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Threat to survival launches a primitive fight-or-flight reaction both in animals and
humans. Both individual actions and the actions of others affect an individual’s
survival when escaping as a part of a crowd. Human characteristics play a big
role in decision making under evacuation circumstances. Attitudes towards risks
make some people try their luck, and some others to act as carefully as possible.

An individual’s view of the seriousness of a threat in the current situation can
be modeled bu using a personal cost function. The shape of the cost function
determines whether one is more risk-averse or risk-taking. This thesis seeks to find
out how crowd egress flow is affected when evacuees’ cost functions differ from
each other. Previous studies have treated evacuees as homogenous individuals
who all have the same cost function.

Evolutionary game theory serves as the decision making framework for this study.
Classical Hawk-Dove game can be used to model human behavior alternatives,
e.g., an individual to play Impatient or Patient under an evacuation situation.
This individual’s behavior can be observed by the other evacuees, who react to
this behavior according to their own cost functions.

The study in this thesis is limited to two different types of evacuees: risk-averse
and risk-taking. The model developed will reveal new kinds of phenomena that
do not occur when all evacuees are considered homogenous. For example, mixing
the two types of evacuees in the same crowd will cause a formation of a certain
area in the middle of the crowd where all the risk-averse evacuees take the action
Patient, and all the risk-taking evacuees take the action Impatient.
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Päiväys: 26. toukokuuta 2015 Sivumäärä: vi + 49
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Uhka selviytymiselle laukaisee alkukantaisen taistele tai pakene -reaktion sekä
eläimissä että ihmisissä. Sekä yksilölliset että muiden tekemät toimet vaikutta-
vat yksilön selviytymiseen paettaessa osana väkijoukkoa. Ihmisten luonteenpiir-
teillä on merkittävä osa päätöksenteossa evakuointitilanteissa. Asenteet riskejä
kohtaan saavat toiset kokeilemaan onneaan ja toiset toimimaan niin varovaisesti
kuin mahdollista.

Yksilön näkemystä uhan vakavuudesta nykyisessä tilanteessa voidaan mallintaa
henkilökohtaisella kustannusfunktiolla. Kustannusfunktion muoto määrittää on-
ko yksilö riskiä karttava vai riskihakuinen. Tämä diplomityö pyrkii selvittämään
kuinka väkijoukon ulosvirtaukseen vaikuttaa evakuoitavien toisistaan poikkeavat
kustannusfunktiot. Edelliset tutkimukset ovat ajatelleet evakuoitavia homogeeni-
sina yksilöinä, joilla on kaikilla sama kustannusfunktio.

Tässä tutkimuksessa käytetään evoluutiopeliteoriaa pelaajien, tai agenttien, toi-
minnan ennustamiseen. Esimerkiksi klassisen Haukka-Kyyhky-pelin toiminta-
vaihtoehdot ovat “Kärsimätön” ja “Kärsivällinen” evakuointitilanteissa. Muut
havaitsevat yksilön käyttäytymisen ja reagoivat tähän oman kustannusfunktion-
sa mukaisesti.

Tässä diplomityössä tutkimus on rajoitettu kahdentyyppisiin evakuoitaviin: ris-
kiä karttaviin ja riskihakuisiin. Kehitetyllä mallilla tehdyt simuloinnit tuotta-
vat uudenlaisia ilmiöitä, joita ei tapahdu samantyyppisten agenttien tapaukses-
sa. Esimerkiksi kahta eri tyyppiä olevien agenttien sekoittaminen samaan agent-
tijoukkoon muodostaa joukon keskelle tietyn alueen, jossa kaikki riskiä kartta-
vat evakuoitavat käyttäytyvät kärsivällisesti ja kaikki riskihakuiset evakuoitavat
käyttäytyvät kärsimättömästi.
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Abbreviations and acronyms

C cost of conflict

CA cellular automaton

Dij value of dynamic floor field in cell (i, j)

E(I, J) payoff to individual adopting strategy I, when the
opponent adopts strategy J

EGT evolutionary game theory

ESS evolutionary stable strategy

HD Hawk-Dove game (also known as chicken game or
snowdrift game)

kD sensitivity parameter associated with the dynamic
floor field

kS sensitivity parameter associated with the static floor
field

ξi random force affecting agent i in social force model

PD prisoner’s dilemma game

Sij value of static floor field in cell (i, j)

TASET available safe egress time

Ti estimated evacuation time for agent i

u(Ti;TASET ) cost function for agent i

V value of resource, which is obtained after won contest

W (I) average fitness of individuals that choose strategy I
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Chapter 1

Introduction

People have died due to crowd disasters as long as there has been mass
gatherings. To prevent this kind of incidents, the state authority and building
designers have established safety requirements. Ignoring to make a sufficient
safety plan may end up in a situation of numerous casualties - both deaths
and injuries. A recent example of this kind of disaster was a stampede that
broke out at Dussehra festival 2014 in Gandhi Maidan, India. Casualties
included 33 people dead and more than 20 injured [20].

Especially in media, the term panic is commonly used to describe the state of
mind of a crowd in a threatening situation. Panicking is considered to make
people become irrational, selfish and obsessed to acquire short-term personal
benefit. However, studies carried out by social psychologists have revealed
that this kind of irrational behavior rarely occurs on individuals and whether
the concept of panic should be even used at all as a technical term [22]. Thus,
it is reasonable to assume that stampedes and similar crowd disasters take
place under conditions where humans behave rationally.

This thesis focuses on pedestrian behavior in evacuation situations. Two in-
fluential agent-based computational models are presented in Chapter 2. The
first one is social force model, which describes pedestrian motion in contin-
uous space as the resultant of physical and socio-psychological forces. The
other one is cellular automaton model, in which agents movement direction
depends on floor fields. These floor fields depend on the geometry of the space
the agents are evacuating themselves from, and the recent history of other
agents’ movement and location in the space. Both social force and cellular
automaton models act as a core to several developed evacuation simulation
software products [17].

1



CHAPTER 1. INTRODUCTION 2

Considering evacuation simulations, it is naturally important to compare
computational results to observed human behavior in evacuation situations,
for example under the conditions of a disaster. Chapter 3 begins with intro-
ducing a game theory related topic: evolutionary game theory. Evolutionary
games were originally developed for analyzing the competition, reproduction
and dynamics of biological lifeforms and to describe the strategic interaction
of them. To add decision making abilities to the evacuees in a computational
model, game theory is coupled with evacuation models. The evacuees in the
model have two strategies to choose from: Impatient or Patient. The strat-
egy choice alters the evacuees behavior and depends on physical conditions,
such as smoke and fire, and the other evacuees actions. Simulation results
with these coupled models can be used to understand mechanisms behind
crowd disasters. The game that evacuees play with each other is spatial in
nature because in a big crowd an individual is able to interact only with the
people in his local surroundings. The theory of spatial games is described in
Chapter 3, too.

So far, computational evacuation models have treated evacuating agents as
identical decision-makers. This means that two agents behave exactly the
same way in a similar situation. Different persons in an identical situation
may find completely opposite alternatives as the optimal way of acting. In the
context of evacuations, many human characteristics have potential influence
in the modeling of decision making: bravery, caution, determination and so
on. To be able to take into account the effect of these characteristics, new
features must be added to the current models.

This thesis seeks to find a way to enhance the evacuee’s decision making,
by making a classification of agent types. The different types will represent
agents, that have the same strategy set but different cost functions. This
way, the optimal strategy in a situation may not be anymore unique, but
depend on agent’s type. The different cost functions reflect the risk attitude
of the agent types. This allows certain proportions of the evacuating crowd
being more risk-averse or risk-taking than the rest. This extension to the
evacuation model is presented in Chapter 4.

The analysis of the new evacuation model features continues in Section 5,
where the effect of multiple utility functions is studied further through sim-
ulation. Both static equilibrium configurations of agents in front of the exit,
and behavior of moving agents in a cellular automaton are simulated. After
that, the results are analyzed. Finally, in Chapter 6 potential future research
is discussed.



Chapter 2

Evacuation models

Pedestrian behavior can be modeled in several ways. While this thesis aims
to improve the decision making abilities of computational agents, at start
a review of some different significant modeling frameworks must be done.
Section 2.1 discusses social force model developed by Helbing [8]. In the
model agents move in continuous space and time, taking into account differ-
ent force affecting the agents. Some of these forces are actual physical forces
while the others are socio-psychological phenomena that can be expressed
like forces. An alternative to Helbing’s continuous framework is cellular au-
tomaton model developed by Schadschneider [23] in section 2.2. In this model
agents move in discrete time steps in a discrete grid. The evacuees move in
the grid according to transition probabilities, which depend on the static and
dynamic floor fields. These fields are derived from the geometry of the room
and the agents’ past movement in the grid.

