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Konenddn ja videosisaltdanalyysin tavoitteena on purkaa merkityksellista dataa
videodatasta. Yksi yleisistd konenaon haasteista on kamerakalibrointi, jota vaaditaan
fyysisten pituusmittojen johtamiseen kamerakuvasta. Kalibrointia tarvitaan mydos
monikamerajarjestelmissa, missid kameroiden niakemat alueet osittain peittavét toisi-
aan.

Tassa tyossi kehitetaan laskennallisesti kevyt menetelma kameroiden kalibroimiseksi
kolmiuloitteeseen avaruuteen. Esitelty menetelma on kaksivaiheinen. Ensimmaisessa
vaiheessa linssivaaristymat ja kameran sisdiset parametrit (polttovili) mitataan ot-
tamalla kuvia tunnetusta shakkilautakuviosta eri asennoissa. Toisessa vaiheessa,
ulkoiset parametrit (kallistuskulma ja kameran korkeus suhteessa maatasoon)
madritetdan muutamasta kohdetunnistuksesta. Simuloimalla ndytetaan, etta toisen as-
teen estimointi pikselihorisontille tuottaa merkittavasti parempia tuloksia kallistetu-
illa kameroilla, verrattuna yleisiin katoamispistemenetelmiin tai ensimmaisen asteen
horisonttiestimaattisovituksiin.

Lisaksi tyossd kehitetidn menetelmad ylhaaltd alas kuvaavien monikamerajar-
jestelmien kalibrointiin seka kohteiden seuraamiseen niissa. Tama menetelma kayttaa
sovitettuja pistepareja toisiaan leikkaavissa kamerakuvissa, joista lasketaan similari-
teettimuunnokset. Muunnosten avulla kohdeseurannan polut yksittaisista kameroista
muunnetaan yleiseen koordinaattiavaruuteen. Yksittéiset polut merkitaan samaksi, jos
ne ristedvat toisensa tassa avaruudessa.

Ty6n menetelmia ja tuloksia voidaan hyoddyntaa esimerkiksi asiakasreittien mit-
taamiseen myymaloissa tavallisilla turvakameroilla, tai kohteiden luokitteluun niiden
fyysisen koon perusteella.

Avainsanat: konendko, piirteenirroitus, kamerakalibraatio, ulkoiset parametrit,
videosisiltéanalyysi, videovalvonta
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The objective of computer vision and video content analysis is to extract meaningful
feature data from video data. One of the common challenges in computer vision is
camera calibration, which is required for converting physical length measures from
the camera image. Calibration is also required in multi-camera systems, where camera
images from different cameras partly overlap.

In this thesis, a computationally lightweight method for calibrating cameras in three-
dimensional space is developed. The proposed method is divided in two stages. In the
first stage, lens distortions and camera intrinsic parameters (focal length) are measured
with taking images of a known chessboard pattern in various positions. In the second
stage, extrinsic parameters (tilt angle and camera height relative to a ground plane) are
determined from few object detections. Using simulation, a second order pixel horizon
estimation is shown to perform significantly better with tilted cameras than a common
method of using vanishing lines or first-order fit for horizon estimation.

In addition, a method for calibrating and object tracking in top-down multi-camera
systems is developed. This method uses matched point pairs for overlapping camera
images, from which similarity transforms are calculated. The transforms are used to
convert object tracking trails from individual cameras onto a global coordinate space.
Individual trails are then marked joinable, if they cross each other close enough in that
space.

The methods and results of this thesis are usable for example when measuring cus-
tomer routes in stores using common video surveillance cameras, or for classifying
objects based on their physical size.

Keywords: computer vision, feature extraction, camera calibration, extrinsic param-
eters, video content analysis, video surveillance
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Symbols and Abbreviations

Symbols

) vertical angle of view

f focal length of the camera-lens system

Ye camera height above the ground plane

0. camera tilt angle

U,0,W camera image (homogeneous) coordinates

x,y,2,W  world (homogeneous) coordinates

Up object bottom coordinate in image coordinates

vy object top coordinate in image coordinates

Yo object height in world coordinates

Up, pixel/ground plane horizon in camera image coordinates

c abbreviation of cos 4,

S abbreviation of sin 6,

z object z coordinate estimate

Q@ object z coordinate estimate scale factor
Abbreviations

3D three-dimensional

BFS breadth-first search

CCD charge-coupled device

CCTV closed-circuit television

DLT direct linear transformation algorithm

DVR digital video recorder

FOV field-of-view

GPS global positioning system

GUI graphical user interface

LBP local binary pattern

LED light-emitting diode

MoG mixture of gaussians

RANSAC random sample consensus

RGB red, green, blue

SVD singular value decomposition

VCA video content analysis

VGA video graphics array, used here to refer to the video resolution of 640x480



1 Introduction
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1.1 Background

A camera is a universal sensor. Digital video cameras produce vast amounts of infor-
mation in a very short period of time. To transform this massive amount of information
into more useful, smaller amounts of meaningful information is the purpose of computer
vision research.

Data mining and data farming are popular themes today. They mean either combing
through or producing large amounts of data to uncover interesting phenomena for fun
and profit. When you have a lot of data, relatively simple techniques can be applied
to achieve surprising results. For instance, statistical methods have been successfully
applied to machine translation (Google), automated contextual spell, style and grammar
checking (After the Deadline).

Traditionally, video surveillance has relied on computer vision motion detection algo-
rithms and then saving the video where motion is detected for later analysis to be done
by a human. Today, the industry is moving into more fine-grained video content anal-
ysis (vca) for producing mineable data. Computer vision and video analysis has been
a vibrant research field since the 1970’s, and lot of interesting algorithms are already
available for this. However, often these are unsuitable for real-time multi-camera sys-
tems with constrained processing power or the data is not interesting in surveillance or
retail marketing.

New technology opens new possibilities and often, these possibilities need to be limited
with regulations and laws. For example, video surveillance has increased drastically in
central Europe and, in response, privacy laws in many countries have been updated to be
more strict than before. Raw surveillance video material has limits on its use, but it can
contain valuable information, which can be extracted and anonymized using computer
vision.

1.2 Objective of the thesis and the challenges involved

This work concentrates on building a workflow for camera calibration and object track-
ing data extraction in video surveillance systems. Many algorithms and methods have
been developed for both camera calibration and feature extraction, but none of those fea-
tured in the literature review fulfill usability, speed and implementation requirements of
set for this work. Some these requirements are discussed below, and later more in detail
in the section 3.1. Only few solutions for the whole workflow exist. The objective is to



facilitate new sources of measurement data through camera calibration for automated
analysis. The analysis of the measurement data, such as object classification or customer
behaviour analysis, is outside the scope of this thesis.

This thesis builds upon a video content analysis system developed at Mirasys Ltd. The
video content analysis system has already motion detection and object tracking algo-
rithms for single cameras in place and they work well. This work augments the capabil-
ity of the system by designing and implementing a new camera calibration framework,
algorithms and a methodology for it.

The purpose of camera calibration is to provide real world coordinate data from tracked
objects, so that the 3D position and speed of moving objects can be extracted and used
for further analysis. The scope is limited to simple plane approximation, where the 3D
position can be correctly approximated only for objects moving on the ground.

1.2.1  Real-time operation

Since most video surveillance applications feature multiple cameras, the algorithm effi-
ciency and lightweightness is an important factor, when real-time operation is desired.
Many, if not most, of the published motion detection and object tracking algorithms and
methods are too computationally intensive to be used in real-time multi-camera opera-
tion on today’s commodity desktop and server computers. In embedded appliance space
(e.g. “smart” cameras with on-board processing units), the computational resources are
even more constrained, and thus the low computational complexity of the algorithm
becomes important.

If camera calibration is to be done separately and not as a part of the system, algorithm
efficiency is not that big problem. But also here real-time or near real-time operation is
desired, whilst doing the actual calibration.

1.2.2 Implementability

Often, sophisticated solutions require sophisticated mathematical algorithms. These al-
gorithms may only exist as closed source binary libraries for certain platforms. This
makes them impossible to port to new platforms, and they may be very time-consuming
to implement and test from scratch.

The objective of this work is to come up with relatively simple and effective solutions,
so that the implementation can be reasonably easily made on any computing platform
and environment. Closed-source libraries are best avoided [24].

As software becomes more complex, clean architecture and modularity become neces-
sary for maintainance and even for development.



1.3 Content of the thesis

This thesis describes a method for calibrating camera extrinsic parameters. The proposed
method consists of two phases, namely:

1. Use a checkerboard to determine the camera focal length f (or the field of view
angle), and determining lens distortion coeflicients.

2. Use three or more image positions of objects with known real world height to
determine the camera height y. and tilt angle 0,.

At first, the thesis defines the necessary coordinate systems, variables and angles. Then
we take a look at a pinhole camera in 3D world, and finally transform our calibration
problem into 2D world problem, which is solved.

