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Almost half of the 7200 global organizations interviewed by PwC reported that they had been victim 
of a fraud. Due to advancing technology, financial crimes are becoming harder to notice. To address 
the need for financial crime models, we build time series models, which in future use would be able 
to predict future fraud and payment fraud rates in Finland. In addition to the time series of the 
crimes, we use fraction of Finnish households who are getting into debt and the fraction of the 
households that are using their savings as exogenous variables to provide additional information to 
our models. With the Box-Jenkins method, we are producing six different time series models - one 
for each time series and two models with exogenous variables. Diagnostics will tell us if the models 
are considered as good models and the results will show the impact that the financial situation of 
Finnish households make to the models. 
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Tiivistelmä 

 
Työntekijä ostaa itselleen tuotteita yrityksen luottokortilla. Rakennuttaja väärentää kirjanpitoa, jol-
loin yrityksen kustannukset nousevat. Kassatyöntekijä ohjaa yrityksen rahavirtoja väärennetyille ti-
leille. 
 
Lähes puolet PwC:n haastattelemasta 7200 kansainvälisestä yrityksestä raportoi joutuneensa pe-
toksen uhriksi. Toisen puolikkaan on selvitettävä, ovatko he välttyneet petoksilta vai yksinkertai-
sesta eivät vain tiedä organisaatiossa tapahtuvista petoksista. Kaikkia petoksia ei voida estää, mutta 
niiden riskiä voidaan vähentää tehokkaalla ja toimivalla sisäisellä valvonnalla. Kuitenkin, kehitty-
vän teknologian takia talousrikoksia on entistä vaikeampi huomata, jolloin matemaattisten talous-
rikosmallien tarve kasvaa entisestään. Hyvät matemaattiset mallit pystyvät käsittelemään huomat-
tavasti laajempia aineistoja kuin ihmiset ja selvittämään monimutkaisia riippuvuussuhteita, jotka 
jäisivät ihmisiltä muuten huomiotta. 
 
Tässä työssä rakennamme aikasarjamalleja, jotka mallintavat petosten ja maksuvälinepetosten 
määriä Suomessa. Aikasarjamallit sopivat työhön hyvin, koska käsiteltävä aineisto koostuu aikasar-
joista, eli havainnoista, jotka ovat liitetty aina tiettyyn päivämäärään. Aikasarjamallien avulla 
saamme selville petosten riippuvuudet eri aikajaksoilta. Rikosten lukumäärien lisäksi käytämme 
kotitalouksien taloudellista tilannetta tuomaan lisää informaatiota malleihin. Taloudellisesti huo-
nossa asemassa olevat kotitaloudet saattavat helpommin joutua esimerkiksi internetissä tehtävien 
petoksien uhreiksi, missä ihmisiltä usein pyydetään sijoituksia lupaamalla suuria tuottoja tulevai-
suudessa. On myös mahdollista, että samat kotitaloudet saattavat tehdä enemmän petoksia pääs-
täkseen pois huonosta taloudellisesta asemastaan. 
 
Luomme kuusi aikasarjamallia Box-Jenkins-menetelmällä – yksi jokaista neljää aikasarjaa kohden 
ja kaksi ulkoisilla muuttujilla. Box-Jenkins-menetelmä koostuu kolmesta vaiheesta. Näistä ensim-
mäisessä vaiheessa määritellään mallin peruspiirteet, toisessa vaiheessa mallin parametrejä sovite-
tan sopivaksi ja viimeisessä vaiheessa tarkastellaan mallin jäännöstermejä. Mallin jäännöstermien 
tarkastelulla selvitetään, kuinka hyvä malli on, ja niiden avulla voimme myös päätellä, toiko kotita-
louksien taloudellinen tilanne malleihin lisää informaatiota. Jos mallit eivät ole tarpeeksi hyviä, 
toistetaan Box-Jenkins-menetelmän kolme vaihetta uudestaan, kunnes tarpeeksi hyvä malli on 
luotu. 
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1 Introduction

In PwC's 2018 Global Economic Crime and Fraud Survey, 49% of 7200 global
organizations had been a victim of a fraud [18]. It is unlikely that the other
half have had complete success in preventing frauds, since the same report
points out that too few companies are fully aware of the fraud risk that they
face. According to EY's 15th Global Fraud Survey, "the transformation of
business models due to the rapid evolution of digital technology is making
the landscape of fraud, bribery and corruption risk even more complex." [5]
More complex risks may need more complex solutions to forecast and prevent
�nancial crimes, such as frauds. For example, machine learning algorithms
have been introduced succesfully to enhance anti money laundering detec-
tion [11]. It is also worth to mention that �nancial crimes seldom occur at
random, i.e., there is always an external causality linked to it. Therefore,
it is important to consider more variables than the crimes themselves when
analysing �nancial crimes.