2.1 Social force model

At the beginning there are totally n evacuees trying to get out from a space.
Each agent i has: a mass of mi, a desired walking speed v0i and a desired
direction to move to e0

i . The actual velocity of an agent is vi and the agent
has a characteristic acceleration time τi, which describes how long it takes
for the agent to accelerate from the actual velocity to the desired velocity.
In addition the agent attempts to avoid getting too close to obstacles on its
way, namely other agents j and walls W . This tendency can be expressed as
part of “interaction forces” fij and fiW . Now, as the model assumptions are
set, the motion of the agent can be written as an equation:
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CHAPTER 2. EVACUATION MODELS 4

mi
dvi

dt
= mi

v0i e
0
i − vi

τi
+

∑
j(6=i)

fij +
∑
W

fiW + ξi, (2.1)

where ξi is a small personal random force. The random force must be included
in the model, because without it the agents might jam in a head-on encounter
with equal oppositely directed total moving forces. The position of the agent
ri can then be obtained from the velocity vi = dri/dt.

The force fij repelling the agents from one another consists of three parts:

fij = f socialij + fbodyij + f slidij . (2.2)

Social force f socialij is the psychological part of this interaction force. It can
be written as

f socialij = Ai exp[(Rij − dij)/Bi]nij, (2.3)

where Ai and Bi are constants describing the strength and range of the social
force, Rij−dij = Ri+Rj−‖ri−rj‖ is the sum of agents i and j 2D projection
radii, defined as in Figure 2.1, subtracted by the distance between agents’
centers, and nij = (ri − rj)/dij is a normalized vector pointing from agent j
to agent i. As in [13], each agent is considered to form of three spheres, the
big one describing the main body and the small ones the arms.

In the model, two agents are defined to touch each other if Rij − dij ≥ 0.
While it might at first seem odd this subtraction to get positive values, in
Figure 2.1 there is presented a case when it happens. After the agents touch,
the two other components of the interaction force activate. The ’body force’
and ’sliding friction force’ can be written as

fbodyij = kg(Rij − dij)nij (2.4)

f slidij = κg(Rij − dij)∆vtjitij, (2.5)

where k and κ are large constants, tij = (−n2
ij, n

1
ij) is the tangential direction

when agents i and j are close to each other, and ∆vtji = (vj − vi) · tij is the
tangential velocity difference of the agents. The function g(x) is added to
make these forces active only if the agents touch; g(x) = x, for Rij − dij ≥ 0,
otherwise g(x) = 0. As can be seen, unlike f socialij these two forces are actual
physical forces.
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Figure 2.1: On the left-hand side there is presented a 2D projecton of an agent
modeling a pedestrian. On the right-hand side there is presented a case, where
two agents end up really close to each other. In this case body and sliding friction
forces begin to influence the agents.

Agent i’s interaction with walls W is treated analogously as interaction with
another agent j. Hence, repulsive force towards a wall can be written as

fiW = {Ai exp[(Ri − diW )/Bi] + kg(Ri − diW )}nij (2.6)

−κg(Ri − diW )(vi · tiW )tiW .

The social force model presented here is just a good starting point to rep-
resent the crowd dynamics, and it can be modified with additional features.
For example, to Equation (2.3) a term can be added that scales the quantity
of the social force f socialij so that pedestrians in front of agent i have larger
repulsive impact than agents behind agent i at the same distance [9]. Also,
some attractive social forces can be added to simulate people’s tendency to
gravitate towards a familiarity group like family members or friends, or so-
cial forces can be made time-dependent [7]. Simulations done with Helbing’s
social force model have been able to describe many observed large crowd
evacuation phenomena. For example, it gives a physical interpretation on
why in a narrow straight hallway pedestrians with the same desired walking
direction e0 tend to move in a line formation, or why through two small doors
next to each other there is larger people flow than through a large door which
is broader than the two small doors in total [9].
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In my research work in evacuation modeling at Aalto University Systems
Analysis Laboratory I’ve used social force model in simulations done with
FDS+Evac software developed by Technical Research Center of Finland
(VTT). Original FDS (Fire Dynamics Simulator) is a platform for simu-
lating effects of fire in buildings and FDS+Evac is a evacuation simulation
module coupled with the platform [16]. Even though social force model based
FDS+Evac is in many ways an excellent software for modeling pedestrians’
evacuation behavior, making simulations showed also a couple of major draw-
backs of the approach. One drawback is the low computational efficiency of
the model. Continuous space and time with very large number of forces
affecting each agent in a evacuating crowd take really long time for the re-
sults to be computed. Another drawback is that some observed evacuation
phenomena, that have been verified with social force model, couldn’t be repli-
cated with FDS+Evac in certain special geometry. Counterflow simulation
failures in a squared shaped space with a squared shaped obstacle in the
center are examples of this. They are explained in the following subsection.
Simulations were carried out in collaboration with Simo Hostikka’s and Timo
Korhonen’s Fire safety technology team at VTT.

2.1.1 Counterflow simulations with FDS+Evac

Helbing showed in [11] that with a high people density the social forces make
pedestrians tend to form lanes with other pedestrians that have the same
desired walking direction e0. This phenomenon can also easily be seen ev-
eryday for example in shopping malls when there is a rush hour and people,
who try to make their way to a cashier, walk in a line towards the cashier
among other people walking randomly to all other directions in the rush.
Even more interesting phenomenon was showed in [10], which relates to the
strength of the random forces ξi. The strength ξ, also called strength of noise,
can be interpreted analogous to temperature if a dense group of pedestrians
is thought as particles flowing in a system. Increasing the strength makes
pedestrians move more randomly around their optimal trajectory to their
preferred destination and this can be interpreted as the nervousness of the
pedestrians. What is interesting is that actually a high ξ destroys the lane
formation and ends up the pedestrians getting stuck in a “crystallized” struc-
ture, when usually increasing temperature makes particles to transit into a a
“gaseous” state. Because of the analogy of the strength ξ and temperature,
the observed effect has been named freezing by heating.

In our first test setting for FDS+Evac the results of Helbing for lane forma-



CHAPTER 2. EVACUATION MODELS 7

tion and freezing by heating are studied. Agents are divided half and half in
two types that have opposite desired walking directions in a narrow hallway.
The initial distribution of the two kinds of agents is spread randomly in the
hallway and then seen if the system reaches a stable or metastable state.
Both ends of the hallway are also equipped with a feature called periodic
boundary conditions, which means that if the agents move outside of either
the left or right boarders, they will re-enter to the other side. As expected,
with a low ξ lanes are formed and agents just continue to flow in a metastable
state. If ξ is high, freezing by heating occurs and agents end up stuck in a
stable state.

In the second test setting the geometry of the hallway is altered so that,
instead of periodic boundary conditions, there is a square geometry with a
squared shaped obstacle in the center. Desired walking directions are re-
placed correspondingly with a desired rotation direction with relation to the
center of the area. Instead of similar results compared to setting one, lane
formation does not appear but agents end up in a freezing by heating con-
figuration with all values of ξ. This example shows, that with certain test
settings FDS+Evac fails to produce an expected phenomenon. This failure
is not actually the fault of the software, but the social force model has too
simple rules on dynamics and further improvents in the theory must be done
to fix these kind of errors. The results of the two test settings just described
are illustrated in Figure 2.2.

2.2 Cellular automaton model

The evacuation space is divided into a grid of cells which are identical in size.
Each cell has two possible states: empty or occupied. The state of the cell
describes whether there is an agent located in the cell or not, and the size
of the cell is defined so that not more than one agent can occupy a single
cell. The state of a cell is updated each discrete time step t with an update
rule that arises from the states of the cells in its neighborhood at time t− 1.
For example, an agent can’t move occupying a cell closer to the exit in its
neighborhood if the cell is already occupied. The agents’ movement towards
the exit can be observed by looking at the change in occupied cells in different
times in the grid. This kind of system is called a cellular automaton (CA).

At start, the size of the cells and length of time steps must be chosen. Based
on empirical evidence of an average pedestrian size and walking speed, a
cell in the CA grid is chosen to be 40 x 40 cm and time step 0.3 s long
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Figure 2.2: Illustration of the counterflow simulations. Original measurements
were carried out with FDS+Evac software in summer 2012. In the pictures on the
left-hand side the hallways have periodic boundary conditions. In the picture on
the right-hand side the black square in the center describes an obstacle through
which the agents cannot move.

