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Abstract 

 
In a cold country like Finland, where heating stands for approximately 67 % of the total energy con-
sumption in buildings, the price of heating has significant impacts on the economy. Because district 
heating is the most common heating form, standing for nearly 50 % of all heating, the price of district 
heating is of great interest for many actors. This thesis searches for factors correlating with the dis-
trict heating prices with the aim of making a forecasting model based on these factors, and compar-
ing different methods for forecasting the prices.  
 
The price of district heating varies between different municipalities depending on features such as 
the size of the district heating system, investments made, the age of the production facility, the struc-
ture of the municipality and the fuels used. Additionally, the district heating price varies in different 
types of buildings. This thesis studies the average district heating price in apartment buildings for 
every six months. 
 
When studying data from 2007-2014, we found that fuel prices, the electricity price and the con-
sumer price index are highly correlated with the district heating price. However, the prices of natural 
gas and woodchips are the only variables that can be included in a multiple linear regression model 
because of multicollinearity. The ex-post forecast of the multiple linear regression model for the 
period 2015-2017 is compared to forecasts produced by an ARIMA model and the naïve method. 
The ARIMA model is determined by the district heating price time series itself and the forecast of 
the naïve method is obtained by simply assuming that all future values are equal to the last obser-
vation. 
 
From these three methods, the naïve method gives the most accurate ex-post forecast and will most 
likely give quite an accurate short-term forecast. None of these methods are, however, likely to give 
an accurate long-term forecast. For an accurate long-term forecast more factors need to be taken 
into account. More components of the production costs could be considered, and the pressure of the 
competitive situation, i.e. alternative heating forms and technological development driven by the 
need for sustainable energy production at the heating sector could also be considered. Additionally 
the impact of global warming could be considered, as the district heating price is dependent of the 
greatest heating demand during the coldest period of the year. 
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method 
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Sammandrag 

 
I ett kallt land som Finland, där uppvärmning står för 67 % av byggnaders totala energikonsumtion, 
har priset på uppvärmning en stor inverkan på landets ekonomi. Då fjärrvärme står för nästan 
hälften av all uppvärmning är fjärrvärmepriset av stort intresse för många aktörer. I detta arbete 
studerar vi olika faktorer som påverkar fjärrvärmepriset med målet att göra en prognos på 
fjärrvärmepriset på basen av dessa faktorer. Dessutom jämför vi olika metoder för att prognostisera 
utvecklingen av fjärrvärmepriset. 
 
Fjärrvärmepriset varierar i olika kommuner beroende på faktorer så som storleken på 
fjärrvärmesystemet, investeringar som gjorts, åldern på produktionsanläggningen, kommunens 
uppbyggnad samt bränslen som använts. Dessutom varierar priset i olika typer av byggnader. I detta 
arbete används medelpriset på fjärrvärme i höghus för varje halvt år. 
 
Genom att studera data från 2007-2014 finner vi att bränslepriser, elpriset och 
konsumentprisindexet korrelerar starkt med fjärrvärmepriset. På grund av multikollinearitet kan 
dock endast priserna på naturgas och träflis inkluderas i en multipel linjär regressionsmodell. 
Prognosen av den multipla linjära regressionsmodellen för perioden 2015-2017 jämförs med 
resultatet av en ARIMA-modell och den naiva metoden. I ARIMA-modellen bestäms prognosen av 
tidigare värden på fjärrvärmepriset och i naiva metoden antas alla kommande värden vara lika som 
den sista observationen. 
 
Av dessa metoder gav den naiva metoden den noggrannaste prognosen för perioden 2015-2017 och 
ger troligtvis en relativt noggrann prognos på kort sikt. Ingen av dessa metoder lär dock ge 
trovärdiga prognoser på lång sikt. För att få en bra prognos på lång sikt borde fler faktorer tas i 
beaktande. Man kunde till exempel analysera fler komponenter av produktionskostnaderna och ta 
i beaktande trycket konkurrensen på värmemarknaden sätter på fjärrvärmepriset. Dessutom kunde 
man beakta inverkan av den globala uppvärmningen på fjärrvärmepriset, eftersom en del av priset 
bestäms enligt den högsta konsumtionen under den kallaste perioden på året. 
 
 
 

Nyckelord  fjärrvärme, prognostisering, multipel linjär regressionsmodell, ARIMA-modell, naiv 

metod 
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a . . . . . . . . . . . . . . Year

ADF . . . . . . . . . . Augmented Dickey-Fuller

ARIMA . . . . . . Autoregressive integrated moving average

CHP . . . . . . . . . . Combined heat and power

CPI . . . . . . . . . . . Consumer price index

DH . . . . . . . . . . . District heating

ESS . . . . . . . . . . . Explained sum of squares

k . . . . . . . . . . . . . . Number of variables in a model

MSE . . . . . . . . . . Mean squared error

MSR . . . . . . . . . Mean squared regression

MWh . . . . . . . . . Megawatt hour

n . . . . . . . . . . . . . . Number of observations

RSS . . . . . . . . . . Residual sum of squares

SE . . . . . . . . . . . . Standard error

TSS . . . . . . . . . . . Total sum of squares
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1 Introduction

The Finnish heating market is unregulated and competitive, in the sense
that there is no speci�c legislation concerning the pricing of district heating
and that customers are free to choose whichever heating form they want to
use. However, there are some restrictions concerning the pricing of district
heating and in some areas buildings may by law be obliged to connect to the
district heating network (Finlex: Land use and building act 57a�, 1999). Par-
ticularly in a cold country like Finland, where 67 % of the energy consumed
in residential buildings is consumed by heating sources (Statistics Finland:
Asumisen energiakulutus, 2010-2015), it is extremely important to choose
the heating method cost-e�ectively.