Section 2 reviews the earlier work in this field and looks at the most common meth-
ods used for object tracking and camera calibration. Section 3 defines the objectives for
this thesis and discusses the challenges involved. The proposed workflow is presented,
how the algorithms and methods are organized. Section 4 defines necessary coordinate
systems for a pinhole camera. These definitions are later used in the camera calibration
method. Section 5 develops a lightweight method for camera calibration in 3D space.
Section 6 develops a method for calibrating top-down multi-camera systems. Section 7
presents test results obtained and compares them to other methods. Finally, section 8
discusses the results and concludes the thesis.



2 Literature review on video surveillance systems and cam-
era calibration
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This section reviews published algorithms and methods for object tracking and camera
calibration. Advantages and disadvantages for methods are discussed.
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— Sir Isaac Newton (in a letter to Robert Hooke)

The section starts with an terminology overview, discusses existing research for overall
system architecture, motion detection and single camera object tracking algorithms. The
section then reviews existing calibration methods for both intrinsic and extrinsic camera
parameters. Finally, the section discusses about multi-camera object tracking methods
and alternative camera technologies.

In a camera system, lens distortions affect the measurement accuracy. For example, an
object at the same distance from the camera might have its features (such as width and
height in pixels) distorted at the edge of the camera view compared to the center of
the camera view. This can make measuring the object size fairly inaccurate, if an ideal
pinhole camera model is used. Existing research provides good methods for making an
average camera-lens system perform closer to an ideal pinhole camera, almost free of
distortions.

2.1 Terminology

The definitions of the terminology is limited to what they mean in this thesis.
A blob is a set of pixels that is segmented apart from an image.

Intrinsic parameters are the internal geometric and optical characteristics of a camera [12].
These include focal length, projection center and lens distortion parameters.

Extrinsic parameters are the three-dimensional position and orientation of the camera
image plane relative to a certain world coordinate system [12].

Camera calibration means the process of figuring out intrinsic and extrensic parameters
of a camera or set of cameras.

Vertical angle of view is the angle that the camera projects onto image plane on vertical
axis.

Focal length is a measure of how strongly the camera lens converges light. Focal length
f is related to the vertical angle of view ® such that [29, p. 53]

f d

"~ 2tan (%)

(1)



where d is half of the vertical image resolution or half of the physical height of the
image sensor. This depends whether the focal length is measured in image resolution
units (pixels) or physical units.

Camera handoff is the moment when object tracking crosses a multi-camera boundary,
and the object tracking is continued by another camera.

2.2 Overview of video surveillance system architectures

) A

(d) Object labeling (e) Feature extraction

Figure 1: Stages of video surveillance content analysis.

A typical architecture of a video surveillance system with video content analysis is
shown in [32, p. 6] and [15].

A video surveillance system contains a number of cameras. Cameras produce video
stream. Video stream is analysed by content analysis system, which is usually a com-
puter or a set of networked computers. Usually at first, the content analysis does motion
detection and segmentation for the video stream. This produces pixel blobs which denote
moving objects (foreground). Pixel blobs are classified into objects, which are tracked
over time. [32, p. 6] [15]

Cameras can be stationary or equipped with zoom lenses and pan-tilt functionality
(dome cameras). They can be analog or digital, connected over wire or wireless. For
processing, the video is always converted to a digital format, which is often compressed.
Video stream resolutions range typically from VGA (640x480) to multiple megapixels.
Typical video surveillance framerates range from 1 to 30 frames per second.

Modern video surveillance systems analyse the video stream automatically. One of the
most important advantages of a modern video surveillance system is that it only records



when there is movement in the video. Various methods have been developed for detect-
ing motion in video. Most common approach is to use background subtraction, where
the background of a scene is modeled [23]. When a part of an image differs enough from
the background, motion is detected.

Various methods have been developed to discern unwanted detection from e.g. shadows
or movement of tree branches in outdoor scenes. [20] Motion is segmented into motion
blobs. Good motion segmentation is helps object tracking. Due to occlutions, one pixel
blob can contain multiple objects. The task of object segmentation and tracking is to
separate the motion pixel blobs into tracked object blobs. [32, p. 5]

Object blobs can be subjected to more in-depth feature extraction. Typical features that
are of interest are location, speed, loitering time (how much time an object is staying
at the same place), color, type classification (whether the object is a human, a car, or
something else).

2.3 Motion detection using background subtraction

There are many methods available for motion detection. An extensive literature review
into motion detection algorithms is done by Kuusisto [20]. Also Moeslund et al. [23] has
an extensive survey on motion capture and analysis algorithms, which cites over 350
papers.

According to Moeslund, Mixture-of-Gaussians (MoG) is still the most common method
for motion detection and background subtraction [23]. However, Kuusisto proposes a
motion detection and segmentation algorithm, which is based on Local Binary Pattern
(LBP) texture reconstruction, which is superior to the reviewed algorithms in terms of
processing time and accuracy.

Since this motion detection and segmentation algorithm is texture reconstruction based,
it is quite insensitive to illumination changes (such as shadows) in the scene, it is bet-
ter than the MoG-based method for surveillance purposes. Kuusisto doesn’t provide an
objective measure for algorithm performance comparison, but backs this claim instead
on experience in testing the algorithm on real-life surveillance video recordings and as-
sessing the results manually. [20]

Further review of motion detection algorithms is outside the scope of this thesis, as this
thesis builds upon the work done by Kuusisto [20].

2.4 Object tracking with a single camera

The single object tracking algorithm uses segmentation, which discerns motion detected
blobs. Then, using vanishing point horizon estimation [13] and Kalman filtering for esti-
mating the object blob movement, the object blobs are tracked and labeled accordingly,
even if they occlude each other.



Further review of single camera object tracking algorithms is outside the scope of this
thesis.

2.5 Calibration of intrinsic parameters

2.5.1 Lens distortion removal

(a) Distorted source image (b) Rectified source image

Figure 2: An example of severe pincushion lens distortion.

An ideal pinhole camera has no distortions and the projection is perfect. However in
practice, most camera lenses introduce significant distortions to the image. These dis-
tortions make the projection imperfect, which hampers accurate measurement of propo-
tions from the camera image. Fortunately, the most drastic geometric distortions can be
modeled, measured and corrected.

A good geometric distortion model captures as much of the distortions in few terms.
Due to the manufacturing process and physics of inexpensive CCD video cameras, most
of these distortions fall in to two classes: radial distortions and tangential distortions. [1,
p. 377]. The correspondence of between a rectified image and an image with radial and
tangential distortions can be expressed mathematically as Brown’s lens distortion model

[2][34][33]
Ty = g + Tac(Kyr? + Kor' + )
+ (Py(r? + 223,) + 2Powacyac) (1 + Per? +..)
Yo = Ya + Yac(K1r? + Kor* +..)
+ (Pa(r® + 2y3.) + 2Przacyac) (1 + Par® +..),

(2)

(3)

where (x,, y,) is a rectified image point, (x4, ya) is a distorted image point, (z., y.) =
centre of distortion (i.e. the principal point), K, is the n'* radial distortion coefficient,
P, is the n® tangential distortion coefficient, x4. = 4 — T¢, Yoc = Ya — Yo, and r =

V(Ta— ) + (ya — ve)?

Employing Brown’s lens distortion model is fairly standard practice in computer vision,
especially in stereo vision. Good rules of thumb for the number of correction coefficients
exist. According to Heikkila [12], two coefficients for both radial and tangential distortion
are often enough. Bradski et al. [1, p. 375] notes that a third radial distortion term k3 might
be needed for cameras equipped with highly distorting fish-eye lenses.




For object tracking purposes, we can either do the lens distortion removal for the whole
image, before any motion is detected (more computionally intensive) or just for the meta-
data (less computionally intensive).

When the lenses and cameras are manufactured similar enough, a common calibration
database for each camera model/lens combination can be constructed. Then the indi-
vidual cameras don’t need to be calibrated anymore for lens distortion removal. This
reduces the installation costs compared to individual calibration and still should pro-
duce comparable rectification results. Professional photography systems contain similar
lens databases for automatic lens distortion and chromatic aberration removal.

2.5.2 Checkerboard calibration

Each camera and lens combination is more or less unique. Thus the coefficient param-
eters in Brown’s lens distortion model have to be calibrated to achieve good distortion
removal. As this calibration problem is very common, methods for achieving a good
calibration with usual camera and lens combinations already exist. [1, p. 375][34][33]

A popular method for determining these coefficients is calibration with a checkerboard.
An implementation for such calibration method can be found in the open source OpenCV
library. [1] This includes detecting checkerboard corner positions from camera images
and calculating the coefficients from these.

If the checkerboard pattern size is known in physical length units, this method also
yields the focal length of a lens-camera combination. A suitable calibration checkerboard
pattern can be easily produced using a common office printer and a sufficiently rigid
plate. [1]

Figures 3 and 4 show an example of the calibration process and distortion removal result,
respectively. In this case, a checkerboard pattern is printed on paper with a laser printer
and attached with tape on a master’s thesis book. The paper is slightly wavy, which
makes slight imperfections to the positions of the corner positions. Some 10-15 pictures
of the checkerboard are taken from various angles.

Checkerboard calibration is not the only possible method, but it is one of the most prac-
tical and cost-effective methods. The calibration results are good enough for all-round
CCTYV surveillance purposes. The calibration method produces not only the required co-
efficients for Brown’s lens distortion model but also provides an estimate for the focal
length of the camera-lens system. This focal length estimate is essential for the camera
calibration method developed in this thesis.