A time series is a set of naturally ordered and equally spaced data points,
that describes a quantitative phenomenon. Time series analysis comprehends
methods to understand time series data. While time series analysis have
wide range of applications, one of the main goals is to forecast future values
based on previously observed values [10]. Various �elds of research, such
as business, engineering, environometrics, economics, medicine, politics and
social sciences, have lots of possible applications for time series analysis.

In this thesis we will analyse the time series of frauds committed in Fin-
land and build an Autoregressive Integrated Moving Average with Explana-
tory Variable model, that in further use, would be able to forecast future
fraud rates. A time series analysis will not only focus on particular numbers
of frauds, but also in the order they appear [13] to unveil complex structures
and dependencies the observations have.

Individual's wealth may a�ect his or hers behaviour when it comes to ratio-
nalizing shady decision for personal gain - whether it was becoming a victim
of internet scam or committing a payroll fraud. Thus, the status of Finnish
households' wealth is added to the model as an exogenous variable, in order
to examine if distribution of wealth had an impact on frauds.
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2 On �nancial crimes and household wealth

2.1 Financial crimes

The two �nancial crimes to be studied in this thesis are 1) fraud & petty
fraud and 2) payment frauds, petty payment frauds & preparation of payment
frauds. For simplicity, from this point on the concept of fraud will include
both fraud and petty fraud and the concept of payment fraud will include
payment frauds, petty payment frauds and preparation of payment frauds.

The data is gathered from Statistics Finland PX-Web-database [14]. Both
reports of o�ences and already convicted felonies are included in the data
set and there are no distinctions made between these two attributes. It is
important to keep in mind that, naturally, neither all reported o�ences or
convicted crimes happen within the same month that they are reported to or
by the police. In this thesis, the time di�erence is assumed to be constant.
In Section 5, we will discuss the e�ect this has on the model.

Fraud and payment fraud are chosen to be studied because they represent the
majority of �nancial crimes committed in Finland from 01/2009 to 09/2017
(Figure 1). In addition, the amount of both crimes has been increasing in
Finland which makes them an interesting subject to study.

Both time series show a linear trend (Figure 2). Moreover, the time series of
payment frauds had a spike from mid-2015 to late-2016.
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Figure 1: Count of frauds, means of payment frauds and other �nancial
crimes in Finland from 01/2009 to 09/2017.

Figure 2: Time series of frauds and payment frauds from 01/2011 to 09/2017.

2.2 Households' wealth

Households' wealth can be determined with respect to many objective vari-
ables. We will take a more subjective approach of household wealth by quan-
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tifying it according to household's own opinion. The Finnish consumer survey
asks individuals about their households �nancial situation on the time of the
survey. The Statistics of Finland reports monthly the fraction of households
falling into these categories [15]. The answer options are following:

• Can save a lot

• Can save a little

• Can barely make ends meet

• Have to use savings

• Getting into debt

• Don't know

Analysing suspicious change in the behaviour of people is one method for
detecting fraud [6]. Bad �nancial situation may force individuals to com-
mit �nancial crimes, such as fraud or means of payment frauds, in order to
maintain current living standards. It is also possible that people in strained
circumstances are easier targets to scams, which often o�er quick �nancial
gains for the capital invested. Thus, the two chosen time series to be studied
are the fraction of households who have to use savings and the ones who are
getting into debt.

From 01/2011 to 09/2017, the fractions of the savings using & debt acquiring
households range from 2, 6% to 6, 8% and from 1, 1% to 3, 8%, respectively
(Figure 3). Both categories represent minority in the survey. However, due to
the nature of those categories, �uctuations in chosen categories may provide
information to frauds.
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Figure 3: Time series of fractions of the households who are getting into debt
and using their savings from 01/2011 to 09/2017.