[23]. An agent can move to an empty cell in its von Neumann neighborhood,
which contains the four cells located orthogonally round the cell the agent
is currently occupying (forward, back, left and right). Each of the cells in
an agent’s neighborhood contain a probability p to transit into that cell. To
define these probabilities, the concept of floor fields affecting the cells must
be introduced. In a way, floor fields reflect the intelligence of pedestrians
and indicate an attractive direction to proceed. The first floor field is called
static floor field S, which reflects the geometry of the room. The value Sij

is strongest at the cell in front of the exit and the field strength in a cell
decreases the further away the cell is located from the exit. Values of static
floor field don’t vary across time.

The other attractors besides the location of the exit are virtual traces left
by the other evacuees. The dynamic floor filed D is defined so that at the
beginning of the evacuation it has the value zero in each cell and every time
an agent moves out of a cell (i, j), the value of the dynamic floor field in that
cell increases Dij → Dij + 1. The values of D diminish over time and the
process resembles diffusion and decay of a bosonic field in statistical physics.
Pedestrians moving in the grid kind of “drop a boson” (+1 in Dij) into the
cell when moving out from that cell. Over time, with certain probabilities α
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(a) Von Neumann neighborhood. (b) Floor fields.

Figure 2.3: An instance of an evacuation situation in Schadschneider’s CA model.
In picture (a), agent i’s von Neumann neighborhood at time step t is colored in
the picture with yellow. Occupied cells that can’t be entered are marked with
a person icon and rounded with red color. In picture (b), blue constant value
contours (c1 > c2 > c3 > . . .) of static floor field S describe the attractiveness of
the exit. Foot steps indicate the virtual trace that forms the dynamic floor field
D. Black foot steps indicate a cell from which already two agents have moved out,
hence D is stronger in those cells than in cells with gray foot steps. If agent i is
facing towards the exit, the highest probability to move is pf in the front cell. The
cell on the left is occupied, and thus pl = 0 and i couldn’t even move there.

and δ, the boson can either diffuse to one of its neighboring cells (changing
the place of the +1) or decay completely away, respectively [15]. The basic
principles of the CA model described so far are illustrated in Figure 2.3.

Now, when all the necessary concepts are introduced, our next task is to
define the transition probabilities pij. Weighting parameters kS and kD in
Equation (2.7) below, mark the importance of fields S and D. Parameters nij

and ξij are needed to point out occupied cells and obstacle cells (for example
walls) in the grid. Now, the transition probabilities can be written as
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pij = NekSSijekDDij(1− nij)ξij (2.7)

N =

∑
(i,j)

ekSSijekDDij(1− nij)ξij

−1 ,
where nij is 1 for occupied cells and 0 for empty cells, and ξij is 1 for normal
cells and 0 for obstacle cells. So, at each time step t, all agents can either
move in their von Neumann neighborhood or stay in their current cell, and
Equation (2.7) points out probabilities to each of these up to five alternative
actions. This simultaneous update rule for all cells is also called parallel
update scheme. Simultaneous updating also exposes the agents to conflict
situations, in which more than one agent attempts to occupy the same empty
cell. In case of a conflict, the model chooses randomly an agent involved to
the conflict to proceed and occupy the empty cell, hence preventing the other
agents from moving during that time step.

By altering the weighting parameters kS and kD, different kinds of behaviors
can be simulated with a CA model. If the weight for floor field S is given
a high weight compared to the weight for floor field D, the static attractor,
i.e., the exit, dominates the dynamic virtual traces and the agents attempt
to only use cells giving them route straight towards the exit. This kind of
behavior is called ordered regime. On the other hand, if the weight on floor
field D is much greater than the weight on the floor field S, agents just
follow the virtual traces that the others have left to the grid. Over time,
agents end up in groups (“herds”) following each other and not necessarily
follow routes towards the exit. The herding behavior is called disordered
regime. Between these two behaviors there is also a third alternative, which
occurs with suitable values of kS and kD. The intermediate behavior is called
cooperative regime, and agents behaving in this way are attracted both from
the location of the exit and also from cells through which there is a high
level virtual trace left by the other agents. Cooperative agents will not try
to advance through the shortest route to the exit like ordered agents if there
is nearby another longer route that has greater values in the dynamic field
because many other agents have just recently gone through that route. A
plot of parameter values of kS and kD with corresponding regime domains is
presented in Figure 2.4.

Cellular automaton model has much better computational efficiency than
social force model presented in section 2.1. Space and time are discrete,
and agents interact only with their local neighborhood. The local nature of
CA helps when treating more complex evacuation geometries. If in social
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Figure 2.4: Different behavior regimes as function of parameters kS and kD, as
depicted in [14].

force model two agents are really close to each other but there is a wall
between them, then naturally there should not be a social force interaction
between the two agents. If the model doesn’t check if there are visual blocks
like walls between the agents, simulation results may contain errors (see an
example of a social force software failure in section 2.1.1). In general, the
computational effort in social force models increases proportionally to the
square of the number of agents in the simulation, while in cellular automaton
the effort is proportional to the size of the grid. [2] The main drawback of
CA compared to social force model is that because of the local nature of
agent interactions the effect of a bigger crowd pushing can’t be seen in CA.
For example, looking at the agent movement couple of meters from the exit
door: in CA this movement is indifferent whether there is no one or lots of
people coming behind the agents near the door. In real life deaths caused
by crowd stampedes happen usually when a big crowd pressure is fatal to a
single individual and this can be simulated with social force model.



Chapter 3

Game theoretical background

In order to build up an agent-based evacuation model, where the agents are
equipped with simple behavioral rules, certain game theory related topics
are introduced in this chapter. First one is evolutionary game theory (EGT)
in Section 3.1. Although, originally introduced for purposes to model evolu-
tion of biological lifeforms, many of the results of classical game theory can
also be obtained from evolutionary framework. Most important concepts of
EGT, such as Hawk-Dove game, Evolutionary Stable Strategies and Bishop-
Cannings theorem, are covered. Spatial games are introduced in Section 3.2.
As argued in the previous chapter, the strongest interactions between evac-
uating pedestrians happen within their local neighborhood, thus theory of
spatial games is suitable for the purpose of model enhancement. An exam-
ple of game theoretical decision making abilities coupled with an evacuation
model is reviewed shortly in section 3.3.

3.1 Evolutionary games

The presentation in this section follows closely the text of Maynard Smith[18].
In an evolutionary game, strategies are behavioral phenotypes. A certain
phenotype specifies what an individual will do in any situation it finds itself
from. The utility the individual contestants try to maximize is called fitness.
The higher the fitness, the more the individual is able to produce offspring
resembling itself to the next generation.

Hawk-Dove game (HD) is defined as follows. Two animals have a contest
over a resource that has total value V , which is the amount that individual’s

12
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Figure 3.1: Payoff matrix for the Hawk-Dove game.

fitness will increase if the resource is obtained fully. The resource could
be, for example, a territory that is favorable for breeding. The loser of the
game would need to go to a less favorable area to breed, and the more poor
conditions would lead to a smaller offspring of the loser. If breeding in the
favorable area would produce on average 5 offspring to the individual, and
breeding in the less favorable area would produce 3 offspring, then the amount
of V that is obtained would be 5− 3 = 2. The game is played so, that first
both individuals choose to adopt one out of two strategies available, and then
behave or act according to the strategy chosen. The two strategies are:

• Hawk (H): escalate and fight for the resource until injured or the
opponent retreats;

• Dove (D): never escalate, retreat immediately if the opponent esca-
lates.

So, by escalating the animal tries to force the opponent to retreat so that it
could obtain the whole resource for itself. However, if the opponent escalates
as well, the animals end up fighting. At some point of the fight, one of the
animals will be injured and forced to retreat, while the other obtains the
resource V . In addition to retreating, the loser of the fight will suffer a cost
C reducing its fitness because of being injured.
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The payoff matrix of HD is presented in Figure 3.1. Single cell of the matrix
represents the outcome to the contestants of that particular choice of strate-
gies. The first value in the cell is the outcome for the row contestant (who
plays Hawk, the upper row, or Dove, the lower row) and the second value is
the outcome for the column contestant (in the similar way). The values in
the matrix can be explained by looking at the different kinds of encounters
possible in a Hawk-Dove game.

i Hawk vs. Hawk : Both contestants have 50% chance of obtaining the
resource V or suffering the cost C from injury. Thus, the outcome is
presented as the expected value of these two alternatives.

ii Hawk vs. Dove: Hawk escalates and obtains the resource V . Dove re-
treats without being injured and the change in its fitness is 0.

iii Dove vs. Dove: Because neither escalates, the resource V is shared
equally by the two contestants.

