
Aalto University

School of Science

Master’s Programme in Mathematics and Operations Research

Olli Niskanen

An approach for automated rigging to

facilitate 3D modeling in mobile aug-

mented reality

Master’s Thesis

Espoo, June 6th, 2019

Supervisor: Professor Antti Punkka

Advisor: Kristo Lehtonen M.Sc., M.Ec.

The document can be stored and made available to the public on the open internet

pages of Aalto University. All other rights are reserved.



Aalto University

School of Science

Master’s Programme in Mathematics and Operations Research

ABSTRACT OF

MASTER’S THESIS

Author Olli Niskanen

Title An approach for automated rigging to facilitate 3D modeling

in mobile augmented reality

Major Systems and Operations Research Code SCI3055

Supervisor Professor Antti Punkka

Advisor Kristo Lehtonen M.Sc., M.Ec.

Date June 6th, 2019 Pages v + 49

3D modeling has become more popular among novice users in the recent years.

The ubiquity of mobile devices has led to the need to view and edit 3D con-

tent even beyond the traditional desktop workstations. This thesis develops an

approach for editing mesh-based 3D models in mobile augmented reality.

The developed approach takes a static 3D model and automatically generates a

rig with control handles so that the user can pose the model interactively. The rig

is generated by approximating the model with a structure called sphere mesh. To

attach the generated spheres to the model, a technique called bone heat skinning

is used.

A direct manipulation scheme is presented to allow the user to pose the processed

model with intuitive touch controls. Both translation and rotation operations are

developed to give the user expressive power over the pose of the model without

overly complicating the controls.

Several example scenes are built and analyzed. The scenes show that the devel-

oped approach can be used to build novel scenes in augmented reality. The imple-

mentation of the approach is measured to be close to real time with the processing

times around one second for the used models. The rig generation is shown to yield

semantically coherent control handles especially at lower resolutions. While the

chosen bone heat skinning algorithm has theoretical shortcomings, they were not

apparent in the built examples.

Keywords 3D modeling, 3D animation, linear blend skinning, computer

graphics, direct manipulation, sphere mesh, bone heat skin-

ning

Language English

ii



Aalto-yliopisto

Perustieteiden korkeakoulu

Matematiikan ja operaatiotutkimuksen maisteriohjelma

DIPLOMITYÖN

TIIVISTELMÄ

Tekijä Olli Niskanen

Työn nimi Menetelmä 3D-mallin animointijärjestelmän automaattiseen

luomiseen älylaitteella lisätyssä todellisuudessa

Pääaine Systems and Operations Research Koodi SCI3055

Valvoja Professori Antti Punkka

Ohjaaja DI, KTM Kristo Lehtonen

Päiväys 6. kesäkuuta 2019 Sivumäärä v + 49

3D-mallinnus on kasvattanut suosiotaan ei-ammattimaisten käyttäjien keskuu-

dessa viime vuosina. Mobiililaitteiden yleistyminen on johtanut tarpeeseen kat-

sella ja muokata 3D-malleja myös perinteisten työasemien ulkopuolella. Tämä

diplomityö kehittää menetelmän verkkorakenteisten 3D-mallien muokkaamiseen

lisätyssä todellisuudessa mobiililaitteilla.

Kehitetty menetelmä luo staattiselle 3D-mallille animaatiojärjestelmän oh-

jauskahvoineen automaattisesti. Näin käyttäjä voi interaktiivisesti muut-

taa 3D-mallin asentoa. Animaatiojärjestelmä luodaan muodostamalla mallil-

le likiarvoistus pallomallirakenteella. Luodut pallot kiinnitetään malliin nk.

luulämpöpinnoitusmenetelmällä.

Mallin asennon muokkaamiseksi esitellään suorakäyttöjärjestelmä, jossa käyttäjä

voi käsitellä mallia helppokäyttöisin kosketusnäyttöelein. Työssä kehitetään sekä

siirto- että pyöritysoperaatiot, jotta käyttäjä voi muokata mallia monipuolisesti

ja vaivattomasti.

Menetelmän toimivuuden osoittamiseksi työssä luodaan ja analysoidaan esimerk-

kejä, jotka eivät olisi mahdollisia ilman menetelmän hyödyntämistä. Menetelmän

tekninen toteutus on mittausten perusteella lähes tosiaikainen ja käytettyjen

mallien käsittelyajat ovat lähellä yhtä sekuntia. Luodut animaatiojärjestelmät

ovat semanttisesti merkittäviä erityisesti alhaisemmilla tarkkuuksilla. Vaikka

luulämpöpinnoitukseen liittyy teoreettisia ongelmia, ne eivät näkyneet luoduissa

esimerkeissä.

Asiasanat 3D-mallinnus, 3D-animointi, lineaarisekoituspinnoitus, tieto-

konegrafiikka, suorakäyttö, pallomalli, luulämpöpinnoitus

Kieli Englanti

iii



Acknowledgements

This thesis would not have been possible without all the brilliant people

around me. I would like to thank my supervisor, professor Antti Punkka, for

the many insightful comments and your patience when guiding me on this

scientific journey. This thesis is truly better for all your effort.

My friends and coworkers at 3DBear deserve a special mention. This thesis

is inspired by the work we do together daily, and it has been my pleasure

to bring a bit of magic to the classrooms all around the world together with

you all. I am also grateful to my instructor Kristo, who between managing a

startup and closing an investment round has found the time to support me.

Thank you for all the guidance, encouragement and passion you’ve given me.

Both my family and the friends I’ve made in Aalto have played a pivotal

role in my path here. A huge thank you to Pentti, Tuija, Elina and Aino!

Special thanks to my roommates at BY, my fellow board members in Guild

of Physics years 2011 and 2015 and to all the wonderful people in Rissittely!

Finally, I must thank my partner Katri. You’ve had my back through my

studies at Aalto. You are my love, inspriration and best friend.

Espoo, June 6th, 2019

Olli Niskanen

iv



Contents

1 Introduction 1

2 Background 5

2.1 Computer graphics and 3D animation . . . . . . . . . . . . . . 5

2.2 Automated rigging of 3D models . . . . . . . . . . . . . . . . 10

2.3 Mobile augmented reality . . . . . . . . . . . . . . . . . . . . . 13

2.4 Direct manipulation and ease of use . . . . . . . . . . . . . . . 16

3 Approach for automated rigging 18

3.1 Overview of the approach . . . . . . . . . . . . . . . . . . . . 18

3.2 Rig generation with a sphere mesh approximation . . . . . . . 21

3.3 Bone heat skinning . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Posing by direct manipulation . . . . . . . . . . . . . . . . . . 27

4 Examples of application 29

5 Evaluation and discussion 34

5.1 Analysis of the example scenes . . . . . . . . . . . . . . . . . . 34

5.2 Quality and performance analysis of the rigging approach . . . 36

6 Conclusion 39

A Golden rules 41

v



Chapter 1

Introduction

The use of 3D modeling has spread to a wide variety of fields, and to users

from professionals to casual users. Novice users can already design their

homes in 3D using relatively easy desktop software like SketchUp (Trimble

Inc., 2018). The advent of non-professional 3D design is democratizing and

personalizing manufacturing via 3D printing. This has led users from all

backgrounds to take interest in 3D modeling and design.

Since being among the first to adopt use of personal computers in the 1980s,

schools and other educational institutions have been in the forefront of tech-

nological adoption (Tatnall and Davey, 2012). The same effect with educa-

tional institutions leading a mass-market adoption can be observed with 3D

design and 3D printers. While professional use and games enjoy the widest

usage, a new wave of users is currently being introduced to 3D design in

schools all over the world.

Augmented reality (AR) is a technology, which allows a user to see a modified

version of their surroundings. Interest in AR has spiked in the wake of the

virtual reality industry maturing. AR technology has become more accessible

to consumers and early adopters with solutions like Apple’s ARKit (Apple

Inc., 2018b), Google’s ARCore (Google Inc., 2018), and Microsoft’s Hololens

(Microsoft Inc., 2019) leading the way into ubiquitous computing.

1



CHAPTER 1. INTRODUCTION 2

Education, in particular, can benefit from using augmented reality by im-

proving learning outcomes (Akçayır and Akçayır, 2017), along with student

motivation and engagement (Bacca et al., 2014; Akçayır and Akçayır, 2017).

The possibility to show virtual objects in real environments brings tangibility

to abstract ideas. Being able to walk around a virtual solar system can bring

clarity to an otherwise difficult to grasp and abstract idea (Kerawalla et al.,

2006). Augmented reality has also been shown to assist in learning spatial

reasoning (Kaufmann et al., 2005).

