more straight-
forward to prove using a Möbius representation [13]. A Möbius representation
called a basic assignment can be used to characterise the body of evidence rep-
resented by a family of sets {A1, . . . AN} and the assignment is given to the sets
not the elements [1].

The basic assignment is denoted by m and can be characterised similarly to the
belief and plausibility measures: m : PX → [0, 1]. The basic assignment also has
to satisfy the following conditions that act as normalising factors [1]:

m(∅) = 0 (15)∑
A∈PX

m(A) = 1. (16)

The basic assignment can be used to compute the belief and plausibility measures
for any set Ai ∈ PX [1]:

Bel(Ai) =
∑

Aj⊆Ai

m(Aj) (17)

Pl(Ai) =
∑

Aj∩Ai 6=∅
m(Aj). (18)

An example for computing belief and plausibility and a visualisation of their
differences as outlined by equations (17) and (18) can be seen in Figures 1 and 2.
The grey boxes represent the sets that are included in each calculation. Examples
with more detail are demonstrated in Section 5.
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Figure 1: Computing belief Bel(A1). Figure 2: Computing Pl(A1).

Each of the functions Bel, P l and m has a similar definition and they can be
viewed as different representations of the same evidence. A belief measure is
the strongest expression of the likelihood that an element x belongs to each Ai,
whereas a plausibility measure is the weakest, as demostrated in Figures 1 and
2. The basic assignment expresses the likelihood that x belongs to each Ai with
collected evidence. Despite the different representations only one of the three
functions needs to be defined as the other two can be computed from any one of
them using equations (10)–(13), (17) and (18). For instance, the basic assignment
m can be computed using the belief function Bel:

m(Ai) =
∑

Aj⊆Ai

(−1)|AirAj |Bel(Aj), (19)

where |Ai r Aj| is the cardinality of the difference between the two sets [13].

3.4 Combining evidence

In many situations, there are multiple sources of information available, for example
multiple experts’ opinions on the same event. These multiple sources of information
need to be combined for further calculations and conclusions. However, there is
no single universally accepted method for combining different experts’ definitions
for either belief, plausibility or basic assignment based on collected evidence [1].

Combination rules are a type of aggregation method, meaning they are used to
summarise and simplify data coming from multiple sources. Some well-known
aggregation methods include different averages and minimum and maximum values.
In evidence theory, the multiple sources of information are assumed independent
of each other meaning that observations made by one source do not affect the
observations made by the other source. Additionally, an important feature for
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combination rules is associativity. Associativity means the ability to update an
already combined structure with new information. [7]

Three of the simplest rules for combination of evidence are presented in this
section. Examples about rules of combination are demonstrated in Section 5. The
following assumes that there are two sources of information with belief assignment
functions m1 and m2 and we define rules to combine them into an aggregate m1,2.
The combination of evidence from two different sources can be easily extended to
the case with multiple sources when the rule of combination used is associative [7].

3.4.1 Dempster’s rule of combination

Dempster’s rule of combination is a generalisation of Bayes’ rule and is formulated
as follows:

m1,2(Ai) =

∑
Aj∩Ak=Ai

m1(Aj)m2(Ak)

1− ∑
Aj∩Ak=∅

m1(Aj)m2(Ak) , (20)

when Ai 6= ∅ and m1,2(Ai) = 0, when Ai = ∅ [1]. The denominator is a
normalisation factor and can be interpreted to represent the conflict among the
evidence [7].

However, Dempster’s rule does not take into account the reliability of the source nor
other possibly relevant information [1]. For instance, different experts’ estimates
might not be equally reliable. Even though a reliability coefficient would be easy
to include in the combination rule, there is no standard way of calculating its
value [3].

Another problem with Dempster’s rule is the requirement of m1,2(∅) = 0. This
requirement implies that the combined opinion is also included in the accepted uni-
versal set, but the universal set might be incomplete, which means thatm1,2(∅) 6= 0
should be allowed [1]. The normalisation provided by this requirement and the
denominator’s effect of ignoring conflict can lead to counter-intuitive results, as
Zadeh pointed out in his articles [17] and [18].