Figure 3: Heavily distorted image of a checkerboard calibration board. The image is dis-
torted by the fish-eye lens in the camera. Detected checkerboard pattern is visualized
with colored lines.

Figure 4: Rectified image of the same scene. Now the checkerboard lines are quite well
straight, as they should be, and the overall performance is much closer to an ideal lens.
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2.6 Calibration of extrinsic parameters

2.6.1 Manual calibration

In a commercially available VCA library, camera intrinsic and extrinsic matrix calibra-
tion is done manually. The patented method relies on a graphical 3D model representa-
tion of reference objects (such as human models), which are manually adjusted to match
similar objects in the camera image. The method uses a pinhole camera model, which
requires only focal length, tilt angle and camera height to reconstruct the intrinsic and
extrinsic matrices. [30][8]

The method doesn’t take lens distortions into account, which can make measurement re-
sults inaccurate. Manually adjusting a 3D model to visually match the underlying camera
image is rather slow. In a product demostration video, the calibration process takes 25
seconds and the camera height is seemingly known beforehand [31]. This is kind of cal-
ibration can be slow and cumbersome, as the camera height is not always known in
advance. Furthermore, the method cannot be easily transformed to use automatic object
detections.

One simple method to aid manual calibration is to do pixel horizon estimation. Hoiem [14]
uses linear approximation of object detections to estimate the horizon position. The
method relies on the assumtion that the camera tilt angle is close to zero (i.e. the camera
is pointing at the horizon).

2.6.2 Calibration using known markers in the scene

Micusik et al. [22] presents an interesting method on human detections and camera cal-
ibration. It uses trained human detector to figure out all basic intrinsic and extrinsic
camera parameters, and also radial lens distortion parameter. The advantage is that no
specialized calibration tools are needed, but this comes at a computational cost, because
detecting humans from the camera image is computationally intensive. The amount of
detections needed is too high for manual setup.

Micusik et al. also present a method for evaluating and comparing different algorithms.
They use synthetic test, where human detections for calibration are generated from a
model and zero-mean Gaussian noise is added to the models. The test is repeated 100
times at each noise variance level [22], which provides a rough mean and variance for
focal length estimates.

2.6.3 Using 3D scene reconstruction and feature matching

By creating a 3D scene using e.g. depth camera sensors, such as Kinect [16] a camera po-
sition relative to 3D scene can be inferred by finding matching features [27]. An example
of 3D point cloud scene constructed using a iterative closest point algorithm from mul-
tiple depth camera images is shown in figure 5. These consumer-grade cameras either
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employ structured light techniques or time-of-flight techniques for sensing the depth
information. Both of them usually use infrared light, and their maximum operating dis-
tance is limited and also they usually work only indoors due to high amounts of infrared
in sunlight. [7, p. 11][6, p. 16]

3D scene reconstruction requires a lot of human labour and inexpensive depth cameras
have limited depth sensing range. Inexpensive depth cameras use infrared laser projec-
tors, which are not intensive enough to be used in bright outdoor scene. This makes
capturing large scenes and areas (such as building outdoors) infeasible. However, in a
limited space or in an indoor setting, this method can be useful.

If no physically referenced depth information is used, and 3D scene is reconstructed
using image matching methods [27], a physical reference measure is needed to fix the
model scale. Such reference can be obtained by using e.g. differential GPS, which pro-
vides spatial accuracy of about 10cm. State of the art methods can yield fairly geographi-
cally accurate scenes from large amount of images. [5] This method is also very laborous
and requires heavy computation, so using it real-time is not feasible currently on general-
purpose computers.

2.7 Calibration and object tracking with multiple overlapping cam-
eras

In object tracking across multiple overlapping cameras, the objective is to find which
object detections in separate cameras are the same object. This is achieved by comparing
features between the objects. Often, features that derive the physical location of the
object are used but also other matching methods can be used, if location information is
not important.

Figuring out is the location of the object in the image and in the world eads to a two-
fold problem: first, a calibration between all the cameras (extrinsic parameters) has to
achieved in a common world coordinate system and second, object matching (camera
handoff) has to be done, when a moving object crosses a camera boundary. If the extrinsic
camera parameters are known relative to each other, we can utilize this knowledge to
project the blobs into 2D or 3D space and see if they are close to each other or not.
When the scene projections are inside a certain threshold, objects are regarded as being
the same. This method is fairly simple and computationally inexpensive, but fails with
occluding and crossing objects.

More finer feature extractors can be used, such as color, pattern and physical size features
and trained match classificators. Methods based on such features can sometimes function
even if the position of cameras relative to each other is not known or if the cameras don’t
overlap. However, the interest in non-overlapping cameras is outside the scope of this
work. Extra features can also be combined with the location information. Extra features
can be used to rule out occlusions and object crossings. Advanced feature extraction or
classification methods are typically computationally expensive still today, and as such
limited to few-camera systems in a realtime setting if at all.
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Figure 5: Example of a 3D point cloud created from an indoor scene using a depth and
RGB camera. Iterative closest point algorithm is used to combine the multiple depth +
RGB measurements into a compound 3D point cloud.
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2.7.1  Top-down calibration and tracking

The top-down setting is a special case in overlapped multi-camera tracking. In a top-
down setting, the cameras are installed in parallel pointing directly to the ground. Top-
down arrangement makes calibration a bit easier. However, parallax makes this a bit
challenging with wide angle lenses. When the cameras are mounted higher, there is less
parallax.

Fukuda [9] proposes a system, where people are tracked using motion tracking and hair
area and color detection. The system can analyse images in realtime, one camera per
machine at 20-30Hz [9]. Fukuda does not provide any accuracy or error rate measures.

2.7.2 Freely positioned calibration and tracking

In the more general case of freely positioned cameras, some published algorithms rely
on rather heavy-weight 3D reconstruction and structure from motion methods. This is
unacceptable in a real-time system using current desktop computers with multiple cam-
eras.

Liem and Gavrila propose a system that works with offline-calibrated cameras. In their
work, they project moving background subtracted blobs onto a common ground surface.
Their solution is mostly concentrated on a single scene, which all of the cameras see
from various angles. They don’t discuss about camera handoff. Also, they don’t mention
whether their tracking is real-time capable on commodity desktop computers. They also
don’t provide any details about the offline calibration and how much time does it take
to do the calibration. [21]

Kang et al. present a system for continuous detection and tracking objects using mul-
tiple stationary cameras for a crowded scene. Their solution works without calibration.
Soccer game, projected to top-down-like representation [17]. The claimed speed for the
system is one frame per second, which is too slow for real-time surveillance and meta-
data generation purposes.

Zhao et al. proposes a realtime tracking system with multiple networked stereo cam-
eras [36]. Their method is to do single stereo camera tracking first and then do fusion in
a separate multi-camera tracker. Before tracking, lens distortions are corrected. Calibra-
tion is achieved using a parallax based approach [19], and cameras are mapped pair-wise
into a common world coordinate system.

From the single stereo camera tracking a semi-3D object representation is created. The
representation encodes object’s ground position and uncertainty combined with 2D shape,
like a cardboard placed vertically on a ground plane. Space-time cues are then used to
match overlapping tracks to achieve camera handoff and tracking over multiple sen-
sors. They provide two useful metrics, track fragmentation rate and track confusion rate,
which are used to characterize the performance of the whole multi-camera tracking sys-
tem [36]. The system is capable of real-time operation and does not require tedious man-
ual calibration. As it relies on stereo cameras, the single camera tracker is does not fit
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our problem, but we could substitute that with our own.

Chen et al. present a multi-camera calibration method using an identifiable point tar-
get, such as a bright LED [4]. This can be used as an alternative to parallax based ap-
proach [19] for a number of single cameras.

Zhang et al. present a multi-camera tracking system for video surveillance purposes. In
the system, cameras are calibrated manually against a global map plane using matching
point and line features. According to Zhang et al, line features are more reliable and more
representative than a single point, yielding a more precise calibration. The calibration
for each camera is a homography matrix using direct linear transformation algorithm.
Individual object detections are placed on the global map plane along with their physical

size [35].
Khan and Shah propose a field-of-view (FOV) lines based approach [18] for calibrating

cameras. They recover the field-of-view lines by observing motion and use this to obtain
homography between the global map plane and different cameras.
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3 Objective and challenges
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— S. Theodoridis & K Koutroumbas: Pattern Recognition

This section sets the objective of this thesis. The camera parameter calibration problem
is defined.

3.1 The objective

The purpose of camera calibration is to provide real world coordinate data from tracked
objects, so that the 3D position and speed of objects can be used for analysis. These
tracked objects are inferred from the camera video stream using motion detection and
object tracking algorithms, which provide camera image coordinates of the moving ob-
ject. The task of the camera calibration is to provide additional parameters in order to
convert these image coordinates into physical units in the real world.

The scope is limited to simple plane approximation, where 3D position can be correctly
approximated for objects moving on the ground.