Next step is to extend the population of individuals from two animals to a
larger group. Consider an example: a large population, in which all ani-
mals adopt either H or D as their strategy, and then the animals paired off
randomly. Let

• W0: starting fitness of all individuals,

• p: frequency of animals that choose H strategy,

• W (I): average fitness of individuals that choose strategy I,

• E(I, J): payoff to individual adopting strategy I, when the opponent
adopts strategy J .

After the whole population has gone through a single pairwise contest, the
average fitness of the two different strategists in the group are

W (H) = W0 + pE(H,H) + (1− p)E(H,D),

W (D) = W0 + pE(D,H) + (1− p)E(D,D).
(3.1)

For simplicity, the animals are considered to reproduce their kind asexually.
As stated before, the number of offspring is proportional to fitness. In the
next generation, the frequency of Hawks p′ will be

p′ = pW (H)/W̄ ,

W̄ = pW (H) + (1− p)W (D),
(3.2)
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where W̄ is the average fitness of all individuals in the game.

Using Equation (3.2) repeatedly gives the changes of the frequencies of the
different strategies over time. This dynamics is a special case of replicator dy-
namics, which describes in general how successfully certain strategy spreads
in a population with n different strategies. Like in all dynamical systems,
the interesting question is under which conditions the system reaches a stable
state. The stability criteria are now derived for a general case, and it can
then be easily applied to HD.

Let I be a stable strategy. In other words, I has the property that, if I is
adopted by almost all of the members in the population, then the fitness of
this kind of typical member adopting the stable strategy is greater than any
possible mutant adopting a different strategy J . If I wasn’t a stable strategy,
the mutant strategy J would invade the population after rounds of replicator
dynamics, because the mutant strategy would lead to greater fitness over
time than I. Keeping this in mind, recalling Equation (3.1) and setting p
to be a small frequency of mutant strategy J , while most of the population
consist mainly from adopters of stable strategy I, the average fitness of I
and J strategists are:

W (I) = W0 + (1− p)E(I, I) + pE(I, J),

W (J) = W0 + (1− p)E(J, I) + pE(J, J).
(3.3)

Strategy I is stable, thus by definition W (I) > W (J). Since p is small, but
arbitrary, we get for all J 6= I, that

either E(I, I) > E(J, I) (3.4a)

or E(I, I) = E(J, I) and E(I, J) > E(J, J). (3.4b)

If strategy I satisfies one of these standard conditions (Equation (3.4)), then
I is an evolutionary stable strategy (ESS). However, it should be remem-
bered that standard conditions apply only to case with infinite population,
asexual inheritance and pairwise contests.

Next, we apply this to find all evolutionary stable strategies to HD. The
strategy D is not an ESS, because E(D,D) < E(H,D) (neither of conditons
in Equation (3.4) are satisfied), and thus a population consisting mainly from
Doves could be invaded by the mutant (Hawk). Strategy H may be an ESS
iff 1

2
(V − C) > 0 ⇔ V > C. That is, if the resource has greater absolute

value than the cost from injury, it is worth always to escalate.
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But what is the ESS in case V < C? Clearly then a population consisting
purely from either D or H can’t maintain a stable state if a mutant tries
to invade it. First, a case is studied in which an individual can change its
strategy between H and D over time. Later, it is answered whether there is
a stable state of a population of animals mixed out of fixed Hawk and Dove
individuals.

Let I be a strategy: “play H with probability P , else play D”. In this case,
the offspring of parent I is neither H nor D, but the next generation will
resemble the parent in such a way that the offspring has the same probability
P of playing H (and else playing D) as its parent. This kind of strategy, in
which the individual chooses randomly with certain probabilities one from
the set of “pure”, non-stochastic strategies, is called a mixed strategy. So,
the question is: is there a value of P , which makes mixed strategy I an ESS?
To be able to answer, the following theorem is needed.

The Bishop-Cannings theorem. If I is a mixed ESS with support? a, b, c . . .,
then E(a, I) = E(b, I) = . . . = E(I, I).

Proof. By contradiction. Suppose an element a in the support of the ESS
strategy I has the property

E(a, I) < E(I, I).

Strategy I can be expressed in the form Pa + (1 − P )X, where X is either
pure or mixed strategy adopted by I when it does not act as a. Then

E(I, I) =PE(a, I) + (1− P )E(X, I)

<PE(I, I) + (1− P )E(X, I)

⇔ E(I, I) <E(X, I).

This can’t be true, because I is an ESS. With the same argument, also
E(a, I) ≯ E(I, I). Thus, it must be

E(a, I) = E(I, I).

Since a was chosen arbitrarily from the support of I, the same holds also for
all the other elements in the support.

? The support of I is a set of all pure strategies that are played with a non-zero probability
under I.
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Now, if there is a probability P , which makes a mixed strategy I an ESS for
Hawk-Dove game, it can be found by solving the Bishop-Cannings equation

E(H, I) = E(D, I). (3.5)

In other words, the payoffs from playing either of the pure strategies H or D
against mixed strategy I must be equal. We get

PE(H,H) + (1− P )E(H,D) = PE(D,H) + (1− P )E(D,D), (3.6)

that is equivalent to,

1

2
(V − C)P + V (1− P ) =

1

2
V (1− P ),

P = V/C. (3.7)

This result can also be generalized. For any similar two player two strategy
payoff matrix

Player 2

I J

Player 1
I a, a b, c

,
J c, b d, d

if a < c and d < b, then the probability P for mixed ESS strategy I is

P =
b− d

b+ c− a− d
. (3.8)

It has now been shown that E(H, I) = E(D, I) = E(I, I). Equation (3.4b)
still requires also that E(I,D) > E(D,D), and E(I,H) > E(H,H), must
hold: we have

E(I,D) = PV +
1

2
(1− P )V = (1 + P )

V

2
>
V

2
,

E(I,H) =
1

2
P (V − C) >

1

2
(V − C), since V < C.
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Thus, it is shown that mixed strategy I with probability P = V/C for playing
H is evolutionary stable for HD. The interpretation for this is that, in HD, if
the cost from injury is higher than the reward of acquiring the whole resource
from a victorious fight, then it is expected that the players choose to play a
mixed strategy.

What about the case in which the animals are not able to play mixed strate-
gies and can only choose to be either pure Hawks or pure Doves? With
condition V < C only a mixed ESS could be found. Added to this, there
might also be a stable genetic polymorphism; i.e., a mixture of pure Hawks
and Doves in which the relative portions of H and D strategies stay constant
over generations.

Let a population consist of pure H strategists with a frequency p and of pure
D strategists with a frequency 1 − p. If this kind of population reaches an
equilibrium, then in that state the fitnesses W (H) and W (D) must be equal.
So, we get

pE(H,H) + (1− p)E(H,D) = pE(D,H) + (1− p)E(D,D). (3.9)

This equation is exactly the same as Equation (3.6), except that in the place
of a mixed strategy probability P to play strategy H there is an equilibrium
frequency p of fixed H strategists. Thus, the result in Equation (3.7) can
also be used in the case of pure strategies, and over time a stable genetic
polymorphism is always reached with frequency p = V/C.

Nevertheless, there are cases when this conclusion, the connection between
mixed ESS and stable genetic polymorphism just found, doesn’t anymore
hold. If the amount of pure strategies is more than two, then in some games
there might exist a mixed ESS with the corresponding polymorphism being
unstable. The mathematical details of this stability problem is discussed in
detail in [18], and in this thesis not covered further otherwise but through
the next example.

Rock-Scissors-Paper game (RSP) is one of the worlds best known children’s
game. This version, however, has a small payment parameter ε for draws in
it, as presented in the matrix below.
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Player 2

R S P

R ε, ε 1,−1 −1, 1

Player 1 S −1, 1 ε, ε 1,−1

P 1,−1 −1, 1 ε, ε

Three cases for parameter ε are considered.

1. ε < 0: The draw causes players to pay a cost. A mixed ESS exists
I = 1

3
R + 1

3
S + 1

3
P . However, the population consisting only of pure

strategies never converges to genetic polymorphism. Instead, the fre-
quencies oscillate around the attractor (1

3
R,1

3
S,1

3
P ) but never get closer

to it.

2. ε = 0: The classical version of the game. No ESS exists, since inequality
in Equation (3.4b) does not hold, but E(I, R) = E(R,R) = 0 (same
applies also for S and P ). This kind of equilibrium, where the optimal
mixed strategy against any pure strategy is not strictly better than
any pure strategy against itself, but equally good, is a weaker kind of
equilibrium called neutrally stable strategy (NSS).

3. ε > 0: The draw causes players to gain a profit. Any kind of stability
does not exist, since there are no probabilities to fulfill Equation (3.4).