3.4.2 Yager’s rule of combination

Yager’s rule of combination is a modification of Dempster’s rule and it handles
the contradiction caused by the denominator of equation (20). Yager’s rule of
combination introduces a ground probability mass assignment q1,2, which differs
from the basic assignment m by the normalisation factor and the mass assigned
to the universal set. Instead of the equality in the normalisation factor (15), the
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ground probability mass assignment for the empty set is q1,2(∅) ≥ 0. Yager’s rule
is defined by [14]:

q1,2(Ai) =
∑

Aj∩Ak=Ai

m1(Aj)m2(Ak) (21)

m1,2(Ai) = q1,2(Ai), when Ai 6= ∅ and Ai 6= X (22)
m1,2(X) = q1,2(X) + q1,2(∅). (23)

Even though the ground probability mass assignment can be used to any number
of pieces of evidence, it does not make Yager’s rule associative.

3.4.3 Inagaki’s rule of combination

Inagaki’s rule of combination combines Yager’s rule and Dempster’s rule based on
a combination parameter k [4]:

m1,2(Ai) = [1 + kq1,2(∅)]q1,2(Ai) when Ai 6= ∅ and Ai 6= X (24)
m1,2(X) = [1 + kq1,2(∅)]q1,2(X) + [1 + kq1,2(∅)− k]q1,2(∅) (25)
m1,2(∅) = 0. (26)

The combination parameter k is defined on the following range [1]:

0 ≤ k ≤ 1
1− q1,2(X)− q1,2(∅) . (27)

Inagaki’s rule becomes Yager’s rule, when k = 0, and Dempster’s rule when
k = 1/(1 − q(∅)). This means that Inagaki’s rule is associative only when it
corresponds to Dempster’s rule.

3.4.4 Other rules of combination

There are plenty of rules for combining evidence because none of them are both
associative and intuitive. The rules are either not completely associative or can
produce counter-intuitive or otherwise incomplete results. More about the different
rules can be found in Sentz’s report [7]. Additionally, Zadeh has pointed out
important issues of some of the earlier rules in his articles [17] and [18].
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4 Other frameworks

Evidence theory is only one possible framework for reasoning with uncertainty,
but it can be used as a framework for formulating other theories as well. This
section provides more information on some of the available frameworks for dealing
with uncertainty and their relation to evidence theory.

4.1 Possibility theory

Classical possibility theory is based on monotone measures called possibility and
necessity. A possibility measure is subadditive and describes alternatives in a set
according to given evidence. These singletons in a subset E of the universal set
X are possible and those outside E are not possible:

PosE({x}) =

1 when x ∈ E
0 when x ∈ Ē

(28)

for all x ∈ X [1]. The theory of graded possibilities extends the possibility measure
to fuzzy sets.

A possibility measure has very similar characteristics as the measures in evidence
theory. Wang and Klir [13] defined possibility theory in the following way:

Pos : PX → [0, 1] (29)

and that satisfies the following conditions:

Pos(∅) = 0 (30)
Pos(X) = 1 (31)
Pos(A) = sup

x∈A
r(x) for any nonempty set A ∈ PX , (32)

where r(x) is a possibility distribution. The possibility distribution maps the
universal set to the range [0, 1] and is defined as the possibility of the singleton
x: r(x) = Pos({x}) [5]. Equations (29), (30) and (31) are the same as for belief
and plausibility measures. Equation (32) describes the maxitive property of a
possibility measure, where supx∈A is supremum: the least upper bound, i.e. the
least element of X that is greater than or equal to all the elements in A [13].
Equations (31) and (32) also imply that possibility is normalised in the sense that
∃ x ∈ X such that r(x) = 1.

A necessity measure Nec is the dual measure of a possibility measure [1]:

Nec(Ai) = 1− Pos(Āi). (33)
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A necessity measure is defined similar to a possibility measure (equations (29)–
(31)), but the third condition is [5]: for any family {Ai|Ai ∈ PX , i ∈ I}, where I
in an arbitrary index set,

Nec

(⋂
i∈I

Ai

)
= inf

i∈I
Nec(Ai). (34)

Here infi∈I is infimum: the greatest lower bound and a dual of supremum [13].