The adoption of 3D technologies in the education industry has been slowed

by technical and pedagogical difficulties (Kerawalla et al., 2006; Wu et al.,

2013). There is a gap on the mobile 3D application market for a creation tool

aimed at 3D modeling novices. The current tools are limited to professional

users. By combining expressiveness with an easy interface, we can expand the

audience for 3D creation. One major issue encountered in creation focused

augmented reality applications is that composing a believable scene is difficult

due to the 3D models being either static or looping through pre-determined

animations that contain only some of the desired poses. The current way to

work around this issue is to export the 3D model and open it in a dedicated

desktop 3D modeling application, make edits, and bring the edited model

back to the AR application. The process is lengthy and complex, which can

be off-putting for novice users. Even experienced users lose the benefit of

real-time feedback.

This thesis develops a method of processing and editing 3D models in aug-

mented reality, directly addressing the scene composing challenges present in

current mobile augmented reality creation tools. The editing method chosen

is posing. When editing by posing the user moves control handles, which

affect the pose of the model. This capability to make instant changes to any

3D model, whether pre-made by professionals or self-made and imported,

allows quick iteration.

Specifically, the approach developed in this thesis has two main components.

First the model is analyzed and a control rig is fitted to the model. This



CHAPTER 1. INTRODUCTION 3

allows manipulating the object in question through a limited amount of con-

trol handles, rather than moving vertices individually. This process is called

rigging, and it is usually conducted by a professional artist. The optimization

method presented in this thesis uses a spherical error metric (Thiery et al.,

2013) to automatically find a good approximation of the model. The approx-

imated model is then mapped back to the original using a technique called

linear blend skinning (Magnenat-Thalmann et al., 1988; Lewis et al., 2000).

This determines how much each vertex in the original object is deformed

when moving an individual control handle.

The second component of the developed approach allows the user to pose the

model using the created rig. Posing the model is done by translating and

rotating the control handles in three dimensions, which leads to six degrees

of freedom per control handle. Fully controlling and manipulating even the

simplified rig is cumbersome for a trained professional equipped with a mouse

and keyboard. This difficulty is further increased, as the target users for the

application are novices on mobile devices, where input precision is limited.

This thesis presents one way of structuring the input method so that novice

users face an easy learning curve, and are able to do modeling tasks that

would not otherwise be possible for them.

This thesis is limited to the implementation, evaluation and discussion of a

proof of concept level tool showing the benefits of the approach. The end re-

sult should allow a product development team building a mobile 3D creation

tool to verify that the proposed approach provides new capabilities for the

end users, and that an implementation can be made without compromises to

usability. The approach is developed for 3DBear Oy, a Finnish company in

the field of educational technology. In order to assess real-world use cases and

actual technical hurdles, the implemented tool is integrated into the mobile

augmented reality creation tool of the same name developed by the company.

In order to ensure practical relevance, this thesis discusses both the usability

and reliability perspectives necessary for deploying the application to end

users. The discussion is limited to a non-exhaustive analysis of potential

issues and improvements.



CHAPTER 1. INTRODUCTION 4

This thesis is structured as follows. Chapter 2 reviews the existing research

on the topic. It introduces basic concepts of 3D models, and how the tra-

ditional method of rigging 3D models works. The most common methods

for automatically rigging and skinning 3D models are also presented in this

chapter. An introduction on augmented reality is given to give the reader an

understanding of the context the approach is used in. Finally, a brief review

of usability principles is given to give background for the implementation

choices. Chapter 3 describes the approach for automated rigging developed

in this thesis. The key algorithms are presented and implementation specific

concerns are discussed along with mentions of the major third party compo-

nents used. The experimental results are reviewed in Chapter 4. Example

scenes are presented with before and after photographs showcasing the ap-

plication of a tool that incorporates the automated rigging approach. Found

shortcomings of the tool are documented and explained. Chapter 5 con-

tains discussion on how well the implemented approach meets expectations.

The found results are given context, along with the author’s predictions on

the future of the approach. The shortcomings are individually analyzed for

potential mitigations and improvements. In addition, the quality and perfor-

mance of both the rigging and skinning components are analyzed. Finally,

Chapter 6 summarizes the main contributions and results of this thesis along

with future research directions.



Chapter 2

Background

This chapter introduces the relevant literature and background knowledge

used throughout the rest of the thesis. Section 2.1 gives the necessary con-

cepts to understand the computer graphics processing pipeline and 3D an-

imation, both of which are essential for understanding the rest of the the-

sis. Section 2.2 builds on this knowledge and explains necessary steps for

automatically building an animation rig for posing a character. The most

important methods of rigging and skinning are presented and compared. Sec-

tion 2.3 provides an overview of the mobile augmented reality environment

and the underlying concepts of tracking and feature points. It also describes

the system the user interacts with in order to understand the context the

user will use the developed approach in. Finally, Section 2.4 highlights the

background behind the chosen interaction model and the usability evaluation

criteria used to guide implementation and analyze the results.

2.1 Computer graphics and 3D animation

The end goal of computer graphics work and applications is to communicate

visually via a computer’s display (Hughes et al., 2014), usually by producing

5



CHAPTER 2. BACKGROUND 6

an image on a screen. The pipeline that processes a 3D scene and eventually

produces a visible 2D image is complex and nuanced if all the details are

taken into account. On a more general level, taking the components as black

boxes, the process is fairly straightforward. The basic building blocks of the

scene are mesh data, texture data, lighting data and the current view.

The triangular mesh representation is the industry standard (Hughes et al.,

2014), and this thesis adheres to the standard. As any polygonal mesh

can be transformed into a triangular mesh using polygon triangulation (Lee

and Schachter, 1980), the rest of this thesis considers 3D meshes as triangle

meshes in order to keep the methods free from needless complexity. Based on

this choice, we can define a mesh as a construct consisting of a set of vertices

V and a set of triangular faces T those vertices form. Each vertex j in V has

a position vj. Figure 2.1 shows an example triangular mesh in the shape of

a dolphin.

Figure 2.1: A triangular mesh representing a dolphin

In the pipeline described by Hughes et al. (2014), texture data at its simplest

defines the base color of the meshes on the scene. It is usually formatted as

2D pictures depicting the surface color of each face. When drawing the

face, lighting data is also considered, providing shading, highlights and other

variations depending on the shading program used. The view is often referred



CHAPTER 2. BACKGROUND 7

to as the virtual camera, providing a window to the scene. It is represented

as a matrix transform that allows the graphics card to calculate the correct

positions for each face in the scene.

Figure 2.2 shows a high level overview of how the basic building blocks of a

3D scene are processed by the graphics pipeline, which generates the result-

ing image. The 3D application pushes data consisting of polygonal meshes,

texture data, the current view and lighting data on to a graphics card. On

the graphics card, the pipeline starts with a perspective transformation in

order to align the vertices of each mesh based on the view. Each mesh, now

in the correct perspective, is then colored based on texture and lighting data.

The final image is then assembled and displayed.

Figure 2.2: The computer graphics pipeline (Hughes et al., 2014)

The pipeline as such is used for acquiring a single image of the scene in

question. This is fine for some purposes, like creating digital art or creating

an image of a new product for marketing. Many applications using computer

graphics, however, rely on application logic to modify the pipeline inputs in

order to create a dynamic sequence of rendered images. When shown in a

rapid sequence, the contents of the images blend into each other, and they

are perceived as an animation rather than individual frames.



CHAPTER 2. BACKGROUND 8

The multitude of ways of modifying a scene ranges from varying the view

to create the appearance of the virtual camera being moved, to gradually

increasing light intensity to simulate a sunrise. As such, it is not possible

to give an exhaustive listing of the different animation methods used by the

industry in the scope of this thesis. For a more complete discussion of the

ways to create dynamic effects, the reader is referred to a computer graphics

handbook such as Hughes et al. (2014) or Akenine-Moller et al. (2018).

One of the more important and popular systems for creating motion in an

otherwise static scene is rig-based animation, also called skeletal subspace

deformation (Lewis et al., 2000). It is often used to manipulate especially

characters, but the technique is universally applicable to any mesh-based 3D

model. The method deforms an input mesh by applying transformations

to a simpler control rig, sometimes called the skeleton. The rig consists of

elements called bones, sometimes also referred to as joints or handles in other

literature. This thesis uses the term bone for the components of the control

rig and the term handle for the user-interactable visualization of the bones.

The magnitude of the effect each bone in the control rig has on a given vertex

is controlled by a bone-vertex weight. The final position v′
j of each vertex j

is given by a weighted sum of all the bone transforms

v′
j =

∑
i

wi
jTi(vj), (2.1)

where wi
j is the weight of bone i for vertex j and Ti is the transformation of

bone i (Lewis et al., 2000).

Figure 2.3a shows an example with a humanoid 3D model and a simple

animation rig to control its pose. By applying geometric transformations

like translating, rotating or scaling to the bones, an artist is able to deform

the humanoid to poses other than standing straight with the arms spread

out. Figure 2.3b shows how the created rig can be used to pose the character

to stand in a more relaxed way and wave. Creating these animation rigs is



CHAPTER 2. BACKGROUND 9

a functionality found only in advanced 3D modeling software. Popular tools

used by professional animators include 3D Studio Max, Maya and Blender

(Beane, 2012).