The dynamics of the different cases are illustrated in Figure 3.2.

Figure 3.2: Replicator dynamics for RSP. [3]
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3.2 Spatial games

In spatial game theory player population is distributed so that interactions
only occur in a defined local neighborhood, instead of player decisions having
a global effect on all other players [5]. In section 2.2, one this kind of neigh-
borhood type was already presented, namely the von Neumann neighbor-
hood, consisting of the orthogonal neighbors. Another widely used neighbor-
hood type is Moore neighborhood, including both orthogonal and diagonal
neighbors. In a regular square lattice, Moore neighborhood consists of the 8
neighboring squares round the one that is being observed.

The Hawk-Dove game, presented in the previous section, has been studied in
a spatial framework [24]. In this version of HD, the agents are able to switch
between H and D strategies and the interactions happen in their Moore
neighborhood. As before, agents aim to choose a strategy that maximizes
their payoff. However, this time the agents are only able to observe the
strategies of their neighbors in the previous time step. The optimal strategy
is chosen with an assumption that the neighbors will remain fixed with their
strategies also during the next time step. Thus, agents are myopic, i.e. they
have only a short-term memory lacking the knowledge of the events happened
longer in the past, and they are also unable to predict the future.

Agent i chooses either strategy H or D and plays it simultaneously against
its n neighbors. Different outcome alternatives are

Wi(H) = nH
i E(H,H) + nD

i E(H,D), (3.10)

Wi(D) = nH
i E(D,H) + nD

i E(D,D), (3.11)

where nH
i and nD

i are the amounts of Hawk and Dove neighbors, respectively.
Recall Equation (3.7), which could also be interpreted so that, in a population
of frequency V/C of Hawks, it is indifferent to choose between H and D
strategies. Hence,

nH
i

n
<
V

C
, choosing H is profitable, (3.12)

nH
i

n
>
V

C
, choosing D is profitable, (3.13)

nH
i

n
=
V

C
, the choice is indifferent. (3.14)
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Figure 3.3: Elementary configuration blocks of spatial Hawk-Dove game with
different values of fraction V/C. A black cell denotes a Hawk while a white
cell denotes a Dove. With lowest values of V/C it is only optimal to play
Hawk is all the surrounding agents are Doves, which corresponds to filling
the lattic with number 1 blocks. Respectively, highest values of V/C corre-
sponds filling the lattice with number 8 blocks (Dove only if all surroundig
are Hawks), and the other cases between the two extremes. [24]

This way, each agent chooses the strategy to play according to what the
current status of the neighborhood is compared to the fraction V/C, i.e.,
how big is the “temptation” to change the strategy. Adopting the decision
rules in Equations (3.12)-(3.14) is analogous to adopting the ESS strategy in
a normal HD. To avoid looping effects, strategy changing rate is “regulated”.
If agent’s strategy from the previous iteration is the profitable one in the
next iteration, the agent will hold on to its current strategy. If changing the
strategy would be profitable, the agent will make the change with probability
p, and hold on to the current strategy with probability 1− p.

First notable study of spatial game fractal patterns was made by Nowak in
[19]. This classic study focused to a close relative of the Hawk-Dove game,
namely the prisoner’s dilemma game (PD), which is probably the most well-
known example of game theory in the world. See Appendix for more infor-
mation about PD. Studying the fractal patterns was also a major part of [24],
where it was shown that, playing the spatial Hawk-Dove game with different
values of fraction V/C, the equilibrium consists always of certain elementary
configuration blocks (see Figure 3.3). In a static spatial game, equilibrium is
the state in which the agents don’t anymore change their strategies. Updat-
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ing the strategies is done according to the shuffle update rule, which means
that in the beginning of each time step the updating order of agents is first
randomized, and then each agent updates its strategy one by one according
to that order.

3.3 Spatial game for egress congestion

This subsection is based on [12] by Heliövaara et al. The model described
here is also currently in use in the decision making module of FDS+Evac
software described in section 2.1.

Let there be an evacuation situation with n agents. To each agent i, it is
given a parameter Ti that denotes the estimated evacuation time of the agent.
Ti can be written as

Ti =
λi
β
, (3.15)

where λi is the number of agents between agent i and the exit, and β is the
flow through the exit. The behavior of the agents depend on the values of
a cost function u(Ti;TASET ), where the available safe egress time TASET is
a global parameter describing the maximum time the agents have to exit
before the conditions in the occupied space become lethal. In addition to
TASET , the shape of the cost function depends on conditions

u′(Ti) ≥ 0, u′′(Ti) ≥ 0. (3.16)

In other words, inequalities in (3.16) means that u(Ti) is increasing and
convex.

The agents play a spatial game in their neighborhood. The game has two
strategy alternatives: Impatient and Patient. Impatient agents attempt to
reach the exit by pushing their neighbors, while patient agents attempt to
avoid being in a physical contact with their neighbors. For interaction be-
tween neighboring agents i and j, a variable Tij = (Ti + Tj)/2 is defined to
describe their average estimated evacuation time. There are three possible
interactions:
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(a) Impatien vs. Patient : On this encounter the patient agent steps aside
from its position to make way for the pushing impatient agent. The cost
function of the impatient agent is decreased with amount

∆u(Tij) = u(Tij)− u(Tij −∆T ) ' u′(Tij)∆T (3.17)

and the cost function of the patient agent is increased with the same
amount, correspondingly.

(b) Patien vs. Patient : Here both agents try to avoid too close contact,
so they keep their current positions and the cost functions remain un-
changed.

(c) Impatien vs. Impatient : The two agents both push each other and end
up in a conflict situation. The conflict exposes the agents to a risk of
being injured, and this risk is described with an increase C, i.e. cost of
conflict, in the cost functions.

By normalizing the change ∆u(Tij) in case (a) to 1, the following game matrix
can be written:

Player 2

Impatient Patient

Player 1
Impatient

C

∆u(Tij)
,

C

∆u(Tij)
−1, 1

.

Patient 1,−1 0, 0

This game is either

PD, if 0 <
C

∆u(Tij)
≤ 1, or

HD, if
C

∆u(Tij)
> 1.

(3.18)

So, depending on Tij, the agents are playing in one of these two game areas
defined by inequalities in (3.18). The result is familiar from section 3.1: it
is always worth to rush if the potential decrease in cost function is greater
than the cost from a conflict situation. This is also the ESS of PD, playing
Impatient (Defect) in all situations. Otherwise, the strategy is chosen with
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Figure 3.4: Proportion of Hawks (impatient agents) plotted against the pa-
rameter ∆u(Tij)/C. The black squares indicate the fraction of Hawks in the
spatial game equilibrium, and the dashed line the fraction of Hawks if the
game would be played in a non-spatial well-mixed setting. [12]

mixed strategy probabilities out of Impatient (Hawk) and Patient (Dove).
Actually, because the considered game is spatial, the mixed strategy alterna-
tive is transferred into action rules. These rules define the strategy choice of
an agent based on the strategy structure of its neighborhood, like Equations
(3.12)-(3.14) in section 3.2. Figure 3.4 shows that totally eight different equi-
librium levels for the proportion of impatient agents exist as the function of
parameter C/∆u(Tij) (figure plotted for the inverse value ∆u(Tij)/C.

The agents’ strategies are updated over time according to each agent’s best-
response function BRi. For agent i, the best-response strategy s

(t)
i is defined

by
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s
(t)
i = BRi(s

(t−1)
−i ;Ti, T−i) = arg min

s′i∈S

∑
j∈Ni

vi(s
′
i, s

(t−1)
j ;Tij), (3.19)

where Ni is the set of agent i’s Moore neighbors, and vi(s
′
i, s

(t−1)
j ;Tij) is the

cost from game matrix agent i gets by playing s′i, when agent j has played

s
(t−1)
j at the previous time step. Also, here s

(t−1)
−i denotes the strategies all

other agents than i play at previous time step, and T−i gives their estimated
evacuation time. As in section 3.2, shuffle update scheme is used, and thus
between time steps t and t−1 only one agent updates its strategy, according
to the randomized order. The actual time evolves after a simulation round
has gone by. A simulation round consists of n time steps, where n is the
number of agents in the whole population.



Chapter 4

Risk attitude in evacuation sit-
uations

The spatial game for egress congestion presented in Section 3.3 depends on
the agents’ cost function. By altering the parameters of the cost function,
different levels of threats can be simulated. However, in a real evacuation
situation an individual doesn’t have the information of the accurate available
safe egress time, but the individual has to estimate this through observations.
Thus, the parameters, the individual uses for information gathering and for
decision making, contain uncertainty, and may differ among other individuals
in the same situation.