Additionally, there is a link between the measures used in evidence theory and
the measures used in possibility theory. When the universal set X is finite, the
plausibility measure induced by a consonant basic assignment is a possibility
measure and the belief measure is a necessity measure [13]. The basic assignment
being consonant means that it focuses on a nest. Possibility theory can then also
be interpreted as a special case of evidence theory where the subsets of X are
required to be nested A1 ⊂ A2 ⊂ · · · ⊂ X. In addition to classical possibility
theory, there is a view of possibility theory which extends it to fuzzy sets [16].

4.2 Probability theory

The relationship between probability theory and evidence theory was described
briefly in Section 2.3. This section introduces the basics and highlights the use
of probability theory as a framework for dealing with uncertainty. Probability
theory’s relation to evidence theory is also discussed.

The first appearance of probability theory was in the 15th century but the cor-
respondence between Pascal and Fermat in the 17th century is better known by
mathematicians [10]. Probability theory has since been developed by many famous
mathematicians. This means that probability theory is significantly older than
evidence theory.

Classical probability is often defined as the number of occurrences of a certain
event divided by the number of repetitions of the experiment, also called relative
frequency:

P (X = x) = n

N
, (35)

where x represents the event of interest, X is a random variable describing for
example the observations of the event, n is the number of observations resulting in
the event of interest and N is the total number of observations [1]. The accuracy
of the estimate of the probability of an event described by relative frequency
increases with the number of repetitions. However, often it is not possible to make
multiple repetitions, for example when studying the failure probability of a dam.
This is why another definition of probability, the axiomatic definition, is often
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used. The probability of an event A of the universal set X is noted P (A) and
should satisfy the following conditions [1]:

P (A) ≥ 0 ∀A ∈ X (36)
P (X) = 1 (37)
P (A ∪B) = P (A) + P (B) for mutually exclusive events A and B. (38)

These conditions also imply that the probability has also the following features:

P (∅) = 0 (39)
0 ≤ P (A) ≤ 1 ∀A ∈ X. (40)

In the case of estimating probabilities from repeating experiments, there is usually
variation in the experiments themselves. Therefore, some uncertainty is involved.
Uncertainty achieves an important role when making decisions based on these
probabilities. Usually further assumptions are made in order to make the decision,
but these assumptions are often made without any actual knowledge on the
remaining system, but instead based on the properties of probability theory.
Hence this method is suitable only for situations involving aleatory uncertainty.

Bayesian probabilities are tools for extending the use of probability theory to
situations involving epistemic uncertainty. Commonly, engineering problems
involve both objective and subjective information. Epistemic uncertainty is
related to subjective information and is called prior knowledge. The combination
of both types of information is called posterior knowledge. These two types of
knowledge can be used for formulating the estimate for an event happening when
there is certain prior knowledge of events:

P (E) = P (A1)P (E|A1) + P (A2)P (E|A2) + · · ·+ P (An)P (E|An), (41)

where A1, A2, . . . , An represent the subjective information and E represents the
objective information [1]. This formulation is based on Bayes’ theorem and
P (E|Ai) denotes the probability of event E occurring given Ai. This formulation
can be used for computing the posterior probability as follows [1]:

P (Ai|E) = P (Ai)P (E|Ai)
P (A1)P (E|A1) + P (A2)P (E|A2) + · · ·+ P (An)P (E|An) . (42)

Even though this theorem can be used in situations involving epistemic uncertainty,
a lot of prior knowledge is needed and that is often not available.

The biggest difference between probability theory and evidence theory is the use
of sets instead of singletons in evidence theory [1]. This enables simpler reasoning
with incomplete information. The equality in the additivity property is also
removed in order to eliminate the need for further assumptions.
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An important feature to note between evidence theory and probability theory is
that the basic assignment in evidence theory maps the power set of X to the range
[0, 1], whereas probability theory’s probability assignment is a mapping from X
to the range [0, 1]. Moreover, the features presented by equations (37)–(39) are
similar to the features of belief and plausibility measures. If only singletons are
used, belief and plausibility measures collapse into a single measure which fulfils
the conditions of a probability measure.