(a) Default T-pose (b) Posing the humanoid to wave

Figure 2.3: A humanoid 3D model superimposed with its animation rig

Beane (2012) explains that the process of creating an animation rig is the

job of a rigging artist in a 3D animation production. The artist’s work

starts by creating the skeleton. Each bone is individually placed into the

object being rigged. Handles for manipulating the bones are created to help

the animator pose the object. The bones are connected with the geometry

by applying a skinning deformer, which is provided with the bone-vertex

weights by the artist. This completes the functionality of the rig. The

mesh combined with the rig and the skinning deformer can then be posed by

applying transformations on the bones. This process is usually conducted by

an animator.



CHAPTER 2. BACKGROUND 10

2.2 Automated rigging of 3D models

When automating the rigging process, the steps traditionally done by a pro-

fessional artist need to be recreated with minimal human intervention. Jacob-

son (2014) divides the process into three separate, but interconnected parts:

defining the bones, defining the weights and applying transformations. The

process follows a similar progression as the manual one described in Section

2.1.

The first part is defining the bones that control the mesh. This is comparable

to the skeleton creation in manual rigging. There are several methods for

automatically creating the bones. Au et al. (2008) describe a medial-axis

method that iteratively contracts the mesh in the direction of the curvature-

flow normal. As a result, the method produces a curved skeleton. Since the

most common skinning techniques depend on a simple hierarchy of linear

and rigid bones, allowing curved bones can be impractical.

Another common approach to generating the bones is segmenting the mesh

and deriving the bones from the connected segments (Katz and Tal, 2003;

Bharaj et al., 2012; Thiery et al., 2013). For example, the algorithm presented

by Katz and Tal (2003) finds cuts to segment the model. The concavities

present in the mesh are used to identify suitable places for the cuts. The

bones generated by the method are placed at the center of the cuts and

connected based on the hierarchy of the segmentation.

The second part of the automated rigging process is defining the bone-vertex

weights. As shown in equation (2.1), the final position of each vertex is

determined by a weighted sum, where the elements are the original vertex

position vj transformed by a transform applied to bone i, Ti(vj). The task for

the algorithm is, given the original 3D mesh and the hierarchy of generated

bones, to find appropriate bone-vertex weights for each possible pair of ver-

tex j and bone i. Jacobson (2014) discusses desirable qualities for skinning

weights in conjunction with the different available methods for calculating



CHAPTER 2. BACKGROUND 11

them. He lists the following eight criteria for evaluating the quality of a

weight generation algorithm:

• Interpolation: the weights at handle i should be one and the weights

at all other handles should be zero. This criterion allows direct manip-

ulation.

• Partition of unity: the weights at each vertex should sum up to one. If

this criterion is violated, basic geometric operations behave erratically.

Even applying the identity transform causes the vertices to move.

• Derivative continuity C1: the weights should maintain smoothness in

order for the deformed mesh to also maintain any existing smoothness.

• Shape awareness: the weights should decay with respect to geodesic

distance on or within the shape rather than a simple Euclidean distance.

This criterion means that vertices that are close to each other, but

connected only through a long graph of intermediate vertices should

have different weights, as they are semantically different parts.

• Non-negativity: weights should be constrained to be non-negative. To-

gether with the partition of unity constraint, the resulting range is [0, 1],

as weights above one would need to be counterbalanced by negative

weights. Negative weights would cause the vertices to move opposite

to the action taken by the user, which can be counterintuitive.

• Monotonicity: weights should monotonically decrease based on the

geodesic distance from the bone. Again, geodesic distance is a good

approximation for semantic closeness, so the weights should reflect that.

• Locality: weights should be zero over most of the shape. This is more

of an implementation concern, as many skinning deformer implemen-

tations have a limit on how many bones can affect the position of a

specific vertex.



CHAPTER 2. BACKGROUND 12

• Speed: a faster processing time is better, all other things being equal.

In cases where there is a trade-off between speed and quality, appli-

cation specific concerns need to be taken into account. For example,

when the processing time is just a single up-front delay, a longer time

is tolerable. When iterating quickly, a near real-time feedback loop is

preferable.

Jacobson (2014) compares different skinning techniques on the criteria above.

All closed form approaches, such as weights based on the inverse Euclidean

distance, fail on the shape awareness criterion. The best approaches work

by numerically minimizing some chosen energy value. Out of the energy

minimizing approaches, notable highlights are the constrained biharmonic

weight method (Jacobson et al., 2011), and the bone heat diffusion method

(Baran and Popović, 2007).

The constrained biharmonic weight algorithm performs well when it is eval-

uated against the criteria above. It maintains interpolation, partition of

unity, derivative continuity, non-negativity, monotonicity, locality and shape

awareness, that is, it produces the highest quality skinning result possible on

the chosen criteria. The drawback is the speed of processing, as the algo-

rithm requires iterative solving of convex optimization problems. In addition

the implementation requires a volumetric discretization of the mesh. This is

done, for example, with the finite element method, which has a notoriously

slow runtime (Jacobson et al., 2011).

The bone heat diffusion method fails on the monotonicity, locality and deriva-

tive continuity metrics, satisfying all other binary criteria. As such the skin-

ning results can show unintuitive artifacts due to improper weight distri-

bution. The bottleneck in the algorithm is calculating the discrete surface

Laplacian containing a bone visibility calculation that needs to be done per

vertex. The visibility calculations are parallelizable, and can be offloaded to

a GPU which excels in a task of this sort. The processing time is therefore

shorter, though quantifying the exact benefit would require empirical testing.



CHAPTER 2. BACKGROUND 13

2.3 Mobile augmented reality

Azuma (1997) defines augmented reality as having three different charac-

teristics: it combines real and virtual, it is interactive in real time and it

is registered in 3D. Mobile augmented reality creates the augmented reality

experience using a combination of sensors present in the mobile device. The

most important one is the camera, which is used to capture reality. The

augmentations, meaning the virtual objects and environments, are drawn on

top of the video feed from the camera. Figure 2.4 shows an example, where

a virtual Mars colony is created on a real sandbox.

Figure 2.4: An augmented reality image showing a virtual Mars colony

The illusion of virtual objects appearing correctly aligned to the real world

is called registration (Holloway, 1997). Aligning virtual objects to a fixed



CHAPTER 2. BACKGROUND 14

point of view, static registration, was fairly well achieved already in the late

1990’s (You et al., 1999). A manual calibration of an augmented reality

system can create virtual scenes that are ”good enough” for visualization or

story telling purposes (You et al., 1999). Some scenes may even be nearly

indistinguishable from reality on a glance. Statically registered systems can

be useful for taking still images. To create a more immersive experience,

we need the illusion of objects staying in place when viewed from multiple

angles in real time. This is hampered by drift inherent to the motion tracking

systems. The solution is called dynamic registration, which requires tracking

(Schmalstieg and Hollerer, 2016).

On mobile devices the implementation of tracking relies heavily on applying

computer vision algorithms to the camera images captured by the device (You

and Neumann, 2001). In such optical tracking, the captured image is first

analyzed to find features or landmarks that are used to relate the successive

images to each other. The features can be predetermined markers, such as

lights or shapes arranged in a specific pre-determined relation to each other.

Alternatively, natural features present in the surroundings can be derived

from the images and tracked. This thesis focuses on markerless, natural-

feature based tracking, as it requires no setup and is easier to get started

with for a novice user. For a review of the marker based approach, see the

survey conducted by Lepetit et al. (2005) or the paper by Hoff et al. (1996).

There exist several algorithms for extracting feature points from an image

(Moravec, 1977; Harris and Stephens, 1988; Förstner, 1994). The algorithms

used in Apple’s ARKit and Google’s ARCore, which are the target AR plat-

forms for this thesis, are not public. Thereby, this thesis is unable to give a

more detailed description of the image recognition process used. Both com-

panies’ documentation indicates that the tracking is based on a combination

of feature points and inertial sensor data (Google Inc., 2018; Apple Inc.,

2018a). This combined method is called visual-inertial odometry.

In visual-inertial odometry, the camera provides a ground-truth for the track-

ing algorithm (You et al., 1999). To provide real-time registration, the optical



CHAPTER 2. BACKGROUND 15

tracking needs to be augmented with data from the device’s accelerometer,

gyroscope, compass and GPS sensors through sensor fusion. The more sen-

sors are available, the more accurate the process can be made (Schall et al.,

2009). Using both the camera and inertial sensors provides a quality of track-

ing that people are impressed by (Jung et al., 2016). However, the experience

of just walking around in an augmented reality scene grows old quickly, and

many mobile AR applications allow the user to interact with their virtual

surroundings as well.