3.1.1 Usability requirements

The most important feature and requirement for a camera parameter calibration method
is that the workflow must be easy to perform and efficient. Personnel who install video
surveillance systems have to be able to use the system with as little extra education as
possible, and they should be able to verify that the achieved calibration is good enough.

3.1.2 Speed requirements

An video surveillance object tracking system has a strict requirement for being able to
work in real time. Usually one desktop class computer takes several camera inputs at
the same time. The computer should be able to process the video and save the extracted
metadata from all cameras.

Since most CCTV surveillance applications feature multiple cameras, the algorithm effi-
ciency and lightweightness is an important factor, when real-time operation is desired.
Many, if not most, of the published motion detection and object tracking algorithms and
methods are too computationally intensive to be used in real-time operation on today’s
common desktop computers.

If camera calibration is to be done separately and not as a part of the system, algorithm
efficiency is not that big problem. But when it is desirable to run camera calibration
often, it is good to be capable of real-time or near real-time operation without using much
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resources. This comes especially important when implementing these methods using the
low-power embedded processors in camera platform. There computation resources are
more scarce than on general-purpose server or desktop computers.

3.1.3 Implementation requirements

Many of the methods proposed in the literature are highly sophisticated, but hard to
implement (i.e. require complex calculation libraries not available on open-source or
embedded platforms) and often too complex to maintain in cost-effective systems. To
maintain easy implementability and maintainability, the objective is to come up with
relatively simple and effective solutions, so that the implementation can be reasonably
easily made on any computing platform and environment. Closed-source libraries are
best avoided [24].

3.2 Workflow overview

The proposed camera calibration workflow consists of two stages. In the first stage, in-
trinsic camera parameters and lens distortion removal parameters are calibrated. In the
second stage, extrinsic camera parameters are calibrated.

(a) First stage: intrinsics calibration. (b) Second stage: extrinsics calibration.

Figure 6: Camera calibration stages in the proposed solution.

3.2.1 First stage: Intrinsic camera parameters and lens distortion removal calibration

The goal of the camera intrinsic parameter calibration is to make the camera-lens system
perform like an ideal pinhole camera with a known focal length.

The selected lens distortion model uses three radial distortion coefficients and two tan-
gential distortion coefficients, following the recommendations by Bradski et al. [1, p. 375]
and [12]. These coefficients are calibrated using the checkerboard calibration method
presented by Bradski et al. [1, p. 375]. This method also yields the focal length of the
camera-lens-system.

This can be done off-site or on-site using the checkerboard calibration described in the
section 2.5.2. If a specific camera-lens system model has consistent high quality, it might



17

suffice to do the intrinsic parameter and lens distortion removal calibration only once
for that model.

3.2.2 Second stage: Extrinsic camera parameters calibration

The goal of camera extrinsic parameter calibration is to determine the tilt angle and
camera height relative to a ground plane. Since the focal length is known, this is enough
to solve the camera’s projection matrix and convert object image coordinates into world
coordinates for objects on the ground plane. The camera is assumed to have a zero roll
angle relative to ground plane and a sufficiently small tilt angle (less than 45 degrees).



18

4 Pinhole camera model
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— George E. P. Box: Empirical Model-Building and Response Surfaces

The objective of the camera calibration algorithm is to define camera position in 3D
world. As explained in section 2, the lens distortion correction method resolves the focal
length of a camera and after distortion removal, the resulting image is almost the same
as if it had been taken by an ideal pinhole camera. Thus, it is useful to utilize a well-
known pinhole camera model, which this section defines in the context of this thesis.
From the pinhole camera model, forward and inverse projections are derived, including
their error estimates using total differentials.

4.1 Definitions

To start off, we have to select a coordinate system that we use to represent the physical
world. The world coordinate system x, y, z is left-handed, as presented in the figure 8.
This choice for the coordinate system follows from the ray tracing engine POV-Ray,
which is a simulator later in this study. Choosing the same coordinate system makes
testing and verification against the simulated situations easier.

A camera is a device that projects 3D scene on to a 2D surface called image plane. The
camera image plane is shown in figure 7. The image plane coordinate system is u, v and
its origin is at the center of the image. These coordinates are measured as pixels.

We use remove lens distortions with software, so most camera-lens-systems perform al-
most as an ideal pinhole camera. This makes further analysis more simple and elegant
and also more accurate. Let us define the coordinate systems, where we do the calcula-
tions. First off, we have a simple pinhole camera model, which is shown at different tilt
angles in figures 9 and 10.



19

Origin at the center of the image

Y=

Figure 7: Image plane (u, v), where u, v are measured in pixels. Thus the visible area is
(—resy/2,res,/2) for u and (—res, /2, res,/2) for v component.

Ay

Figure 8: Left-handed world coordinate system (x, y, z). Units are in meters.
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Figure 9: Pinhole camera that points to horizon. The focal length f and vertical image
coordinate v are measured in pixels.
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Figure 10: Pinhole camera that points below horizon in an angle of 0,.

It might seem counter-intuitive, but the camera height y. doesn’t affect the position of
pixel horizon on the image plane. This is due to the fact the ground in this model is a
plane, not a geoid. By definition, the horizon is at the infinity, where planes parallel to
the ground plane meet. Thus, we can draw one of those parallel planes to be at the height
of y. and get the pixel horizon position

The focal length f and the vertical field of view angle ® are connected [29, p. 53]

® = 2arctan (%) , (4)
or p
f= Wa (5)

where d is half of the vertical image resolution (focal length measured in pixels) or half
of the vertical image sensor size (focal length measured in physical units).

In matrix form, the pinhole camera projection is as follows. Since (z, y, z) is a left-handed
coordinate system, we add minus to v and y coordinate in the equation. Let
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f 00
K=|0 f 0 (6)
L 0 0 1
1 0 0
R=| 0 cosf, —sind, (7)
0 sinf, cosf,
[ uw
U= | —vw (8)
i w
X=1|9y—-vy|, (9)
z

where K is the camera projection matrix, R is the rotation matrix, U is the projected point
on image plane in homogeneous coordinates [25], and X are the world coordinates of a
point to be projected. A similar formulation is used in [13].

Bradski et al. uses a camera projection matrix in the form [1, p. 374]

fo 0 ¢
K=10 f, ¢ |. (10)
0 0 1

In this work, this matrix is simplified by two assumptions. First, this work assumes fixed
pixel aspect ratio of 1 : 1 (square pixels), i.e. f, = f, = f.It should be noted that this
has nothing to do with the image resolution or the image aspect ratio. Furthermore, this
work assumes that the optical center is at the image center, i.e. ¢, = ¢, = 0. Both of
these assumptions can be fulfilled with good enough accuracy for most cameras using
the distortion removal obtained from checkerboard lens calibration [1, pp. 370-404].

4.2 Calculation of the forward projection

The forward projection transforms real world coordinates into image coordinates. This
forward projection is used to develop a solution for the calibration algorithm.

The forward projection can be written as U = %KRX, but we define a helper variable
W = % to obtain a linear equation system. W is 0 when z is at =c0. Thus, the forward
projection in matrix form is

U = WKRX, (11)
from which we obtain
uw fWax
—vw | = W(f(y.—y)cosb, — fzsinb,) |. (12)

w W(zcosb, + (y. — y) sinb,)
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4.3 Calculation of the inverse projections with known y or z

The inverse projection transforms image coordinates into real world coordinates. This
inverse projection is used to obtain object location and speed estimates, after the camera
calibration is done.

The idea behind the use of these inverse projections is to calculate first the object dis-
tance z from the camera with known height y = 0 (bottom image coordinate). Then
the distance is known, and the object height y can be calculated using the now known
distance z value.

The inverse projection can be written in the matrix form

WX =R"'K'U, (13)
which expands to
We == (1)
Wiyc—y)=w <sin(0z) - %Mm)) (15)
We = w (cos(@x) + %(9)) (16)

From this, if variables K, R, u, v, w, and y are known, W can be solved from equation

(15):

w (sin(&c) - —UCO}(Gx)>
Ye — Y

W= (17)

If W # 0, ie. the point is not at infinity, then from equations (14) and (16), one can solve
x and z:

) (18)

zZ= (19)
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An error estimate for the x and z coordinates can be obtained using a total differential

ox ox z ox

Ax = '8(9 A6, +'8 Ay.| + fAf’+ — (20)
0z 0z 0z 0z

Az = —A —A —A

This assumes that all variables are independent and component errors are small enough
to induce an approximately linear change error.

Similarly, if variables K, R, u, v, w, and 2z are known, W can be solved from equation (16):

v sin(60y
w <% + cos(9$)>

z

W:

(22)

If W # 0, ie. the point is not at infinity, then from equations (14) and (15), one can solve
x and y:

r= (23)

o st~ 222) .

Again, an error estimate based on total differential can be obtained using raw derivation:

ox (?x x (?x
Ay = ‘gey AG, | + ay Ay, ‘ Af‘ 'ayA ‘ (26)
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5 Calibration of a pinhole camera in 2D world

More fg@z mm/mm- [m/

— Neal Stephenson: Cryptonomicon

This section presents a method to calibrate a pinhole camera relative to a ground plane.
First, a pixel horizon for the camera is determined, and that is used to calculate (up
to a scale factor) the distance of the object relative to camera. Then, through careful
formulation, algorithms to determine camera height and tilt angle are presented.