4.3 Imprecise probabilities and fuzzy sets

There are several other frameworks or implementations for reasoning with un-
certainty and especially epistemic uncertainty. For example, theory of imprecise
probabilities or allowing the use of fuzzy sets or measures can be used when
modelling situations involving uncertainty [1].

The theory of imprecise probabilities is based on lower and upper probability
assignments and was developed by Walley [11]. It is a generalisation of probability
theory. Imprecise probabilities have many features similar to the measures used
in evidence theory. For instance, the lower and upper probabilities form a duality
and a Möbius representation can be used for imprecise probabilities [13]. More
about imprecise probabilities can be read from Walley’s work, for example article
[12].

Fuzzy sets were developed by Zadeh and are useful in situations involving uncer-
tainty as the membership in a fuzzy set is a matter of degree instead of a binary
value [1]. Regarding crisp sets, each item either belongs or does not belong to a
set as described by membership function values {0, 1}, whereas the membership
function of a fuzzy set can take values on the interval [0, 1]. This means also that
crisp sets are a special case of fuzzy sets. Fuzzy measures are defined with some of
the properties of fuzzy sets [1]. When it is difficult to define whether an element
belongs to a set or not, the fuzzy sets and measures become useful, as is often the
case in real world problems. Fuzzy sets are described in more detail in Zadeh’s
article [15] and in several books by Klir, for example “Fuzzy sets and fuzzy logic”
[6].
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5 Examples and applications

As belief and plausibility measures characterise the body of evidence at hand,
they can, in some applications, be interpreted as lower and upper limits on the
strength of evidence at hand [1]. Belief and plausibility can be assigned to sets, but
when there is enough information to assign them to singletons, their formulation
collapses to the classical probabilistic formulation [7]. This way, belief can be used
to develop a lower limit on probability of an event and plausibility to develop an
upper limit [1]. In other words, belief and plausibility define a range of acceptable
probabilities. This range can also be presented using only belief or plausibility
due to their duality [13].

This section provides examples of assigning the values for belief and plausibility
measures as well as examples that relate to real world problems. In addition to
examples to help understand the measures, applications for evidence theory are
presented. Both current applications and possible applications in the future are
discussed.

5.1 Examples

5.1.1 Computing belief and plausibility

In this example, the location of the epicentre of a possible earthquake is estimated
using belief and plausibility measures. There is data available on different experts’
estimates about the location of the epicentre and it acts as the body of evidence.
These estimates are used to estimate the likelihood that the epicentre is inside
a certain area. A certain area could be for example, a densely populated area
and in this case there are two areas of interest: A and B. The experts’ estimates
are both non-specific and conflicting with each other, as seen in Figure 3. Each
Ei stands for one expert’s estimate and there are estimates from a total of 15
different experts. [1]

In this case each expert is assumed to be equally credible and reliable [1]. This
means that the weight of evidence assigned to each expert’s estimate Ei = 1/15.
With this information, it is possible to count values for belief and plausibility that
the epicentre is inside an area of interest. For the value of belief, only estimates
completely inside the area of interest are calculated, as seen in equation (17).
For belief we get Bel(A) = 2/15 = 0.13 and Bel(B) = 1/15 = 0.07. As seen
in equation (18), all estimates intersecting with the area of interest are used for
calculating for plausibility: Pl(A) = 5/15 = 0.33 and Pl(B) = 3/15 = 0.2.

The values computed for belief and plausibility can then be used to construct
estimates of respective probabilities. The intervals achieved for the probability of
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Figure 3: Expert’s estimates of the locations of the epicentre [1].

the epicentre being in area A is 0.13 ≤ P (A) ≤ 0.33 and for area B the interval is
0.07 ≤ P (A) ≤ 0.2.