The screen is a central input device in an augmented reality experience. It

often has a high resolution, with the latest flagship models offering enough

pixels to be indistinguishable with the human eye at the usual arms-length

distance. The input resolution of the multi-touch display is similar, how-

ever it is reduced by the fact that the devices are mostly operated by fingers

rather than styli. The average 2 degrees of freedom touch interaction res-

olution is around 1 centimeter (Wang and Ren, 2009). Most mobile touch

screens are designed with a single user in mind and thus allow for 10 simulta-

neous touches, each with two degrees of freedom (Wang and Ren, 2009). In

addition the user needs at least one hand to hold the device in an augmented

reality experience, which leaves a single free hand and the thumb of the hand

supporting the device for interaction.

Hinrichs and Carpendale (2011) researched how museum visitors interacted

with a multi-touch display in an exhibition. The by far most common way

to perceive the gesture is as a single unit – either a single finger or the

whole hand. Multi-hand and multi-finger gestures were somewhat common

especially for rotation and scaling. As the smartphone producing the AR

experience needs to be held, this finding shrinks the likely natural touch

screen interactions to one finger drags, and possibly two finger scaling and

rotation.

The augmented reality tracking provides another important method of in-

put. As we are able to track the position and the orientation of the device,

those can be used as another 6 degrees of freedom input (Henrysson and



CHAPTER 2. BACKGROUND 16

Billinghurst, 2007). In practice the input design is constrained by the fact

that the same input is already being used to drive the camera into the virtual

world, so requiring full six degrees of freedom motions might clash with the

user’s desire to view a specific portion of the scene at the same time.

2.4 Direct manipulation and ease of use

Designing and implementing an interactive 3D tool is more difficult than a

similar tool that is limited to two dimensional objects and content (Herndon

et al., 1994). Many of the common navigational problems in virtual envi-

ronments, such as maintaining spatial orientation or steering over-control

(McGovern, 1989) are not issues in augmented reality, as they happen in

the real world and users are already accustomed to walking around in their

surroundings.

Shneiderman et al. (2016) mention that while augmented reality is still an

evolving field with many different application areas, interface designers can

be aided by the existing large body of research done on more traditional

direct manipulation interfaces. Direct manipulation is characterized by three

principles (Shneiderman et al., 2016):

1. Continuous representations of the objects and actions of interest with

meaningful visual metaphors

2. Physical actions or presses of labeled interface objects (i.e., buttons)

instead of complex syntax

3. Rapid, incremental, reversible actions whose effects on the objects of

interest are visible immediately

There exist multiple different methodologies for evaluating the usability of

an interface. Nielsen (1994) divides the methods to four different areas: au-

tomatic methods utilize a computer program to calculate usability measures,



CHAPTER 2. BACKGROUND 17

empirical methods assess the interface in use by actual end users, formal

methods use some sort of model to calculate a usability measure and in-

formal methods rely on heuristics and an expert evaluator. Formal and

automatic methods are still mostly used in specific settings and in research

settings (Nielsen, 1994; Shneiderman et al., 2016) with some notable limited

use exceptions, such as the GOMS method (John and Kieras, 1996).

Both Nielsen (1994) and Shneiderman et al. (2016) deem that the most com-

mon real-life analysis is a combination of empirical and informal evaluation.

Shneiderman et al. also note, that the choice of evaluation method depends,

among other factors, on the following: stage of design, novelty of the project,

number of expected users, criticality of the interface, costs of the product

and finances allocated for testing, time available, experience of the design

and evaluation team, and environment where interface is used.

Heuristic evaluation is an informal evaluation technique, where an expert or

a group of experts critique an interface to determine conformance with a

short list of design heuristics (Shneiderman et al., 2016). An example list of

heuristics given by Shneiderman et al. (2016) is the Eight Golden Rules, listed

in Appendix A. As a summary, the rules guide design to take the limitations

of humans into account. We humans are not perfectly knowledgeable and our

memory is fallible. We need feedback and our errors need to be accounted

for, either by preventing them in the first place or by allowing actions to be

easily reversed. Consistency and clarity are key for a good experience.



Chapter 3

Approach for automated rigging

In this chapter, the chosen approach for automated rigging is explained. The

reasoning behind the choice of algorithms and design is given. Both the third

party components used in the implementation and the ones developed by the

author for this thesis are presented.

Section 3.1 gives the high level overview of the developed method. Sections

3.2 and 3.3 detail the automatic rig generation and skinning, respectively.

Section 3.4 explains how the direct manipulation model is used for posing in

the approach.

3.1 Overview of the approach

As explained in Section 2.2, three separate, but interconnected components

are required for the automated rigging process. In the developed approach,

the rig generation algorithm is based on sphere mesh approximation, skinning

is done using a bone heat diffusion method and posing is done by direct

manipulation on the touchscreen.

18



CHAPTER 3. APPROACH FOR AUTOMATED RIGGING 19

The mesh processing pipeline built for the developed approach can be seen

in Figure 3.1. As shown in the figure, the automated parts of the approach

require the desired number of handles and the 3D mesh as inputs from the

user. A mesh with control handles and an appropriate skinning deformer is

produced as an output. The user is then able to interactively pose the model

using the generated handles to control the bone positions. If the user wishes,

changing the number of handles and posing again is supported, although the

already done changes are lost. Once the user is ready, they can continue

building the scene either by deselecting the model or switching to another

tool.

Figure 3.1: The developed mesh processing pipeline (the phases with user

interaction are drawn in blue and automated phases in light gray)

To evaluate the approach, a tool implementing it was created as part of

the 3DBear mobile application. Many of the core 3D functionalities used in

the tool are provided by the host 3DBear application. The application is

built using the Unity game engine, which provides basic 3D engine features,

such as 3D rendering, importing 3D models and the regular translate, rotate



CHAPTER 3. APPROACH FOR AUTOMATED RIGGING 20

and scale operations. The Unity ARKit plugin is used in the application

to incorporate high quality AR tracking, the camera background and model

lighting estimation. The bulk of the implementation work was done in C#

in order to seamlessly integrate with the Unity engine objects.

The pre-processing step of the approach consists of some technical opera-

tions ensuring that the mesh is easy to process later on in the pipeline. To

clean up the mesh, we start by centering the model, applying unit scale and

default rotation, while saving the original values in order to restore them in

the post-processing step. This allows us to work directly in the mesh coordi-

nate system rather than keep track of the otherwise necessary world-to-mesh

coordinate system transformations in all steps. Next, any existing Unity ren-

derers are removed in order to later replace them with the one containing the

skinning information. Last, as Unity meshes often contain duplicate vertices

to separate sharp and rounded corners, a vertex de-duplication process is

run. The end goal is to not affect the vertex count of the mesh, so a mapping

between the original and de-duplicated vertices is also generated in order to

later apply deformations on the actual vertices rather than the de-duplicated

ones.

The cleaned up mesh and user-chosen number of control handles are then

used as inputs for the automated rig generation. The rig generation process

is detailed in-depth in Section 3.2. As an output, we get the hierarchy of

bones that together form the skeleton for the chosen mesh. Both the cleaned

up mesh and the newly generated bone hierarchy are then given for the

skinning algorithm as inputs. The algorithmic details of the skinning process

are explained in-depth in Section 3.3. The process yields an array of bone-

vertex weights for each bone in the hierarchy.

The heavy processing steps are then complete, and all that remains is to

generate the result for the user in the post-processing step. First, the object

is returned to its initial position, rotation and scale. A transparent material

is swapped in place of the regular one to allow the user to see the handles

inside the mesh. The renderer is created and initialized with a skinning



CHAPTER 3. APPROACH FOR AUTOMATED RIGGING 21

deformer. The bone hierarchy and bone-vertex weights are applied on the

skinning deformer. Last, for each bone, a user-visible and interactable handle

is created. As a result, the user sees the 3D model with the automatically

generated handles, and can start posing the model as further explained in

Section 3.4.

3.2 Rig generation with a sphere mesh ap-

proximation

The sphere mesh approximation approach introduced by Thiery et al. (2013)

was chosen for rig generation. Medial axis methods (Au et al., 2008) were

initially considered, but the sphere mesh algorithm was deemed more suit-

able in two ways: efficiency and multi-resolution capability. Mobile devices

require an efficient algorithm. Medial axis methods can be fairly efficient, but

their core implementation still consists of two steps: shifting vertices towards

the center and then decimating them. The sphere mesh based approach re-

lies entirely on decimation, leaving the iterative contraction phase out and

saving computational cycles. An empirical analysis would be necessary to

authoritatively assert the difference in speed.

The intermediate approximations provided by the sphere mesh algorithm can

be useful. The medial axis method is useful to find a skeleton shaped control

rig, but is limited to a single resolution. The sphere mesh based approach

is naturally multi-resolution. By allowing the user to choose a comfortable

level of detail for the approximation, the rig generation can target anything

from just a few control handles, up to returning a control handle for each

vertex on the mesh. This allows the user to shift from high-level overarching

changes to editing small details.