3 Stationary time series models

3.1 Stationary time series

In time series analysis, stationarity of the time series is important since it
implies that statistical properties of the time series remain the same over
time [16, Chapter 2.2] and thus, all observations are comparable with each
other.

In general, there are two de�nitions of stationarity: strict stationarity and
weak stationarity. A time series xt is called strictly stationary if and only if
the distribution of (xt1 , ..., xtn) and (xt1+h, ..., xtn+h) is the same for all sets
of indices {t1, ..., tn} and for all integers h [16, Chapter 2.2].

The time series xt is called weakly stationary if

• E[xt] is constant,

• V ar(xt) is constant and �nite,

• ∃ γk = Cov(xt, xt+|k|) for any t, k.
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3.2 Stochastic time series models

In many cases, the values of time series xt can be generated from series of
random variables εt, εt−1, εt−2..., which are random drawings from a �xed
distribution, usually assumed normal and having mean 0 and variance of σ2.
The so called white noise process is transformed to the process xt by a linear
�lter, which is the weighted sum of past white noise [1, Chapter 1.2.1]:

xt = εt + ψ1εt−1 + ψ2εt−2 + ... (1)

where
∑∞

j=0 |ψj| <∞.

From Equation (1) we can derive that, under suitable conditions, xt can be
represented as the weighted sum of past values of xt plus an instance of white
noise:

xt = εt + π1xt−1 + π2xt−2 + ... (2)

In both cases, the representations of xt have in�nite number of parameters
ψ and π. This is not practical, which is why two models are introduced:
moving average (MA) model and autoregressive (AR) model. An MA(q)
process is a special case of process de�ned by Equation (1), where only the
�rst q parameters are non-zero. The model is de�ned as

xt = εt −
q∑
j=1

θjεt−j. (3)

An AR(p) process is a special case of process de�ned by Equation (2), where
only the �rst p parameters are non-zero. The model is de�ned as

xt = εt +

p∑
j=1

φjxt−j. (4)

A more common way to represent AR- and MA-models is through transfer
functions

φ(B) = 1− φ1B − φ2B
2 − ...− φqBq (5)

θ(B) = 1− θ1B − θ2B2 − ...− θpBp, (6)

where Bxt = xt−1, B
2xt = xt−2 and so on.

This allows us to represent AR-model as

φ(B)xt = εt (7)
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and MA-model as
xt = θ(B)εt (8)

Unlike Equation (1) and (2), �nite MA(q) process cannot be represented
as �nite AR(p) process and correspondingly, �nite AR(p) process cannot
be represented as �nite MA(q) process [1, Chapter 3.1]. Sometimes it is
necessary to include both MA and AR models to an autoregressive moving
average (ARMA) model. An ARMA(p,q) process is de�ned as

φ(B)xt = θ(B)εt. (9)

It is desired that the time series are stationary for MA, AR and ARMA
models (see Subsection 3.1). If the time series is not stationary, e.g., shows
trend, it is likely that one cannot obtain satisfying results with these three
models. Di�erencing may be needed, since the dth di�erence of the time
series can be stationary. In such case, an autoregressive Integrated Moving
Average (ARIMA) model is needed. An ARIMA(p,d,q) process is de�ned as

θ(B)∇dxt = φ(B)εt, (10)

where ∇ = 1−B is the di�erencing operator [1, Chapter 4.1].

In cases where percentage changes of time series show non-stationary sta-
bility, logarithm operations may be needed to obtain stationary time series,
since

∇log(xt) = log(xt)− log(xt−1) = log

(
xt
xt−1

)
≈ xt − xt−1

xt−1
. (11)

3.2.1 Autocorrelation and Ljung-Box test

The stationarity of time series xt assumes that covariance between obser-
vations xt and xt+k must be the same for any t. This covariance is called
autocovarince with lag k and is de�ned as

γk = Cov(xt, xt+k). (12)

Furthermore, the autocorrelation is standardized measure of the dependence
of two observations xt and xt+k, corresponding to the autocovariance function
divided by the variance of the process [16, Chapter 2.9]:

ρk =
γk
γ0
. (13)
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Autocorrelation function (ACF) can indicate which ARMAmodel �ts best for
the chosen time series, since di�erent ARMAmodels show di�erent behaviour
of autocorrelation function. For AR models ACF decreases exponentially as
the lag grows, whereas for MA models, cuts out when the lag grows. ARMA
models have a mixture of both, depending on the values of parameters p and
q.