5.1.2 Using rules of combination

For the first example of using rules of combination, assume a case of target
identification based on data from multiple sensors. In this case there are 100
possible target types denoted as the universal set X = {x1, x2, . . . , x100}. Sensor 1
can identify only 40% of these 100 target types and the source indicates that a
target type belonging to this 40% has entered the observed area. Assume these
40% of target types are A = {x1, x2, . . . , x40}. Another sensor (sensor 2) can
identify an additional 10 other target types, defining B = {x1, x2, . . . , x50}. Based
on the evidence from sensors 1 and 2, values presented in Table 1 can be assigned.
[1]

Using a rule of combination and the values presented in Table 1, a combined body
of evidence can be computed. For simpler calculation, assume only two target
types are involved, denoted x1 and x2. Suppose that sensor 1 provides a support
of 0.6 that a sensed target is of type x1 and sensor 2 provides a support of 0.95
that it is of type x2. The combined body of evidence for the two different targets
using Dempster’s rule of combination (20) is shown in Table 2.

Calculating values for the combined body of evidence m1,2 with Yager’s rule
of combination (21)–(23) very different values are achieved: m1,2(x1) = 0.03,
m1,2(x2) = 0.38 and m1,2(X) = 0.59 [13]. The difference is due to the large
conflict between the support provided by the two sensors.
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Table 1: Evidence for target identification [1].

Evidence Assignment Belief Plausibility Probability
(mi) (Beli) (Pli) (Pi)

(1) Sensor 1
Event A 0.4 0.4 1 [0.4, 1]
Ā 0 0.6 [0, 0.6]
Universal set X 0.6 1 1 [1, 1]

(2) Sensor 2
Event B 0.5 0.5 1 [0.5, 1]
B̄ 0 0.5 [0, 0.5]
Universal set X 0.5 1 1 [1, 1]

Table 2: Combined evidence for target identification [1].

Sensor 1 Sensor 2
Evidence (m1) (m2) (m1,2) (Bel1,2) (Pl1,2) (P1,2)
Event {x1} 0.6 0 0.07 0.07 0.12 [0.07, 0.12]
Event {x2} 0 0.95 0.88 0.88 0.93 [0.88, 0.93]
Universal set X 0.6 0.05 0.05 1 1 [1, 1]

Another example of a rule of combination is about the counter-intuitive results
Dempster’s rule can give [7]. Suppose a situation of medical diagnosis for a patient.
The patient is seen by two physicians who have different opinions on which medical
condition the patient has based on the symptoms. The first doctor believes that is
is very likely that the patient has meningitis and that there is a small chance it is
a brain tumour instead, with probabilities of 0.99 and 0.01 respectively. The other
doctor believes that the symptoms are a result of a concussion with a probability
of 0.99, but there is a 0.01 probability of a brain tumour. Using Dempster’s rule
of combination, m1,2(brain tumour) = 1, so based on equations (17) and (18) the
combined probability of a brain tumour is 1, even though both doctors considered
it very unlikely.

5.2 Current applications

Evidence theory has been used mainly as a tool in decision making when epistemic
uncertainty is involved. It was introduced as an alternative approach to multi-
criteria decision making and especially the analytical hierarchy process in an
article by Beynon et al. [2]. Some of the current applications of evidence theory
are with artificial intelligence and expert systems, especially as a technique for
modelling reasoning under uncertainty [3].



18

Evidence theory has also been used in face recognition, statistical classification,
target identification and other areas related to classification problems with at
least some success [2]. There are applications in fields where cognitive aspects
are related to the uncertainty involved. Some of these fields include biology and
meteorology [3]. In addition to biology, also the medical field has had some success
with applying evidence theory, for example in medical diagnosis [2].

5.3 Possible future applications

The applications of evidence theory related to computer systems might become
more common in the future as the computational power continues to increase.
The increasing computational power enables also applications in other fields, as
more and more complex systems can be solved using mathematical tools.

A natural area for applying evidence theory would be among law and crimes, as
the evidence involved there is not only on singletons. The theory could also be
used in the field of biology for example for identification or classification of new
species. According to Fioretti [3], social sciences is an obvious candidate for future
applications, but the lack of mathematical expertise within that field is a limiting
factor. Additionally, the medical field with its vast complexity probably offers
multiple application subjects in the future.