5.1 Problem definition

Our camera calibration problem is to find the camera height ., focal length f and tilt
angle 0, in the equation (12). We have an upright object of a known physical height,
which moves or can be moved towards or away from the camera. The object is detected
from the images either manually or automatically. From the detections, we can deduct
the bottom and top image coordinates (v, v;) of the object. These coordinates are in
pixels.

The camera calibration problem can be made easier with some reasonable assumptions.
If the camera horizon is parallel to the plane horizon (i.e. the camera roll angle 6, is
zero) and the pixel aspect ratiois 1 : 1 (ie. f, = f, = f), the problem reduces into
a two-dimensional problem. Both the roll angle and aspect ratio can be made to fulfill
these assumptions for any camera. The aspect ratio can be corrected at the same time
with lens distortion corrections. The roll angle can be corrected by simply rotating the
2D camera image. Leaving out the z axis means also that the camera yaw angle does not
affect the problem, so it can be safely discarded from the consideration.

The calibration method should work with manual and automatic object detections. In
manual detection, it is desired to work with a small number of detections, such that the
amount of manual labor is minimized. This means that the algorithm should need only
a few “clicks” in the user interface. Alternately, automatic methods, such as automatic
people detection, as in [22], produce a lot of detections, to overcome measurement noise
in the detections.

5.2 Derivation of 2D object projection equations

When looking at the pinhole camera model from the side and removing the horizontal
dimension (z in world coordinates, u in image coordinates), the equation (12) simplifies
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to

K ORI R
[ -l

where s = sinf, and ¢ = cos 8,

Again, the projection result is in homogeneous coordinates. The actual vertical image
coordinate v, is obtained by normalizing the homogeneous coordinate, i.e. by dividing

wv by w.

WU cYy — CY. + sz
—=f . (28)
w —SYy + sy. +cz

Multiplyng this with the left-over denominator yields

(—sy + sy, +cz)v = f(ey — cy. + s2), (29)

which is essentially a linear equation. By plugging in object top and bottom image co-
ordinates v; and v, (y = 0), this produces handy linear equations for an upright object:

—syvy + sy.v; + czvy — fey + fey. — fsz =0 (30)
SYc Vb + CZU + feye — fsz = 0. (31)

Now these equations are in a useful form, as we’ll see later.

5.3 Determining the pixel horizon

Many texts refer to vanishing point or the pixel horizon. This is the point or level at
which any object moving on a plane will disappear or vanish, when it is moving away
from the camera. If we have multiple detections of the same object or different objects
of known height at different distances from the camera, we can use coordinates from
detections to estimate the pixel horizon.

Let us consider an upright object that is moving towards (or away) from the camera,
such as in the figure 9 (page 19). Let us choose a camera height y. be 3 m and vary the tilt
angle. For each tilt angle, we plot the bottom and top image coordinates of the object,
using the equation (27).



26

object image height vs. image coordinate v object image height vs. image coordinate v

»—x vb
e v

1200

1000

4001

object image height [px]
o
S
S
T
object image height [px]

N

S}

S
T

200 100

H
-200 0 200

i i i i i i i i i
—9500 —2000 -1500 —1000 -500 0 —Q400 -1200 -1000 -—800 —600 —400
object image coordinate v [px] object image coordinate v [px]

(a) At a tilt angle 6, = 0, the correspondence (b) At a tilt angle 6, = 10°, the correspon-
is linear. dence approximately linear.

object image height vs. image coordinate v object image height vs. image coordinate v

3001 3001

2501

2501

2001

150 150

object image height [px]
object image height [px]

100

501

i i i i i i i i i i i
—0800 —600 —400 —200 0 200 400 —0200 0 200 400 600 800 1000 1200
object image coordinate v [px] object image coordinate v [px]

(c) At a tilt angle 6, = 30°), the correspon- (d) At a tilt angle 6, = 60°, the correspon-
dence starts to skew. dence is very non-linear.

Figure 11: Object top and bottom image coordinates vs. object image height. Both coor-
dinates converge at the pixel horizon, where object height is zero.

We gain plots like in the figure 11. It should be noted that not all of the coordinates are
actually visible; the camera sees only a limited range of coordinates. For example, an
ideal pinhole camera with a vertical resolution of 480 pixels the visible range would be
v € [—240, 240]. The pixel horizon may exist outside the area captured by the camera.

From these plots in the figure 11., we can deduct that linear pixel horizon estimation is
not adequate for high tilt angles.

The pixel horizon can be calculated from object heights in pixels h, = v; — v}, and object
bottom coordinates vy,

The first method is to use a first order linear fit and the more theoretically accurate one
is to use “skewed” parabolic fit. The first order fit is good enough for small tilt angles
and it’s more robust to errors.

The equation for fitting is
h, = avy + b, (32)
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and we figure out parameters a and b with a least squares fit. From these we can calculate
the horizon position (the point where h, = 0) in pixels

Up = ——. (33)
a
For higher tilt angles, a second order parabolic fit provides more accurate estimates. The
equation for fitting is
h, = avi + buy + ¢, (34)

If a is close enough to zero (tilt angle is close to zero), we can determine the root with
using the previous equation. However, at higher tilt angles, a is negative, so we take the
negative branch of the solution

—b —Vb? — 4dac

2a

Up = (35)

5.4 First algorithm to solve unknown focal length, camera height and
tilt angle

First, we can try to solve all three parameters in our problem.

If object image coordinates vy, vy, object height y and distance 2 are known for a sufficient
number of point, a linear algebra problem of the form Ax = 0 can be constructed.

The solution requires calculating the object relative distance 2, which is the real distance
of an object along z such that
z=aZ, (36)

where « is a scale factor.

After we have determined the pixel horizon vy, it is possible to approximate the relative

object distance Z such that
1
Z = Up — Up. (37)

N

This is a linear simplification, so this does not provide good estimates with high tilt
angles.

The first straightforward formulation obtained from the equations (30) and (31) is as fol-
lows. Object top and bottom image coordinates v; and v, and object height v, is known,
which we can put into equations (30) and (31) to obtain a homogeneous linear equation
system Ax = 0

SYe
. co
—Z | B =0. (38)

Jeye
| fsa

—Yur Uy 20 —Yo —z

1
0 v 2zZvy, 0 1
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As the number of unknowns is six, a unique solution requires at least three object de-
tections (three top and three bottom coordinates). Each object detection adds two equa-
tions, i.e. two rows in to the matrix. If the system is overdetermined (more than three
detections), the equation can be solved (up to a scale factor /) using singular value de-
composition (SVD). See [10, pp. 88-91].

A =UDV', (39)

such that the estimate for x is the last column of V.

From the estimate, we can determine the value of 3 using the identity sin? z4cos?x = 1:

()

p = (fw)((fsa)(S) + (fe)(car)) (40)
Rest of the parameters can be solved as follows
0, = arcsin (%) (41)
o= ﬁcE)CTOEgm) (42)
= % (43)
Ye = % (44)

5.5 Second algorithm to solving unknown camera height and tilt angle

object detections camera focal length

camera height
—»  and tilt angle
estimation

pixel horizon depth coordinate

estimation estimation

extrinsic parameters

Figure 12: Block level representation of the second calibration algorithm.
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The first attempt proved to be very sensitive to noise in parameters and it did not con-
verge to a sensible result in many cases. Thus the idea had to be developed a little bit
further.

If the camera focal length f is known, a linear algebra problem of the form Ax = b can
be constructed. These standard problems can be solved using, respectively, e.g. singu-
lar value decomposition (SVD) or QR decomposition. These decompositions are imple-
mented widely in various numerical linear algebra software libraries.

The second formulation assumes that the camera focal length f is known. This require-
ment can be fulfilled by using the lens distortion calibration (see chapter 2.5.2, page 8),
which provides this information as a useful by-product. Given the focal length f, the tilt
angle 6, can be directly calculated from pixel horizon vy,

0, = arctan (U—;> ) (45)

Object top v; and bottom v, image coordinates, object height v, and focal length f are
known. Since the variables ¢ = cos#, and s = sinf,, the only remaining unknowns
in equations (30) and (31) are y. and «. Using this information, we get a linear equation
system Ax = b

svg+cf civy—sfz YoVt + CfYo

svp+cf ciu,—sfz [‘Zj}: 0 ) (46)

In this equation, the rows in A and b are repeated as many times as there are object
detections. Each object detection adds two equations, i.e. two rows to the matrix A and
to the vector b. There are only two unknowns, therefore one object detection should
suffice to solve the matrix. However, the pixel horizon and 2 cannot be estimated with
just one detection, the actual minimum is two object detections.

The two object detections make this linear system always overdetermined. Since it is
overdetermined, there is usually no exact solution due to noise in measured parameters.
An approximate solution can be found using a regression algorithm, e.g. by minimizing
either the square or absolute error. These common methods are called linear least squares
(L2 norm) regression or linear least absolute deviations (L; norm) regression.

