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Abstract: 

In Denmark and Germany, renewable energy makes up over 20 % of electricity production. This 
thesis focuses on the short and long-term price impacts of Danish wind power, and German wind 
and solar power. Due to their negligible short-run marginal costs and intermittent output, these 
renewable energy sources displace conventional electricity production and disrupt the otherwise 
more predictable supply and demand balance. Although renewable energy is already a major player 
in the electricity market, extensive quantitative research on their price impacts has been scarce so 
far. As the European Union energy policies require new investments in renewable electricity 
production, a clear understanding of the price impacts is needed. 

To estimate the impacts of wind and solar power, I model electricity price volatility as a SARMA 
process along with an exogenous variable for wind or solar power production. The model is 
appropriate because short-term electricity prices can be adequately forecasted by looking at the 
past values and by utilizing the information on repetitive weekly demand patterns. Based on the 
coefficients for wind and solar power, the model provides a clear interpretation for their price 
impacts. The robustness of the model is confirmed by numerous regressions that pass diagnostic 
tests. 

All the statistically significant results are economically significant. First, both Denmark east and west 
daily wind power decrease the daily area price levels and volatility. In Denmark, the maximum wind 
output occurs during the peak hours, thereby cutting the high peak hour prices. Second, Denmark 
west wind power increases the weekly volatility of Denmark west prices due to the volatile 
production. For Denmark east, the long-term impact is not statistically significant. 

In Germany, daily solar and wind power have a decreasing impact on daily electricity price levels. 
Compared to wind power, solar power is more stable and it causes the volatility to decrease. 
Contrary to the result for Denmark, daily German wind power increases the daily volatility. This 
contradiction is explained by a relatively flat wind output curve that has a substantial price-
decreasing effect on first off-peak hour (00-07) prices. In addition, wind power increases the weekly 
volatility due to the intermittent nature of production. 
 
With a low and volatile wholesale electricity price, the profitability of electricity plants is endangered. 
Combined with the challenges that intermittent supply from renewables pose for the transmission 
grid and security of supply, adjustments to production capacity and regulations are required to 
stabilise the market. 
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1 Introduction
On May 26, 2012, Germany set the new world record for renewable energy by producing nearly
half of its electricity demand with solar power [1]. Both European and global adoption is progress-
ing, as investments in renewable energy saw a 17% increase from 2010 to 2011 [2]. At the same
time, the efficiency of the renewable technologies is improving, and manufacturers are achieving
economies of scale that is driving component prices down. The general political slant towards
renewable energy is positive.

The increasing popularity is also driven by the fact that many countries are subsidising in-
vestment in renewable energy such as wind and solar power by offering generous fees for the
producers. Because of their weather-driven nature, and their out-of-merit dispatch, large-scale in-
stallations of wind and solar power are playing an increasingly important role in the supply and de-
mand balance of electricity. Ultimately, that balance determines electricity prices in market-based
systems. Therefore, a clear understanding of the price effects of renewable energy in market-based
electricity systems such as Nord Pool and EEX is needed. Even now, wind and solar power are
displacing traditional combustion plants that form the huge asset base of utility companies.

Several articles have estimated the effects of wind power production on the price levels, and
the common conclusion is that wind power production decreases prices. Holttinen et al. [3] use the
popular EFI (now a part of a Norwegian research organisation, Sintef) Multi-Area Power Market
Simulation model, EMPS, that focuses on optimising weekly hydro power production. Wind
power production is modelled as a run-off-river supply that decreases the spot prices due to zero
marginal costs. However, the weekly resolution in EMPS loses the information on the intermittent
nature of wind power.

In turn, Jonsson et al. [4] use hourly data and a non-parametric regression model to provide
more detailed results not only price on levels but also on the distribution of the prices and volatil-
ity of the western Denmark area prices. In addition, they have access to day-ahead wind power
forecast data that is actually used when the market players try to optimise their profits. Their con-
clusion is that wind power production has a substantial decreasing effect on prices and volatility.
Instead of being a passive component in the market, wind power is seen as a price maker. The
estimated prices are a complex function of the hour and wind power production. Therefore, prices
do not behave linearly as a function of wind power.

The renewable energy reformation in Germany has required a lot of feasibility studies on the
profitability of new energy investments. However, only recently have there been studies on the ef-
fects of the new investments on electricity prices. Ketterer [5] models the influence of intermittent
wind power production on the level and volatility of the electricity prices in Germany by us-
ing a generalized autoregressive conditional heteroskedasticity (GARCH) model with logarithmic
prices. GARCH models are a widely employed methodology in volatility modeling in financial
markets as they capture well the spikiness and clustering of volatility. Ketterer finds that wind
power decreases the price level but increases daily volatility. However, she notes that after the reg-
ulatory change in 2010 to force the German transmission operators to publish day-ahead forecasts
for their renewable generation, the volatility-increasing effect of wind power has decreased but
not enough to turn the effect negative. Therefore, Ketterer’s results conflict with Jonsson’s when
it comes to the effect of wind power on price volatility.

Green and Vasilakos have published several wind power-related studies. First, they [6] study
how the British electricity markets would adjust to a growth in wind power generation in the long
run. Given the UK targets for the share of wind power production of total generation in 2020,
optimal electricity production mix is modeled as a social welfare maximization problem where
the production levels of each type of capacity are decision variables. They find that to reach a
long-term equilibrium, the mix of generating capacity needs to change to adapt to the volatile
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wind output. This is achieved with a substantial amount of high-cost capacity running for short
periods. The average price is similar with or without wind power but in the former case the effect
comes from higher and more volatile peak prices.

Second, they [7] try to predict the short-term price and revenue volatility in the UK given the
same wind power targets for 2020. In a competitive market, their conclusion is that hourly prices
are greatly affected by wind power speeds: maximum evening peak hour prices can be more than
two times larger than minimum. Furthermore, exceptionally high wind power output in the early
morning hours can drop the prices to zero. These variations imply that producers are likely to
see wide variations in their profitability. The earning potential of thermal generators disappear
because they are needed rarely. Being ready-to-run when needed is important as the previous
paper suggested.

Conversely, solar power has not inspired so much devoted research on the effects on the price
levels and volatility. In an evaluation report of the impacts of the renewable energy subsidies
[8], German Federal Network Agency, Bundesnetzagentur, notes that the price spread between
high consumption peak hours and low consumption off-peak hours has decreased substantially.
In addition, the report graphically shows that the spread has been lowest when the solar power
production has been highest, and vice-versa. The obvious drawback of the methodology is that the
evidence can be purely coincidental. Along with Bundesnetzagentur, another significant publisher
of research is the Fraunhofer Institute for Systems and Innovation Research (ISI). For instance,
Sensfuß [9] has developed a complete market model to estimate the effects of renewable electricity
on the whole electricity sector.

Originally, this thesis was initiated by a bearish investment report on European utility compa-
nies entitled "Renewables to wipe out 50% of profits" by the Swiss bank UBS [11]. The investment
report claims that the renewables boom in Germany is cutting the high and profitable peak-hour
prices and crashing the prices in low consumption off-peak hours, thereby causing substantial
losses for the utility companies. The report highlights the economic importance of the solar and
wind power production patterns to the electric utility companies, although the patterns have not
been investigated much. Hence, I pay attention to output peaks, and overall shape of the wind and
solar power production curves, for example. Similar to the investment report, I expand my thesis
by laying out what-if scenarios that explore the outcomes with a larger share of renewables.

The methodology of this paper is largely based on the ideas of Johannes Mauritzen’s paper
[10]. The main result of the paper is that Danish wind power decreases daily volatility of the Dan-
ish area prices whereas weekly volatility increases. Variation of prices is modeled as a seasonal
autoregressive moving average model with wind power production as an exogenous regressor. The
benefits of this approach are its simplicity and the intuition that the electricity prices on the fol-
lowing day can be forecasted by looking at previous days and using the information on regular
consumption patterns. Moreover, the approach gives a straightforward interpretation to the impact
of renewable energy on the price volatility. I have extended Mauritzen’s analysis to study how
wind power affects the price variations by dividing the data set into peak and off-peak hours and
running similar regressions on the components.

I focus on the effects of Danish wind power on Danish area price volatility in Nord Pool and the
implications of German solar and wind power on Phelix, i.e., German area price volatility. Hence,
I am able to explain the contradiction between the results of Ketterer and Jonsson. I put emphasis
on exploring how renewable energy causes changes in volatility by looking at the production
patterns. I have picked these two countries because they are the most pertinent cases due to early
and substantial investment in renewables. Based on Mauritzen’s results, my hypothesis for both
countries is that renewable generation decreases intraday volatility but increases volatility over
larger time windows. The former statement results from renewable generation cutting peak hour
prices, and the latter is explained by the intermittent nature of wind and solar energy production.
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First, my paper gives a short introduction on Nord Pool and EEX, and the renewable energy
policies in the European Union. Second, I start the quantitative analysis by dealing with Danish
area price and wind power data, and thereafter by moving to Phelix price data, and German wind
and solar power data. Section 4 is again divided to Denmark and Germany. In both subsections
I present my model for the effects of renewable generation on daily and weekly volatility, and
explore the underlying causes for the impacts. Finally, I provide my conclusions based on the data
and models, and lay out what-if scenarios for future market prices in different cases of renewable
energy development.

2 Overview of the European energy exchanges and renewables
policy

2.1 Nord Pool
At the moment, the Nordic electricity exchange Nord Pool is the most important electricity market
in the Nordics with 77% market share. In 2012, the traded volume was 432 TWh, a 37% increase
from 2011 [12]. Nord Pool was established in 1993 when the Norwegian parliament decided to
deregulate the market for power trading. Since Eastern Denmark joined Nord Pool in 2000, all
Nordic power markets have been deregulated. At the moment, Nord Pool is expanding to the
Baltics. Nord Pool consists of three markets: the day-ahead physical spot market Elspot, intraday
balancing market Elbas, and the financial market. The primary market is Elspot.

Each day, electricity producers and consumers submit their bids for every hour of the following
day to the Elspot auction by 12 PM CET. Those bids specify the volume each player is willing to
buy or sell at a specific price. Aggregated supply and demand bids of all Nord Pool participants
are then used to calculate the system price, i.e., the equilibrium price without considering any
internal transmission constraints. Furthermore, the players can have bilateral contracts that are
not related to Nord Pool. Naturally, it is important to estimate the supply and demand balance for
price forecasting purposes.

In addition to the system level spot price, Nord Pool calculates area prices. At the moment,
there are fourteen bidding areas that are divided according to power balance or the geographical
areas of different transmission operators. Figure 1 shows the different Nord Pool bidding areas.
The area prices are calculated to maximize social welfare by taking into account transmission
constraints between different areas. In a deficit area, the supply curve is shifted to right as imports
increase supply. At the same time, the demand curve of a surplus area is shifted to right as exports
increase. However, when the demand for imported electricity at the system-level price exceeds
the area’s transmission capacity, the area price is higher than the system price, and vice versa, in
an area, where the export demand is higher than the physical limit, the area price is lower than
the system price. Consequently, area prices are actually more relevant to different areas than the
system price. Figure 2 depicts the area price calculation graphically.