The rig generation algorithm consists of an initialization phase, a main loop

and a finalization phase. In the initialization phase, the required data struc-

tures are created for further processing. The vertices of the mesh are first



CHAPTER 3. APPROACH FOR AUTOMATED RIGGING 22

transformed into an initial set of approximating spheres. For each vertex, a

sphere is initialized to the position of the corresponding vertex, with a ra-

dius of zero. In addition, each sphere is assigned the corresponding vertex’s

barycentric cell as an initial set of faces it currently approximates. Such

barycentric cell consists of a third of all the triangles in the T1 neighborhood

of the vertex. The T1 neighborhood contains the triangles that include the

vertex. Figure 3.2a shows an illustration of the barycentric cell of a vertex

and Figure 3.2b shows the T1 neighborhood of a vertex.

(a) The barycentric cell of a vertex,

shown in gray. The medians of the

neighboring triangular faces (dashed

lines) form the cell.

(b) Vertex xi along with its N1 and

T1 neighborhoods. Also pictured are

angles αij and βij corresponding to

the edge (xi, xj)

Figure 3.2: Vertex properties

The spheres are connected based on the edges between the vertices of the

mesh. For each edge uv connecting the vertices u and v, the corresponding

spheres su and sv are combined into a pair. These pairs {su, sv} are can-

didates for decimation. The decimation is guided by a spherical quadratic

error metric. The metric is based on the signed distance from a sphere to an

oriented plane. The metric is defined (Thiery et al., 2013) as

Q(s,p,n) =
1

2
sTA(n)s− b(p,n)T s+ c(p,n),



CHAPTER 3. APPROACH FOR AUTOMATED RIGGING 23

where

A(n) = 2

[
nnT n

nT 1

]
,

b(p,n) = 2(n · p)

[
n

1

]
,

and

c(p,n) = (n · p)2.

s ∈ R4 is the vector representation of a sphere:

s =

[
q

r

]
∈ R4.

p ∈ R3 and n ∈ R3 are 3D representations of a point the plane intersects,

and the normal of the plane we calculate the error for, respectively:

p =

⎡⎢⎣pxpy
pz

⎤⎥⎦ ,

and

n =

⎡⎢⎣nx

ny

nz

⎤⎥⎦ .

The metric takes into account the direction of the plane, which is useful

when calculating errors for boundary representations of a volume. It handles



CHAPTER 3. APPROACH FOR AUTOMATED RIGGING 24

convex and concave regions in an intuitive way and yields logical results for

the value of the error.

The cost of a sphere s approximating a barycentric cell of an individual

vertex vi is calculated as the weighted sum for the error of each plane in the

barycentric cell:

Qi(s) =
∑

tj∈T1(vi)

area(tj)

3
Q(s, ptj , ntj),

where T1(vi) denotes the triangles adjacent to vi.

In order to keep track of the best available collapse operation, a priority

queue is initialized. As the priority queue is on one of the hot paths of the

algorithm, a fast implementation is necessary to prevent delays for the user.

An open source C# priority queue implementation by Pflughoeft (2013) is

used to ensure good performance. The priority of collapsing an edge {su, sv}
is the cost of the resulting union of faces being approximated by a single

sphere:

Quv = min
s
{Qu(s) +Qv(s)}.

The priority queue nodes are constructed to use vertex index based com-

parisons. As a necessary part of the initialization, the costs of each known

collapse operation are calculated and the resulting optimal sphere is retained

until the collapse is realized. For the cost calculations, the open source spher-

ical quadratic error metric implementation by Thiery et al. (2013) is used.

Inside the main rig generation loop, the end condition is set to the number of

resulting control handles requested by the user. The main processing part of

the loop consists of taking the top node of the priority queue, and collapsing

it into a single new sphere. Then, for all the nodes remaining in the queue,

the just collapsed spheres are replaced with the new one. The spherical

quadratic error measure is re-evaluated for any changed nodes.



CHAPTER 3. APPROACH FOR AUTOMATED RIGGING 25

Once the loop reaches the desired level of decimation, the remaining nodes

are processed into the control rig hierarchy in the finalization phase. The root

of the hierarchy is chosen at random, and the connected nodes are recursively

embedded into the hierarchy under the root node. In case the source mesh

contains multiple disconnected graphs, the operation is repeated until all the

remaining control points are placed in the hierarchy. This created hierarchy

is the final control rig and we are able to start the skinning process.

3.3 Bone heat skinning

Based on the comparison conducted by Jacobson (2014), the initially chosen

skinning algorithm was the bounded biharmonic weight skinning. Unfor-

tunately, during implementation the drawbacks of the bounded biharmonic

weights approach were evident: running the algorithm on a mobile device

took too long. The problems were exacerbated by instabilities in finding

a tetrahedralization for more complex models. Both model quality issues

and large memory use when working on more complex meshes prevented the

implementation from being used in a meaningful manner. The natural re-

placement for bounded biharmonic weights is the popular bone heat diffusion

method mentioned in Section 2.2. While the resultant skinning weights are

not artifact free, the process of calculating them is reliable and quick.

The bone heat skinning method described by Baran and Popović (2007) is

heat equilibrium inspired. It is used to automatically calculate weights for a

given mesh and bone hierarchy. According to the method, we apply weights

by treating the volume bounded by the mesh as an insulated heat-conducting

body. The weights for each bone are processed as an independent system.

The physical analogy is a system, where we force the temperature of the

chosen bone to 1 and the rest of the bones at 0. These boundary conditions

along with the differential equation for heat diffusion (Luikov, 1968) yield an

equilibrium we solve numerically. The vertex temperature in the solution is

interpreted as the vertex weight.



CHAPTER 3. APPROACH FOR AUTOMATED RIGGING 26

As the method is used to set the weights for the vertices, modeling the

heat transfer for the whole body is not required. Instead, we only solve the

equation on the surface. This allows us to model the equilibrium for the bone

i as

∂wi

∂t
= ∆wi +H(pi −wi) = 0.

This can be written as

−∆wi +Hwi = Hpi, (3.1)

where ∆ is the discrete surface Laplacian, pi is a vector with pij = 1 if the

nearest bone to vertex j is i and pij = 0 otherwise, and H is a diagonal matrix

with element Hjj being the heat contribution weight of the nearest bone to

vertex j. Baran and Popović (2007) use Hjj =
1

d(j)2
, when shortest path from

vertex j to the nearest bone is contained in the mesh volume, and Hjj = 0

otherwise. Here d(j) is the distance from vertex j to the nearest bone.

We calculate the Laplacian in equation (3.1) using the cotangent formula

(Meyer et al., 2003):

∆w =
1

2

∑
k∈N1(j)

(cotαjk + cot βjk)(pj − pk),

where αjk and βjk are the two angles opposite to the edge in the two triangles

sharing the edge (pj, pk) and N1(j) is the set of 1-ring neighbor vertices of

vertex j. The 1-ring neighborhood N1 contains all the vertices that share an

edge with vertex j. N1 and angles αjk and βjk are depicted in Figure 3.2b.



CHAPTER 3. APPROACH FOR AUTOMATED RIGGING 27

3.4 Posing by direct manipulation

Implementing a direct manipulation scheme (Shneiderman et al., 2016) for

posing the 3D model is a necessity to keep the user experience consistent

with other tools found in the 3DBear application. The control handles are

visualized as red spheres to make them appear distinct and indicate to the

user that they are interactable. The visibility of the handles is ensured by

making the rest of the model semi-transparent. The drastic visual change

also informs the user of the change in modality.

As the sphere mesh approximation yields spheres with both a position and

a radius, we use the radius when generating the handles in order to better

represent the target model. A minimum scale is enforced to keep the han-

dles interactable. The spheres are also slightly downscaled in order to avoid

overlap and help the user to select the desired handle.

Two modes were implemented for the manipulation. In the first one, drag-

ging the handles when they are visible causes the corresponding rig bone to

translate. This follows logic similar to how individual models are moved in

the application. In contrast to the standard move tool found in 3DBear, the

plane the movement is constricted to face the camera, rather than being the

horizontal plane. The change was necessary, as many posing actions require

vertical movement, whereas object placement is quite naturally restricted to

the ground.

The full 3D freedom in translation is provided in two ways. First, while

engaged in a translate action, the user is able to “push” and “pull” the

handle by moving the AR device forwards or backwards. This is a natural

way to introduce the third axis of control, but might be difficult to discover

for users. The alternative way to perform a move depth-wise is to change the

perspective. By walking around the model, the space of the available actions

is rotated along with the camera. This leads to a rather natural physically

inspired interface that is hopefully intuitive for the end users.



CHAPTER 3. APPROACH FOR AUTOMATED RIGGING 28

The second mode causes the selected handle to rotate around the camera

Z-axis, pivoting around its parent. Again, the full three degrees of freedom

is provided by the user being able to walk around and view the model from

different directions. This is at first a less intuitive mode of operation, but the

real world parallels suggest that it is worth investigating. In animals with

skeletons, the joints tend to rotate rather than extend, much less translate

sideways. For example, if an arm is extended out and the wrist is moved half

a meter in any direction while keeping the elbow from turning or moving

otherwise, a broken forearm is the only possible result. The combination of

these two modes allow both for shape changing operations by translating and

adjusting the pose by rotating the joints.