It is difficult to accurately estimate the risks involved in an evacuation sit-
uation. Available information is processed through each individual’s own
social lenses that are constructed by the particular cultural context. [4] The
effect of different kinds of risk attitudes in an evacuation situation has not
yet been studied with simulation models. Hence, this thesis aims to find a
way to implement different kinds of risk profiles to computational agents.

One way to model different risk attitudes is to introduce new strategies that
correspond to these attitudes. An example of a three-strategy game, Rock-
Scissors-Paper game, was introduced in section 3.1. As seen there, a game
with more than two strategies may not have an ESS at all. In such particular
non-ESS situations, the spatial strategy structure would alter over time even
if the evacuating crowd wouldn’t move closer towards the exit. Two-strategy
game prevents this altering, because it has always an ESS. Fast convergence
to an equilibrium, like ending up to ESS in two-strategy game, is important
for the applicability of a simulation model. If the equilibrium can be found

26



CHAPTER 4. RISK ATTITUDE IN EVACUATION SITUATIONS 27

only with a few iterations that takes place under a simple updating scheme,
it is conceivable that similar patters would occur also in real-life situations
[12].

In this chapter, risk attitude implementation to crowd in an evacuation game
is sought through introducing an idea that the shape of the cost function
determines the agents risk attitude. So, the evacuating agents are let to have
different cost functions when compared to each other. The different cost
functions divide the agents in groups called agent types. The study is limited
to cases with two different agent types in a same evacuation situation. This
means that all the agents have the same strategies as before, Impatient or
Patient, but some of them are more keen to play Impatient than others. The
spatial game with two types of agents is coupled to the cellular automaton
evacuation model. Results of the simulations done with the new model are
presented in Chapter 5.

4.1 Multiple cost functions approach

As discussed in Section 3.3, the cost function of spatial egress congestion
game depends on the average estimated evacuation time Tij and available
safe egress time TASET . Also, u(Tij;TASET ) is increasing and convex. If Tij
is small enough compared to TASET , the agents don’t feel their situation
threatening and don’t try to optimize their exiting.

If Tij > TASET , i.e. agents are really far away from the exit, the game the
agents play becomes PD and all agents play only Impatient. As a counter-
part, for small enough Tij the agents don’t play the egress game at all, which
can happen really close to the exit. In other words, this kind of agents can
be described as all playing only Patient. Parameter T0 describes how short
the time difference between Tij and TASET must be to make the agents play
the egress game. We choose

u(Tij) =

 0, if Tij < TASET − T0,
C
2T0

(Tij − TASET + T0)
2, if Tij > TASET − T0.

(4.1)

This function satisfies the cost function requirements, because (i) game is
not played when Tij < TASET − T0, (ii) after Tij > TASET − T0 function’s
quadratic increasing is convex, and (iii) u′(TASET ) = C, which turns the HD
to PD after Tij > TASET .
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Recall Equation (3.17) from the previous chapter. Now, the cost function
gives

∆u(Tij) ' u′(Tij)∆T =
C

T0
(Tij − TASET + T0)∆T, (4.2)

and by setting ∆T = 1 for simplification, the defining parameter C/∆u(Tij)
of the spatial egress game is

C

∆u(Tij)
' T0
Tij − TASET + T0

. (4.3)

Next, let k be the agent type. Parameters are now adjusted for the two
different cost functions to reflect two different agent types under the same
evacuating circumstances. A realistic assumption is to fix the difference
T k
ASET − T k

0 to a constant value. In other words, even if there is multiple
ways to evaluate the level of risk, the agents start to play the HD at the same
time, which is at T k

ASET − T k
0 . It is convenient to choose

T k
ASET − T k

0 = 0⇔ T k
0 = T k

ASET , (4.4)

since the constant part of the piecewise Equation (4.1) can this way be re-
moved. Equation (4.4) also means that all agents play the game, even those
really close to the exit. In real-life, this could be interpreted as a situation,
where all pedestrians want to evacuate as fast as possible.

An example of two cost functions is illustrated in Figure 4.1. Agents of type
k = 1 use u1 as their cost function and consider the conditions critical after
T 1
ij > 300. Correspondingly, type k = 2 agents base their decision making

upon cost function u2 and start to play only Impatient after T 2
ij > 100.

Note, that the evacuating conditions are the same for both agent types, and
the different types are randomly distributed in the crowd without anyone
knowing the type of any other agent but itself. The agent only observes
the strategies of the agents in its Moore neighborhood, and can estimate its
and their estimated evacuation time. This way, the agent types, and the
corresponding cost functions, actually reflect personal risk attitude, rather
than exact fact-based level of threat. Type 1 agents see the situation similar
at T 1

ij = 300 as type 2 agents when T 2
ij = 100.
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Figure 4.1: Illustration of two cost functions u1 and u2 with parameter values
T 1
ASET = 300, T 2

ASET = 100 and C = 2.

4.2 Implementing different risk behaviors in-

to spatial cellular automaton game

Von Schantz and Ehtamo coupled spatial game of egress congestion with
cellular automaton simulation model in [26]. Originally, the parameters of
CA are global in the model, and adjustments have to be done manually
between simulations. In the coupled model, parameters of the simulation
model are derived from the game the agents play, and can vary among the
different agents in the same simulation.

Recall the different behaviors of CA agents listed in Section 2.2: ordered, dis-
ordered and cooperative. Ordered agents choose to follow the shortest path
towards the exit, disordered agents follow each other in herds, and cooper-
ative agents find following both shortest path and local flows attractive. If
there would be only one agent evacuating, following the shortest path would
naturally be the fastest way to evacuate. On the other hand, if in a case of
many agents everyone would adapt this behavior, a jam would form in front
of the exit. This is because if all agents try to move straight towards the exit,
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their paths will cross quite often, and that again causes conflict situations.

Because game theory always includes decision making among multiple agents,
it is essential to discuss the treatment of encounters in CA. In Schadschnei-
der’s original version of the model presented in Section 2.2 conflict situations
were resolved by random choice. This means that if more than one agent
wants to enter a free cell at the same time, the model arbitrarily chooses
one agent that is let to enter the desired cell, and the others have to stay at
their current cells. In a later version of the model [14], a friction parameter
µ was introduced to describe the probability that no agent in the conflict
situation manages to occupy the desired free cell. The interpretation of this
kind of friction is the hesitation the evacuees experience when ending up in
a conflict situation, and this hesitating slows down the evacuation. Actually,
friction parameter has been given also game theoretical interpretation, e.g.
in [1, 6], where the parameter were thought to represent a situation of all
agents playing Defect of PD.

The friction parameter µ has different effect on different behavioral regimes of
CA. At this point, disordered regime is excluded from further considerations,
because this behavior is thought to occur only in special cases of limited
visual conditions, e.g., room filled with smoke. It was showed in [14] that
the friction parameter had the strongest effect on evacuation times in the
ordered regime. Without the friction parameter ordered regime evacuates
the fastest, but after µ > 0.4 ordered regime evacuates slower than the
cooperative regime. This effect is called faster-is-slower, and can also be
observed in simulations done with social force model presented in Section
2.1. Several agents trying to enter the shortest path cross more likely in each
others way and end up in conflict situations, while a longer route with fewer
agents on the way could be faster.

Now, spatial egress game strategies can be connected to CA’s sensitivity pa-
rameters. Ordered regime corresponds to impatient behavior: agents try to
move along the shortest path (static floor field) towards the exit and don’t
avoid ending up in conflict situations. Same way, cooperative regime corre-
sponds to patient behavior: agents try to avoid conflict situations, so they
prefer areas with higher local flows (dynamic floor field), where there is less
probable to end up in conflicts. Remember, different regimes were produced
purely out of sensitivity parameters kS and kD values. Thus, an agent is let
to observe the strategies (sensitivity parameter values) of its Moore neigh-
borhood, and then it can adjust its own parameters corresponding to the
best-response rule (3.19). It was also shown in [25] that impatient agents are
able to overtake patient agents in conflict situations.
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In the following, a step-by-step description of the simulation model [26] is
given. Initially the agents are spread randomly in the evacuating space. At
start, no agent plays the game and initial strategy is Patient for all agents.
This explanation follows closely the presentation in [26].

1. At the beginning of each time step, the model calculates the estimated
evacuation time Ti for each agent i. If Ti > TASET − T0, agent i plays
the game. In the setup explained in Section 4.1, TASET − T0 = 0, so in
the simulations done in this thesis the agents play always the game.

2. Strategies of the agents are updated with shuffle update scheme. Agent
i chooses the strategy according to the best-response function (3.19)
after observing the strategies of agents in its Moore neighborhood.