Later, the balancing market, Elbas, is used to secure supply and demand balance in unexpected
scenarios such as sudden plant outages. Elbas is a continuous market where highest buy price and
lowest sell prices get served first. As also Nord Pool acknowledges, the role of the balancing
market strengthens when the share of intermittent renewable electricity production increases.

The system and area prices are used as reference prices for financial contracts such as futures,
forwards, options and so-called CfDs, i.e., contracts for differences in system and area prices.
Futures and forwards are available both in base and peak load, i.e., for different hours of the
day. The market clearing is done by Nasdaq OMX Commodities Europe. The financial market
involves no physical delivery of electricity so the contracts are settled in cash. Therefore, the
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financial contracts can be used for hedging, risk management, or proprietary trading purposes, for
instance. As all relatively big players are active in the financial market, the liquidity of the market
is consired to be good, excluding holidays.

Figure 1: The turquoise-coloured countries with country codes belong to Nord Pool as of January
2013. Source for image: Nord Pool website.

Figure 2: Area price calculation optimizes social welfare compared to two disconnected areas.
Also, the prices converge when the area price of a deficit area decreases and the area price of a
surplus area increases. Source for image: Nord Pool website.

2.2 European Energy Exchange
At present, the European Energy Exchange (EEX) is the leading energy exchange in three market
areas: Germany and Austria, France, and Switzerland. EEX was founded in 2002 when two
German energy exchanges merged. After, the volume traded has been growing at fast pace [13].
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The political incentive behind EEX has been European market liberalization and the progress
towards EU-wide single energy market. Since October 2010 EEX has been publishing European
electricity price index (ELIX) that is calculated on the basis of aggregated and uncongested bid
and offer curves of all EEX market areas. Therefore, the index corresponds to the market price in
a perfectly integrated European market, and is analogious to the system price in Nord Pool.

Similar to Nord Pool, the trading for electricity takes place in day-ahead spot market (EPEX
day-ahead), intraday market (EPEX intraday), and financial market (EEX power derivatives) in
each of the three areas. The spot markets in Germany/Austria and Switzerland are called Phe-
lix and Swissix, respectively. The financial products for these markets have been further divided
to base, peak and off-peak hours. In addition to the three electricity markets, EEX has both
spot and derivatives market for NetConnect Germany (NCG) natural gas and EU emission al-
lowances (EUA) as well as Certified Emission Reductions (CER). Moreover, EEX offers trading
of Amsterdam-Rotterdam-Antwerp (ARA) and Richards Bay (RB) coal futures that refer to the
API2 and API4 indices that are set by the dominant price information provider Argus. The struc-
ture of EEX is visible in Figure 3.

Figure 3: The structure of EEX. EPEX Spot is a joint exchange with the French energy exchange
Powernext.

The price calculation in the EEX electricity spot markets is similar to Nord Pool as the price
is determined as an equilibrium price [14]. The area prices are calculated so that exports are seen
as an increase in demand in a surplus area and as an increase in supply in a deficit area. This
is described in Figure 2. This thesis focuses on Germany and Austria area prices, i.e., Phelix
prices because I study the effects of German renewable generation. Both physical and financial
settlement of EEX has been transferred to European Commodity Clearing (ECC). Thus, ECC is
responsible for the physical delivery of the contracts and guaranteeing financial fulfilment.

2.3 Renewable energy and climate targets in Europe
Currently, energy production in Europe is undergoing a significant transition when renewable
energy sources are becoming increasingly prominent. Arguably, the most drastic example of this
is Germany. After the Fukushima nuclear disaster in March 2011, Germany decided to phase out
nuclear energy by 2022 [15]. At the same time, the share of renewable energy needs to increase to
35% to meet the targets set by the government [16].

This trend is followed also in the Nord Pool countries. The Nordic countries that belong to
the European Union share the same energy and climate policy as Germany. According to the
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Energy Policy of the European Union, each member state needs to cut greenhouse gas emissions
at least 20% compared to 1990 level, and renewables should have a 20% share of the total energy
consumption in the EU by 2020 [17]. Since the majority of possible hydropower production is
already in place and no new nuclear plants are commissioned, the main solution to achieve the
targets besides improving efficiency is to promote renewables other such as biomass, wind, and
solar power.

The EU member states situated in the Nord Pool area have not stuck with the general level
of the EU. Denmark, for instance, has an ambitious aim to supply 35% of its total energy from
renewables by 2020 [18], and at the same time, cut greenhouse gas emissions by 34%. Although
having already plenty of hydropower and biofuels in the energy system, Sweden has set a target
to increase the share of renewables to 50% by 2020 [19]. What is common to all these countries
is that the governments have subsidised renewable electricity production generously by giving
guaranteed prices, for example. In Germany, electricity producers find the subsidies so attractive
that the costs of financing them and the rapidly expanding power grid are skyrocketing. As a
result, an environmental surcharge known as Erneuerbare Energien Gesetz (Renewable Energy
Law) contribution is increasing the electricity bill for households [20].

As Norway produced approximately 95% of its electricity from hydropower [21] in 2008-
2010, there is very little room for renewables in electricity generation anymore. In years with
heavy rainfall, Norway tends to have surplus of electricity, which is exported to neighbouring
countries. During these years, Norway has had renewable electricity shares of over 100 %. More
detailed figures of the renewables share of total energy production are presented in Table 1.

Table 1: The share of renewable electricity production of total electricity consumption. As a
whole, the EU should reach 20% share by the end of 2020. The projected figures for 2020 are
significantly higher than the current levels. There is no future estimate for Norway, because their
share is dependent on rainfalls. Source for data: EUROSTAT and European Environment Agency.

Country 2007 (%) 2008 (%) 2009 (%) 2010 (%) 2011 (%) 2020 (%)
Finland 25.92 30.78 25.77 26.52 27.65 33.0

Denmark 27.04 26.7 27.49 33.11 38.81 51.9
Germany 14.11 14.63 16.2 16.9 20.35 38.6
Norway 106.12 109.42 103.01 89.96 97.92 N/A
Sweden 51.54 54.98 56.44 54.48 58.72 62.9

3 Data

3.1 Nord Pool price data
Nord Pool provided price data for this thesis [22]. The reliability of the data set is high, as the
figures are regularly reported and the prices are officially set by Nord Pool. Figures 4(a) and 4(b)
show the average intraday profile for the wholesale electricity price in Denmark. Basically, the
profile follows consumption patterns. The first peak is observed from 8 to 12 am when people are
at work, and the second peak follows from 5 to 8 pm, when people return home. Naturally, prices
are higher in daytime than nighttime.

Similarly, there is a weekly pattern that reflects the difference in consumption between working
days and weekends. In general, the price level of working days is higher than in weekends. In this
study, I do not delete the data for weekends but try to account for seasonality in the models.
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(a) Denmark west (b) Denmark east

Figure 4: Average electricity price for Denmark east and west from the beginning of 2007 to the
end of 2012. Denmark west prices are a bit lower than Denmark east prices because the high
consumption capital area is in the eastern part.

In the long term, the prices are much spikier as Figure 5 shows. The logarithmic scale in
the figure expresses percentage changes in prices. Most of the high peaks occur in winter when
consumption is highest due to cold weather. On the other hand, most of the sharp falls occur in
summer when competition of few consumers between hydro producers can lead to a crash in prices
as experienced in summer 2012. In fact, temperature is the most important independent variable
in load-forecasting models [23]. However, no consistent yearly pattern is visible in the figure.

Figure 5: Natural logarithm of Nord Pool system prices from 2001 to 2012. The signicant drop in
prices in summer 2012 was caused by exceptionally wet weather conditions. Afterwards, prices
have been recovering steadily.

The dependent variable in the model is the volatility of the prices, and the independent variable
is wind power production. Based on Mauritzen’s results, my hypothesis is that renewable elec-
tricity production decreases volatility in the short term and increases it in longer time windows.
The daily volatility is simply defined as a standard deviation of hourly prices as Equation 1 shows.
Hourly prices for the following day are all announced by Nord Pool at 12:30 PM CET, so I have
used the population standard deviation. Similarly, the weekly volatility is the standard deviation
of daily prices [Eq. 2]. The daily price is defined as the average of the hourly prices that day. I
have taken into account that in the Nordic calendar system the first day of week 1 is not always
on 1 January but can be on 31 December, for example. Furthermore, there can be 53 weeks in a
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year. As single daily volatilities can be very high compared to normal levels, Figure 6(a) shows
the logarithmic daily price volatility of system and Denmark east prices, i.e., percentage change
in daily volatilities.

VD =

√√√√ 1

24

24∑
h=1

(Ph − P̄ )2 , where (1)

VD is daily volatility, Ph price in hour h, and P̄ average daily price
1

24

24∑
h=1

Ph.

VW =

√√√√1

7

7∑
d=1

(Pd − P̄ )2 , where (2)

VW is weekly volatility, Pd price on day d
1

24

24∑
h=1

Ph and

P̄ average of the daily prices
1

7

7∑
d=1

Pd.

Clearly, Denmark east has greater volatility compared to Nord Pool system prices that are
calculated without transmission constraints. This is reasonable because hydropower production in
Norway, Sweden, and Finland stabilizes the system price, whereas Denmark is dependent on wind
power, exports, and expensive electricity generated from oil and gas. In addition, area prices can
exhibit sharp price peaks when the transmission constraints are hit. To control the noisiness in the
data and to identify changes, I have added Figure 6(b) where the natural logarithm of the daily
volatility is exponentially smoothed with the coefficient α = 0.5. Figure shows that there is a
slightly increasing trend in daily volatilities both in system and Denmark east prices. In addition,
the volatilities have started to diverge in recent years. The recursive formulae for exponential
smoothing is given in the following Equations 3 and 4.

s1 = x0 (3)
st = st−1 + α(xt−1 − st−1), t > 1 , where (4)
x are actual values and s are smoothed values.

In order to find the best fit of the volatility time series, I use the Box-Jenkins methodology.
First, all the price volatility time series need to be stationary so that the regressions are valid. A
visual examination of the daily time series in Figure 6(a) suggests that they are stationary. This
hypothesis can be formally tested with an augmented Dickey-Fuller test when the intraday and
weekly price volatility series for Danish area prices are modeled as an autoregressive model with
five lags (AR(5)). This process was selected because it provides an adequate fit for the data. The
augmented Dickey-Fuller tests confirm that all the series are stationary as the null hypothesis of at
least one unit root is rejected at the 1% significance level.