In addition to the autocorrelation function, partial autocorrelation function
shows information of the dependency structure of a time series. The partial
autocorrelation function αk at lag k can be seen as the correlation between
xt and xt−k, adjusted with the observations in between the two variables.
Moreover, it is the correlation of the two residuals obtained after regress-
ing xt and xt−k on the intermediate observations [2, Chapter 3.4]. Partial
autocorrelation function is de�ned by

αk = Corr(xt, xt−k|xt−1, ..., xt−k+1). (14)

Ljung-Box test can be used to test if the autocorrelations are signi�cant. The
test is de�ned as

Q = n(n+ 2)
h∑
k=1

ρ2k
n− k

, (15)

where n is the sample size, ρk is the sample autocorrelation at lag k and h is
the number of lags being tested [12]. The null hypothesis is that data points
in the time series are independently distributed, i.e. the value Q satis�es the
inequality

Q > χ2
1−α,h, (16)

where χ2
1−α,h is the α quantile of the χ2-distribution with h degrees of freedom

[4]. Ljung-Box test tests for white noise. Thus χ2-distribution is used, since
it is the distribution of a sum of squares of independent standard normal
random variables.

Ljung-Box test is commonly used in ARMA modeling. The test is applied
to the residuals of a �tted ARMA model, and therefore the null hypothesis
is that the residuals from the ARMA model have no autocorrelation. If the
correlations of the residuals are zero for signi�cance level α, the model can
be seen as valid.

3.2.2 Augmented Dickey-Fuller test

The Augmented Dickey-Fuller test (ADF) is used to test for the presence
of a unit root in the time series sample. The Augmented Dickey-Fuller test
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incorporates three types of linear regression models: with no drift or linear
trend (17), with drift but no linear trend (18) and with both drift and trend
(19) [3, Chapter 4.4]:

Dxt = αxt−1 +
k∑
i=1

βiDxt−i + εt (17)

Dxt = αxt−1 +
k∑
i=1

βiDxt−i + εt + µ (18)

Dxt = αxt−1 +
k∑
i=1

βiDxt−i + εt + µ+ δt (19)

where D is an operator of �rst order di�erence, εt is an error term, µ is a
drift term and δt is a linear trend term.

The Augmented Dickey-Fuller test statistic is de�ned as

ADF =
α̂

S.E(α̂)
, (20)

where α̂ is an generalized least squares estimate for linear regression's α and
S.E(α) its standard error [8].

The null hypothesis in the test is that α = 0, i.e. xt−1 does not provide any
information to the change in xt besides the information in the past terms.
Under the null hypothesis, we conclude that there is an unit root presence
and thus, we have a non-stationary times series. Therefore, in order to have a
stationary time series, the p-value has to be less than the chosen signi�cance
level. The p-value is calculated by interpolating the test statistics from the
corresponding critical values tables [7]. The null hypothesis of a unit root is
valid under a very general set of assumptions that goes far beyond the linear
AR(∞) process assumption typically imposed [17].

4 Modelling of frauds

In order to �nd the models that �t best to the four time series, we used
the Box-Jenkins method [1]. The method is an iterative approach to build
ARIMA models, which is based on identi�cation, estimation and diagnostics.
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The �rst step (identi�cation) was to assess whether time series is stationary,
and if not, obtain stationary time series through various operation (See Sec-
tion 3.2). After that, we identi�ed the parameters q and p of an ARMA
model. In the second step (estimation), we estimated values for the parame-
ters of the transfer functions. This was done by using the forecast package
in R. Finally, we did diagnostics to how good the obtained models were.

For clarity, the notation of the four time series were

X1,t = Time series of fraud,

X2,t = Time series of payment fraud,

X3,t = Time series of the fraction of households who have to use savings,

X4,t = Time series of the fraction of households who are getting into debt.

We built one ARIMA model for each time series and one ARIMAX model for
both X1,t and X2,t, where the exogenous variables were X3,t and X4,t. The
ARIMA models for X1,t and X2,t gave us a baseline, to which the ARIMAX
models were compared.

4.1 Identi�cation of ARMA models

As discussed in Section 3.1, stationarizing the time series was crucial, since
it made the observations comparable with each other due to constrains sta-
tionarity enforces on them.