The tools this theory provides could also be used for locating sunken ships or fallen
aeroplanes with the help of satellite pictures. Basically, there are many suitable
fields for applying evidence theory, especially in the fields involving decision making
and evaluation made by humans.
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6 Summary

The objective of this thesis was to provide a concise and comprehensible tutorial
on evidence theory as a framework for reasoning with uncertainty. Despite the
fairly big amount of literature related to the theory, there was a lack of a simple
and compact introduction to it.

For historical context the creation of evidence theory and the time before it were
introduced. Also, to help understand the motive for creating and using this
theory, an explanation of its framework for modelling uncertainty was included.
Additionally, there was a need for briefly explaining different types of uncertainty
and the mathematical modelling involved to get the hang of the problem this
theory was meant to solve.

One of the main parts was the mathematical formulation of the theory and its com-
ponents. The concepts of belief and plausibility measures used for describing the
body of evidence in a mathematical notation were introduced, as well as a Möbius
representation for simpler calculations. The main aspect to be still improved
– combining evidence from multiple sources – was also discussed. Additionally,
examples for using the mathematical formulation for solving real-life problems
and the issues with rules of combination were displayed.

Another important aspect of this thesis was to compare evidence theory to other
frameworks created for modelling uncertainty. This was important because prob-
ability theory has been used for these problems for a long time and evidence
theory has a straight connection to it. In addition to probability theory, both
the connection to imprecise probabilities and fuzzy sets and evidence theory as a
framework for formulating them was introduced. Also, a different yet very similar
framework, possibility theory, was presented.

In addition to the development of rules of combination, the prospects of evidence
theory were discussed via applications. Some of the current fields of application
as well as possible application areas in the future were viewed. Increasing compu-
tational power was presented as the main reason for being able to apply evidence
theory for more and more situations in the future.

Evidence theory is also subject matter of a number of conference series, for instance:

• UAI: Conference on Uncertainty in Artificial Intelligence

• IPMU: International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems

• BELIEF: International Conference on Belief Functions.
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A Yhteenveto (A summary in Finnish)

Monet tosielämän tilanteet sisältävät epävarmuutta. Esimerkiksi alkavan päivän
säätä ei voida tietää varmasti. Meteorologit muodostavat ennusteensa statistiikkaan
ja todennäköisyyksiin nojautumalla. Ne puolestaan nostavat tietonsa monista eri
lähteistä. Monet uskovatkin todennäköisyysteorian olevan paras tai jopa ainoa
keino tälläisten epävarmuutta sisältävien tilanteiden mallintamiseen. Todisteteoria
(engl. evidence theory) tarjoaa toisen menetelmän epävarmuuden käsittelyyn.

Todisteteoriasta on melko paljon kirjallisuutta, mutta selkeä ja tiivis johdatus
aiheeseen puuttuu. Monet teokset käsittelevät vain jotakin todisteteorian osa-
aluetta, joten teoriasta kokonaisuudessan kertovia teoksia on vähän. Teoksissa
vaihtelevat lisäksi matemaattisten ilmausten ja merkintöjen määrä ja laatu.

Tämä opinnäytetyö tarjoaa helposti ymmärrettävän ja ytimekkään katsauksen
todisteteoriaan. Katsaukseen sisältyy teorian taustan lisäksi esittely sen matemaat-
tisesta perustasta. Lisäksi ymmärtämisen helpottamiseksi se käsittää vertailua
muihin vastaaviin menetelmiin sekä havainnollistavia esimerkkejä. Työ sisältää
myös todisteteorian nykyisten ja mahdollisien tulevaisuuden sovelluskohteiden
käsittelyä.