The second step in the model identification is to plot the autocorrelation functions in Figures
7(a) and 7(b), the partial autocorrelation functions in Figures 7(c) and 7(d), and the spectral density
functions in Figures 7(e) and 7(f) of Denmark areawise price volatility. However, these figures do
not explictly point to a single valid model. Both the autocorrelation and the partial autocorrelation
functions have spikes at lag 1 and near the multiples of 7. The lags at one suggest the short-term
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(a) Natural logarithm of the volatility of system and Denmark east prices

(b) Exponentially smoothed natural logarithm of the volatility of system and Denmark east prices

Figure 6: Log volatility and exponentially smoothed log volatility of system and Denmark east
prices in 2001-2012. As well, Denmark west prices exhibit greater volatility than system prices
on average.
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(a) Autocorrelation function of Denmark
west area price volatility

(b) Autocorrelation function of Denmark
east area price volatility

(c) Partial autocorrelation function of Den-
mark west area price volatility

(d) Partial autocorrelation function of
Denmark east area price volatility

(e) Spectral density function of Denmark
west area price volatility

(f) Spectral density function of Denmark
east area price volatility

Figure 7: Autocorrelation, partial autocorrelation and spectral density functions of Denmark area
price volatility in 2007-2012. Generally, Denmark east has less autocorrelation, which signals that
Denmark east prices are not as stable as Denmark west prices.

autocorrelation structure can be modeled as an ARMA(p,q) process where p and q are 1 or 2. In
addition, the spectral density function for Denmark west has peaks at about 0.29π, 0.57π, and
0.86π, which correspond to 1

7
, 2

7
, and 3

7
at natural frequencies. This can be calculated using the

formula f = λ/2π where λ is the position of a peak in the figures [24]. Similarly, the spectral
density function of Denmark east has the first two peaks, but they are not so pronounced. This
confirms the presence of weekly seasonality that can be modeled with a combination of SAR7 and
SMA7 terms. Apart from the spikes, the partial autocorrelation functions die out quite quickly, but
especially the autocorrelation function for Denmark west only dampens slowly. This suggests that
a model limited to AR and seasonal AR terms is not sufficient, as the autocorrelation functions
should die out exponentially in that case. Thus, I include both MA and seasonal MA terms to my
intraday model.

I test the residuals of different combinations of SARMA terms with a Ljung-Box test. The
best alternative is SARMA(2,1,1,2) with the model for Denmark west passing the test at all lags
in the range of 5 to 30, and the model for Denmark east passing many but not all. This model is
later used as a basis for my intraday model.
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3.2 Danish wind power
The variable in the models explaining the variations in prices is wind power production in Den-
mark. Historically, Denmark had a high share of fossil fuel-fired power plants and, therefore,
it was badly hit by the oil embargoes during the 1970s [25]. Being mostly surrounded by sea,
Denmark chose to invest into research and development of wind turbines and to provide generous
subsidies to build capacity. In addition, the Danish parliament passed a law in 1985 that prohibits
the production of nuclear energy in Denmark. Consequently, wind power capacity growth has
been strong in the last twenty years as Figure 8 shows.

Figure 8: Installed wind capacity in Denmark (left hand side) and the share of wind production of
total electricity supply (right hand side). Data source: Danish Energy Agency

At present, Denmark has two separate bidding areas, Denmark east and west, which were
not physically connected before "the Great Belt Power Link" which was inaugurated in 2010
[26]. In addition, both parts are now connected to both Nord Pool and EEX. Detailed data of
the Danish electricity system are publicly available from the website of the Danish transmission
system operator [27]. For this paper, I obtained data for Danish wind power production. The data
set is complete in that there are no gaps, but there is some uncertainty over the measurement of
the wind power production because the electricity meters used are not perfectly exact. However,
the possible errors are assumed to be constant and unbiased.

In fact, the best measure for wind power production would have been the forecasted production
for the following day because all players set their bids for the following day. However, it is not
clear which forecasts the players are using, and Nord Pool has been publishing their forecast only
from 2010. However, the errors caused by the discrepancy in actual values and forecasts are
assumed to be unbiased.

The intermittency of wind power production is visible in Figures 9(a) and 9(b). Winter months
are considerably windier than summer months. Furthermore, there is a significant increase in
production levels in the afternoon. That is why it is important to explore the effect wind power
has on intraday blocks, such as off-peak and peak hours, to understand the underlying reasons for
changes in price volatility. Additional study of daily production levels in Figure 9(c) points out
that wind power is not usually very efficient because most of the time daily production is quite low
at 0-30 GWh per day. Finally, Figure 10 shows the spiky nature of daily wind production during
one year.

As in the previous section, I try to find the appropriate model for wind power production in both
areas. Visual examination of the Figure 10 suggests that the time series are stationary. Moreover,
an augmented Dickey-Fuller test confirms that the wind power time series are stationary at 1 %
significance level The partial autocorrelation functions in Figures 11(c) and 11(d) suggest that the
wind can be adequately modeled as an AR(1) process as the lags die out after lag one, and the
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(a) Denmark west (b) Denmark east

(c) Denmark daily variation

Figure 9: Upper row: Danish average intraday wind power production in each month in 2012,
lower row: daily variations in production levels in 2012.

Figure 10: Exponentially smoothed natural logarithm of daily wind power production.
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autocorrelation functions in Figures 11(a) and 11(b) dampen exponentially before stabilising to
a nearly constant level. Therefore, I include an AR(1) term in the intraday model to account for
wind power.

This is a reasonable result because wind conditions can change quite rapidly. Therefore, it
is natural that wind power does not have the same weekly seasonality experienced in prices, for
example. Also, Mauritzen uses an AR(1) process for wind power in his paper.

(a) Autocorrelation function of Denmark west daily wind
power production

(b) Autocorrelation function of Denmark east daily wind
power production

(c) Partial autocorrelation function of Denmark west
daily wind power production

(d) Partial autocorrelation function of Denmark east daily
wind power production

Figure 11: Autocorrelation and partial autocorrelation functions of wind production for Danish
areas in 2007-2012.

3.3 PHELIX price data
Phelix price data were downloaded from Energinet.dk [27] because EEX charges for the data.
The data set I use starts from 28 October 2009 because since then the four German transmission
system operators (50 Hertz, Amprion, TenneT, and TransnetBW) have been obliged to report their
production data publicly. As with the Nord Pool price data, the reliability of the data is high as the
figures are officially set by Epex Spot. As Figure 12 shows, the average hourly prices are close to
Denmark East prices shown in Figure 4(b) but a bit higher. The shape of the intraday price curve
is explained by the same factors as in Nord Pool.

Figure 13 shows the daily volatility of Phelix prices starting from 2002. The daily volatility
has been calculated as a standard deviation of hourly prices as in the Equation 1. The figure
does not show any yearly pattern, but the volatility has increased slightly from 2002 to 2009. In
addition, most of the high peaks have occurred in this period. After 2009, the volatility has been
decreasing, and sudden peaks and drops have been rare. A possible reason for this change might
be that Germany and Austria produce plenty of electricity from coal, gas, and oil, which became
more expensive and turbulent before the economic crisis in 2008-2009. In addition, the purpose of
this paper is to estimate if renewable energy, which has gained substantial share in the production
mix in the recent years, has decreased daily volatility levels.

I use the same methodology as in the Nord Pool prices section. First, the stationarity of the
daily volatility time series starting from 28 October 2009 is tested with an augmented Dickey-
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Figure 12: Phelix average hourly prices in 2012.

Figure 13: Natural logarithm of the daily volatilities.

Fuller test. The test confirms that the time series is stationary at 1 % significance level when it is
modeled as an AR(5) process. A visual inspection of Figure 13 supports the result.

Second, I plot autocorrelation in Figure 14(a), partial autocorrelation in Figure 14(b) and spec-
tral density function in Figure 14(c) to identify the specification of the intraday SARMA model.
The autocorrelation and partial autocorrelation functions show similar weekly seasonality as Dan-
ish price data because the figures have peaks near lags 7 and 14. Graphically, the functions are
close to Denmark east in Figures 7(b) and 7(d). The autocorrelation function does not die out
completely but the partial autocorrelation function ends after lag one apart from the multiples of
seven. Moreover, the spectral density function has peaks nearly at same spots as Denmark west
7(e) which draw to 1

7
, 2
7

and 3
7

at natural frequencies.
As with the Danish data, these findings do not determine the best model directly and several

combinations need to be tested. However, the findings do limit the possible model specifications.
High peaks at lags one and two restrict the order of the AR and MA terms to two. Moreover, I test
with one to three SAR7 and SMA7 terms to control for the weekly seasonality. As the time series
was proven to be stationary, there is no need to integrate it.

Eventually, the best model for Phelix daily volatility time series is SARMA(2,1,1,1) and it is
very close to the model for Denmark. The criterion I use is again the Ljung-Box test which the
model residuals pass with all lags ranging from 5 to 30.
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(a) Autocorrelation function of Phelix daily volatility

(b) Partial autocorrelation function of Phelix daily volatility

(c) Spectral density function of Phelix daily volatility

Figure 14: Autocorrelation, partial autocorrelation, and spectral density functions of Phelix daily
volatility from 28 October 2009 to 31 December 2012.
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3.4 German solar and wind power
The effects of German solar and wind power on Phelix prices are estimated by including an ex-
ogenous terms for total daily solar, wind, and combined power production from these two sources.
There is no need to take Austrian renewable generation into account because it is non-existent.
As Figure 15 shows, the share of solar power of the total renewable capacity has increased at fast
pace in the recent years. The relative share of wind power rose at the end of the 1990s, but it has
lost its share to solar power lately. At the same time, the total installed renewable capacity has
increased about 10 GW per year when the capacity of a modern nuclear plant is from 1 to 1.8
GW. This reformation was initiated by the political pressure set by the EU climate targets and the
Fukushima nuclear disaster, and it is now driven by the generous subsidies and ever cheapening
technologies.

The renewable generation poses heavy requirements for the transmission grid due to the scat-
tering and geographical concentration of the production. In particular, the most popular solar
technology is photovoltaic (PV) panels that are made of advanced materials that exhibit the pho-
tovoltaic effect. These panels are installed in huge solar power parks and on the house roofs. This
causes the production to scatter to small units as many households feed their surplus production
into the system and get paid for it with feed-in-tariffs. On the other hand, wind power production
takes places mostly in northern Germany, near the Baltic sea [28]. The German government is
focusing on off-shore wind farms although the project is facing technical difficulties and finan-
cial risks [29]. Connecting these large farms to mainland is tricky and expensive, and additional
investments are required to transmit the electricity to Bavaria in southern Germany, for example.
With these distances, power transmission losses become substantial.

Figure 15: The development of renewable energy in Germany. Image source: Fraunhofer ISI.

The data for daily solar and wind power production were downloaded from EEX’s website [30]
using a script. Both expected and actual production data are available from 28 October 2009. I
choose to use the expected production data for the regressions because all market participants make
their decisions for the day-ahead market based on that data, not the actual generation. Therefore,
it is more accurate choice for volatility-modeling purposes, but decisions to invest in renewable
generation, for example, are made based on actual prouduction data. Hence, the actual generation
data are used to compare the solar production patterns to wind power. The data set is complete,
and there are no gaps, which makes it reliable. However, it is uncertain what forecasts the market
participants are using. There are differences between the different forecasts but these errors are
assumed to be unbiased. The forecasted daily solar power production is presented in Figure 16(a)
and the forecasted daily wind power production in Figure 16(b).