As district heating is the most common heating form in Finland standing for
nearly 50 % of all heating (Energiamaailma: Kaukolämpö, 2017), the price
of district heating has signi�cant impacts on the Finnish economy. This mo-
tivates this thesis, which aims to �nd factors correlating with the price of
district heating to be able to forecast the future development of the district
heating prices. Furthermore, it is of interest to estimate how the price of
district heating develops in the future, since technology development makes
alternative heating forms increasingly popular, especially in small residential
buildings (Statistics Finland: Rakennus- ja asuntotuotanto, 2017). There-
fore, estimating the future development of district heating prices is of great
interest for many actors.

This thesis studies how di�erent fuels correlate with the price of district
heating and whether other factors, such the increasing popularity of other
heating forms and changes in consumer price indices a�ect the district heat-
ing prices. Based on this analysis and extending into time-series models,
this thesis compares three di�erent methods and models for making ex-post
forecasts of the district heating price. These models may also provide decent
forecasts a few years ahead.

Section 2 presents background information on the district heating market
in Finland. Section 3 presents the theory of the forecasting methods and
motivates the choices. Section 4 describes the processes of constructing the
models, and, �nally, Sections 5 and 6 present the results, including a com-
parison of these methods.
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2 Background

2.1 District Heating in Finland

District heating (DH) is the most common heating form in Finland. Nearly
50 % of all buildings are heated with DH (Energiamaailma: Kaukolämpö,
2017). In relation to the size of the population, Finland also has the high-
est DH production in the Nordic countries (Finnish Energy: Kaukolämmön
tuotanto, 2017). As a rule of thumb, DH is more economic the more densely
built the area is and the larger the houses are (Energiamaailma: Kaukolämpö,
2017), because this decreases network losses. Thus, DH is a commonly used
heating form in urban areas and apartment buildings. Over 85 % of all apart-
ment buildings in Finland are heated with DH (Statistics Finland: Asumisen
energiakulutus, 2016).

DH can either be produced in combined heat and power (CHP) plants or
heat-only boilers. In Finland 70 % of DH is produced in cogeneration with
electricity in CHP plants with high e�ciency ratings. Heat produced in the
combustion plants is then transferred to customers through hot water cycling
in the DH network.

Fuels used for DH production vary depending on the area. The share of
each fuel used in DH production in 2015 can be seen from Figure 2.1. The
most commonly used fuels are wood fuels, coal, peat and natural gas which
together stand for 84 % of the total DH production.

Figure 2.1: Fuels used for DH production in 2015 in Finland. Data source:
Statistics Finland, Sähkön ja lämmön tuotanto (Electricity and heat produc-
tion)
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2.2 Price of District Heating

There is no legislation concerning the pricing of DH in Finland, because
the market is unregulated. However, competition authorities supervise the
pricing and operation of local DH companies. The supervision is based on
the antitrust legislation, which states that the misuse of a dominant market
position is forbidden. This means that the price level should be reasonable,
the pricing should correspond to the costs, and customers have to be treated
equally. Additionally, energy taxation regulates the pricing to some degree
(Nuorikivi, 2009).

The DH price varies in di�erent municipalities, depending on the size of the
DH system, investments made, the age of the production facility, the struc-
ture of the municipality and the fuels used. From a customer perspective,
a district heating bill consists of a �xed charge (e/a), an energy payment
(e/MWh) and value-added tax (24 %). The �xed charge depends on the size
of the contracted water�ow and is calculated based on the greatest heating
e�ect during the coldest time. The energy payment is charged according to
the consumed energy (Elenia: Kaukolämmön hinnat ja ehdot, 2017).

The DH prices used in this thesis are taken from the material bank of Finnish
Energy (Finnish Energy: Kaukolämmön hintatilasto, 2017). Because 70 %
of the DH used to warm up residential buildings is consumed by apartment
buildings, the price used in this thesis is an average price for DH in apartment
buildings. Until January 2010 the standard apartment building was de�ned
in the data of Finnish Energy to have an annual energy consumption of 450
MWh and from then on the standard building was changed to a greater
apartment building with an annual energy consumption of 600 MWh.