Todisteteoria tarjoaa apuvälineitä epävarmuuden käsittelylle. Se on kehitetty 1960-
ja 1970-luvuilla, ja teoriaa kutsutaankin joskus kehittäjiinsä mukaan Dempsterin–
Shaferin teoriaksi. Jo ennen todisteteoriaa muun muassa taloustieteilijä G.L.S
Shackle oli kehittänyt vastaavanlaisen teorian, mutta formaalin matemaattisen
muotoilun puutteen vuoksi matemaatikot eivät kiinnostuneet siitä.

Epävarmuutta on kahdenlaista: stokastista ja subjektiivista. Stokastinen epävar-
muus on systeemin satunnaisuutta, kun taas subjektiivinen epävarmuus johtuu
tiedon puutteesta. Tiedon puute liittyy usein tilanteisiin, joissa saatavilla oleva tie-
to perustuu esimerkiksi asiantuntijan lausuntoon. Todisteteoria kehitettiin avuksi
erityisesti tilanteisiin, joissa esiintyy paljon subjektiivista epävarmuutta. Todennä-
köisyysteoriaa on käytetty molempien epävarmuustyyppien mallintamiseen, mutta
edes subjektiivisen epävarmuuden huomioon ottava bayesiläinen todennäköisyys-
teoria ei sovellu siihen kovin hyvin.

Todisteteoriassa ‘todennäköisyyksiä’ asetetaan joukoille yksittäisten alkioiden
sijaan. Nämä joukot voivat olla minkä tahansa kokoisia, eikä tietoa kaikista alkioista
tarvita. Näitä asetettavia arvoja kutsutaan uskomuksen asteiksi, ja ne pohjautuvat
käsillä oleviin todisteisiin. Yksi todisteteorian vahvuuksista onkin toimiminen
epätäydellisellä tai puutteellisella informaatiolla niin, että edes lisäoletuksia ei
tarvita.

Matemaattiset mitat nimeltä uskomus (engl. belief) ja uskottavuus (engl. plausibi-
lity) muodostavat perustan todisteteorialle. Ne voivat saada arvoja nollan ja yhden
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väliltä ja toimivat kuvauksina todisteiden vahvuudesta. Myös erästä Möbiuksen
kuvausta voidaan käyttää vastaavasti. Nämä kolme funktiota kertovat samoista
todisteista hieman eri tavalla, ja muut kaksi voidaan laskea, kun yksi tunnetaan.
Kaikilla kolmella funktiolla on samoja ominaisuuksia, ja ne vastaavat osittain to-
dennäköisyysteoriassa käytettyä todennäköisyyden mittaa. Tarkasteltavan joukon
uskomuksen mitta voidaan määritellä kaikkina sen sisältävinä joukkoina, kun taas
uskottavuuden mittaan lasketaan myös osittain ulkopuolelle jäävät joukot.

Yksi todisteteorian tärkeistä osista on todisteiden yhdistely. Monissa tilanteis-
sa tarjolla on useammasta eri lähteestä tietoa, joka koskee samaa asiaa. Tällöin
uskomuksia tai uskottavuuksia tarvitsee yhdistellä kokonaiskuvan aikaansaamik-
seksi. Ei kuitenkaan ole olemassa yhtä yleismaailmallisesti hyväksyttyä sääntöä
yhdistelylle. Yhdistelymenetelmälle tärkeä ominaisuus olisi sen kyky päivittää
olemassa olevaa tulosta uudella informaatiolla. Dempsterin sääntö yhdistelylle
on ensimmäinen kehitetty menetelmä ja sillä on tämä ominaisuus. Dempsterin
sääntöön liittyy kuitenkin muita ongelmia, kuten joskus järjenvastaiset tulokset.
Nämä muut ongelmat on helppo korjata pienillä muokkauksilla, mutta samalla
edellä mainittu ominaisuus menetetään. Tutkimusta eri yhdistelykeinojen heik-
kouksista on tehty jonkin verran ja lisäksi on kehitetty paljon uusia menetelmiä.
Tästä huolimatta ei ole onnistuttu luomaan erittäin hyvää sääntöä todisteiden
yhdistelylle.