Figure 17(a) shows that the actual solar power production is almost normally distributed with
the output peak occurring during the peak hours and zero output during the night. Hence, solar
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(a) Forecasted German solar power production from 28/10/2009 to
31/12/2012.

(b) Forecasted German wind power production from 28/10/2009 to
31/12/2012.

Figure 16: The solar and wind production in 2009-2012. The solar power levels have increased
substantially.
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power is affecting only peak hours. In the summer months, the output is considerably higher
than in winter months. Moreover, increasing production levels from the early summer towards
the late summer is caused by the fact that cumulative installed capacity increases. The width of
the distribution reflects the temporal differences in sunrises and sunsets throughout the year. In
comparison, Figure 17(b) shows that on average there is always some wind power production in
Germany. Similar to solar power, the output peak is experienced during the peak hours, but the
output curve is rather flat. Thus, wind power is affecting all hourly prices. Compared to Danish
wind power in Figures 9(a) and 9(b), the German wind power is more aligned but the difference
between winter and summer months is higher.

The daily German solar power has been more stable than the German wind power as the
average ratio of minimum daily output and maximum daily output in each month in 2012 was
24.7% for solar and only 5.4% for wind power. In addition, the standard deviation of normalized
daily wind power output in each month in 2012 was 4% higher than the standard deviation for
solar output. The implication for this difference is that solar power is more predictable than wind
power, and the effect on daily and weekly volatility should be decreasing compared to wind power.

When these two power sources are combined, the highest output of renewable energy occurs
during the peak hours, which can lead to a significant price drop as the price of the production
is negligible. In all other hours, the output is lower but so is consumption. However, as the
standard deviations for both are over 20%, and wind power output can exhibit sharp dives, the
price levels can vary greatly during the week when the weather conditions go from favourable
to bad, productionwise. The observation that winter months tend to be the most windiest offsets
the lack of solar output to some extent during winters, and vice-versa for summers. Therefore,
the average monthly production level does not vary dramatically as Figure 17(c) shows. As the
production levels of solar and wind power change significantly from month to month, the effect
renewable generation has on price volatility is different in each month. Further research is required
to explore these effects.

As with the Danish wind power, I model the forecasted German wind and solar power as
an lagged process. First, I deal with the solar power. As I am using daily production data, not
hourly, I do not need to worry about the possible non-stationary intraday curve shown in Figure
17(a). However, as Figure 16(a) shows, there is a corresponding yearly pattern that might require
differencing. Moreover, the production values have been increasing steadily so there can be a
trend. Nevertheless, the augmented Dickey-Fuller test confirms that the time series is stationary if
it is modeled as an AR(1) process. A yearly differencing slightly decreases the autocorrelation but
that would limit my data set for a year, so I accept the result of the augmented Dickey-Fuller test.

The partial autocorrelation function in Figure 18(b) has a peak at lag one. After that the
function dies out exponentially or completely. Therefore, the AR(1) process used in the Dickey-
Fuller test could be sufficient. The autocorrelation function in Figure 18(a) declines slowly, which
means that the observations are similar. This confirms the earlier analysis that solar power is more
stable than wind power. Based on this remark, it is not certain if the AR(1) model is sufficient.
Therefore, I run tests with an ARMA(1,1) process that is virtually the same as adding one MA
term to the price process. Even if the data are differenced monthly, half-yearly, or yearly, the
autocorrelation does not die out quickly enough to be clearly better.

Second, I explore the German wind power data. An augmented Dickey-Fuller test confirms
that the time series is stationary, allowing me to model the time series as a lagged process. The
autocorrelation and partial autocorrelation functions of the forecasted wind power production are
presented in Figures 18(c) and 18(d), respectively. Similar to Danish wind power data, the partial
autocorrelation function dies out right after the lag one. The autocorrelation function evens out
rather fast to a steady level. Therefore, German wind power can be modeled as an AR(1) process,
too.
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(a) Hourly solar power production in Germany in each month in 2012.

(b) Hourly wind power production in Germany in each month in 2012.

(c) Total wind and solar production in each month in 2012.

Figure 17: Solar and wind power production and the total production from these two sources in
Germany in 2012.
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(a) Autocorrelation function of daily German solar power production

(b) Partial autocorrelation function of daily German solar power pro-
duction

(c) Autocorrelation function of daily German wind power production

(d) Partial autocorrelation function of daily German wind power pro-
duction

Figure 18: Autocorrelation and partial autocorrelation of the undifferenced daily German solar
and wind power production time series from 28 October 2009 to 31 December 2012.
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4 Results

4.1 Denmark
4.1.1 Intraday model

Similar to Mauritzen’s article [10] and as described in earlier sections, I estimate the effects of
wind power on daily price volatility using an SARMAX process, where the standard deviation of
electricity prices is modeled as a SARMA process along with the exogenous wind power term.
There is no need to integrate the process because the time series do not have a trend. Formally, the
model can be written as

vt = α0 +

p∑
i=1

αivt−i + σ0wt + σ1wt−1 +

q∑
i=1

βiεt−i, (5)

where vt is the natural logarithm of daily price volatility with p autoregressive (AR) terms vt−i,
and q moving average (MA) terms εt−i. Terms αi and βi are the coefficients that are estimated for
the AR and MA terms, respectively. Wind power production is limited to the terms wt and wt−1

and the corresponding coefficients σ0 and σ1 because wind power is modeled as an AR(1) process
as noted earlier.

Both areawise intraday models are based on Equation 5. The most important requirement
for finding the best fitting model is that all the coefficients are significant at the 1% significance
level. To choose the best model among feasible candidates, I go through a process of using Wald
tests, comparing the Akaiki Information Criterion (AIC) as well as looking at the autocorrelation
and partial autocorrelation functions of the model residuals, and carrying out Ljung-Box test for
the residuals. All feasible model candidates were close to each other in terms of the ARMA
specification and the actual results. The final model is a combination of the SARMA(2,1,1,2)
model for the price process and an AR(1) model for the wind power process both of which I found
statistically adequate in the previous sections.

In the end, I model the intraday areawise price volatilities using the same model as Mauritzen
[10] excluding the term β2εt−2, which was not statistically significant. The same model is applied
to both Denmark east and west data, and the model is a compromise between parsimony and
goodness of fit. Contrary to Mauritzen, I have not used both wind power from Denmark west and
Denmark east as an exogenous term because the systems were separate until September 2010. It
would be unrealistic to assume that before the integration all or much of the wind power produced
in Denmark west is first exported to Germany or Sweden and then imported back to Denmark
east, and vice-versa. In addition, there is not yet enough data since September 2010 to measure
the effects of exchange between the two Danish areas.

The final model used in my regressions is in Equation 6. The AR terms deal with the short-term
price process and the weekly seasonality. These terms are also indicated by the peaks in the partial
autocorrelation functions in Figures 7(d) and 7(c). A simple MA(1) term increases the fit further.
Finally, adding the MA terms for lags 7 and 14 controls for the seasonal autocorrelation in the
residuals. Wind power from Denmark east or west is restricted to an AR(1) process as indicated
by the partial autocorrelation functions. All variables are transformed into natural logarithm form
so they can be interpreted as elasticities.

vt = α0 + α1vt−1 + α2vt−2 + α7vt−7 + β1εt−1 + β7εt−7 + β14εt−14 + σ0wt + σ1wt−1 (6)

Figures 20(a), 20(b), 20(c), and 20(d) show the autocorrelation and partial autocorrelation
functions of the model residuals for Denmark west and east. The autocorrelations of the residuals
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of the model for Denmark west look flatter than the residuals of the model for Denmark east.
There are spikes close to the multiples of 7, which means that the weekly seasonality could be
dealt with better. There are spikes also near the lag 30, which points to monthly seasonality. Yet,
the model for Denmark west passes the Ljung-Box test with lags from 5 to 30. However, the
model for Denmark east does not pass the test with all lags greater than fifteen, but this is not a
critical reason to reject the model. Figures 20(e) and 20(f) compare the models against the actual
price volatility time series. In general, the model performs rather well with both Denmark east
and west data, but it has problems with the extremely spiky and volatile nature of the data.

Table 2 shows the results for areawise regressions for intraday price volatility. The coeffi-
cients for wind power from Denmark east and west are labeled de − windt and dw − windt,
respectively. For Denmark east, the estimated coefficient for wind generated in eastern Denmark
is about −0.076, which can be interpreted to mean that a 1% increase in daily wind power pro-
duction leads to a 0.076% decrease in intraday price volatility. Therefore, an 100% increase, i.e.,
doubling the total daily wind power production would mean a 7.6% decrease in intraday price
volatility. From the beginning of 2007 to the end of 2012 the average daily wind power produc-
tion in Denmark east was about 5553 MWh, which means that a 100% change would result to an
increase of 11106 MWh wind power per day. During this period, there have been 331 days with
over 11106 MWh of wind power production. However, the daily volatilities cannot be compared
directly as the daily price levels, which are dependent on several other factors, are different.

For Denmark west, the estimated coefficient for wind generated in western Denmark is about
−0.074. Using the same interpretation of elasticity, a 100% increase in daily wind power produc-
tion leads to a 7.4% decrease in intraday price volatility. In this time scale, the average daily wind
power production in Denmark west has been 16647 MWh, so a 100% increase would be about
33294 MWh (282 days in total).

In addition, the lagged terms for Denmark east and west wind power production are significant
at 1% level. These terms were included to control for the autocorrelation in the wind power time
series. Therefore, they should not be given any economic interpretation. Wind power production
on one day does not affect the volatility of prices the following day.

My hypothesis is that the volatility-reducing effect of wind power is caused by wind power
cutting the peak hour prices. Figures 19(a) and 19(b) show that the average peak hour prices have
come down and notably the two high peaks have dampened or even cut out. The effect is stronger
for Denmark west and it is explained by the larger amount of wind power production. Otherwise
the prices are overlapping.

(a) Average hourly price in Denmark west in
2007-2008 and 2011-2012.

(b) Average hourly price in Denmark east in
2007-2008 and 2011-2012.

Figure 19: The development of the average Denmark area prices. I have averaged two years of
price data to eliminate the effect of possible outliers.
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In the regression for Denmark west, Mauritzen’s coefficient for wind power from Denmark
west is −0.103. For Denmark east, the coefficient for wind power from Denmark east is −0.011
(not statistically significant) and from Denmark west −0.072. Therefore, the final results of my
Denmark west intraday model are close to Mauritzen’s, although the model is different. This
adds credibility also to Mauritzen’s initial model although he does not acknowledge the effect
of lacking transmission capacity between the two Danish areas. Basically, the coefficients are
different because the data set and the variables are different, but most importantly the significant
coefficients for wind power are of the same magnitude. However, I do not find as strong of an
effect as Mauritzen, but it is still economically significant.

Table 2: The effect of Danish wind power production on intraday Danish area price volatility. All
coefficients are statistically significant at 1% level unless otherwise noted.