X1,t, X3,t andX4,t (Figures 2 and 3) showed a linear trend, indicating that the
time series were not stationary. First order di�erence represented the time
series to look stationary, i.e., the time series had constant means & �nite and
constant variances (Figures 15, 17 and 18). An ADF test was ran on both
the original and once di�erenced time series to see if the time series were
stationary and how they compared with the original time series. The test
results (Tables 4, 5 and 6) showed that, for all three time series, the original
time series were not stationary, but once di�erenced were. Therefore, the
time series to be used in the models were

w1,t = ∇X1,t, (21)

w3,t = ∇X3,t, (22)

w4,t = ∇X4,t. (23)
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X2,t was a more challenging time series to stationarize, since number of pay-
ment frauds committed in Finland had a huge spike during mid-2015 to
late-2016 , where number of crimes were twice as much compared to other
examined time periods (Figure 2). A �rst order di�erence was not simply
enough to smooth the spike, but second order di�erence represented the time
series stationary (Figure 4). For the original time series, the p-values from
ADF test ranged from 0.30 to 0.71, while for the second order di�erenced
time series, all p-values were 0.01 (Table 1), i.e., the twice di�erenced X2,t

was stationary.

We also tried logarithmic transformations on the time series, but concluded
that the second order di�erence performed better. Thus, the process to be
used in the model was

w2,t = ∇2X2,t. (24)

Figure 4: X2,t and ∇2X2,t.
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Table 1: ADF-test results of original and stationarized time series of means
of payment frauds.

Original Stationarized
Lag ADF P-value Lag ADF P-value

No drift no trend

0 -0.70 0.43 0 -10.28 0.01
1 -0.64 0.45 1 -6.46 0.01
2 -0.61 0.46 2 -5.26 0.01
3 -0.64 0.45 3 -4.36 0.01

With drift no trend

0 -1.89 0.37 0 -10.23 0.01
1 -1.95 0.35 1 -6.43 0.01
2 -1.90 0.37 2 -5.24 0.01
3 -2.08 0.30 3 -4.33 0.01

With drift and trend

0 -1.76 0.67 0 -10.31 0.01
1 -1.75 0.68 1 -6.55 0.01
2 -1.67 0.71 2 -5.44 0.01
3 -1.88 0.62 3 -4.41 0.01

With stationary processes, next step was to analyse autocorrelation and par-
tial autocorrelation functions for clues about the orders of p and q for our
ARMA models (Subsection 3.2.1). For w2,t, the autocorrelation and partial
autocorrelation functions indicated MA(1) model due to a spike at lag = 1 in
autocorrelation function and exponential decrease in partial autocorrelation
function (Figure 5). Since w2,t = ∇2X2,t (Equation 24), the �nal ARIMA
model for payment frauds is IMA(2,1).
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Figure 5: Autocorrelation and partial autocorrelation functions of ∇2X2,t.

For the three remaining time series, p and q were obtained by analysing
autocorrelation functions and partial autocorrelation functions. The iterative
Box-Jenkins method �nally gave us su�cient integers for p and q, which can
be found in Table 2.

Table 2: ARIMA models for the time series

Time series ARIMA model
X1,t ARIMA(2,1,2)
X2,t IMA(2,1)
X3,t ARIMA(1,1,1)
X4,t ARIMA(1,1,2)

4.2 Estimation of the parameters

The model parameters (Table 3) were estimated with Arima function, which
was included in forecast package. With the estimated parameters, we were
able to construct our ARIMA models:

Xt,1 = Xt−1,1 + 0, 7490(Xt−1,1 −Xt−2,1)− 0, 4314(Xt−2,1 −Xt−3,1) + 1.5086 εt−1 − 0.7434 εt−2 + εt

Xt,2 = 2Xt−1,2 −Xt−2,2 + εt−1 + εt

Xt,3 = Xt−1,3 + 0, 2421(Xt−1,3 −Xt−2,3) + 0, 999 εt−1 + εt

Xt,4 = Xt−1,4 + 0, 8285(Xt−1,4 −Xt−2,4) + 1, 7458 εt−1 − 0, 7458 εt−1 + εt
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Table 3: Model parameters.