Muitakin malleja epävarmuuden kuvaamiselle on kehitetty. Näistä tunnetuin on to-
dennäköisyysteoria, mutta se ei muun muassa informaatiovaatimuksiensa puolesta
sovi subjektiiviselle epävarmuudelle kovin hyvin. Todisteteorian ja todennäköisyys-
teorian välillä on kuitenkin yhteys: mikäli uskomukset ja uskottavuudet määrätään
yksittäisille alkioille joukkojen sijaan, ne supistuvat yhdeksi arvoksi, joka vastaa to-
dennäköisyysmittaa. Erityisesti subjektiiviselle epävarmuudelle on kehitetty myös
mahdollisuusteoria (engl. possibility theory), joka onkin ominaisuuksiltaan hyvin
samanlainen kuin todisteteoria. Lisäksi tietyillä ehdoilla mahdollisuusteoriassa
käytetyt mitat ja todisteteorian mitat vastaavat täysin toisiaan.

Todisteteorialla on monia sovelluskohteita. Sitä on käytetty pääasiassa päätöksen-
teon apuvälineenä tilanteissa, joissa on mukana subjetiivista epävarmuutta. Sitä
on sovellettu esimerkiksi monikriteerisessä päätöksenteossa ja erityisesti analyytti-
sessä hierarkiaprosessissa apuvälineenä. Muita onnistuneita sovelluskohteita löytyy
tietokoneohjelmista, etenkin tekoälyn kehityksestä. Todisteteoriaa on sovellettu
myös osin menestyksekkäästi luokitteluun, esimerkiksi kasvon- ja hahmontunnis-
tukseen sekä tilastolliseen luokitteluun.

Sovelluksia todisteorialle löytyy käytännössä kaikilta aloilta, joihin liittyy ihmisten
tekemiä analyysejä. Tällaisia aloja ovat muun muassa biologia ja meteorologia.
Lisäksi lääketiede on hyvin todisteteorian työkaluille soveltuva ala, ja teoriaa onkin
jo sovellettu muun muassa taudinmäärityksessä. Lääketieteestä löytyy varmasti
sopivia sovelluskohteita myös jatkossa.
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Tulevaisuudessa todisteteorialle löytyy todennäköisesti paljon lisää sovelluskohteita.
Tietokoneiden alati kasvava laskentateho mahdollistaa yhä monimutkaisempien
systeemien mallintamisen matemaattisin keinoin. Tällöin myös todisteteoriaa on
mahdollista käyttää yhä suurempien systeemien mallintamiseen. Laskentatehon
kasvusta huolimatta esimerkiksi lääketieteen ongelmia on jatkossakin kovin työlästä
mallintaa muilla epävarmuutta mallintavilla menetelmillä. Luokittelun ja biologian
sovellukohteista voidaan johtaa yhteys esimerkiksi uusien eliölajien luokitteluun.
Muita suuria tietomääriä sisältäviä sovelluskohteita voisivat olla myös uponneiden
alusten paikannus satelliitikuvilla.

Laki ja rikokset ovat luonnollisia sovellusaloja todisteteorialle, sillä niissä usein
todisteet liittyvät suuriin kokonaisuuksiin. Myös yhteiskuntatieteistä löytyisi so-
velluskohteita ihmisläheisyyden takia, mutta matemaattisen ammattitaidon puute
alalla on rajoittava tekijä. Muiltakin aloilta, erityisesti päätöksentekoon liittyviltä
ja ihmisten tekemiä arvioita sisältävilä aloilta, löytyy sovelluskohteita. Todisteteo-
riaa voi varmasti soveltaa näiden lisäksi muillakin tieteenaloilla.

Todisteteoria soveltuu moniin epävarmuutta sisältäviin tilanteisiin, joissa on tähän
asti käytetty todennäköisyysteoriaa apuvälineenä tai joihin ei ole ollut mahdollista
soveltaa matemaattista menetelmää ollenkaan. Todisteteoriassa on myös vielä
kehitettävää, erityisesti yhdistelysäännöissä. Mikäli tutkimuksissa tähän asti löy-
detyt asiat osataan ottaa huomioon, teoria soveltuu kuitenkin hyvin käyttöön jo
nykyään.
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