DE Area DW Area
de− windt -0.0759 N/A

[0.0128] N/A
de− windt−1 0.0470 N/A

[0.0128] N/A
dw − windt N/A -0.0751

N/A [0.0132]
dw − windt−1 N/A 0.0509

N/A [0.0132]
constant 2.2005a 2.1777

[0.8732] [0.6963]
α1 1.3408 1.2343
α2 -0.3546 -0.2466
α7 0.9996 0.9998
β1 -0.8961 -0.8926
β7 -0.9042 -0.9235
β14 -0.0805 -0.0694
a significant at 5% level
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(a) Autocorrelation function of Denmark
west intraday model residuals

(b) Autocorrelation function of Denmark
east intraday model residuals

(c) Partial autocorrelation function of Den-
mark west intraday model residuals

(d) Partial autocorrelation function of
Denmark east intraday model residuals

(e) Denmark west model vs. actual time
series

(f) Denmark east model vs. actual time se-
ries

Figure 20: First and second row: Autocorrelation and partial autocorrelation functions of the
model residuals with 95% confidence intervals. Third row: The actual daily volatility time series
and model fits.
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4.1.2 Division into peak, off-peak 1, and off-peak 2 hours

As noted in the introduction, my hypothesis is that intraday volatility is reduced due to the flatten-
ing of the intraday price curve. I further hypothesise that this results from renewable generation
cutting the peak prices. Thus, I divided the data set into peak, off-peak 1, and off-peak 2 hours
to explore the effects on different blocks. By Nord Pool’s definition, peak hours are hours 08-19,
off-peak 1 hours are 00-07 and off-peak 2 are 20-23. So, the total durations are 12, 8, and 4 hours,
respectively. These blocks fit very well into the general price levels of Figures 4(a) and 4(b), where
hours 08-19 have the highest prices.

For these three data sets, I run regressions in the same fashion as in the previous section, but
with the dependent variable being the natural logarithm of average prices in each block instead
of the natural logarithm of daily volatility. Furthermore, the daily wind power data was averaged
instead of summing up the hourly productions because the blocks have different durations. Hence,
I can study the differences between the price levels of the blocks, which ultimately causes the
daily volatility. If the regressions were done using the daily volatility as the dependent variable,
then the result would have been similar as in the previous section: volatility has decreased in each
block. This would tell that the prices have converged in each of the blocks. However, as the
supply and demand curves move from hour to hour in Figure 21, any extra wind power will have
different effects in each hour because the elasticities of the curves vary. Therefore, it is possible
that wind power causes the price levels of the blocks diverge if the impacts on each block are not
close to each other in magnitude. The situation is presented in Figure 22 with imaginary prices
that are constant in each block. In the figure, the prices have diverged due to wind power having
greater effect on off-peak 1 hours than peak and off-peak 2 hours. The effect of wind power for
each block is calculated using the coefficients that are estimated later in this section by applying a
100% increase in wind power production.

Figure 21: Nord Pool system-level supply and demand curves in three different blocks on 11 May
2012. Hour 5 belongs to off-peak 1, hour 12 to peak, and hour 21 to off-peak 2. Note that supply
curves for hours 12 and 21 are overlapping.

I expect these changes only to scale the different coefficients. The same model, which is
presented in Equation 6, turned out to be the best also for these data sets. This is reasonable
because there is no fundamental difference in the data compared to previous section. However,
some ARMA specifications with minor modifications would have been feasible, too.
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Figure 22: The blue line represents a situation with minimal wind power output. The green line
is the prices after a 100% increase in wind power output. The daily volatility has increased 4.3%
contrary to the result in the previous section.

Similar to the previous section, I have only used an area’s own wind power production in
the regressions because the two Danish areas were different systems until September 2010. The
results are presented in the Table 3, where I have omitted the coefficients for different SARMA
terms for clarity, but they are available in Appendix A. Each row represents the coefficient for
wind power term in different blocks in an area.

For Denmark east, the coefficients for peak, off-peak 1, and off-peak 2 are about −0.041,
−0.056, and −0.029, respectively. As all the coefficients are negative, all blocks have come down
in prices. Surprisingly, the largest effect is in the off-peak 1 hours when consumption is at its
lowest level. Apparently, any excess wind power leads to an over-supply situation that brings the
price level of this block down effectively. On the other hand, the coefficients for peak and off-peak
2 hours imply that these have become closer to each other as the peak hours have generally higher
price levels.

However, the wind power output is not evenly distributed during the day. From 2007 to 2012
the relative hourly output has increased more in off-peak hours than peak hours. Recall that the
wind power term is in logarithmic form so relative changes matter instead of absolute values.
Despite the less negative coefficient, off-peak 2 hours might come down more in prices than peak
hours if the relative wind power production in off-peak 2 hours has increased more. The highest
increase in wind power output has been in off-peak 1 hours, which also have the most negative
coefficient.

To summarise, there are two components that make up the drop in prices in off-peak hours.
First, the relative wind power output has increased more in off-peak hours than peak hours, and
secondly, the coefficients for off-peak hours are slightly more negative. To some extent, these
effects are offset by the higher price level of peak hours. Therefore, it is possible that the intraday
volatility has actually increased in Denmark East, contrary to the results in the previous section.
However, the increased volatility requires rather flat wind power output curve where peak and
off-peak hours are exposed in equal amounts.

One explanation for the small coefficient for peak hours could be that Denmark East has great
export transmission capacity to Sweden, which had slightly greater prices during 2007-2012, al-
though Sweden was not divided into four areas until November 2011. Nowadays, the highest
priced area SE4 is directly linked to Denmark east. Therefore, it can be profitable to export excess
wind power to Sweden when it is windy in Denmark east. This may reduce the effect of eastern
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Denmark wind power generation on its own area price especially in peak hours when consumption
is highest.

For Denmark west, the coefficient for off-peak 1 hours, −0.11, is significantly larger than the
coefficient for peak hours, −0.068, and off-peak 2 hours, −0.060. All coefficients are negative
which means that the prices have come down in each block. Again, the coefficients for peak and
off-peak 2 hours would imply that these two blocks have come closer to each other in prices, but
wind power ouput has generally been increasing more in off-peak hours than in peak hours. The
very negative coefficient for off-peak 1 hours could be explained by the fact that Denmark west has
less demand than Denmark east. Moreover, Denmark west is connected to Norway 2 and Sweden
3 both of which had lower prices than Denmark west on average in 2012, causing the domestic
wind power production to stay in Denmark west. Compared to Denmark east, the transmission
situation is opposite when it comes to prices of the neighbouring areas. Therefore, Denmark west
prices are more sensitive to any excess wind power supply during the low consumption hours.
In conclusion, it is again possible that the daily volatility increases contrary to the result in the
previous section if the wind power is distributed so that off-peak hours are subject to great wind
power production.

Another approach to the coefficients for both areas are the supply curves and merit-order effect.
At the low end of the Danish supply curves are wind power production and inexpensive imports
from the neighbouring countries. The low priced part is followed by a jump to a higher price level
with CHP and conventional production using mostly coal as a fuel. For Denmark, most of this
production is large-scale and stable, making the supply curve low-pitched. Only in high volumes
when expensive backup generation is brought online, the supply curve becomes steep. Hence, it
seems that the demand curve is hitting the stable part of the curve in each block, but as off-peak 1
is near the high jump, the effect of wind power is greater then.

Table 3: The effect of Danish wind power production on intraday Danish area prices in different
blocks. All coefficients are statistically significant at 1% level unless otherwise noted.

Peak Off-peak 1 Off-peak 2
de− windt -0.0413 -0.0557 -0.0287

[0.0034] [0.0048] [0.0021]
de− windt−1 0.0006c -0.0131 −0.0035c

[0.0034] [0.0048] [0.0021]
dw − windt -0.0681 -0.1112 -0.0597

[0.0035] [0.0074] [0.0036]
dw − windt−1 −0.0066b -0.0202 −0.0046c

[0.0035] [0.0074] [0.0036]
b significant at 10% level
c not different from zero

4.1.3 Weekly model

From the beginning of 2007 to the end of 2012, the correlation between the difference in consec-
utive daily Denmark west prices and the difference in consecutive daily wind power produced in
Denmark west is rather high at −0.37. The windier it is, the lower the daily price level is. For
Denmark east, the same correlation drops to −0.17, which may reflect the smaller amount of wind
power. My hypothesis is that the weekly volatility increases because of the intermittent nature of
wind power shown in Figure 9(c).
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Mauritzen’s [10] idea to model the effects of wind power on weekly volatility is to use the
standard deviation of daily prices given in Equation 2 as a dependent variable, and the total wind
power production as an external regressor. Contrary to Mauritzen, I did not find any of his weekly
models feasible with the data set from 2007 to 2012. Nor did I find a statistically significant
model using different ARMA specifications. It is worth noticing that Mauritzen’s results are not
that robust either as the general significance level of his wind power coefficients is only 10%.
In addition, the standard errors for Denmark west are higher than the actual coefficients - for
Denmark east they are two to six times larger.

At a weekly level, the total wind power production can distribute in numerous ways. First, the
wind power output could be relatively constant during the week. Second, there can be a couple
of days with high wind power output, and the rest of the week close to zero output. Both of
these cases could result into an even weekly wind power output. However, the weekly volatility
is likely to be considerably higher in the latter case. As there is a clear correlation between daily
price and wind power levels, the standard deviation of daily wind power output (Equation 7) is a
better explanatory variable for the weekly volatility. The intuition is that if there is no wind power
production, then Denmark needs to resort to imports and high-cost backup production, but in case
of windy weather conditions, the prices drop as the marginal costs of the production are negligible.

VW =

√√√√1

7

7∑
d=1

(Wd − W̄ )2 ,where (7)

VW is weekly volatility,Wd total wind power output on day d, i.e,
24∑
h=1

Wh and

W̄ average of the daily wind outputs, i.e.,
1

7

7∑
d=1

Wd.

To increase the validity of my model, I have extended the data set to start from the beginning
of 2002. With this data set I was able to find a statistically satisfactory model for Denmark west
using both the total production and the standard deviation of weekly wind power production from
Denmark west. Unlike Mauritzen, I have only used an area’s own wind power production as an
external regressor for the same reason as earlier. The best model was an ARIMA(1,1,0) model,
which is presented in Equation 8, where vt is volatility in week t and wt is a wind power term for
the week t. Differencing greatly increased the fit of the model, which questions the stationarity of
the weekly volatility series. However, integration is justified by the zig-zag shape and the mean-
reverting nature of the weekly volatility time series. The result is presented in Table 4 where
dw−windt denotes total weekly wind power output in Denmark west and dw−windt − std the
standard deviation of daily outputs.

vt = vt−1 + α1(vt−1 − vt−2) + σ0wt (8)

The coefficient for total wind power from Denmark west is 0.11. When the coefficient is in-
terpreted as earlier, doubling of wind power in western Denmark leads to an 11% increase in the
weekly volatility in Denmark west prices. In addition, the coefficient for the standard deviation of
weekly wind power production from Denmark west is 0.10. Similarly, doubling of the standard
deviation of production results into a 10% increase in weekly volatility. This not only tells us that
wind power has increased the weekly volatility but also the long-term volatility depends on the
standard deviation, i.e., intermittency of the production. As Figure 23 shows, the standard devia-
tion of weekly production has been increasing both in Denmark east and west in 2002-2012. The
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trend has been stable and so strong that it cannot be caused by natural differences in weather con-
ditions. This development is driven by the fastly increasing total wind power production as Figure
8 shows. Thefore, the producers have not been able or willing to tackle with the intermittency.
The future weekly volatility could either decrease or increase depending on the actions taken to
deal with the difference between low and high output peaks.