X1,t X1,t X2,t X2,t X3,t X4,t

Model ARIMA(2,1,2) ARIMAX(2,1,2) IMA(2,1) IMAX(1,2) ARIMA(1,1,1) ARIMA(1,1,2)
φ1 0,7490 0,7145 - - 0,2421 0,8285
φ2 -0,4314 -0,4833 - - - -
θ1 -1.5086 -1,4224 -1,000 -1,000 -0,999 -1,7458
θ2 0.7434 0,6731 - - - 0,7458
β1 - 1359,34 - -1090,61 - -
β2 - -8010,72 - -4972,94 - -

It was hard to interpret the parameters due to complexity of the models. It
seemed that, on all models, the di�erence between lagged values at t-1 and
t-2 was proportional to the value at t. For the ARIMAX models, exogenous
variable Zt with coe�cient vector β was added to the existing ARIMA models
to see if it made the model better. Unlike in regression, the value of β is not
the e�ect on Xt when Zt is increased by one due to the presence of lagged
values, and β can be only interpreted as conditional on the value of previous
values of the response variable, which is hardly intuitive [9]:

φ(B)Xt = βZt + θ(B)εt

⇔ Xt =
β

φ(B)
Zt + θ(B)εt.

At this point, all �tted models were plotted against the stationary time
series to approximate the goodness of the models and to see if the exogenous
variable Zt made a signi�cant di�erence (Figures 15 and 16). For Xt,2, both
IMA and IMAX models seemed to model payment frauds well and there
were no clear distinctions to be made (Figures 6 and 7). The same applied
to ARIMA and ARIMAX models of frauds (Figures 15 and 16). ARIMA
models of the status of the household wealth had some trouble to model the
spikes of the time series, but overall, they performed well (Figures 17 and
18).
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Figure 6: w2,t and the IMA(2,1)-model.

Figure 7: w2,t and the IMAX(2,1)-model.

4.3 Diagnostics

The last step of Box-Jenkins methods was to check if residuals were normally
distributed with zero mean and had a zero correlation. All residuals looked
more or less normally distributed, except for ARIMA(1,1,2) model of Xt,4

(Figure 8, 19 and 20). However, the p-values of Ljung-Box test for the
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ARIMA(1,1,2) model were all above the signi�cance level (5%), and therefore
we kept our null hypothesis that the correlation of model residuals was zero.
The null hypothesis of Ljung-Box test, which was that residuals had zero
correlation, was also kept with the other models, as almost every p-value was
above the chosen signi�cance level (Figures 9, 21 and 22).

Compared to the basic ARIMA and IMA models, p-values of Ljung-Box
test were generally higher with ARIMAX and IMAX models. This indicates
that the exogenous variable made the models better, since we could more
certainly say that the residuals had a zero correlation. The models with
exogenous variable also had more normally distributed residuals (Figure 8
and 19). Therefore, it is safe to say that the subjective information about
household wealth made the models better, in terms of diagnostics.

Figure 8: Histogram of density of residuals of IMA(2,1) process and
IMAX(2,1) process.



17

Figure 9: P-values from Ljung-Box test from the IMA and the IMAX process.

5 Conclusions

With an ARIMAX model, relationship between frauds and household wealth
can be examined and quantity of future frauds can be forecasted with the
historical data. Both the ARIMAX and ARIMA models we built in this
thesis performed well and they were able to model the quantity of frauds
and payment frauds. The diagnostic tests showed that the residuals of the
models were white noise and had zero correlation, which is in-line with the
assumption that residuals are homoscedastic over time. However, the status
of households' wealth did not make the model signi�cantly better. This does
not conclude that there would not be any other predictors to the time series of
frauds and payment frauds, but it shows that households' subjective opinion
of their wealth is not one of them.

One fundamental problem with crimes and time series analysis is the time
di�erence between when crimes are actually committed and when they are
reported to the authorities. Assuming a constant time di�erence, one can
interpret the impact the household wealth has on frauds and payment frauds,
while being aware that the results may not re�ect the real world situation.
For further research, the distributions of previously mentioned time di�erence
should be examined.

This paper focused on building the stochastic models, but for future research,
ex post testing, i.e,. testing forecasting performance with historical data, is
needed for all ARIMA and ARIMAX models to examine how well the mod-
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els would predict future crime rates. No clear diagnostic distinction of the
ARIMAX and the ARIMA models could be made, but that does not imply
equal forecasting performance. Furthermore, the forecasting performance of
the ARIMA models play an important role, since in order to forecast with
the ARIMAX model, we will �rst need forecasts of the exogenous variables
representing the fraction of households who are using savings and the ones
who are getting into debt.