Chapter 4

Examples of application

The approach outlined in Chapter 3 was tested by building three simple

scenes using an Apple iPhone XS Max running a custom build of the 3DBear

application. The first scene consists of a stool from the Home collection in

3DBear. The unedited stool is shown in Figure 4.1a. The tool was configured

to provide 10 control handles. After a very brief processing time, the tool

provided the requested amount of control handles. The resulting handles are

shown in Figure 4.1b.

As can be seen in Figure 4.1b, the points correspond to the shapes of the

stool in a natural way. The points at the top follow along the outer rim of

the seat and there is one control point in each end of the three feet, which are

the most natural points for controlling the placement. The top of the stool

is crowded with a total of seven control points in close vicinity to each other.

Selecting and moving each point proved possible due to the fact that the user

is able to get closer and further away by moving the mobile device in real

life. A handful of translation operations were performed on the control points

resulting with the modified model shown in Figure 4.1c. Several peculiarities,

that violate the least surprise principle from the user’s point of view, were

discovered in the deformed object.

29



CHAPTER 4. EXAMPLES OF APPLICATION 30

(a) Unedited (b) With control han-

dles

(c) After editing

Figure 4.1: 3D model of a stool in augmented reality

(a) Stretched texture (b) Hard angles in the

leg

(c) Rotated legs cause

less artifacts

Figure 4.2: Translating the handles of the stool can cause artifacts



CHAPTER 4. EXAMPLES OF APPLICATION 31

Figure 4.2a shows a close up of the top of the stool, where the model was

deformed by stretching. The blurry, diagonal lines are a result of texture

stretching. The blurriness is caused by the original artist-created texture

being stretched over a larger area than intended. In addition, diagonal cut

in the uniform wood grain pattern makes it very visible that the geometry

has been altered.

Figure 4.2b shows a close-up of one of the legs in the stool. The midpoint

shows two distinct cutoffs in the influence function of the two control han-

dles controlling the leg. At the bottom, the position of the leg’s vertices is

fully determined by the lower control handle. The same happens at the top

with the higher control handle. In the middle, there appears to be a linear

transition bridging the differing positions of the control handles. To contrast

the harsh angles in Figure 4.2b, another variation of the stool was created

by rotating the legs instead of translating them. As can be seen in Figure

4.2c, this version shows much less unwanted deformation.

Another built example scene includes a 3D model of a Tyrannosaurus rex.

Figure 4.3a shows the Tyrannosaurus in its default pose, which looks some-

what out of place and static. A more natural pose is shown in Figure 4.3b.

This pose was created in 3DBear using 20 handles with the goal of showing

the Tyrannosaurus terrorizing the neighborhood. Slight adjustments to the

limbs and head were done to help bring life and believability to the otherwise

dull scene. Figure 4.3c shows the Tyrannosaurus eating a lamb in order to

showcase that editing actions can be done purposefully.

The third example features an animated 3D model of a Pterodactyl. Figure

4.4 depicts the original flight animation of the Pterodactyl flying. The ex-

isting animation rig is removed and a new one is generated using the tool.

The resulting Figure 4.5 shows the Pterodactyl in a pose created using 20

handles, landed on the ground.



CHAPTER 4. EXAMPLES OF APPLICATION 32

(a) Default pose (b) A more natural

standing pose

(c) Eating a lamb

Figure 4.3: Tyrannosaurus in various poses



CHAPTER 4. EXAMPLES OF APPLICATION 33

Figure 4.4: Three frames of the original professionally created Pterodactyl

flight animation

Figure 4.5: An edited Pterodactyl model showing the reptile on the ground



Chapter 5

Evaluation and discussion

5.1 Analysis of the example scenes

The results demonstrated in Chapter 4 show promise. As mentioned in the

motivation for this thesis in Chapter 1, the current tooling on the market

lacks an easy tool for 3D modeling on a mobile device. The approach devel-

oped in this thesis provides an example for application developers, hopefully

influencing the future versions of modeling applications to allow anyone to

edit models in an approachable way.

The technology adoption model (Davis, 1989) suggests that in order for new

information technology to be accepted and adopted by users, two criteria

need to be clear to the user: the technology needs to be useful and perceived

to be easy to use. As shown in Chapter 4, giving the user the ability to pose

3D models as they wish allows them to build meaningful augmented reality

scenes. Although previous tooling has been useful, this approach allows the

user to build something that would have required help from a 3D artist.

The second requirement for adoption is that the users need to perceive the

technology to be easy to use. The tool built in this thesis functions on a

proof-of-concept level, and requires more development work in order to fully

34



CHAPTER 5. EVALUATION AND DISCUSSION 35

be embraced by casual users. As is evident from the shortcomings high-

lighted in Chapter 4, there are still issues to overcome before the method can

reasonably be expected to be adopted en-masse. For example, the texture

stretching caused by a geometry configuration that was unexpected by the

original artist, shown in Figure 4.2a, is a challenging problem to address.

The current iteration of the tool already allows for large modifications to

the geometry if the object in question has a monotone texture. For objects

with a regular micro-pattern, there are very promising developments (Por-

tilla and Simoncelli, 2000; Wei and Levoy, 2000). The shortcoming demon-

strated by the wood grain in Figure 4.2a also contains a macro-pattern in

the nearly-parallel stripes, which is a challenging problem to overcome. Efros

and Freeman (2001) present a promising quilt-based synthesis method that

retains regular patterns. Gatys et al. (2015) show that there is ongoing neu-

ral network development work into texture synthesis with macro-patterns.

However, the use case presented in this thesis expects near real-time feed-

back for the user, while a convolutional neural network texture generation

algorithm might be out of reach for a mobile processor acting in a real-time

environment.

One of the key components in a successful automatic rigging tools is the skin-

ning component. In this thesis, the used skinning algorithm was chosen for

its stability and ease of implementation. The shortcomings of the algorithm

can be seen in Figure 4.2b, where the skinning weights are distributed with

an artificially clear-cut drop-off that resembles a clamped linear function.

The state-of-the-art automated skinning algorithms can handle bone weight

interpolation in a smoother manner (Le and Deng, 2012), spread weights

across volumes rather than just surfaces (Dionne and de Lasa, 2013) and

ensure that seemingly unrelated bones do not contribute to the position of

the vertices (Jacobson et al., 2011). Incorporating some or even all of these

improvements into the skinning algorithm used may make the tool more in-

tuitive and easier to approach.



CHAPTER 5. EVALUATION AND DISCUSSION 36

5.2 Quality and performance analysis of the

rigging approach

In this section, we further analyze the rig generation process to assert the

correct functioning of the approach. Figures 5.1 and 5.2 show the generated

bones at different levels of detail for two 3D models, a robot and a Tyran-

nosaurus rex. An image of the original model is included for both for clarity.

The yellow colored spheres denote root nodes in the bone hierarchy and the

red spheres are non-root bones.

(a) Original (b) 6 bones (c) 10 bones

(d) 20 bones (e) 50 bones (f) 100 bones

Figure 5.1: A 3D model representing a robot

Both examples show that the rig generation algorithm places bones along

the entire volume of the targeted 3D model. As can be seen in the legs

of the robot in Figures 5.1b and 5.1c, the algorithm can leave large parts

of the model completely without a bone. On the other hand, Figures 5.1f

and 5.2f show a very dense distribution of bones, making the selection and

manipulation of an individual handle cumbersome and error prone. The

best bone count is situational, with lower and higher counts having different

tradeoffs. This is where the user’s capability to configure different resolutions

is important.



CHAPTER 5. EVALUATION AND DISCUSSION 37

(a) Original (b) 6 bones (c) 10 bones

(d) 20 bones (e) 50 bones (f) 100 bones

Figure 5.2: A 3D model representing a Tyrannosaurus rex

Figures 5.3a to 5.3c show the performance of the bone heat skinning al-

gorithm when applied on the Tyrannosaurus model. Figure 5.3a shows a

natural segmentation of the model into its semantic parts: legs, feet, arms,

tail, body, neck and head. Figure 5.3b with its larger number of bones has

more blended weights, which denote vertices controlled by several bones.

This leads to a more nuanced posing process, but requires the user to do

several manipulations in order to see the desired change. Smaller details are

editable at this resolution. For example, the individual toes each have a bone

assigned to them for fine tuning of the pose. Opening and closing the jaw is

also possible. Figure 5.3c shows the influence of an individual bone from the

rig containing a total of 10 bones. Although the bone heat diffusion algo-

rithm does not guarantee the locality of the weights, in this case the weights

are highly local.