Figure 23: The development of the average standard deviation of weekly wind power output in
Denmark from 2002 to 2012.

For Denmark east, I was not able to establish a satisfactory model with either of the explanatory
variables (de−windt and de−windt − std), which may reflect the fact that there is not as much
wind power available in eastern Denmark as in western Denmark. Moreover, Figure 23 shows that
the standard deviation of wind power production has increased but not as much as in Denmark
west. Denmark east could also be exporting its wind power production to Sweden 4 to larger
extent than Denmark west to Norway 3 and Sweden 3, thereby the effect on its own area prices to
be ambiguous. However, both of the wind power coefficients for Denmark east are positive, and
the coefficients for AR(1) terms are close to corresponding Denmark west coefficients. Therefore,
increasing wind power capacity in future could show similar effect as now can be observed in
Denmark west.

Despite the sensible results, neither of the models is validated by diagnostic tests. The residuals
of the models do not conform to the assumptions of generalized linear model. The fit is worse but
the assumptions are met to larger extent if the weekly model is a high-order AR model such as
AR(4). In either case the coefficient for wind power does not change dramatically. The weekly
volatility time series is likely a completely random process that cannot be modeled perfectly with
ARIMA models that require structured data. Therefore, the coefficient are not reliable. In fact,
quantifying the effect of wind power on weekly volatility can be an extremely hard task, and only
qualitative guidelines can be given.

The positive coefficients for total weekly wind power output and the standard deviation are
supported by the merit-order effect, i.e., the ascending ranking of electricity generation types by
their short-run marginal costs (SRMC). Figure 25 shows how applying wind power shifts the
supply curve to right. The SRMC of wind power is zero so it is among the first to be brought
online. When the demand is assumed to be fairly constant, the price decreases in the case of
windy conditions. The correlation between daily wind power and price levels refers to this shift in
supply curve.
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Table 4: The effect of the standard deviation of the weekly Denmark wind power production on
weekly Denmark prices volatility. All coefficients are statistically significant at 1% level unless
otherwise noted.

DE Area DE Area DW Area DW Area
de− windt 0.0521c NA NA NA

[0.0491] NA NA NA
de− windt − std NA 0.0647c NA NA

NA [0.0525] NA NA
dw − windt NA NA 0.1123a NA

NA NA [0.0438] NA
dw − windt − std NA NA NA 0.1001a

NA NA NA [0.0452]
α1 -0.4179 -0.4216 -0.4885 -0.4916
a significant at 5% level
c not significant

Figure 24: The fit of the weekly model for Denmark west with total wind power production as an
exogenous variable
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While the intraday wind power output curves in Figures 9(a) and 9(b) have rather persistent
shape regardless of the total amount of wind power during the day, the long-term wind power
output curve 10 is unpredictable. Having great effect on peak hours, wind power decreases the
peak hour prices most as Figures 19(a) and 19(b) suggest, causing the daily volatility to decrease.
However, the total daily output is purely stochastic process which leads the supply curve to oscil-
late horizontally. The oscillation is strengthened by more stochastic production or higher capacity,
resulting into increased long-term volatility. Hence, the positive coefficients for the standard de-
viation and the total weekly wind power output. In a system without intermittent renewable pro-
duction, the supply curves would be more invariable. In case of Denmark, there is no inexpensive
hydro or nuclear production buffering the changes in wind power.

Figure 25: A hypothetical situation of two days with different wind conditions, but identical de-
mand.

4.2 Germany
4.2.1 Intraday model

From section 3.3, Phelix prices have similar intraday and weekly pattern as the Denmark prices.
In addition, the autocorrelation structure of the daily volatility is similar. The daily volatility is
calculated using Equation 1. Compared to wind power, solar power has a persistent autocorrelation
structure because the ratio of outputs on the cloudiest and sunniest day was approximately 25%
on average. Despite this, I estimate the effects of both solar and wind power on daily Phelix
price volatility using the same methodology as earlier: prices are modeled as an SARMA process
along with the exogenous forecasted renewable generation term. I ran three regressions where
the exogenous term is solely total solar power output, total wind power output, or the two added
together. As a basis, I use the same model as I used for Danish intraday data in Equation 6. All
variables are transformed into natural logarithm form so that I can give a clear interpretation to
the results. Moreover, the same requirements apply. The best model is validated using Wald tests,
Akaiki Information Criterion (AIC), and by looking at different properties of the model residuals
such as ACF, PACF, and testing the null hypothesis of white noise.

After testing different combinations, I end up with the model in Equation 9, which is basi-
cally the same Denmark intraday model, but the term β14εt−14 has been dropped. The model is
a combination of the SARMA(2,1,1,1) process for price volatility and AR(1) for renewable gen-
eration both of which I found appropriate in the previous sections. This modification improves
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the model residuals. It is no surprise that there is not much difference between the two models as
the two countries have similar electricity systems and are geographically close to each other. The
current and lagged terms for forecasted wind, solar and combined output are denoted with wt and
wt−1, st and st−1, and rt and rt−1 (short for RES), respectively. As the wind power production is
usually a lot higher than solar power production, the combined output rt time series behaves like
wind power time series, and therefore, can be modeled as an AR(1) process, too. In the model,
the AR(2) terms and the MA(1) term handle the short-term price process, and the SAR(1)7 and
SMA(1)7 terms restrain the weekly autocorrelation of the model residuals. Intuitively, the volatil-
ity can be expressed in terms of the volatility of two previous days and previous week’s value.

vt = α0 + α1vt−1 + α2vt−2 + α7vt−7 + β1εt−1 + β7εt−7 + σ0st + σ1st−1 (9)

Figures 26(a), 26(b), and 26(c) show the autocorrelation function, partial autocorrelation func-
tion and the model fit, respectively, when the exogenous term is forecasted solar power output.
Figures for other exogenous variables are given in the Appendices B and C because they are alike.
The autocorrelation and partial autocorrelation functions remain between the 95% confidence in-
tervals apart from the spikes near lag 7 caused by the weekly seasonality. Despite this, the residuals
pass the Ljung-Box test with all of the exogenous variables. Also, the model for Denmark west
passed the Ljung-Box test, and Denmark east was performing well apart from a few lags. The fit
of the model shows that the model performs rather well in general, but it is not capable of deal-
ing with the spikiness and sudden changes in volatility. This is a general drawback of regression
models.

Table 5 shows the results of the regression where de − solart and de − solart−1, de − windt
and de − windt−1, and de − rest and de − rest−1 are the forecasted solar, wind, and combined
outputs for the current and previous day. Note that all the SARMA coefficients are very close to
the corresponding coefficients of the Danish model regardless of the chosen exogenous variable.
Therefore, the price processes remain similar, letting each exogenous variable explain the process.

The estimated coefficient for solar output is −0.0369 which can be interpreted to mean that a
doubling of the solar power output leads to a 3.7% decrease in daily volatility. This coefficient
is less than half of the coefficients for wind in Denmark. The difference is explained by the
differences in the systems because the total solar power produced in Germany in this period is
nearly two times the total wind power produced in Denmark. Despite the large production figures,
solar power generated only 5.2% of total electricity consumption in Germany in 2012 whereas
wind power generated 30.3% in Denmark. Yet, most of the solar power production affects only
the peak hours with the highest prices. This has a decreasing effect on daily volality. In fact, the
high peak prices has been cut as the Figure 27 shows.

In addition, the coefficient for the lagged solar power is negative at −0.0287. The heavy
autocorrelation of solar power indicated that the values are similar. In fact, if the lagged solar
power term is dropped out, the coefficient for the current solar power decreases even further from
−0.0369. With two solar power terms, that coefficient is distributed as the two values are likely to
be rather close to each other. The lagged term was only added to control for the autocorrelation in
the solar power time series and should not be given any economic interpretation. Recall that I am
using the forecasted solar output so market players have always more recent information available
than the lagged value.

For wind power output, the estimated coefficient is 0.0426, i.e., doubling of total forecasted
wind power generation increases the daily volatility by 4.3%. Also the lagged term is positive with
a coefficient of 0.1030 but it should not be given an economic interpretation for the same reason as
above. The result is in line with Ketterer [5] but conflicts with the results from Denmark. The wind
power generation in Germany was almost five times larger in 2012 compared to Denmark, but the
share of total consumption was still only 8.1%. The reason for these contradicting results could
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(a) Autocorrelation function of Phelix intra-
day model residuals

(b) Partial autocorrelation function of Phelix
intraday model residuals

(c) Phelix model vs. actual time series

Figure 26: First and second row: Autocorrelation and partial autocorrelation functions of the
model residuals with 95% confidence intervals. Third row: The actual daily volatility time series
and model fit.

Figure 27: The development of the average Phelix prices. I have averaged two years of price data
to eliminate the effect of possible outliers.
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be the flatness of the German wind power curve shown in Figure 17(b). As I noted in the section
where I divided the Danish data to off-peak and peak hours, excess renewable generation has
highest effect on off-peak hours. Hence, high wind output in off-peak hours can crash the prices
causing the volatility to increase. This hypothesis is tested for Germany in the following section
to find out why wind power has positive coefficient. To start with, figure 28 shows that the largest
drop in prices from 2011 to 2012 occurred when the price is near the local minima, i.e., in off-peak
1 hours and in the peak solar output hours 12-17. The average daily standard deviation increased
5.6% from 2011 to 2012 as a result of these changes although the hourly prices decreased as much
as −8.5 EUR/MWh on average.

Figure 28: The difference between average hourly prices in 2011 and 2012. The prices were much
lower in 2012.

The combined output is driven by wind power because the German wind power output is nearly
two times larger than the solar power output. That is why also the coefficient for the combined
output de − rest is positive at 0.0468. Hence, doubling the total combined output results into a
4.7% increase in daily volatility. When mere solar power decreases the daily volatility by cutting
the peak prices, the combined effect of wind and solar power decreases heavily off-peak prices
through excess supply and the solar power output peak prices (hours 12-17). The coefficient for
combined output is a bit larger than for wind power. This could stem from the aforementioned
effects on the price curve but this would again need closer studying of the different blocks.
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Table 5: The effect of German solar, wind and combined output on daily Phelix price volatility.
All coefficients are statistically significant at 1% level unless otherwise noted.