The price development of district heating is presented in Figure 2.2. It can
be seen that the DH price has increased over the years, although the trend
has leveled o� during the past few years, 2014-2017.
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Figure 2.2: Development of district heating prices in a standard apartment
building 1999-2017. Annual energy consumption of standard apartment
building 1999-2010: 450 MWh, and from 2011 onwards: 600 MWh. Data
source: Statistics Finland, Sähkön ja lämmön tuotanto (Electricty and heat
production)

2.3 Recent Research

The scienti�c literature on forecasting DH prices is not extensive. Presum-
ably, this is more interesting for companies and customers in the heating
sector than it is in the scienti�c community. Companies may have done
research on the subject, but not published them in order to have an advan-
tage over their competitors. However, there is a report made by Pöyry for
Finnish Energy, where the position of DH in the future is discussed (Pöyry,
2011). The report also presents di�erent scenarios for the development of
DH prices in 2020 and 2030. The forecasts are made by estimating the
changes in production costs, which comprise changes in fuel costs, emission
allowances, taxes, investment costs, sta� costs and other costs related to
maintanance. Some other studies related to the subject focus on explaining
DH pricing (Heikkilä, 2015) and comparing costs of DH to other heating
methods (Heiskanen, 2013). None of these studies are based on mathemati-
cal models for forecasting the future development of DH prices, which is the
main research question and contribution of this thesis.
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3 Methods

3.1 Multiple Linear Regression Model

A simple linear regression model relates the given observed values of the in-
dependent variable X to corresponding values of the dependent variable Y
(Amemiya, 1994). It is presumed that for each observation X, the observa-
tions on Y will vary in a random fashion. Hence, a random error component,
εi is added to the model, which can be written as

Yi = β0 + β1Xi + εi, (3.1)

where Yi is a random variable for the ith observation and Xi is nonstochastic
and known. The term β0 is constant and the regression coe�cient β1 mea-
sures the change in Y caused by a unit change in X (Pindyck & Rubinfeld,
1981).

The simple linear regression model can be extended to a multiple linear
regression model in which the dependent variable Y is a linear function of a
series of independent variables X1, X2, ...Xn and random error term εi. The
multiple regression model is written as

Yi = β0 + β1X1i + β2X2i + ...+ βkXni + εi. (3.2)

HereXji, j ∈ [1, n], represents the ith observation of the independent variable
Xj. The coe�cient βj, j ∈ [0, n], measures the change in Y caused by a
unit change in the variable Xj as in the case of the simple linear regression
model, but here under the assumption that all other independent variables
are constant (Pindyck & Rubinfeld, 1981).

The assumptions of the multiple regression model according to Pindyck and
Rubinfeld are as follows:

i The model follows the speci�cation given by Eq. (3.2).

ii The independent variables X are nonstochastic and there are no exact
linear relationships between two or more of them.

iii (a) The expected value of the error term is zero for all observations, i.e.,

E(εi) = 0,∀i ∈ [1, n]. (3.3)
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(b) The errors corresponding to di�erent observations are uncorrelated:

corr(εi, εj) = 0, ∀i, j ∈ [1, n], i 6= j. (3.4)

(c) The error variable follows a normal distribution:

ε ∼ N(0, σ). (3.5)

Having several potential independent variables, it is important to scrupu-
lously choose which ones to use. Redundant predictors should be removed,
since it is desirable to explain the data in the most simple way (Armstrong,
2002). Unnecessary predictors only add noise to the estimation of other
quantities and introduce additional degrees of freedom. The term degrees
of freedom refers to the number of unconstrained observations (Pindyck &
Rubinfeld, 1981). When testing hypotheses on the model statistically, con-
�dence intervals depend on the degrees of freedom, which means that un-
necessary variables a�ect the con�dence intervals and may lead to di�erent
statistical results.

3.1.1 Parameter Estimation by Least Squares Method

The β parameter estimation is typically done by using the least squares
method, in which the parameter estimates minimize the residual sum of
squares (RSS) (Amemiya, 1994):

RSS =
∑

ε̂2i = ε̂′ε̂ (3.6)

where

ε̂ = Y− Ŷ (3.7)

and

Ŷ = Xβ̂. (3.8)

Here, ε̂ represents the N × 1 vector of regression residuals, and Ŷ represents
the N × 1 vector of �tted values for Y. Equations (3.7) and (3.8) can be
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inserted into Eq. (3.6), to obtain

ε̂′ε̂ = (Y− Xβ̂)′(Y− Xβ̂)

= Y′Y− β̂′X′Y− Y′Xβ̂ + β̂′X′Xβ̂

= Y′Y− 2β̂′X′Y+ β̂′X′Xβ̂. (3.9)

The terms β̂′X′YandY′Xβ̂ are both scalars and equal to each other, hence
the last step. The least-square estimators are determined by minimizing RSS

∂RSS

β̂
= −2X′Y+ 2X′Xβ̂ = 0

=⇒ β̂ = (X′X)−1(X′Y). (3.10)

The second-order condition requires that the matrix X′X is positive de�nite.
In case X has a full rank this requirement is ful�lled. The assumption that
X has rank k implies that X′X is nonsingular and has an inverse (Amemiya,
1985).