5.5.1 Solution with Least Squares
The overdetermined linear system in the equation (46) can be solved using ordinary least
squares fit

min ||Ax = b||, (47)

The least squares solution for x can be calculated easily using the standard QR matrix
decomposition [28, p. 293]

a=oly ] 49)
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such that the estimate for x is
x=R"'Q"b. (49)

As we can see from the equation (46), the estimate for the camera height y. is the first
element of x.

QR decomposition or any LLS fit is available in most numerical linear algebra packages,
which makes the implementation of this solution easy.

5.5.2 An error estimate for LLS solution

The in-sample standard error estimate E, for the fitted x can be obtained by calculating
the estimate for the variance of the error term [11, p. 19, 29]

b — Ax||2
52: Hm_nH2 (50)
S = (ATA)f1 s? (51)

E, = /diag(S), (52)

where m is the number of rows and n number of columns in the matrix A and diag(S)
is a vector containing the diagonal elements of the covariance matrix S.

This in-sample error estimate for x is only good, when there are many object detections,
that is when the sample is sufficiently representative. When manual object detections
are used, this error measure might not be useful. It is potentially useful for automatic
object detection methods, when trying to get rid of outliers using e.g. RANSAC.

5.6 Third algorithm to solve unknown camera height and tilt angle

object detections camera focal length

camera height

ixel hori .
ple);iimztrilszn —  and tilt angle

estimation

extrinsic parameters

Figure 13: Block level representation of the third calibration algorithm.
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After simulation, the second algorithm seemed to work robustly for cameras pointing
directly at horizon (zero tilt angle). However, in the simulation, that solution produced
inaccurate estimates for situations, where the camera is installed at more than 5 meters
high and the camera has some tilt angle (that is, the camera is not pointing directly at
the virtual horizon).

By rethinking the approach and looking at the equations again, it becomes evident that
solving object distances before solving the linear algebra problem is redundant. Since
the tilt angle can be deducted from the equation (45), the object distances z can be just
simply substituted away.

—SYvy + SYevy + czvy — fey + feye — fsz =0 (53)
SY Uy + CZU + feye — fsz =0 (54)

Solving z from the second equation

. —S5YUp — nyc
2= (55)
cop — fs

and substituting 2 in the first equation (53) yields

syve + fey
svy + fe+ (cvp — fs) (M>

cvp—fs

Yo = (56)

Thus, the camera height . can be solved for each object detection. If there are multiple
detections, the resulting camera height estimate can be obtained taking an arithmetic
mean of all individual solved camera heights.
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6 Object Tracking with Overlapping Top-Down Cameras

Ez}gz/ f?f[% 4yt fdé / 7 é term‘c@ gy
— The Police: Every Breath You Take

The idea is rather simple: calibrate the cameras so that we can produce a stiched overall
image. Then combine the paths from different cameras that are near each other in the
space, which dimensions are world coordinates and time.

6.1 Calibration

After the lens distortions have been removed, relative positioning of the cameras can be
determined such that the camera images can be stitched together. In an indoor scene, the
floor plane can be used as the reference for the stitching. If the cameras are not pointing
top-down, projective transform transform is needed to create proper rectification [10, p.

55].

A crude stitching can be made using a general affine transform [10, p. 39] of the form [26,
p- 371]

@11 Q12 Qi3 x
= | a1 Qg a3 yo|- (57)
1 0 0 1 1

This affine transform from one image’s coordinates u, v to another z, y, which stitches
these images on top of each other, can be found using either aleast-squares algorithm [26,
p. 371] or direct linear transform (DLT) algorithm [10, p. 130]. The stitching needs at least
3 matched point pairs.

However, if the cameras are installed to point straightly down, it suffices to use a limited
form of the affine transform, namely a similarity transform [10, p. 39]. Experimenting
with affine transform, errors in matched points would produce fairly skewed transforms,
which are mostly incorrect. Similarity transform only consists of scale s, rotation # and
translation ¢,, ¢, parameters, and does not allow skewing.

U scos —ssinf t, z
= | ssinf} scost {, y |- (58)
1 0 0 1 1

To determine a similarity transform to align two images, two matched point pairs are
required. The similarity transform is better, since the skewing in ccp cameras is usually
nominal [12], especially after lens calibration and distortion removal. In order to solve
the required transform, we can use the algorithm described in [26, p. 365].
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Let 35372, Y1 5 be the points on first image and Y5, Y1’y be the respective matched points
on the second image. First we determine the rotation angle

; = arctan (yf — yi ) (59)
Ly — Iy

6., = arctan (%) (60)
Ty — Iq

0=06,—0,. (61)

Then using this angle, the final transform can be determined

¢ = cosf (62)

s =sinf (63)

e (64)
Tic — Yis — x5¢ + Y5S

t, =y’ — S(z1s + yic) (65)

ty =¥ + S(—alc+yis) (66)

in matrix form

Sccosf —Sssinf t,
Tgm = | Sssinf Sccosf t, |. (67)
0 0 1

After matching, we can calculate pair-wise transforms between the images, as shown
in the figure 14. After an anchor image is selected, all the transforms can calculated
respective to it. To create a composite image, a bounding box for the whole result image
must be calculated, and this is done by going through all images and transforms and
figuring out their respective bounding boxes. The resulting bounding box is derived from
these by getting the minimum and maximum of the all sub-image bounding boxes.

We can figure out the correct order for combining the transforms by constructing a
graph. In the graph, all nodes are images and edges are pairings between them. At first,
all the pairings are added as bi-directional edges. Then we select the anchor image and
initiate a breadth-first search (BFS) and reduce the graph into a directed acyclic graph.

Now, the directed acyclic graph can be traversed recursively in BFS manner, and the
transforms respective to the anchor image can be calculated by multiplying them to-
gether.
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Figure 14: Matching point pairs (1, 2) and stitching images (A, B) together using a simi-
larity transform. The bounding box of the result image is shown with a dotted line.

all paths

—2001

-1001

Figure 15: Image of a real multi-camera test setup. Camera images have had their distor-
tion removed and then they are stitched together using similiarity transforms. Single-
camera object tracking results (paths) are shown as colored lines on top of the images.
(Few stray lines are result of the Kalman-based path predicition of the single-camera
tracking algorithm.)
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6.2 Simple algorithm for finding the combinable paths

Each camera has tracking algorithm, which provides us tracked object paths. The paths
in figure 15 have time information in them and thus they can be represented better in a
3D space (figure 16).

A straigthforward method for joining these paths is to form an ellipsoid around a point
on one path on one camera and compare it to a point on a path on the other camera. The
size of the ellipsoid acts as a threshold: if the other point is inside the ellipsoid around
the first one, the paths are marked as being the same path and same object. Using this
method, the joinable paths can be seen in figure 17. The threshold value has to be adjusted
depending on the scene.
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Figure 16: Visualization of the paths in time and space.

Joinable paths

Figure 17: Paths that are deemed joinable by the algorithm.
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7 Results and Comparision
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— Richard P. Feynman: Surely You're Joking, Mr. Feynman!/ Cargo Cult Science

How do we measure, whether our methods are any good? This section describes test-
ing setups and defines performance measures for the camera calibration algorithm. The
section also draws comparions to other camera calibration methods.

7.1 Camera Calibration

For the algorithm development purposes, a numerical simulation of object detections
was built using the direct projection of the pinhole camera model (see section 4). This al-
lows quick, automated testing of various camera angles and heights, and different scenes.
The object detections had optional noise added to the image coordinates. This simulates
imperfect object detection due to lack of image resolution for objects at a greater distance
and inexactness of operator input.

Figure 18: Example of a rendered test scene for manual object detection testing. The
crosses represent objects of known height, such as humans.
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For manual detection testing and user interface development purposes, a rendered sim-
ulation was built. Actual video material with measured ground truth values is hard to
come by and slow to produce, so it was much easier to use 3D modeling. The rendered
simulation uses a 3D ray tracing engine POV-Ray [3] for producing photorealistic test
scenes, such as in figure 18. POV-Ray can model a lot of various realistic phenomena,
such as shadows, focus blur and lens distortions. However, in the testing these were not
used.

Finally, a proof of concept testbed was implemented in Python and C++. This extended
a system made by Kuusisto [20], which had motion detection and object tracking algo-
rithms already in place. The camera calibration in the testbed had of a lens distortion re-
moval step and a manual object detection step. After performing the camera calibration,
the test bed annotated moving objects with physical dimension and speed estimates.

The performance of the 3D camera scene calibration method is hard to objectively as-
sess. The method depends on manual input. Thus, the performance of the method de-
pends both on the accuracy of the manual input (i.e. how careful the operator is) and the
algorithm itself.

For lenses with narrow angle of view (less than 6o degrees), the lens distortion calibra-
tion accuracy for the focal length is good enough for most video surveillance purposes.
However, with wide-angle or fish-eye lenses, focal length calibration using the seems
to be rather next to useless. The error might stem from warped calibration paper and
because of the extreme distortions at lens corners.

7.2 Performance metrics

For the operator, one quantitative performance metric is, how quickly a satisfactory cal-
ibration can be achieved. Qualitative performance metrics are how easy the method is
to use and how much training is needed for an operator to learn to use the system.