3. The CA sensitivity parameters of agent i are updated corresponding to
the strategy chosen. The parameter values are chosen as follows:

(a) Impatient: kD = 1.0 and kS = 10.0.

(b) Patient: kD = 1.0 and kS = 1.0.

4. The agents move. NB: Moving happens in von Neumann neighbor-
hood even though observing other agents’ strategies was done in Moore
neighborhood!

5. Go back to 1. The procedure continues until every agent has exited the
evacuating space.

Because the sensitivity parameters are already connected straight to the
strategies, it is easy to add the model the feature of different agent types.
Instead of having global T0 and TASET in the model, these parameters are
associated to each agent personally. The agents are set to get their agent
type randomly out of a probability distribution that can be controlled with a
global model input parameter. The type with higher value of TASET is called
risk-averse type, and the type with lower value of it is called risk-taking type.



Chapter 5

Simulation results

In the simulation model [26], agents are allowed to have different cost func-
tions. Matlab is used as the simulation software. In Section 5.1 static con-
figurations are studied to see which kind of spatial equilibrium patterns are
formed in front of the exit. Results from simulations, where agents are able
to move, are presented in Section 5.2. The parameter values presented in
Figure 4.1 are used as default values for different agent types.

5.1 Static configurations

Next, equilibrium configurations resulting from the model with one agent
type are compared with the equilibrium configuration of two types of agents.
It was shown in [13] that subregions with different proportions of impatient
agents are formed in the spatial equilibrium. Each subregion is built out of
single category of elementary configuration blocks presented in Figure 3.3.
These different areas are always at certain distance round the exit, which is
because along arcs of certain exit-centered circles the agents have the same
estimated evacuation time.

Figure 5.1 illustrates the results of the simulations. For simulations with two
agent types, each agent is given its type randomly with equal probabilities
for the both types. Figures 5.1a-5.1b correspond to the results in [13], so
the model coded for this thesis can be considered working properly. The
structure of Figure 5.1c ended up to show out as expected, namely a mixture
of the two previous.

To understand Figure 5.1d, let’s look again the game area concept defined
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(a) Risk-averse type: TASET = 300. (b) Risk-taking type: TASET =
100.

(c) Mixed population: 50 % risk-
averse and 50 % risk-taking.

(d) Same situation as in (c).
Colors reveal the different agent
types.

Figure 5.1: Static spatial equilibrium configurations for 628 agents in 39x39 cell grid. In
pictures (a)-(c) dark gray squares represent impatient agents and white squares represent
patient agents. In picture (d) colors are: orange impatient risk-averse, red impatient
risk-taking, light green patient risk-averse, and dark green patient risk-taking.
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Figure 5.2: Formation of different game areas. In the upper two pictures there
are just two game separated by the distance, where Ti = TASET . Merging
the two upper pictures results the lower picture, where in the middle area
some agents are playing HD while the others play PD.

in Section 3.3. Recall the interpretation of TASET : after Ti > TASET the
conditions become critical and the agents start to act only Impatient. This
border where the game changes from HD to PD can easily be seen both in
figures 5.1a and 5.1b. Figure 5.2 explains how the static equilibrium of the
two types of agents population is formed. Inside the inner border of the two
cases, all agents are playing HD whether they are risk-averse or risk-taking.
Same way, outside the outer border all agents are playing PD, i.e. only
Impatient. In between these two game areas is a third game area, where
risk-averse agents play HD but risk-taking agents play PD.

When distributing different agent types equally in the area, as in our example,
a very interesting phenomenon can be seen. Just outside the inner border,
all risk-averse agents end up choosing Patient, and this is driven by the
fact that all risk-taking agents choose Impatient in the same area. This
can be seen in Figure 5.1d as an arc with only light green and red squares.
Compare the situation in this location to the same location in Figure 5.1a
with only risk-averse agents. At this distance the border TASET = 300 is still
so far away that only a few act Impatient. When risk-taking agents, who
all act only Impatient, are added to this distance, the situation forces the
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Figure 5.3: Proportion of impatient agents in different static configurations
of 628 agents in 39x39 cell grid. The increasing seems quadratic at first,
but changes to linear approximately when proportion of risk-taking agents is
larger than 0.7.

risk-averse agents to avoid acting Impatient. Likely at this distance every
risk-averse agent has a risk-taking agent in its Moore neighborhood, who is
acting Impatient anyway, so their optimal choice in this situation is acting
Patient. The total amount of impatient agents as a function of the proportion
of risk-taking agents in the population is plotted in Figure 5.3.

Figure 5.4 presents simulations, in which the parameter TASET for both agent
types is varied. The same effects noted before can be seen here with different
locations of the game area borders.

5.2 Cellular automaton with different risk at-

titudes

In CA simulations, value for friction parameter was chosen to be µ = 0.6.
This is large enough to produce faster-is-slower effect described in Section
4.1. For diffuse and decay parameter values, α = 0.3 and δ = 0.3 are chosen.
Same parameter values were also used in simulations made in [26].

Figure 5.5 shows snapshots of evacuation done with the population presented
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(a) Risk-averse type: T 1
ASET = 500.

Risk-taking type: T 2
ASET = 100.

(b) Risk-averse type: T 1
ASET = 500.

Risk-taking type: T 2
ASET = 300.

(c) Risk-averse type: T 1
ASET =

5000.
Risk-taking type: T 2

ASET = 300.

(d) Risk-averse type: T 1
ASET =

5000.
Risk-taking type: T 2

ASET = 500.

Figure 5.4: Further simulations of the static equilibrium configurations with dif-
ferent values of paratemer TASET . Number of agents, size of the grid, mixing ratio
and coloring correspond to the case in Figure 5.1
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in Figure 5.1d. At first, all 628 agents are placed randomly in 39x39 cell grid,
and everyone starts with strategy Patient. At the beginning of each time step,
strategies are updated according to best-response rule until an equilibrium
is reached. The whole evacuation took approximately 600 seconds, which
makes the average exit flow approximately 1 agent / second. As can be seen,
pretty quickly agents formation in front of exit starts to resemble a half-circle.

Looking qualitatively at Figure 5.5, it seems that risk-taking agents overtake
risk-averse agents in the evacuation situation. At first, ratio of risk-takers in
the evacuation space is set to be 50 %. In Figure 5.5b, the ratio has decreased
to approximately 40 %. In the very end of the evacuation, Figure 5.5c, only
6/19 are anymore risk-taking agents, which makes the ratio go near 30 %.

CA simulations were also done in a different evacuation space geometry. In
Figure 5.6, the crowd is first put to the room on the left-hand side in the
pictures, and then put to evacuate through a narrow hallway towards the
exit in the room on the right-hand side. Except for the room geometry,
parameters were kept the same as in the Figure 5.5 simulation. The hallway
fills up with agents pretty quickly, and thus in Figure 5.6b snapshot two
half-circle formations can be seen. One half-circle is formed in the first room
at the entrance of the hallway, and the other in front of the exit. In the
half-circle on the left-hand side, most of the agents are acting Impatient
because they are considerably far away from the exit. Also in this case, the
risk-taking seem to overtake the risk-averse agents.

But what about the effect of the proportion of risk-taking agents to the total
evacuation time of the crowd? This was tested in 20x20 grid with 172 agents.
The setups were made smaller to decrease simulation time. Agents were
put to half-circle form in front of the exit at start to minimize randomness
effect to evacuation time caused by agents wandering around the room in the
beginning. Crowds evacuation time was measured for 11 cases, risk-taking
agent proportions being from 0 to 1 with interval 0.1. For each proportion
100 simulations were made.

Figure 5.7 shows the average evacuation times for different proportions of
risk-taking agents in two setups. The standard deviation in Figure 5.7a
cases was approximately 6.4 seconds, and in Figure 5.7b cases approximately
6.7 seconds. These values are relatively large, because the difference of the
average evacuation time minimum and maximum is only 9.5 seconds in Figure
5.7a, and 10.6 seconds in Figure 5.7b. The large standard deviation is due
the fact that, even though the agents are put at the beginning in a half-circle
form, clogging is stochastic phenomenon [13], and thus has a significant effect
on different simulation runs. Other factors increasing the stochastic nature of
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(a) Situation at t = 5 sec. (b) Situation at t = 190 sec.

(c) Situation at t = 575 sec.

Figure 5.5: Snapshots of CA evacuation. Agent colors correspond to Figure 5.1d.
Risk-taking agents seem to overtake risk-averse agents, since the proportion of
risk-takers decreases over time among those still not exited from the evacuation
space.
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(a) Situation at t = 5 sec.

(b) Situation at t = 190 sec.