3.1.2 R2 and adjusted R2 (R̄2)

R2 is often used as an informal measure for goodness-of-�t to the multiple
regression model. It is de�ned as the explained sum of squares (ESS) divided
by the total sum of squares (TSS)

R2 =
ESS

TSS
=

∑
(Ŷi − Ȳ )2∑
(Yi − Ȳ )2

= 1−
∑
ε̂2i∑

(Yi − Ȳ )2
, (3.11)

where Yi is the original data value, Ŷ is the value from the model and Ȳ is the
mean. R2 measures the portion of variation in Y which is explained by the
independent variables of the multiple regression model. The main concerns
related to the use of R2 are that all the statistical results follow from the
initial assumption that the model is correct and that the addition of more
independent variables cannot lower R2; they usually raise it. A solution is to
study the variances instead of variations so that the goodness-of-�t on the
number of independent variables in the model is eliminated. The adjusted
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R2, or R̄2 aims to elimainate the weakness of R2 (Amemiya, 1985). It is
de�ned as

R̄2 = 1− Var(ε̂)

Var(Y )
. (3.12)

The sample variances of ε̂ and Y are calculated as

Var(ε̂) = s2 =

∑
ε̂2j

n− k
(3.13)

and

Var(Y ) =

∑
(Yi − Ȳ )2

n− 1
, (3.14)

where n is the number of observations and k is the number of independent
variables. Thus, the relationship between R2 and R̄2 is

R̄2 = R2n− 1

n− k
. (3.15)

Even though RSS may decrease as more explanatory variables are added to
the model, the residual variance does not necessarily do that. This makes R̄2

a more desirable and comparable goodness-of-�t measure, although it still
does not solve all di�culties. The decision to add a new variable should still
largely be based on a priori theoretical considerations.

3.1.3 F-Test of Overall Signi�cance

Hypothesis testing can be helpful in taking decisions about the addition
of new variables in the model, because they test the statistical signi�cance
of the addition. The initial step in testing hypotheses is stating the null
hypothesis, H0, and the alternative hypothesis, H1. The null hypothesis
states that something is not signi�cant and that there is no relationship
between some factors. If it is signi�cantly unlikely that the data occured
with the null hypothesis being true, the null hypothesis is rejected and the
alternative hypothesis is accepted (Amemiya, 1994).

The test for overall signi�cance of the regression model is carried out using
variances. It tests whether a signi�cant linear relationship exists between
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the dependent variable and at least one of the independent variables. The
hypotheses for the F-test of overall signi�cance are as follows

H0 : β1 = β2 = ... = βn = 0
H1 : βj 6= 0, for at least one j.

The test statistic F0 is calculated by using the mean squared regression
(MSR) and the mean squared error (MSE) (Moy, Chen & Kao, 2015)

F0 =
MSR

MSE
. (3.16)

The term MSR is obtained by dividing the the explained sum of squares
ESS by the degrees of freedom for the model

MSM =
ESS

k − 1
, (3.17)

where k is the number of independent variables in the model. The term ESS
is obtained by

ESS = Σn
i=1(Ŷi − Ȳ )2. (3.18)

The termMSE is calculated by dividing theRSS with the degrees of freedom
for the error

MSE =
RSS

n− k
, (3.19)

where n is the number of observations. The null hypothesis cannot be re-
jected, if the calculated F0 statstic is within the con�dence interval

F0 < fα,k,n−(k+1), (3.20)

where α is the con�dence level, k is the number of indepenent variables and n
is the number of observations. The con�dence interval can be calculated using
the F-table or statistical software. If the null hypothesis can be rejected, at
least one of the coe�cients βj is signi�cant. The F-test does not, however,
tell which coe�cient it is.
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3.1.4 T-test of Individual Coe�cients

T-tests are carried out to test the signi�cance of individual coe�cients in the
multiple linear regression model. The hypotheses for an individual coe�cient,
βj, in the t-test are

H0 : βj = 0
H1 : βj 6= 0.

The test statistic, T0, based on the t-distribution is

T0 =
β̂j

SE(β̂j)
, (3.21)

where SE(β̂j) is the standard error of β̂j, the modeled value of β. The stan-
dard errors for the βi coe�cients are obtained by taking square roots from
the diagonal of the variance-covariance matrix. The variance-covariance ma-
trix, D, contains the variances and covariances of the independent variables
Xj (Kennedy, 2003)

D =


Var(X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) Var(X2) . . . Cov(X2, Xn)
...

...
...

Cov(Xn, X1) Cov(X1, X2) . . . Var(Xn)

 . (3.22)

The standard error of β̂j is thus obtained as follows

SE(β̂j) =
√
Djj. (3.23)

The null hypothesis cannot be rejected if the test statistic lies within the
acceptance region for the null hypothesis

−tα/2,n−2 < T0 < tα/2,n−2, (3.24)

where α is the con�dence interval and n is the number of observations. The
con�dence interval is calculated using the t-distribution. If the null hypoth-
esis is rejected, it can be concluded that βj is signi�cant at the chosen con-
�dence level.
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3.1.5 Partial F-test of Subsets of Regression Coe�cients

The partial F-test is a more general form of the t-test, as it checks the
signi�cance of including one or several regression coe�cients to the linear
regression model. As the addition of more variables increases the regression
sum of squares, RSS, the test studies the increase of RSS, called extra sum
of squares. In the test the vector β is split into two vectors, θ1 and θ2.
The coe�cient vector θ1 contains the �rst (n+ 1− r)β regression coe�cients
and the vector θ2 contains the rest of the β regression coe�cients. The
hypotheses test the signi�cance of adding the regression coe�cients in θ2 to
the model with the regression coe�cients from θ1.