For the algorithm, typical accuracy of the input can be estimated, and this can be taken
into account in simulating the operator input. Sensible quantitative performance metrics
can be: how much input data is required, what is the error in the results (estimated
parameters) relative to ground truth (actual parameters), how much an error in input
affects the error in the results (resiliency to noise) and how much computation is needed.

7.3 Automated numerical simulation

3D camera scene calibration algorithm was tested using purely generated, simulated
object detection data and also with manual object detection data for rendered and real
recorded scenes. Results of simulations are reproduced here, because they measure the
performance of the algorithm best. Real world situation tests were only used to verify
that simulated data tests captured reality well enough.

In the simulation setup, image coordinates for five object detections are calculated at
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distances of 10 to 5om. The camera horizontal field of view was 60 degrees, and lens dis-
tortions were assumed to be removed. Camera tilt angle and height was varied. Image
coordinates were subjected to random Gaussian noise, so that the noise standard devia-
tion was 5 percent of the height of the object. Each 5 object detection scene was sampled
200 times to obtain variance estimates for the result.

The simulation results are shown in figure 19. Figures 19a and ¢ show the performance of
the second algorithm and figures 19b and d the performance of the third algorithm. As
we can see in figure 19c, a simple linear estimation of the pixel horizon fails to estimate
the camera height properly with tilt angles larger than 10 degrees. The second-order
estimation estimates the camera height better.

This provides a simple way to obtain the ground truth and check up the algorithm per-
formance against it. Simulation calculates "detection points” for Thumans” standing at
variable distances in the scene. These detection points can be introduced with noise and
distortion to see their effect on the parameter estimates.

The first method with three unknowns (focal length, tilt angle, camera height) proved
to be highly sensitive to bias and noise in the coordinate parameters. In the presence of
noise, the algorithm usually did not converge at all. There is a lot of room for improve-
ment though, e.g. a constrained version of this could work better.

If the focal length is given, for example from using a lens calibration, this reduces the
number of unknowns to two (tilt angle, camera height). Here the algorithm works ro-
bustly (i.e. a sensible solution is found) and result accuracy raises significantly. Solutions
for tilt angle and camera height proved to be fairly robust in the tests. They need at least
four points (two object detections, second algorithm) or six points (three object detec-
tions, third algorithm) at minimum to determine the tilt angle 6, and camera height y..

Based on these results, this is the recommended method for calibration accompanied
with the checkerboard calibration, which can be used to find the focal length f of a
camera.

7.4 Manual testing using rendered and real images

In addition to automated numerical testing, the calibration method was also tested using
rendered images, such as in figure 18. Here the operator (user) chose the object top and
bottom coordinate matches in a GUI using a mouse and then the calibration algorithm
was run.

When using manual calibration, the setup time was roughly one third compared to a
commercially available calibration method [30] with a known focal length, given that a
camera image contains objects where matching can be easily made.
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LSQ estimated camera height vs. tilt angle, 5 detections, 200 tests new estimated camera height vs. real tilt angle, 5 detections, 200 tests
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Figure 19: Camera at 3 meters, the performance of both the second and third solution is
roughly equivalent in terms of error. However, at 10 meters, the second solution breaks
down at high tilt angles, while the third solution still provides reasonable estimates.

7.5 Multi-camera tracking

As most time in this work went into determining a practical 3D calibration method for
cameras, multi-camera tracking method was not tested much. The proposed method was
mainly tested using real-world data from a system, which consisted of three ceiling-
mounted cameras attached to a DVR. The method could be also tested better with syn-
thetic data, but due to lack of time, this was not done.

If objects start to overlap (objects join together) or overlapping objects desist to overlap
(objects split), it is not possible to recreate the correct paths in all cases. The frequency
of such events is dependent on the moving object density (e.g. whether it is a rush hour
in a store or not) and other parameters.
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8 Discussion and Conclusions
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In this thesis, a flexible method is developed for calibrating a camera in 3D space using
object detections of object of known height. The method is computationally lightweight
and easy to implement using standard open-source computer vision and linear algebra
libraries. Our test result suggest that it is robust to noise in calibration parameters. The
method can be used either manually (setting object top and bottom image coordinates
by hand) or automatically (detecting moving objects such as humans of known height).

Furthermore, we have developed a method for calibrating multiple overlapping top-
down cameras and joining object tracking paths in them.

8.1 Camera calibration

The major result is that vanishing point analysis or a linear fit for the horizon does not
work properly when calibrating a camera that is tilted away from the plane horizon. A
second-order fit produces better results in these conditions.

The numerical simulation results show, that the camera calibration algorithm works
fairly well with tilt angles less than 30 degrees and low camera install heights (2-10 me-
ters). A low number of object detections for calibration are required (only two detections
or four points are required), when operated manually, but also extra object detections
can be used in automatic operation to reduce calibration error from noise. Thus it is
applicable in many typical video surveillance situations.

In manual tests the calibration method requires much less time and manual tweaking
of input parameters than a comparable commercial method [30][8]. Also, the proposed
calibration method can be utilized with an object detection algorithm, making the system
fully automated (provided that the focal length of a camera-lens system is known or
calibrated). The above-mentioned commercial method does not have this property.

8.1.1 Sources of error in results

There are multiple sources for error in the estimation method. There are imperfections
in the camera projection even if it has been calibrated and lens effects are accounted
for. The focal length measurement using a chessboard method is not always exact, espe-
cially for very wide-angle lenses. These introduce systematic error later in the proposed
calibration method.

We assume that the object is moving on the ground which is a plane. This is not often
true outdoors, and causes also systematic error. The second order fit is not ideal even for
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a perfect plane, which introduces systematic error.

There are also inaccuracies and errors in the object detection (manual or automatic). The
object might not be upright and its camera-facing side might not be a plane perpendicular
to the ground plane. This affects the object detection, and the nature of the error can be
both stochastic and systematic.

In the tests, these errors have not caused too much inaccuracy to undermine practical
value of the results. The calibration method is good enough to be used in a video surveil-
lance setting to help determine physical location, speed and size of moving objects.

8.1.2 Limitations and directions for further research

In the current method, camera roll rotation angle is not taken into account. Instead an
angle of zero degrees is assumed, i.e. the angle between camera horizontal axis and hori-
zon is zero. This is not problematic as the roll angle can be corrected in post-processing,
but it must be accounted for, if the roll angle is large. This work does not propose any
method to determine the roll angle.

Error estimates could be much improved and a proper maximum-likelihood estimate
(MLE) for the calibration method could be derived. When there are a minimal number
of object detections for the calibration, some a priori error estimates could be used to
provide with some error estimates instead of none.

It would be also interesting to calibrate the cameras against a global world coordinate
system. Once extrinsic parameters for each single camera are established independently,
it would be possible to match parallel detections between overlapping cameras and de-
termine the camera positions relative to each other. After that, multi-camera tracking is
possible, e.g. using the methods discussed in the literature review.

For fully automatic operation, it would be interesting to combine the camera calibration
method with human detector. Camera calibration would be run automatically for only
humans moving towards or away from the camera, and a population height average
would be used for as an estimate of the object’s real height.

Further research is required to overcome the limitations of using a planar ground. It is
possible to derive the depth map from multiple views or depth cameras (e.g. Kinect).

Automated simulation and testing of computer vision algorithms using 3D engines (such
as ray tracing or modern photorealistic game engines) did prove very useful for the com-
puter vision algorithm development. It is easy to obtain ground truth masks and position
data for simulated scenes compared to real camera footage, where this has to be done
either with other algorithms, precise machinery or by hand. Ray tracing and animated
3D scenes can model all kinds of real light phenomena, such as shadows, moving veg-
etation, time of the day effects and occluding moving objects in a precisely controlled
fashion without setup high costs.
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8.2 Top-down multi-camera calibration and tracking

The multi-camera calibration and tracking setup explored here is a special case. A top-
down setup, where all the cameras point directly towards the ground simplifies the cal-
ibration a lot. The objective here was to determine object tracks. The proposed method
is a really bare-bones approach that does not require much computation resources for
operation on top of the single-camera background subtraction and object tracking. In
this work, not much testing of this method was conducted.

8.2.1 Limitations and directions for further research

In multi-camera systems, there are various delays and sources of timing difference in
the frames received by the computer. This poses a challenge for the multi-camera ob-
ject tracking algorithms, since it increases the difficulty to make the camera handoff
correctly. This work assumes that the all camera images are tagged with a global time
stamp that is accurate enough and that the frame rate is high enough for operation. Path
prediction and interpolation methods could be used to improve matching paths from
non-synchronized cameras.

Doing a tracking separately for each camera and then doing path matching might not
be the best approach. It would be interesting to experiment with various path match-
ing approaches and use proper performance metrics discussed in the literature review.
For testing, a ray tracing based animation system could be worthwhile to provide ground
truth data easily. Especially testing object occlusions and overlaps, joins and splits would
be much improved with a controllable test setup. This would provide better data to mea-
sure the algorithm performance.

From the experience in testing, top-down setup may not be particularly cost effective
when considering e.g. customer tracking in shopping malls or shops where the ceiling
height is low. Tilted, freely positioned cameras can cover larger areas with fewer units,
but partial or full object occlusions are then more common.