(c) Situation at t = 575 sec.

Figure 5.6: Snapshots of CA evacuation in hallway setup. Agent colors correspond
to Figure 5.1d.
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the model are resolving the conflict situations, and the movement in general
according to the transition probabilities.

The most interesting phenomenon is the decrease in the average evacuation
time, when proportion of risk-taking agents is approximately 0.1-0.2. The
curves in Figure 5.7 are mainly rising as expected, so, why seems there to
be a local minimum at this point? One hypothesis is that adding a small
amount of impatient agents to area occupied mainly out of patient agents
could actually make the crowds evacuation faster. Consider the pictures
in Figure 5.1 again. Most of the agents act Patient near the exit both in
Figures 5.1a and 5.1b. These agents near the door don’t feel the situation
threatening, and thus don’t rush to the door, even if there is a big crowd
coming from behind.

For really small amount of agents, taking the shortest path, i.e. acting Im-
patient, is the fastest way to evacuate. Clogging occurs when the number
of agents rises: the agents don’t get so fast anymore to the door because
they end up in conflicts in the middle. On the other hand, near the exit it
would be beneficial to the whole crowd to evacuate as fast as possible. When
parameter TASET decreases, the crowd evacuation time increases because the
number of impatient agent increases (showed in [13]). Now, when most of
agents near the exit are patient and risk-averse, a suitable small amount,
10 - 20 % of the crowd, risk-taking agents are added, and they act more
probably Impatient than the risk-averse near the exit. If the hypothesis is
right, in this case the crowds evacuation time is lower than if there would
be a smaller proportion of risk-taking agents. Again, the proportion of risk-
taking agents can’t be sufficiently larger than the suitable amount, since then
clogging starts to slow down the evacuation.
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(a) Risk-averse type: TASET = 300. Risk-taking type: TASET = 100.

(b) Risk-averse type: TASET = 500. Risk-taking type: TASET = 100.

Figure 5.7: Average evacuation time of 172 agents with different proportion
of risk-taking agents in the evacuating crowd.
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Discussion

This thesis aimed to study the effect of different risk attitudes in agent-based
computational model for evacuation. Both the static strategy configurations
and the movement of agents were studied. Cellular automaton was chosen as
the computational framework for moving the agents. In CA, agents move in a
discrete grid, and also the time advances discretely. In terms of computation
time, CA is very efficient.

The term panic is commonly misused to describe a crowd that evacuates in
a disastrous way. However, research has shown that even stampedes that
caused deaths occurred under conditions where evacuees behave rationally.
Evacuees’ decision making can be modeled with spatial egress game where the
agents have two strategies to choose from: Impatient and Patient. Depending
on the distance to the exit, this game is either Hawk-Dove or prisoner’s
dilemma. It can be shown that, with this behavior, individuals trying their
best to evacuate as fast as possible can cause the slowing down of the whole
crowds evacuation.

Spatial game for egress congestion is a decision-making module for agents
that has been successfully coupled with CA, and also for continuous time
and space evacuation software FDS+Evac. In the model of this thesis, spa-
tial cellular automaton game was added a feature to enable multiple cost
functions for the agents. The strategy choices, Impatient or Patient, were
the same as before, but the agents have different tendencies to choose among
the strategy alternatives, and these tendencies are based on their personal
cost function.

The different risk attitudes studied in this thesis were limited to two alter-
natives: risk-averse type and risk-taking type. Other agents do not observe
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the type of the other agents, but only the strategies they play. A risk-taking
agent is keener to play Impatient than a risk-averse agent. The different
agent types, and the corresponding cost functions, reflect a state-of-mind
and personal risk attitude, which also in real life has major impact in deci-
sion making.

The model in this thesis showed two interesting phenomenon caused by dif-
ferent agent types. First was the formation of three game areas. In a normal
case of homogenous agents only two game areas exist: HD area near the
exit and PD area outside the border, where estimated evacuation time is
longer than TASET . Because the different agent types have different values
for TASET , between the borders comes a third area where one type is play-
ing HD (risk-averse) and the other PD (risk-taking). In this third area the
risk-taking agents in a way “reserve” all the places to play Impatient forcing
the risk-averse agents to play more Patient than normally.

The other noticed effect was the tiny decrease in the whole crowds evacua-
tion times, when sufficiently small amount of risk-taking agents were mixed
with the risk-averse agents. Reason for this could be that near the exit the
evacuating as fast as possible would be beneficial for the whole crowd, but
playing Patient is there really common because estimated evacuation time is
much shorter than TASET and playing Impatient is feared to cause clogging.
This hypothesis would need more studying, because the standard deviations
around the whole crowds estimated evacuation times were sufficiently large
compared to differences in the evacuation times between the different pro-
portions of risk-taking agents in the population.

For other future research ideas, the effect of risk attitude should be studied
also combined to other computational evacuation models than CA. For ex-
ample, FDS+Evac would be an excellent candidate, because it already has
spatial egress game in it. Although CA and FDS+Evac give similar results
for modeling an evacuating crowd, the functioning logic is completely differ-
ent. Impatient behavior in FDS+Evac is shown as higher desired walking
speed and the agents push each other when trying to get out from the evacu-
ation area. It would be interesting to see how multiple cost functions would
affect that behavior.

Last idea is to make more experiments on the cost function. How would the
situation change if even more agent types were added? Or moreover, what
if agent type were a continuous characteristic? Or dynamically changing in
time? Changing both TASET and T0 without strict connection to each other
could also reveal effects not found in this thesis. Finally, the shape of the
cost function could also be altered, and see if the alternations have a real-life
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interpretation.
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Appendix: Prisoner’s dilemma
and Nash equilibrium

Merrill Flood and Melvin Dresher developed originally a model for two player
game of cooperation and conflict in 1950. Albert W. Tucker gave this game
the following, nowadays famous, formalization[21]:

“Two members of a criminal gang are arrested and imprisoned. Each pris-
oner is in solitary confinement with no means of speaking to or exchanging
messages with the other. The prosecutors do not have enough evidence to
convict the pair on the principal charge. They hope to get both sentenced to
a year in prison on a lesser charge. Simultaneously, the prosecutors offer each
prisoner a bargain. Each prisoner is given the opportunity either to: betray
the other by testifying that the other committed the crime, or to cooperate
with the other by remaining silent. Here is the offer:

• If A and B each betray the other, each of them serves 2 years in prison

• If A betrays B but B remains silent, A will be set free and B will serve
3 years in prison (and vice versa)

• If A and B both remain silent, both of them will only serve 1 year in
prison (on the lesser charge)”

Hence Tucker’s interpretation, the game got the name prisoner’s dilemma
(PD). The game can be presented in 2 × 2 matrix form:

Player B

Cooperate (C) Defect (D)

Player A
Cooperate (C) 1, 1 3, 0

,
Defect (D) 0, 3 2, 2
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where players try to minimize the prison time. The rational outcome of this
game is that both players choose D as their strategy. Why? If both chose
C as their strategy, the criminals would minimize their joint time in prison.
However, if player A knows that player B will certainly play C, then player
A by playing D would not end up in prison at all. Now, player B thinks
the situation in symmetrical way, and thus the criminals end up serving the
maximum joint time in prison.

The strategy pair (D,D) is the (pure strategy) Nash equilibrium (NE) of PD.
More generally, in NE a player cannot gain a better outcome by changing
her own strategy if the other hold on to their NE strategies. See the case
for PD: if for example player A changed from D to C, while player B holds
on playing D, then player A would only worsen her own situation by the
change. Strategy pair (C,C) is not NE, since if one player would change, and
the other player would hold on, the one who changed would benefit from the
change.

Furthermore, any 2 × 2 game

Player B

C D

Player A
C R,R S, T

D T, S P, P

is a PD if T > R > P > S. The letters come from words temptation,
reward, punishment and sucker. By cooperating the players would earn the
reward, but succumbing to the temptation (and not wanting to be a sucker)
the players end up suffering the punishment. If T > R > S > P , the game
is HD. There are two (pure strategy) Nash equilibria in HD, namely (C,D)
and (D,C). Also, there exist a mixed strategy NE in HD with the probability
from Equation (3.8). In EGT terms, Cooperate strategy correspond to Dove
strategy, and Defect correspond to Hawk.

NE has many similarities to ESS described in Section 3.1. However, ESS is
a stronger concept than NE. As stated before, playing any pure strategy in
HD is not optimal for a population of players despite the game has two pure
strategy Nash equilibia. Yet, all 2 × 2 games have at least one ESS and in
the case of HD it is the mixed strategy NE. For PD, the pure strategy NE
(D,D) is also the ESS of the game.
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