H0 : θ2 = 0
H1 : θ2 6= 0

The test statistic, F0, follows a F-distribution and is calculated as

F0 =
RSS(θ2 | θ1)/r

MSE
, (3.25)

where RSS(θ2 | θ1) is the increase in the regression sum of squares that the
inclusion of the regression coe�cients in θ2 contribute with. The parameter
r is the number of elements in vector θ2. The null hypothesis cannot be
rejected, if

F0 < fα,r,n−(k+1). (3.26)

The con�dence interval is calculated using the F-distribution. If the null
hypothesis is rejected, at least one of the coe�cients in θ2 contributes signif-
icantly to the regression model.

3.1.6 Motivation for the Use of Multiple Linear Regression Model

A multiple linear regression model is a good choice, when the data is linearly
correlated with other explanatory variables. As mentioned in Section 2.2, the
DH price is in�uenced by many factors that are known. Therefore, the DH
price can be forecasted based on other variables for which data is available,
assuming that there is a linear correlation between the DH price and the vari-
ables and that these explanatory variables do not exhibit multicollinearity.
However, forecasts cannot be extrapolated into the future, unless the future
values of the explanatory variables are known. Therefore, the independent
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variables must be lagged by one period or more. As the DH price is set at a
speci�c time for a �xed time, it is most likely that the independent variables
in fact are lagged. Hence, the multiple linear regression model is likely to be
suitable for developing a short-term forecast of the DH price.

3.2 ARIMA models

To be able to construct a time series model, the time series has to be sta-
tionary. For a time series to be classi�ed as stationary, the mean, variance,
autocorrelation and other statistical properties ought to be constant over
time. However, nonstationary series can be transformed into stationary by,
e.g,. di�erencing (Pindyck & Rubinfeld, 1981).

The series yt is homogenous nonstationary of order d, if

wt = ∆dyt = yt − yt−d (3.27)

�lls the criterions of a stationary series. After the series yt has been di�er-
enced to produce the stationary series wt, time series models can be applied
on wt.

Homogenous nonstationary time series can be modeled as ARIMA(p, d, q)
processes, where p comes from the autoregressive part of the model, d comes
from the order of di�erencing and q comes from the moving average part of
the model. In autoregressive models the current observation, yt, is generated
by a linear combination of previous observations of the variable going back
p periods. Thus, an autorregressive model of order p, denoted AR(p), is
de�ned as

yt = Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p + δ + εt, (3.28)

where δ is a constant term and εt is white noise. An autoregressive model is
similar to a multiple regression model, but it uses its own lagged values as
explanatory variables (Hyndman & Athanasopoulos, 2012).

In moving average models past forecast errors going back q periods are used
to generate each observation yt. A moving average process of order q, denoted
MA(q) is de�ned as:

yt = µ+ εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q (3.29)
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where µ is the mean, εt is a random disturbance. It should be noted that the
mean E(yt) = µ is independent of time.

Additionally, each random disturbance εt is assumed to be generated by the
same white noise process (Pindyck & Rubinfeld, 1981), which means that

E(εt) = 0 (3.30)

E(ε2t ) = σ2
ε (3.31)

E(εtεt−k) = 0, k 6= 0. (3.32)

An ARIMA (AutoRegressive Integrated Moving Average) model is obtained
by combining di�erencing with autoregression and a moving average model
(Hyndman & Athanasopoulos, 2012). The backward shift operator is useful
when working with time series, as it denotes lags through

Byt = yt−1. (3.33)

We can write the equation for the ARIMA(p, d, q) process using the backward
shift operator

Φ(B)∆dyt = δ + θ(B)εt, (3.34)

where

Φ(B) = 1− Φ1B − Φ2B
2 − ...− ΦpB

p (3.35)

and

θ(B) = θ1B − θ2B2 − ...− θqBq. (3.36)

The term Φ(B) is called the autoregressive operator and θ(B) is called the
moving average operator (Pindyck & Rubinfeld, 1981).

The practical problem in modeling an ARIMA process is choosing the most
appropriate values for p, d and q. Since the speci�cation of the ARIMA model
is not the main focus of this thesis, we will specify the ARIMA model using
a built-in function in R.
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3.2.1 Motivation for the Use of ARIMA model

We know that the DH price is dependent of external factors, but we do not
know exactly how the DH price is determined. By using a time series model
we can, instead, forecast the DH price by its own lagged values. It is interest-
ing to see how the results di�er when the forecast is made on external versus
internal factors. Studies show that when the expected changes are small, the
information about relationships are of little value. Thus, in short-term fore-
casts extrapolation methods often perform as well as econometric methods
(Armstrong, 2002). This motivates the use of a time series model as a means
of comparison for the regression model. We consider the ARIMA model to be
a suitable time series model, because any homogenous nonstationary process
can be modeled as an ARIMA(p, d, q) model (Pindyck & Rubinfeld, 1981).