Phelix (solar) Phelix (wind) Phelix (res)
de− solart -0.0369 NA NA

[0.0135] NA NA
de− solart−1 −0.0287a NA NA

[0.0136] NA NA
de− windt NA 0.0426 NA

NA [0.0132] NA
de− windt−1 NA 0.1031 NA

NA [0.0133] NA
de− rest NA NA 0.0468a

NA NA [0.0190]
de− rest−1 NA NA 0.1633

NA NA [0.0190]
constant 3.0154 0.6972a −0.1429c

[0.2466] [0.2776] [0.4016]
α1 1.2198 1.1750 1.1937
α2 -0.2543 -0.2109 -0.2167
α7 0.9952 0.9938 0.9936
β1 -0.8845 -0.8639 -0.8778
β7 -0.9418 -0.9282 -0.9262
a significant at 5% level
b significant at 10% level
c not significant
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4.2.2 Wind power and division into peak, off-peak1, and off-peak 2 hours

In the previous section, I hypothesised that the positive coefficient for German wind power is
caused by the price crashing excess supply in the off-peak hours. To explore the effects of wind
power on different blocks, I divide the data into peak, off-peak 1, and off-peak 2 hours. I use the
same definition for these blocks as in the section for Denmark because the German intraday price
curve is alike. Hence, peak hours are 08-19, off-peak 1 00-07, and off-peak 2 20-23. Moreover, I
pay attention to the dip in the intraday curve in hours 13-18 in Figure 12 to assess the effect of the
slight peak experienced in wind output in these hours as Figure 17(b) shows. The effect of these
hours is compared to all peak hours.

I average the hourly wind power output data instead of summing up because the lengths of the
blocks are different. Furthermore, the dependent variables are the average hourly prices in each
block because I want to focus on the changes in price levels rather than estimating the standard
deviation of the blocks. A graphical presentation of the situation with hypothetical prices is given
in Figure 22. However, I run one regression with the peak hours using the standard deviation
of prices, and the sum of hourly wind power production to investigate whether wind power or
possibly some other factor such as solar power is causing volatility in peak hours. If there is
no statistically significant effect, the volatility increasing effect of wind power observed in the
previous section should be explained solely by the difference in price levels of peak and off-peak
hours. No important information about wind power is lost due to the changes in the way I deal
with the data because the time frame is so short that averaging or summing the wind power does
not distort the data. I expect the changes to be reflected in the scaling of the parameters.

Therefore, the form of the regression model is exactly the same as in the previous section, and
it is given by Equation 9 where daily volatility is changed to the average price level in each block.
The price and wind power processes maintain the same autocorrelation and weekly structure re-
gardless of the changes made. Although other specifications would be feasible too, I choose this
model for consistency, and simply because it shows the best perfomance with the different exoge-
nous variables along the line. All variables have been transformed into natural logarithm form to
make the interpretation more convenient.

The results are presented in Table 6. To summarise, all prices and wind power terms (de −
windt − avg) are averaged over hourly values expect for "Peak stdev" that denotes the regression
where I have used the standard deviation of peak prices and the sum of hourly wind power pro-
duction during these hours (de − windt − sum). Label "Dip" corresponds to hours 13-18. The
conclusion is that wind power has a decreasing effect on prices in each block because the coeffi-
cients are −0.098, −0.25, and −0.11 for peak, off-peak 1, and off-peak 2 hours, respectively. For
instance, the interpretation for the coefficient for peak hours is that if wind power increases 100%
in peak hours, the prices come down 9.8%. The coefficients for peak and off-peak 2 hours are
rather close to each other so wind power has almost an equal effect on these hours. Hourly prices
in these two block are rather close to each other but wind power production is slightly higher in
peak hours apart from the winter months. When these facts are taken into account, the final effect
wind power has on these two blocks should be fairly equal. Hence, the price levels of the blocks
should not converge at least to a significant extent.

However, the coefficient for off-peak 1 hours is remarkably negative at −0.25 which is ap-
proximately 1.5 times more negative than the two other coefficients. Similar to Denmark, the
most intense effect on prices is found in off-peak 1 hours but in Germany, the effect is more pro-
nounced. Although the wind power output is lowest during the off-peak 1 hours as Figure 17(b)
shows, the output curve is so flat that the difference between the highest and lowest output is not
very large. Therefore, if it is windy, the greatest effect on prices is observed in off-peak 1 hours
while peak and off-peak 2 hours remain at the same level. This results into a intraday price curve
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profile depicted in Figure 27 (line 2011-2012) where the low price level in off-peak 1 hours is
followed by a sharp ascent to the peak hour level. The observed profile is caused supply and de-
mand dynamics. There is a lot of excess wind power output in the off-peak 1 hours that crashes
the prices, and cannot be exported completely to the neighbouring countries. Then, as the people
get up, the demand picks up and the prices increase. Such a threshold in intraday prices increases
the daily volatility compared to a electricity system without renewable generation.

The additional regression for hours 13-18 labeled "Dip" shows that wind power is partly caus-
ing the observed dip during the peak hours. The coefficient for the dip is −0.11 which is a bit
more negative than the coefficient for all peak hours −0.098. Therefore, wind power should in-
crease the volatility in peak hours through a "bumpy" price curve. The regression labeled "Peak
stdev" confirms this because the coefficient for wind power is positive at 0.0343, i.e., doubling the
total wind power output in peak hours increases the volatility of the peak prices by 3.4%. The
corresponding coefficient for the whole day is 25% larger at 0.043 according to the regression in
the previous section.

Therefore, the fact that wind power increases daily volatility in Germany is explained by the
threshold behaviour, and the dip in peak hours. For Denmark, the extent of the threshold behaviour
is nowhere near Germany, and the intraday price profiles do not show such a large dip. There is
a clear difference in average hourly wind power curves in Germany and Denmark west as the
Figures 17(b), and 9(a) show. The output curve for Germany tends to be flatter and especially
off-peak 1 hours are almost on the same level as peak hours. The difference in the curves could
be explained by geographical reasons: wind power production in Denmark west takes places near
the coast with harsh weather conditions whereas the German wind power production is distributed
more in the northern mainland. Further research on wind turbine production patterns on different
sites, and on the differences in turbine types in these two countries could explain the output curves
better.

Further research could also be conducted on supply curves. I do not have access to raw Phelix
bid data but Epex Spot publishes aggregated Phelix bid curves. Figures 29(a), 29(b), and 29(c)
show examples of these curves in one hour in off-peak 1, peak and off-peak 2, respectively. The
strong effect wind power has on off-peak 1 hours implies a steep supply curve at the low end. In
Figure 29(a), a parallel shift to right in the supply curve would result into a large price decrease
as the average slope near the intersection is 23.75 EUR

433 MWh = 0.05484 EUR/MWh ≈ 0.055 EUR/MWh.
I do the measures using a ruler in an image processing software. The effect is usually even larger
because the supply curve makes jumps. On the other hand, if the same amount of wind power
is applied in hour 9 (peak) or 22 (off-peak 2), the price effect is not as great because the average
slopes, 15 EUR

970 MWh ≈ 0.015 EUR/MWh and 11 EUR
400 MWh ≈ 0.0275 EUR/MWh, respectively, are low-

pitched around the intersection. The assumption of the same amount of wind power is justified by
the flat intraday output curve. Hence, the results of the regressions in this and the previous section
seem to be in line with these slopes.

According to [31] gross electricity production from nuclear and renewable energy made 42%
of total electricity consumption in Germany in 2012. The share of net production is a bit lower.
Consequently, the Phelix supply curve consist of inexpensive nuclear and renewable energy at the
low end. These sources do not meet the demand so they are followed by a jump to a higher price
level with conventional production from coal. When also price-lowering imports from e.g. French
and Nord Pool are taken into account, the intersection point falls near the jump in low-demand
off-peak 1 hours. After the jump, the supply curve stays rather flat because an array of similar
conventional production plants are brought online. In peak hours, the demand is so high that the
intersection point is in the stable part of the curve. Only in high volumes, the slope of the supply
curve increases significantly when gas turbines, for example, are brought online.
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(a) Phelix aggregated bid curves in hour 5 (b) Phelix aggregated bid curves in hour 9

(c) Phelix aggregated bid curves in hour 22

Figure 29: Phelix aggregated supply (grey) and demand (orange) curves in one hour in the off-
peak 1, peak and off-peak2 blocks on 5 February 2013. Thanks to the EEX policy not to offer
data openly for research, the average slopes for each supply curve have been calculated using the
auxiliary lines added by me. Image source: Epex spot.
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Table 6: The effect of German wind output on different blocks. All coefficients are statistically
significant at 1% level unless otherwise noted.

Peak Peak stdev Dip Off-peak 1 Off-peak 2
de− windt − avg -0.0979 NA -0.1084 -0.2468 -0.1107

[0.0061] NA [0.0067] [0.0169] [0.0071]
de− windt−1 − avg 0.0133a NA 0.0191 −0.0187c 0.0172a

[0.0061] NA [0.0067] [0.0169 [0.0071]
de− windt − sum NA 0.0343a NA NA NA

NA [0.0161] NA NA NA
de− windt−1 − sum NA 0.0212c NA NA NA

NA [0.0161] NA NA NA
constant 4.6007 1.1008 4.6037 5.5475 4.5414

[0.3312] [0.2403] [0.2903] [0.2292] [0.1459]
α1 1.1480 1.1118 1.1098 −0.0629c 1.2496
α2 -0.1958 -0.1532 -0.1561 0.2685 -0.2704
α7 0.9976 0.9178 0.9949 0.9862 0.9885
β1 -0.7421 -0.8225 -0.7712 0.6085 -0.8288
β7 -0.9248 -0.7924 -0.8992 -0.9144 -0.9515
a significant at 5% level
c not significant

4.2.3 Weekly model

Similar to Denmark west, the correlation between the difference in consecutive daily Phelix prices
and the difference in consecutive daily wind power produced in Germany is rather high at −0.42.
For solar power production, the same correlation is only −0.043. Therefore, the windier it is, the
lower the daily price level is, but the same does not go for solar power. As earlier, my hypothesis
is that the weekly volatility increases because of the intermittent nature of renewable generation
power. As with the weekly model for Denmark, I run regressions with both total renewable gen-
eration and the weekly standard deviation of renewable generation given by the Equation 7. I ran
three regressions with both variable types: solar power, wind power, and combined output. The
idea is again that total output does not necessarily tell anything about the variation of the produc-
tion levels but the weekly standard deviation captures the evident correlation between daily price
and production levels better.

The results are presented in Table 7 where Phx is short for Phelix and the variables are the same
as earlier. The model is again ARIMA(1,1,0) given by Equation 8. Integrating greatly improves
the fit to the weekly volatility time series. Mere AR(p) or MA(q) processes do not deal with the
zig-zag nature of the original time series properly.