8.3 Note

As of writing, a patent application for the camera calibration method presented in this
thesis was submitted to the Finnish Patent Office. The patent application number is
Fl20125277 (“Method, arrangement, and computer program product for coordinating
video information with other measurements”). That patent application contains mate-
rial from a draft version of this thesis.



BIBLIOGRAPHY 44

Bibliography

G. Bradski and A. Kaehler. Learning OpenCV. O’Reilly Media, 2008.

D.C. Brown. “Close-range camera calibration”. In: Photogrammetric engineering
37.8 (1971), pp. 855-866.

David K. Buck and Aaron A. Collins. “POV-Ray - The Persistence of Vision Ray-
tracer”. URL: http://www.povray.org/.

X. Chen, J. Davis, and P. Slusallek. “Wide area camera calibration using virtual cal-
ibration objects”. In: Computer Vision and Pattern Recognition, 2000. Proceedings.
IEEE Conference on. Vol. 2. IEEE. 2000, pp. 520-527.

D. Crandall et al. “Discrete-continuous optimization for large-scale structure from
motion”. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference
on. IEEE. 2011, pp. 3001-3008.

Mark Theodore Draelos. “The Kinect Up Close: Modifications for Short-Range
Depth Imaging”. MSc thesis. USA: North Carolina State University, 2012.

Frederic Dufaux, Beatrice Pesquet-Popescu, and Marco Cagnazzo. Emerging tech-
nologies for 3D video: creation, coding, transmission and rendering. Wiley, 2013.

E. Eccles et al. “Apparatus and method for camera parameter calibration”. Patent
US 2011/0149041 A1. 2011.

T. Fukuda et al. “Seamless tracking system with multiple cameras”. In: Industrial
Electronics Society, 2000. IECON zo000. 26th Annual Confjerence of the IEEE. Vol. 2.
IEEE. 2000, pp. 1249-1254.

R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Sec-
ond. Cambridge University Press, 2004. ISBN: 0521540518.

F. Hayashi. Econometrics. Princeton University Press, 2000.

J. Heikkild and O. Silvén. “A four-step camera calibration procedure with implicit
image correction”. In: Computer Vision and Pattern Recognition, 1997. Proceedings.,
1997 IEEE Computer Society Conference on. IEEE. 1997, pp. 1106-1112.

D. Hoiem, A.A. Efros, and M. Hebert. “Putting objects in perspective”. In: Interna-
tional Journal of Computer Vision 80.1 (2008), pp. 3-15.

Derek Hoiem, Alexei A Efros, and Martial Hebert. “Putting objects in perspective”.
In: International Journal of Computer Vision 80.1 (2008), pp. 3-15.

W. Hu et al. “A survey on visual surveillance of object motion and behaviors”. In:
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions

on 34.3 (2004), pp. 334-352.
S. Izadi et al. “KinectFusion: real-time 3D reconstruction and interaction using a

moving depth camera”. In: Proceedings of the 24th annual ACM symposium on User
interface software and technology. ACM. 2011, pp. 559—568.


http://www.povray.org/

BIBLIOGRAPHY 45

[17]

[18]

[19]

[24]
[25]

[26]
[27]

(28]

[29]
[30]

[31]

[32]

J. Kang, 1. Cohen, and G. Medioni. “Tracking people in crowded scenes across
multiple cameras”. In: Asian Conference on Computer Vision. Vol. 7. Citeseer. 2004,

p. 15.
Sohaib Khan and Mubarak Shah. “Consistent Labeling of Tracked Objects in Mul-

tiple Cameras with Overlapping Fields of View”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 25.10 (2003), pp. 1355-1360.

Rakesh Kumar, P Anandan, and Keith Hanna. “Direct recovery of shape from
multiple views: A parallax based approach”. In: Pattern Recognition, 1994. Vol. 1-
Conference A: Computer Vision & Image Processing., Proceedings of the 1zth IAPR
International Conference on. Vol. 1. IEEE. 1994, pp. 685-688.

M. Kuusisto. “Texture and reconstruction based motion detection method for video
recording systems”. MSc thesis. Finland: Helsinki University of Technology, 2008.

M. Liem and D. M. Gavrila. “Multi-person tracking with overlapping cameras in
complex, dynamic environments”. In: International Journal of Computer Vision

38.3 (2000), pp. 199—218.

B. Micusik and T. Pajdla. “Simultaneous surveillance camera calibration and foot-
head homology estimation from human detections”. In: Computer Vision and Pat-
tern Recognition, IEEE Computer Society Conference on (2010), pp. 1562-1569. DOI:
http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539786.

T.B. Moeslund, A. Hilton, and V. Kruger. “A survey of advances in vision-based
human motion capture and analysis”. In: Computer vision and image understanding
104.2-3 (2006), pp. 90—126.

E.S. Raymond. The Art of Unix Programming. Pearson Education, 2003.

A. C. Sankaranarayanan, A. Veeraraghavan, and R. Chellappa. “Object detection,
tracking and recognition for multiple smart cameras”. In: Proceedings of the IEEE
96.10 (2008), pp. 1606-1624.

L. Shapiro and G. Stockman. Computer Vision. Prentice Hall, 2001.

N. Snavely, S.M. Seitz, and R. Szeliski. “Modeling the world from internet photo
collections”. In: International Journal of Computer Vision 80.2 (2008), pp. 189—210.

G. W. Stewart. Matrix Algorithms, Volume I: Basic Decompositions. Society for In-
dustrial and Applied Mathematics, 1998.

R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

UDP Technology. Product Application Note: Video Analytics — A New Standard.
http://www.vcatechnology.com/public/downloads/Video-Analytics-A-New-
Standard.pdf. [Internet; fetched on 12 Nov 2013]. 2010.

UDP Technology. Product demonstration video: UDP Technology - 3D Camera Cal-
ibration. http://www.youtube.com/watch?v=0VIhoLpj_Io. [Internet; fetched on
12 Nov 2013]. 2010.

P. J. Withagen. “Object detection and segmentation for visual surveillance”. PhD
thesis. 2006.


http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/CVPR.2010.5539786
http://www.vcatechnology.com/public/downloads/Video-Analytics-A-New-Standard.pdf
http://www.vcatechnology.com/public/downloads/Video-Analytics-A-New-Standard.pdf
http://www.youtube.com/watch?v=OVIhoLpj_Io

BIBLIOGRAPHY 46

[33] Z.Zhang. “A flexible new technique for camera calibration”. In: Pattern Analysis
and Machine Intelligence, IEEE Transactions on 22.11 (2000), pp. 1330-1334.

[34] Z.Zhang. “Flexible camera calibration by viewing a plane from unknown orienta-
tions”. In: Computer Vision, 1999. The Proceedings of the Seventh IEEE International
Conference on. Vol. 1. IEEE. 1999, pp. 666—673.

[35] Z. Zhang et al. “Video Surveillance using a Multi-Camera Tracking and Fusion
System”. In: Multi-camera networks: principles and applications (2008), p. 435.

[36] T. Zhao et al. “Real-time wide area multi-camera stereo tracking”. In: Computer
Vision and Pattern Recognition, z005. CVPR 2005. IEEE Computer Society Conference
on. Vol. 1. IEEE. 2005, pp. 976-983.



	Abstract (in Finnish)
	Abstract
	Acknowledgements
	Contents
	Symbols and Abbreviations
	Introduction
	Background
	Objective of the thesis and the challenges involved
	Real-time operation
	Implementability

	Content of the thesis

	Literature review on video surveillance systems and camera calibration
	Terminology
	Overview of video surveillance system architectures
	Motion detection using background subtraction
	Object tracking with a single camera
	Calibration of intrinsic parameters
	Lens distortion removal
	Checkerboard calibration

	Calibration of extrinsic parameters
	Manual calibration
	Calibration using known markers in the scene
	Using 3D scene reconstruction and feature matching

	Calibration and object tracking with multiple overlapping cameras
	Top-down calibration and tracking
	Freely positioned calibration and tracking


	Objective and challenges
	The objective
	Usability requirements
	Speed requirements
	Implementation requirements

	Workflow overview
	First stage: Intrinsic camera parameters and lens distortion removal calibration
	Second stage: Extrinsic camera parameters calibration


	Pinhole camera model
	Definitions
	Calculation of the forward projection
	Calculation of the inverse projections with known y or z

	Calibration of a pinhole camera in 2D world
	Problem definition
	Derivation of 2D object projection equations
	Determining the pixel horizon
	First algorithm to solve unknown focal length, camera height and tilt angle
	Second algorithm to solving unknown camera height and tilt angle 
	Solution with Least Squares
	An error estimate for LLS solution

	Third algorithm to solve unknown camera height and tilt angle

	Object Tracking with Overlapping Top-Down Cameras 
	Calibration
	Simple algorithm for finding the combinable paths

	Results and Comparision
	Camera Calibration
	Performance metrics
	Automated numerical simulation
	Manual testing using rendered and real images
	Multi-camera tracking

	Discussion and Conclusions
	Camera calibration
	Sources of error in results
	Limitations and directions for further research

	Top-down multi-camera calibration and tracking
	Limitations and directions for further research

	Note

	Bibliography