3.3 Naïve Method

The naïve method is an extremely simple forecasting method, that provides
a good benchmark for other forecasting models. It should be noted, though,
that the method is only applicable for time series data. The principle of the
naïve method, is that all future values are set equal to the last observation.
This can be notated as:

yt+h|t = yt (3.37)

where t is the time of the last observation and h is the amount of periods we
want to forecast ahead. As simple as it is, the method still works quite well
for economic and �nancial time series, which are hard to predict due to their
unregular patterns (Hyndman & Athanasopoulos, 2012).

Naïve methods often give adequate short-term forecasts, when data has been
stable for a long time (Armstrong, 2002). The increase in the price of district
heating has stagnated in 2014 and thereafter stayed on quite a constant level
(Fig 2.2). Therefore, the naïve method is a suitable benchmark to compare
the forecasts from the multiple regression model and ARIMA-model with.

3.4 Research and Modeling Software

The data in this thesis is analyzed using Excel and R. The correlations are
determined using Excel's CORREL()-function, which calculates the corre-
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lation between two data sets x and y by the formula

Correl(x, y) =
Σ(x− x̄)(y − ȳ)√
Σ(x− x̄)Σ(y − ȳ)

. (3.38)

The forecasting models are constructed using R. The multiple linear regres-
sion model is made with the lm()-function, using the least squares method (R
Documentation, ND). The ARIMAmodel is constructed using the auto.arima()-
function, which uses a variation of the Hyndman and Khandakar algorithm
to obtain an ARIMA model (Hyndman & Athanasopoulos, 2012) taking
into account the given arguments. For more information, see Hyndman &
Athanaopoulos, Chapter 8.7.

4 Construction of Models

4.1 Potential Explanatory Variables of Multiple Linear
Regression Model

The main factors which in�uence the DH price in di�erent municipalities
are the size of the DH plant, investments made, the age of the production
facility, the structure of the municipality and the fuels used. When focusing
on the average price of DH, the only factors that can reasonably be taken into
account from the list above are the fuel prices. Additionally, the consumer
price index (CPI) can be considered as a potential explanatory variable,
because changes in the CPI most likely in�uence the DH price.

Even if the DH price corresponds to the production costs in accordance
with the antitrust legislation, the prices of alternative heating forms need
to be taken into account according to the principles of competitive pricing
(Berends, 2004) when setting the DH price. Figure 4.1 shows the energy
consumed by di�erent energy sources in apartment buildings in 2015. After
DH, electricity is the second most popular heating form. The other sources
make up a signi�cantly smaller share and are thus not considered as potential
explanatory variables.
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Figure 4.1: Energy consumed by di�erent energy sources in apartment build-
ings 2015. Data source: Statistics Finland, Asumisen energiakulutus ener-
gialähteittäin (Energy consumption of housing by energy source)

There may, however, be some problems related to adding the CPI and elec-
tricity price as explanatory variables to the model. According to the assump-
tions of the multiple linear regression model in Section 3.1, there can be no
exact linear relationship between two or more of the independent variables.
The existance of highly correlated explanatory variables (i.e. multicollinear-
ity) may cause problems. Table 1 shows the correlations between the po-
tential explanatory variables discussed above (CPI and electricity price) and
the other potential variables in the model, the fuel prices. Changes in the
consumer price index are most likely re�ected in the fuel prices as well, as
indicated by the high correlation between the CPI and fuel prices (Table 1).
Adding the elctricity price to the model may be problematic, since 70 % of
the district heat is produced in cogeneration with electricty. Thus, there is
also a risk of multicollinearity as indicated by Table 1. Therefore, neither
one is added to the model to avoid multicollinearity.

A multiple regression model is thus created with the four most popular fuels
as potential explanatory variables: woodchips, coal, peat and natural gas.
In section 3.1.6 we assumed that these as independent variables are lagged.
By studying the correlations between average DH prices and independent
variables at di�erent time lags, it can be noted that the independent variables
are indeed lagged (Table 2). For the domestic fuels, woodchips and peat,
data is only available for every quarter. The correlation between woodchips
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and DH prices is highest when the woodchip prices are lagged 16 months.
Respectively, the correlation between peat and DH prices is highest when
the peat prices are lagged 13 months. Taken into account that both fuels
are domestic and that the lags are quite small at one month too, it seems
like a coincidence that the lags are highest at 13 and 16 months. We will
therefore use a one months lag for domestic fuels, as information should be
disseminated quickly within the country. For the imported fuels, coal and
natural gas, it can be assumed that the lag is slightly higher than for the
domestic fuels. The correlation between coal and DH prices is highest when
both are lagged 12 months, which seems reasonable. Thus, we will choose a
12 months lag for the imported fuels.

Table 1: Correlations without lag representing the potential for multi-
collinearity.