When the exogenous variables are total productions, only the coefficient for wind power is
significant at 0.1664. Hence, weekly wind power output should increase the weekly volatility.
Further conclusions cannot be made for solar power and combined output. After changing the
exogenous variables to weekly standard deviations, only solar power is not statistically significant.
The coefficient for wind power is 0.1520 and 0.1742 for combined output. Therefore, the standard
deviation of wind power and combined output has a substantial increasing effect on the weekly
volatility. However, I have only three complete years of renewable generation data so it is not
reliable to assess whether the standard deviation has increased. The fit of the weekly model with
the standard deviation of wind power output is shown in Figure 30.

As with the Danish model, none of the models is validated by diagnostic tests although the
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coefficients are statistifically significant. Again, the residuals of the models do not conform to the
assumptions of generalized linear model. Adding high-order AR terms improves the situation, but
the results do not differ significantly so I stick to the same model for consistency. As the weekly
volatility is dependent on numerous factors, an ARIMA model does not capture the randomness
of the data. Therefore, the coefficient are not reliable. However, the results can be explained
qualitatively.

The positive coefficients for total weekly wind power output and the standard deviation are
again supported by the merit order effect. Similar to Denmark, Figure 25 shows how applying
wind power shifts the supply curve to right. The correlation between daily wind power and price
levels refers to the price decreasing shift in supply curve. The total daily output in Figure 16(b) is a
purely stochastic process which leads the supply curve to oscillate horizontally. The oscillation is
strengthened by more stochastic production or higher capacity, resulting into increased long-term
volatility. Hence, the positive coefficients for the standard deviation and the total weekly wind
power output. The combined output is largely driven by wind power so its coefficients are also
positive.

The statistical insignificance for solar power coefficients results possibly from its relatively
small share in production mix. As the autocorrelation structure of solar power suggested, the ob-
servations for solar production are similar. Thus, solar power production level is more predictable
than wind power. Moreover, being prevalent only in peak hours, solar power is more predictable
also timewise. Therefore, the effect of solar power on the supply curve is not as random as the
effect of wind power. With the daily data, I find that solar power has negative effect on the daily
volatility, and I suggest that this applies also to weekly volatility. However, more data would be
needed to confirm that.

Table 7: The effect of the standard deviation of the weekly Denmark wind power production on
weekly Denmark price volatility. All coefficients are statistically significant at 1% level unless
otherwise noted.

Phx (solar) Phx (solar) Phx (wind) Phx (wind) Phx (res) Phx (res)
de− solart −0.1835c NA NA NA NA NA
de− solart − std NA −0.0350c NA NA NA NA
de− windt NA NA 0.1664a NA NA NA
de− windt − std NA NA NA 0.1520a NA NA
de− rest NA NA NA NA 0.1708c NA
de− rest − std NA NA NA NA NA 0.1742
a1 -0.4809 -0.4763 -0.4644 -0.4641 -0.4641 -0.4682
a significant at 5% level
c not significant
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Figure 30: The fit of the weekly model for Phelix with the standard deviation of wind power
production as an exogenous variable

5 Conclusions
New technology development has made it possible to utilize uncontrollable natural sources such as
wind and photovoltaic effect in energy generation. However, only the objectives to improve energy
efficiency, to reduce greenhouse gas emissions, and to secure energy supply in times of reducing
oil reserves has turned renewable energy into a boom. The reform is made possible by the fact
that general public has started to adapt to the idea of global warming and new green technologies.
Hence, renewable energy generation has started to gain considerable political advocacy. Concrete
examples of this development are the renewable energy policies in the EU. I have researched
the cases of Germany and Denmark where renewable energy now makes up over 20% of the
gross electricity production. However, these large amounts of intermittent eletricity production
set challenges for the electricity market and the design of the power system. Given the ambitious
renewable energy goals in the EU, it is becoming more and more important to understand the
underlying reasons for these challenges.

The results I present show that wind and solar power production levels change considerably
from month to month with the maximum output occurring during the peak hours. The negligi-
ble marginal costs of renewable generation cause daily price levels to decrease in Denmark and
Germany as traditional fossil fuel-based generation is displaced. Both wind power generation in
Denmark and solar power generation in Germany decrease also daily volatility. This is caused by
output peak cutting the peak hour prices. The results for Danish wind are not only in line with
Mauritzen’s [10] results but also with Jónsson et al [4] who use different methodology. This con-
firms the robustness of the results. Moreover, the results for German solar power prove the remark
of Bundesnetzagentur [8] that the price spread between peak and off-peak hours decreases when
there is solar power available.

However, German wind power increases German daily price volatility. The result is in line
with Ketterer [5]. When the German data are divided into peak and off-peak hours, I notice that
windy conditions during the off-peak 1 hours (00-07) can cause a crash in prices. In fact, the
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average intraday wind output curve is so flat that there is not much difference in wind output
between off-peak and peak hours. Daily volatility increases because prices in off-peak 1 hours
lower too much relative to peak and off-peak 2 prices, which remain close to each other. The same
effect is observed also in Denmark but it is dampened by two factors. First, the price-decreasing
effect wind power has on off-peak 1 hours is not nearly as strong as in Germany. Second, wind
power output in off-peak hours is much lower than in peak hours in Denmark.

For both Denmark and Germany, I find that the volatility of prices increases in longer term due
to the intermittent nature of wind power. Mere German solar power does not have a statistically
significant effect on weekly volatility. Because of the negligible costs, wind and solar power push
the prices down effectively, but in case of bad weather conditions electricity producers need to rely
on high-priced backup generation from flexible gas turbines, for example. Hence, renewable gen-
eration has a disruptive effect on otherwise more predictable supply and demand balance causing
the daily price levels to do great jumps from day to day.

Moreover, I find that the standard deviation of daily wind power outputs in a week increases
the weekly volatility of prices in Denmark and Germany. For Denmark, which I have more data, I
note that the standard deviation of wind power output has increased while the production capacity
has increased. For Germany, which I lack old historical data, I cannot not make similar conclusion
but it is reasonable to assume that the standard deviation of production increases when the capacity
itself increases. The increase in weekly volatility of prices can be constrained if the increase in
the standard deviation of wind power output is dealt with limiting production in some hours,
optimizing the placement of turbines, and designing the turbines differently, for example.

All the statistically significant coefficients for renewable energy are economically significant.
For instance, German daily wind power has a 4.3% increasing effect on daily volatility of prices
if the wind power output increases by 100%. Such increases in daily output are not rare due to
the unstable nature of wind power generation. Renewable electricity production has transformed
from a small phenomenon to a real market maker that needs to be taken into account in day-ahead
eletricity trading and, above all, when industry makes decisions based on the electricity price
development.

Given the EU energy policies, the renewable capacity continues to increase in Germany and
Denmark, and in all other countries belonging to Nord Pool and EEX. By 2020, Denmark is
estimated to have a 51.9% share of renewable energy of total energy consumption compared to
the current share of around 38%. For Germany, the same figure is 36.6% while the current is just
over 20%. The price impacts I have presented depend on the total amount of production and the
variations in it. Hence, the impacts become more stronger unless the production mix or market
design changes. It is not straight-forward to make similar conclusions for Sweden and Finland, for
example, because they have hydro power that can buffer the intermittency of renewable generation.

Lower electricity prices do not encourage new investments in electricity generation. In ad-
dition, higher price volatility in longer term introduces uncertainty which increases risk. It is
important to notice that renewable generation decreases prices so the upside risk is very limited.
Concurrent increases in renewable capacity in geographically close EEX and Nord Pool countries
may lead to temporary over-supply situations where cheap power is trapped. Although backup
generation is becoming more and more important to secure supply, low utilisation rates and high
fuel costs may make investing unprofitable. The situation is also increasing the costs of utility
companies as conventional capacity needs to be adapted to the new environment through updating
to more flexible electric boilers, for example. Especially the low first off-peak hour prices can
decrease the profitability of conventional plants that have high start-up costs. When all these are
taken into account, the headline of the UBS investment report "Renewables to wipe out 50% of
profits" does not sound so striking anymore.
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A All coefficients of the Danish intraday model when data are divided into peak, off-peak 1 and
off-peak 2 hours.

Table 8: The effect of Danish wind power production on intraday Danish area prices in different blocks. All coefficients are statistically significant at
1% level unless otherwise noted.

Peak east Off-peak 1 east Off-peak 2 east Peak west Off-peak 1 west Off-peak 2 west
de− windt -0.0413 -0.0557 -0.0287 NA NA NA

[0.0034] [0.0048] [0.0021] NA NA NA
de− windt−1 0.0006c -0.0131 −0.0035c NA NA NA

[0.0034] [0.0048] [0.0021] NA NA NA
dw − windt NA NA NA -0.0681 -0.1112 -0.0597

NA NA NA [0.0035] [0.0074] [0.0036]
dw − windt−1 NA NA NA −0.0066b -0.0202 −0.0046c

NA NA NA [0.0035] [0.0074] [0.0036]
constant 4.0666 3.8145 3.8649 4.2672 4.2054 4.0768
α1 1.3605 1.2551 1.1176 1.2547 1.2184 1.0935
α2 -0.3687 -0.2744 -0.1292 -0.2694 -0.2389 -0.1049
α7 1.0000 0.9984 0.9995 0.9986 0.9987 0.9988
β1 -0.8606 -0.8132 -0.6879 -0.8333 -0.8575 -0.7871
β7 -0.8875 -0.8807 -1.0099 -0.8796 -0.8730 -0.9842
β14 -0.1078 -0.1011 0.0178c -0.0762 -0.1038 −0.0046c

b significant at 10% level
c not different from zero

46



B Diagnostic figures of the German intraday model when the
exogenous variable is wind power

(a) Autocorrelation function of
Phelix intraday model residuals

(b) Partial autocorrelation function
of Phelix intraday model residuals

(c) Phelix model vs. actual time se-
ries

Figure 31: First and second row: Autocorrelation and partial autocorrelation functions of the
model residuals with 95% confidence intervals. Third row: The actual daily volatility time series
and model fit.

C Diagnostic figures of the German intraday model when the
exogenous variable is combined output

(a) Autocorrelation function of
Phelix intraday model residuals

(b) Partial autocorrelation function
of Phelix intraday model residuals

(c) Phelix model vs. actual time se-
ries

Figure 32: First and second row: Autocorrelation and partial autocorrelation functions of the
model residuals with 95% confidence intervals. Third row: The actual daily volatility time series
and model fit.

47


	Introduction
	Overview of the European energy exchanges and renewables policy
	Nord Pool
	European Energy Exchange
	Renewable energy and climate targets in Europe

	Data
	Nord Pool price data
	Danish wind power
	PHELIX price data
	German solar and wind power

	Results
	Denmark
	Intraday model
	Division into peak, off-peak 1, and off-peak 2 hours
	Weekly model

	Germany
	Intraday model
	Wind power and division into peak, off-peak1, and off-peak 2 hours
	Weekly model


	Conclusions
	All coefficients of the Danish intraday model when data are divided into peak, off-peak 1 and off-peak 2 hours.
	Diagnostic figures of the German intraday model when the exogenous variable is wind power
	Diagnostic figures of the German intraday model when the exogenous variable is combined output