CHAPTER 5. EVALUATION AND DISCUSSION 38

(a) 10 bones (b) 50 bones (c) The influence of an

individual bone out of

a rig with ten bones,

shown in red

Figure 5.3: The influence of different bones visualized with separate colors

Algorithm runtime benchmarks for the robot and the Tyrannosaurus models

for different target bone counts are listed in Table 5.1. The benchmarks

were ran on a 2,7 GHz Intel Core i7 processor. As can be seen in the table,

the majority of the algorithm’s runtime is due to the rig generation using

sphere meshes and the bone heat skinning process. The runtime grows as a

function of the bone count, which is mostly caused by the skinning process

running longer. This is expected, as the skinning algorithm needs to do a

specific amount of work for each bone, while the sphere mesh approximation

algorithm actually stops earlier and iterates less for larger bone counts.

Table 5.1: Benchmarks for the runtime of the implemented approach (in

seconds)

Robot (# of bones) Tyrannosaurus (# of bones)

Phase 6 10 20 50 100 6 10 20 50 100

Pre-processing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Rig generation 0.39 0.38 0.38 0.40 0.47 0.63 0.67 0.63 0.63 0.66

Skinning 0.49 0.53 0.60 0.75 1.05 0.37 0.41 0.46 0.58 0.93

Post-processing 0.00 0.01 0.01 0.02 0.04 0.01 0.01 0.01 0.02 0.03

Total 0.89 0.92 0.99 1.18 1.53 1.00 1.08 1.10 1.23 1.63



Chapter 6

Conclusion

The objective of this thesis was to develop an approach for novice friendly

3D modeling on a mobile device. The chosen approach for automatic rig

generation used a spherical quadratic error metric to approximate the 3D

model, yielding a naturally multi-resolution control rig. The generated rig

was then attached to the original 3D model using a technique called bone

heat skinning.

The need for the developed approach came from the limitations present in the

current modeling tools available on the mobile market. Using practical ex-

amples and qualitative analysis, the approach was shown to at least partially

meet the need of novice users. The built example scenes were previously

impossible to create without the help of professional 3D artists.

In the approach, the rig generation and skinning components were based on

previous research by Baran and Popović (2007) and Thiery et al. (2013). The

novel contribution in this thesis was to incorporate these methods into the

augmented reality context. In the process, inventing an appropriate interac-

tion model was a necessity. The approach used a simple direct manipulation

scheme for interacting with the processed models.

39



CHAPTER 6. CONCLUSION 40

As a part of the evaluation process, the implemented approach was also

integrated to the augmented reality application developed by 3DBear Oy.

Both the resulting scenes and the level of interaction fit the application well.

As is common in a proof-of-concept level implementation, the user experience

showed shortfalls. Investigating and fixing these would be a natural way to

continue the research into the topic of this thesis.

Further research into improving the operation of the approach is warranted.

For instance, allowing the user to seamlessly switch between different editing

resolutions without losing work would ease more complex tasks. This can be

achieved by combining a system such as the one presented by Kobbelt et al.

(1998) and committing the pose between changes of resolution. A further im-

provement could be achieved by using an efficient in-memory representation

of the different intermediate steps of the generated rig (De Floriani et al.,

2004). It would be beneficial to also guide the resolution selection towards

interesting areas through an importance criterion, such as the difference of

collapse operation priorities between steps. A final improvement suggested

here is incorporating an inverse kinematics setup (Girard and Maciejewski,

1985) for the rig. Inverse kinematics allows calculating a total pose based on

the pose of a single bone. Especially for deeper bone hierarchies, grabbing a

single control handle and seeing the others follow in a natural manner could

be magical.



Appendix A

Golden rules

Listing A.1: Eight Golden Rules (Shneiderman et al., 2016)

• Strive for consistency. Consistent sequences of actions should be re-

quired in similar situations; identical terminology should be used in

prompts, menus, and help screens; and consistent color, layout, capital-

ization, fonts, and so on, should be employed throughout. Exceptions,

such as required confirmation of the delete command or no echoing of

passwords, should be comprehensible and limited in number.

• Seek universal usability. Recognize the needs of diverse users and de-

sign for plasticity, facilitating transformation of content. Novice to ex-

pert differences, age ranges, disabilities, international variations, and

technological diversity each enrich the spectrum of requirements that

guides design. Adding features for novices, such as explanations, and

features for experts, such as shortcuts and faster pacing, enriches the

interface design and improves perceived quality.

• Offer informative feedback. For every user action, there should be an

interface feedback. For frequent and minor actions, the response can be

modest, whereas for infrequent and major actions, the response should

be more substantial. Visual presentation of the objects of interest pro-

41



APPENDIX A. GOLDEN RULES 42

vides a convenient environment for showing changes explicitly.

• Design dialogs to yield closure. Sequences of actions should be orga-

nized into groups with a beginning, middle, and end. Informative feed-

back at the completion of a group of actions gives users the satisfaction

of accomplishment, a sense of relief, a signal to drop contingency plans

from their minds, and an indicator to prepare for the next group of

actions. For example, e-commerce websites move users from selecting

products to the checkout, ending with a clear confirmation page that

completes the transaction.

• Prevent errors. As much as possible, design the interface so that users

cannot make serious errors; for example, gray out menu items that

are not appropriate and do not allow alphabetic characters in numeric

entry fields. If users make an error, the interface should offer simple,

constructive, and specific instructions for recovery. For example, users

should not have to retype an entire name-address form if they enter an

invalid zip code but rather should be guided to repair only the faulty

part. Erroneous actions should leave the interface state unchanged, or

the interface should give instructions about restoring the state.

• Permit easy reversal of actions. As much as possible, actions should be

reversible. This feature relieves anxiety, since users know that errors

can be undone, and encourages exploration of unfamiliar options. The

units of reversibility may be a single action, a data-entry task, or a

complete group of actions, such as entry of a name-address block.

• Keep users in control. Experienced users strongly desire the sense that

they are in charge of the interface and that the interface responds to

their actions. They don’t want surprises or changes in familiar behav-

ior, and they are annoyed by tedious data-entry sequences, difficulty in

obtaining necessary information, and inability to produce their desired

result.



APPENDIX A. GOLDEN RULES 43

• Reduce short-term memory load. Humans’ limited capacity for infor-

mation processing in short-term memory (the rule of thumb is that

people can remember ”seven plus or minus two chunks” of information)

requires that designers avoid interfaces in which users must remember

information from one display and then use that information on another

display. It means that cellphones should not require reentry of phone

numbers, website locations should remain visible, and lengthy forms

should be compacted to fit a single display.



References

M. Akçayır and G. Akçayır. Advantages and challenges associated with

augmented reality for education: A systematic review of the literature.

Educational Research Review, 20:1–11, 2017.

T. Akenine-Moller, E. Haines, and N. Hoffman. Real-time rendering. AK

Peters/CRC Press, 2018.

Apple Inc. Understanding world tracking in ARKit. Web-

page, 2018a. https://developer.apple.com/documentation/arkit/

understanding world tracking in arkit. Accessed November 18, 2018.

Apple Inc. About augmented reality and arkit. Webpage,

2018b. https://developer.apple.com/documentation/arkit/

about augmented reality and arkit. Accessed June 3, 2018.

O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee. Skeleton

extraction by mesh contraction. ACM transactions on graphics (TOG),

volume 27, page 44. ACM, 2008.

R. T. Azuma. A survey of augmented reality. Presence: Teleoperators &

Virtual Environments, 6(4):355–385, 1997.

J. Bacca, S. Baldiris, R. Fabregat, S. Graf, et al. Augmented reality trends

in education: a systematic review of research and applications. 2014.

I. Baran and J. Popović. Automatic rigging and animation of 3d characters.

ACM Transactions on Graphics (TOG), 26(3):72, 2007.

44

https://developer.apple.com/documentation/arkit/understanding_world_tracking_in_arkit
https://developer.apple.com/documentation/arkit/understanding_world_tracking_in_arkit
https://developer.apple.com/documentation/arkit/about_augmented_reality_and_arkit
https://developer.apple.com/documentation/arkit/about_augmented_reality_and_arkit


REFERENCES 45

A. Beane. 3D animation essentials. John Wiley & Sons, 2012.

G. Bharaj, T. Thormählen, H.-P. Seidel, and C. Theobalt. Automatically rig-

ging multi-component characters. Computer Graphics Forum, volume 31,

pages 755–764. Wiley Online Library, 2012.

F. D. Davis. Perceived usefulness, perceived ease of use, and user acceptance

of information technology. MIS quarterly, pages 319–340, 1989.

L. De Floriani, P. Magillo, E. Puppo, and D. Sobrero. A multi-resolution

topological representation for non-manifold meshes. Computer-Aided De-

sign, 36(2):141–159, 2004.

O. Dionne and M. de Lasa. Geodesic voxel binding for production character

meshes. Proceedings of the 12th ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation, pages 173–180. ACM, 2013.

A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and

transfer. Proceedings of the 28th annual conference on Computer graphics

and interactive techniques, pages 341–346. ACM, 2001.