DH price Woodchips Peat Coal Natural gas
CPI 0.977 0.878 0.958 0.891 0.947

Electricity price 0.908 0.898 0.784 0.788 0.783

4.2 Choice of Explanatory Variables for Multiple Linear
Regression Model

The multiple regression model should be kept as simple as possible, because
the inclusion of insigni�cant independent variables does not improve the per-
formance of the model. Table 3 shows a short summary of di�erent models
that we test. Woodchips and natural gas prices have the highest correlation
with the DH prices. Thus, one of these could be taken as the �rst explana-
tory variable to the model. As Table 3 shows, any second variable cannot be
added to the model so that both variables are statistically signi�cant, mean-
ing that the t-statistics from the t-test on individual regression coe�cients do
not exceed t0.025,11 = 2.201. Neither do the F-statistics of the partial F-test
exceed f0.05,1,10 = 4.9646. Thus, Table 3 indicates, that model1b, a simple
model with only the natural gas price as an independent variable is the best,
because all regression coe�cients in it are statistically signi�cant and it has
a higher adjusted R2 than the other model with all regression coe�cients
statistically signi�cant (model1a).
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Table 2: Correlation with DH price at di�erent lags. The lags of the bolded
values are the ones chosen to the model.

Lag (months) Woodchips Peat Coal Natural gas
0 0.806 0.945
1 0.939 0.896 0.744 0.898
2 0.729 0.907
3 0.773 0.923
4 0.908 0.847 0.837 0.934
5 0.800 0.941
6 0.806 0.945
7 0.896 0.883 0.801 0.937
8 0.777 0.925
9 0.829 0.946
10 0.867 0.851 0.829 0.951
11 0.851 0.919
12 0.860 0.957
13 0.898 0.928 0.818 0.938
14 0.791 0.938
15 0.832 0.943
16 0.985 0.919 0.829 0.942
17 0.844 0.937
18 0.853 0.929

However, natural gas only accounts for 16 % of the DH production, wherefore
forecasts of the DH price based solely on the natural gas prices may be weak.
For this reason, a second independent variable is added to the model. The
adjusted R2 is highest for the model with woodchips and natural gas as
explanatory variables (model2c). What makes model2c even more attractive,
is that is has both a domestic and a imported fuel, which means that factors
in�uencing the fuel prices in di�erent places are taken into account in this
model. Therefore, model2c is chosen to be the �nal multiple regression model.
The summary of model2c is presented in Table 4.
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Table 3: Alternative models. The bolded independent variables are statisti-
cally signi�cant.

Name Independent variables Adjusted R-squared
model1a Woodchips 0.870
model1b Natural gas 0.909
model2a Woodchips, Peat 0.895
model2b Woodchips, Coal 0.882
model2c Natural gas, Woodchips 0.926
model2d Natural gas, Peat 0.925
model2e Natural gas, Coal 0.915

Table 4: Summary of model2c (std = standard error, dof = degrees of free-
dom)

Estimate Std. Error t value
Intercept 39.0868 2.5310 15.443
Woodchips 0.8727 0.4633 1.884
Natural gas 0.5276 0.1729 3.052

Residual standard error: 2.24 on 10 dof
Adjusted R2: 0.9259

4.3 Construction of ARIMA(p, d, q) model

The parameters p, d and q of the ARIMA model are chosen using built-in
functions in R. When simply using the auto.arima()-function, the model
obtained is a ARIMA(1,1,0) model with a drift. However, it gives a very
incorrect forecast. If drift is not allowed, we obtain an ARIMA(0,1,0) model,
which is called a random walk model (Fan & Yao, 2017) and is given by

yt = yt−1 + εt. (4.1)

This is basically the same as the naïve method, but with a random error term.
It is, however, quite an uninteresting model, because we already are using
the naïve method. We will therefore try to construct some other ARIMA
model.
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One possibility is to determine the order of di�erencing using an augmented
Dickey-Fuller (ADF) test, which has a null hypothesis that a unit root is
present in the time series data and an alternative hypothesis that the data
is stationary. According to the ADF test the DH data should be di�erenced
twice to become stationary. When using the auto.arima()-function again,
but requiring the order of di�erencing to be 2, an ARIMA(1,2,0) is obtained.
This model is chosen as the �nal ARIMA model, since it gives a more inter-
esting result than the random walk model.

5 Results

5.1 Comparison of Models

Figure 5.1: Fitted values of multiple regression model, ARIMA model and
naive model and con�dence intervals for regression and ARIMAmodels. Con-
�dence interval for regression model is solid, con�dence interval for ARIMA
model is dashed.

Ex-post forecasts of the DH price using di�erent models are presented in
Figure 5.1. The term "ex-post" refers to forecasts made over a period, when
the actual data is known, in this case 1.1.2015-1.7.2017. The forecast from
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the multiple regression model is slightly above the actual DH price until
1.1.2016, and thereafter starts decreasing, contrary to the actual DH price.
The forecast from the ARIMA model continues to grow in the same trend as
it has done earlier, while the actual price has stayed on quite a constant level.
The result obtained using the naïve method is a constant 80.06 e/MWh.