To improve the model, one should introduce more exogenous variables. The
�uctuations of all six categories in the Finnish consumer survey may provide
information to the models. In addition to the consumer survey, more objec-
tive exogenous variables, such as interest rates, strength of police forces and
employment rate, should be examined and added into the models if they seem
to in�uence crimes studied. That being said, the current models still per-
formed very well and it would be interesting to see if more objective variables
would made the models even better.
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A Figures

Figure 10: Autocorrelation and partial autocorrelation functions of ∇X1,t.
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Figure 11: Autocorrelation and partial autocorrelation functions of ∇X3,t.

Figure 12: Autocorrelation and partial autocorrelation functions of ∇X4,t.
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Figure 13: Histogram of density of residuals of ARIMA(2,1,2) process and
ARIMAX(2,1,2) process.

Figure 14: X1,t and corresponding ARIMA(2,1,2) process.
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Figure 15: w1,t and the ARIMA(2,1,2) model.

Figure 16: w1,t and the ARIMAX(2,1,2) model.
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Figure 17: w3,t and the ARIMA(1,1,1) model.

Figure 18: w4,t and the ARIMA(1,1,2) model.
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Figure 19: Histogram of density of residuals of IMA(2,1) process and
IMAX(2,1) process.

Figure 20: Histogram of density of residuals of ARIMA(1,1,1) process and
ARIMA(1,1,2) process.
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Figure 21: P-values from Ljung-Box test from the ARIMA(2,1,2) and the
ARIMAX(2,1,2) process.

Figure 22: P-values from Ljung-Box test from the ARIMA(1,1,1) and the
ARIMA(1,1,2) process.
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B Tables

Table 4: ADF-test results of original and stationarized time series of frauds.

Original Stationarized
Lag ADF P-value Lag ADF P-value

No drift no trend

0 -0.56 0.48 0 -13.00 0.01
1 -0.24 0.57 1 -10.04 0.01
2 -0.10 0.61 2 -7.81 0.01
3 0.09 0.67 3 -9.44 0.01

With drift no trend

0 -5.15 0.01 0 -12.93 0.01
1 -3.95 0.01 1 -9.98 0.01
2 -3.09 0.03 2 -7.78 0.01
3 -2.80 0.07 3 -9.45 0.01

With drift and trend

0 -6.50 0.01 0 -12.88 0.01
1 -5.05 0.01 1 -9.95 0.01
2 -3.99 0.01 2 -7.81 0.01
3 -3.36 0.07 3 -9.67 0.01

Table 5: ADF-test results of original and stationarized time series of house-
holds who have to use savings.

Original Stationarized
Lag ADF P-value Lag ADF P-value

No drift no trend

0 -0.945 0.339 0 -13.99 0.01
1 -0.617 0.457 1 -9.52 0.01
2 -0.454 0.512 2 -8.28 0.01
3 -0.365 0.538 3 -7.64 0.01

With drift no trend

0 -6.78 0.01 0 -13.9 0.01
1 -4.93 0.01 1 -9.46 0.01
2 -4.21 0.01 2 -8.23 0.01
3 -3.44 0.0141 3 -7.59 0.01

With drift and trend

0 -7.1 0.01 0 -14.28 0.01
1 -5.23 0.01 1 -9.35 0.01
2 -4.53 0.01 2 -8.23 0.01
3 -3.78 0.0238 3 -7.68 0.01
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Table 6: ADF-test results of original and stationarized time series of house-
holds who are getting into debt.

Original Stationarized
Lag ADF P-value Lag ADF P-value

No drift no trend

0 -1.434 0.163 0 -16.37 0.01
1 -0.773 0.401 1 -10.72 0.01
2 -0.55 0.481 2 -9.92 0.01
3 -0.408 0.525 3 -7.91 0.01

With drift no trend

0 -8.8 0.01 0 -16.26 0.01
1 -5.67 0.01 1 -10.66 0.01
2 -4.66 0.01 2 -9.86 0.01
3 -3.3 0.0201 3 -7.86 0.01

With drift and trend

0 -8.81 0.01 0 -16.17 0.01
1 -5.72 0.01 1 -10.62 0.01
2 -4.75 0.01 2 -9.82 0.01
3 -3.4 0.0609 3 -7.81 0.01
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