W. Förstner. A framework for low level feature extraction. European Con-

ference on Computer Vision, pages 383–394. Springer, 1994.

L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis using convolutional

neural networks. Advances in neural information processing systems, pages

262–270, 2015.

M. Girard and A. A. Maciejewski. Computational modeling for the com-

puter animation of legged figures. ACM SIGGRAPH Computer Graphics,

volume 19, pages 263–270. ACM, 1985.

Google Inc. ARCore fundamental concepts. Webpage, 2018. https:

//developers.google.com/ar/discover/concepts. Accessed November 18,

2018.

C. Harris and M. Stephens. A combined corner and edge detector. Alvey

vision conference, volume 15, pages 10–5244. Citeseer, 1988.

https://developers.google.com/ar/discover/concepts
https://developers.google.com/ar/discover/concepts


REFERENCES 46

A. Henrysson and M. Billinghurst. Using a mobile phone for 6 dof mesh

editing. Proceedings of the 8th ACM SIGCHI New Zealand chapter’s in-

ternational conference on Computer-human interaction: design centered

HCI, pages 9–16. ACM, 2007.

K. P. Herndon, A. van Dam, and M. Gleicher. The challenges of 3d interac-

tion: a chi’94 workshop. ACM SIGCHI Bulletin, 26(4):36–43, 1994.

U. Hinrichs and S. Carpendale. Gestures in the wild: studying multi-

touch gesture sequences on interactive tabletop exhibits. Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, pages

3023–3032. ACM, 2011.

W. A. Hoff, K. Nguyen, and T. Lyon. Computer-vision-based registration

techniques for augmented reality. Intelligent Robots and Computer Vision

XV: Algorithms, Techniques, Active Vision, and Materials Handling, vol-

ume 2904, pages 538–549. International Society for Optics and Photonics,

1996.

R. L. Holloway. Registration error analysis for augmented reality. Presence:

Teleoperators & Virtual Environments, 6(4):413–432, 1997.

J. F. Hughes, A. Van Dam, J. D. Foley, M. McGuire, S. K. Feiner, D. F.

Sklar, and K. Akeley. Computer graphics: principles and practice. Pearson

Education, 2014.

A. Jacobson. Part ii: Automatic skinning via constrained energy optimiza-

tion. SIGGRAPH Course, 2014:1–28, 2014.

A. Jacobson, I. Baran, J. Popovic, and O. Sorkine. Bounded biharmonic

weights for real-time deformation. ACM Trans. Graph., 30(4):78–1, 2011.

B. E. John and D. E. Kieras. The goms family of user interface analysis

techniques: Comparison and contrast. ACM Transactions on Computer-

Human Interaction (TOCHI), 3(4):320–351, 1996.



REFERENCES 47

T. Jung, M. C. tom Dieck, H. Lee, and N. Chung. Effects of virtual reality

and augmented reality on visitor experiences in museum. Information

and communication technologies in tourism 2016, pages 621–635. Springer,

2016.

S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering

and cuts. ACM Transactions on Graphics (TOG), volume 22, pages 954–

961. ACM, 2003.

H. Kaufmann, K. Steinbügl, A. Dünser, and J. Glück. General training of

spatial abilities by geometry education in augmented reality. Annual Re-

view of CyberTherapy and Telemedicine: A Decade of VR, 3:65–76, 2005.

L. Kerawalla, R. Luckin, S. Seljeflot, and A. Woolard. “making it real”:

exploring the potential of augmented reality for teaching primary school

science. Virtual reality, 10(3-4):163–174, 2006.

L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-

resolution modeling on arbitrary meshes. Proceedings of the 25th annual

conference on Computer graphics and interactive techniques, pages 105–

114. ACM, 1998.

B. H. Le and Z. Deng. Smooth skinning decomposition with rigid bones.

ACM Transactions on Graphics (TOG), 31(6):199, 2012.

D.-T. Lee and B. J. Schachter. Two algorithms for constructing a delaunay

triangulation. International Journal of Computer & Information Sciences,

9(3):219–242, 1980.

V. Lepetit, P. Fua, et al. Monocular model-based 3d tracking of rigid objects:

A survey. Foundations and Trends R⃝ in Computer Graphics and Vision, 1

(1):1–89, 2005.

J. P. Lewis, M. Cordner, and N. Fong. Pose space deformation: a unified

approach to shape interpolation and skeleton-driven deformation. Proceed-

ings of the 27th annual conference on Computer graphics and interactive



REFERENCES 48

techniques, pages 165–172. ACM Press/Addison-Wesley Publishing Co.,

2000.

A. v. Luikov. Analytical heat diffusion theory. Elsevier, 1968.

N. Magnenat-Thalmann, R. Laperrire, and D. Thalmann. Joint-dependent

local deformations for hand animation and object grasping. In Proceedings

on Graphics interface’88. Citeseer, 1988.

D. E. McGovern. Experiences in teleoperation of land vehicles. 1989.

M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-

geometry operators for triangulated 2-manifolds. Visualization and math-

ematics III, pages 35–57. Springer, 2003.

Microsoft Inc. Microsoft hololens. Webpage, 2019. https://

www.microsoft.com/en-CY/hololens. Accessed June 2, 2019.

H. P. Moravec. Techniques towards automatic visual obstacle avoidance.

1977.

J. Nielsen. Usability inspection methods. Conference companion on Human

factors in computing systems, pages 413–414. ACM, 1994.

D. Pflughoeft. A heap-based C# priority queue optimized for A* pathfind-

ing. Webpage, 2013. http://www.blueraja.com/blog/356/a-heap-based-c-

priority-queue-optimized-for-a-pathfinding. Accessed April 25, 2019.

J. Portilla and E. P. Simoncelli. A parametric texture model based on joint

statistics of complex wavelet coefficients. International journal of computer

vision, 40(1):49–70, 2000.

G. Schall, D. Wagner, G. Reitmayr, E. Taichmann, M. Wieser, D. Schmal-

stieg, and B. Hofmann-Wellenhof. Global pose estimation using multi-

sensor fusion for outdoor augmented reality. 2009 8th ieee international

symposium on mixed and augmented reality, pages 153–162. IEEE, 2009.

https://www.microsoft.com/en-CY/hololens
https://www.microsoft.com/en-CY/hololens
http://www.blueraja.com/blog/356/a-heap-based-c-priority-queue-optimized-for-a-pathfinding
http://www.blueraja.com/blog/356/a-heap-based-c-priority-queue-optimized-for-a-pathfinding


REFERENCES 49

D. Schmalstieg and T. Hollerer. Augmented reality: principles and practice.

Addison-Wesley Professional, 2016.

B. Shneiderman, C. Plaisant, M. Cohen, S. Jacobs, N. Elmqvist, and N. Di-

akopoulos. Designing the user interface: strategies for effective human-

computer interaction. Pearson, 2016.

A. Tatnall and B. Davey. Reflections on the history of computer education

in schools in victoria. Reflections on the History of Computing, pages

243–264. Springer, 2012.

J.-M. Thiery, É. Guy, and T. Boubekeur. Sphere-meshes: shape approxima-

tion using spherical quadric error metrics. ACM Transactions on Graphics

(TOG), 32(6):178, 2013.

Trimble Inc. Sketchup website. Webpage, 2018. https://www.sketchup.com/.

Accessed June 3, 2018.

F. Wang and X. Ren. Empirical evaluation for finger input properties in

multi-touch interaction. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 1063–1072. ACM, 2009.

L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vec-

tor quantization. Proceedings of the 27th annual conference on Computer

graphics and interactive techniques, pages 479–488. ACM Press/Addison-

Wesley Publishing Co., 2000.

H.-K. Wu, S. W.-Y. Lee, H.-Y. Chang, and J.-C. Liang. Current status,

opportunities and challenges of augmented reality in education. Computers

& education, 62:41–49, 2013.

S. You and U. Neumann. Fusion of vision and gyro tracking for robust

augmented reality registration. Proceedings IEEE Virtual Reality 2001,

pages 71–78. IEEE, 2001.

S. You, U. Neumann, and R. Azuma. Hybrid inertial and vision tracking

for augmented reality registration. Proceedings IEEE Virtual Reality (Cat.

No. 99CB36316), pages 260–267. IEEE, 1999.

https://www.sketchup.com/

	Cover page
	Contents
	1 Introduction
	2 Background
	2.1 Computer graphics and 3D animation
	2.2 Automated rigging of 3D models
	2.3 Mobile augmented reality
	2.4 Direct manipulation and ease of use

	3 Approach for automated rigging
	3.1 Overview of the approach
	3.2 Rig generation with a sphere mesh approximation
	3.3 Bone heat skinning
	3.4 Posing by direct manipulation

	4 Examples of application
	5 Evaluation and discussion
	5.1 Analysis of the example scenes
	5.2 Quality and performance analysis of the rigging approach

	6 Conclusion
	A Golden rules