The 95 % con�dence intervals for both models are obtained using R. The
actual values of the DH price during the period from 1.1.2015 to 1.7.2017
are within the con�dence intervals for both models. The con�dence interval
for the ARIMA model grows over time, while the con�dence interval of the
regression model is practically constant.

Table 5 presents the relative errors for the forecasted values from the di�erent
models. As the DH price has stayed on quite a constant level, the errors from
the naïve model are relatively small, all under -1.85 %. The errors from the
two other modes are not signi�cant either. The error of the regression model
is at its minimum in the �rst period and increasing up to -3.82% by the sixth
period. The error of the ARIMA model is also smallest in the �rst period
and increases to 4.41% by the sixth period. All these models can be seen as
reasonably accurate, since their errors are relatively small.

For the period of 1.1.2015-1.7.2017, the naïve method gives the best forecast,
since the errors are the smallest. This is due to the fact that the price of DH
has not changed signi�cantly over the examined period. However, it should
be noted that the multiple linear regression model and ARIMA model are
quite accurate the �rst two periods.

Table 5: Errors of ex-post forecasts for all models.

Date Multiple regression ARIMA Naïve
1.1.2015 0.00% 0.02% -1.85%
1.7.2015 0.81% 0.90% -0.95%
1.1.2016 1.13% 2.65% -0.73%
1.7.2016 -1.64% 3.37% -0.30%
1.1.2017 -3.71% 4.05% -0.90%
1.7.2017 -3.82% 4.41% -0.99%
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5.2 Models as Means of Forecasting

Because the DH price depends on external factors, it is most likely to be
determined through some kind of a function with multiple variables. This
motivates the use of a multiple regression model. But because we do not know
the exact variables, coe�cients and form of the function, there is plenty of
uncertainty associated with the multiple linear regression model we devel-
oped.

The ex-post forecasts were made for the period 1.1.2015-1.7.2017 based on
data from 1.7.2008-1.7.2014. Since the DH price has been nearly constant
from 1.1.2014 onwards, the naïve method was quite accurate. The two other
models were very accurate the �rst period, but their absolute errors increased
over time.

For a short-term forecast ahead (ex-ante) the naïve method is likely to pro-
vide the most accurate forecast, since the DH price has been quite constant
over the last eight periods. Thus, it will most likely be quite accurate at
least one or two periods ahead. It is, however, very unlikely that the DH
price will stay on the same level very long, wherefore the naïve method may
not be the best model to produce a long-term forecast, i.e., more than a few
periods ahead.

It is di�cult to say how the regression model will perform in the future,
because the lags for the domestic fuels are quite small and, thus, the future
values of the independent variables are not known. If the lags were greater, it
would be possible to extrapolate the model further into the future, without
the need of forecasting independent variables. There is, however, a lot of
uncertainty related to forecasting based on forecasts. Therefore, the multiple
regression model is not very suitable for making a long-term forecast. A
forecast could possibly be made one period ahead using the regression model,
but considering that in our example, the absolute error of the regression
model has increased over time, it would probably not be very accurate.

The absolute error in the models we compare is highest for the ARIMA
model, wherefore it will perhaps not give the most accurate short-term fore-
cast. The model is, however, quite easy to extrapolate into the future, but
taken into account that the error of the model increased over time, a long-
term forecast obtained by the ARIMA will neither be likely to perform very
well. However, if the ARIMA model actually were used for forecasting, it
could be updated regularly as new data became available, giving more accu-
rate forecasts.
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6 Conclusions

The aim of this thesis was to �nd factors that correlate with the DH price
and to compare ex-post forecasts of di�erent forecasting methods. We found
that fuel prices, the electricity price and the consumer price index strongly
correlated with the DH price, but an accurate forecasting model could not
be made based on all these factors. We concluded that we can get quite
accurate short-term forecasts by using the naïve method, but for an accurate
long-term forecast of the DH price, there is a need for better methods.

There are many factors that need to be taken into account when making
a long-term forecast for the DH price. One alternative is to make a more
thorough analysis on the di�erent components of the DH price, as done in
Pöyry's report. The long-term forecasts made by Pöyry in 2010 (Pöyry,
2011) are to date not very accurate, but the prospect of estimating changes
in production costs, emission allowances, taxes, and all other costs seems
promising.

Another fact to be taken into account in forecasting the long-term develop-
ment of the DH price is that the more the DH price rises, the less competitive
DH will become. Already in some apartment buildings, the DH systems are
switched to heat pumps, because heating is cheaper with heat pumps and
the investment usually pays itself back in 15 years. This puts pressure on the
DH price, because a further increase in the DH price may leed to a customer
loss in areas, in which customers are free to choose whichever heating form
they want. In order to keep DH a competitive heating form, producers of
DH should by any means try to press down the price.

In addition, the climate change may impact the DH price, since part of the
DH price is determined by the greatest heating e�ect during the coldest
time. It is forecasted that by 2060, winters in Northern Europe will be 2-7◦C
warmer (Ilmatieteen laitos, ND). This could lead to lower DH prices when
the maximum heating demand during the coldest period decreases. However,
it is not known how the entire heating system will have changed by that time.
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