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Yksilot usein turvautuvat paatoksenteossaan toisten antamiin suosituksiin, oli kyse sitten esimer-
kiksi musiikista, kirjoista tai elokuvista. Suosittelujarjestelmien kehitys on peraisin tastd havain-
nosta. Viime vuosina sahkoisen liiketoiminnan kehityksen ja kasvavan informaatiomassan myota
suositusjarjestelmille on syntynyt kasvava tarve. Irrelevantit ja personoimattomat elektronisen lii-
ketoiminnan sivustot voivat pahimmillaan ajaa pois potentiaalisia asiakkaita ja johtaa taloudellisiin
tappioihin liiketoiminnassa. Tassa tyossa rakennetaan personointia edistdva suositusjarjestelma

suurelle suomalaiselle nettihuutokaupalle.

Tydssa on tavoitteena rakentaa suositusjarjestelma, joka tekee nettihuutokaupan etusivusta rele-
vantimman ja personoidumman sen kayttadjille. Tama saavutetaan suositusjarjestelmalla, joka te-
kee kayttajan selaushistorian perusteella huutokaupan etusivulle personoituja huutokauppakohde-
suosituksia. Sopivan suositusjarjestelman loytamiseksi tyossa vertaillaan ja evaluoidaan yhteensa
seitsemadn eri suositusjarjestelmaa. Evaluointi perustuu suositusjarjestelmien ennustustarkkuu-

teen, ja se toteutetaan offline-simulaatiolla hyodyntden kayttajien selaushistoriaa.

Suuri osa suositusjarjestelmiin liittyvasta kirjallisuudesta olettaa suositeltavien kohteiden tai esinei-
den olevan staattisia ja ei-uniikkeja. Ndin ei kuitenkaan ole huutokaupassa, minka vuoksi tassa
tyOssa suositusjarjestelman tulee kyeta suosittelemaan lyhytikaisia ja uniikkeja kohteita. Ty0ssa on-
gelmaa lahestytadan luomalla yleinen suositusprosessi, joka toimii pohjana sisdltéperusteisille suo-
situsjarjestelmille, jotka hyodyntavat luonnollisen kielen prosessoinnin menetelmia huutokauppa-

kohteiden esittamisessa vektorina.

Tulosten perusteella hyva ennustetarkkuus voidaan saavuttaa erilaisiin lahestymistapoihin perus-
tuvilla suositusjarjestelmilld. Seka neuroverkkoihin perustuva Word2Vector (W2V) etta Term Fre-
guency-Inverse Term Frequency (TFIDF) — mallit soveltuvat ennustetarkkuudeltaan parhaiten kayt-
tajalle uusien kohteiden suosittelemiseen. Tulosten perusteella kayttdjille voisi olla jarkevaa suosi-
tella myds samoja kohteita, joissa he ovat aiemmin kdyneet, ja ndin ollen tehda etusivusta kaytta-

jaystavallisempi tarjoamalla suora oikotie aiempiin kohteisiin.

Avainsanat suositusjarjestelma, luonnollisen kielen prosessointi, nettihuutokauppa
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1 Introduction

1.1 Background and motivation

When one needs to make a decision with insufficient experience on the alterna-
tives, it is often needed to rely on recommendations from other people. The rec-
ommendations can originate from multiple different sources, such as by word of
mouth, letters, reviews or general surveys. Recommender systems assist in this
social decision-making process by taking recommendations as inputs, then aggre-
gating them, and finally sending them to appropriate recipients. The value of rec-
ommender systems comes from both the aggregation and the system’s ability to
make matches between the recommenders and those who seek recommenda-
tions (Resnick & Varian, 1997).

The development of recommender systems arise from the observation that indi-
viduals often rely on recommendations provided by others in their decision-mak-
ing process. For example, individuals tend to read and rely on the movie reviews
when they are selecting a movie to watch. Also, employers tend to count on rec-
ommendation letters when recruiting new employees (Ricci, et al., 2011;
Schwartz, 2004). In addition to filtering undesired alternatives, recommender sys-
tems can suggest particularly interesting alternatives to its users (Gundiz-
Oguidiicii, 2010).

Recently, new electronic business services have caused a pressing need for recom-
mender systems. In fact, recommender systems have developed in parallel with
the Web. This is due to the fact that there is a vast number of alternatives being

offered to users, which makes it difficult for users to choose between alternatives.



Examples of these electronic business services are online shops, online auctions,
and different product comparison services (Ricci, et al., 2011; Bobadilla, et al.,
2013).

Currently, nearly everyone who surfs the Web sites on Internet will come across
recommender systems. There are many popular Web sites that exploit recom-
mender systems, such as Amazon®, YouTube? and Netflix> (Giinduiz-Oguidiict,
2010).

1.2 Scope and objectives

This thesis has been developed in collaboration with a major Finnish online auc-
tion, where users can buy and sell a variety of different items, such as antique,
cars, movies, clothes, electronics and artwork. Users vary from single individuals
to large corporate businesses. The auction site has over 500 000 users every

week, and about 200 000 € worth of products are sold per day.

Currently, the front page of the auction site displays items that are irrelevant for
the users. This may drive away potential users and lead to loss of business oppor-
tunities. Moreover, users are required to filter the most interesting and relevant
items themselves from a very large and dynamic collection of approximately 1.5
million unigue items, which can be a laborious task. Thus, a recommender system

is needed to make the site more relevant for the users.

The goal of this thesis is to build a recommender system that makes the front page
of the online auction site more relevant for the users. In practice, multiple recom-
menders are evaluated in an offline simulation, using real life clickstream data of

the users.

1.3 Structure of the thesis

This thesis is divided in to six chapters. Chapter 2 introduces the theory of recom-
mender systems and online auctions, and examples of recommender systems in

real-life scenarios. Chapter 3 presents the most relevant recommender evaluation

! http://www.amazon.com
2 http://www.youtube.com
3 http://www.netflix.com
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methods in the context of this thesis. Chapter 4 describes the research problem
and justifies the techniques and processes that are used in the construction of the
recommenders. Moreover, the data, experimental setup and evaluation methods
used are explained. Chapter 5 presents the simulation results. Finally, Chapter 6

discusses the developed recommendation systems and summarizes this thesis.



2 Theory and practice

2.1 Recommender systems

2.1.1 Former research

The study of recommender systems is new compared to research into other clas-
sical information system tools and techniques, such as databases and search en-
gines (Ricci, et al., 2011). The first research paper on recommender systems was
published in the mid-1990s (Park, et al., 2012). The first actual recommender sys-
tem was Tapestry, an experimental mail system for filtering vast number of incom-
ing documents by utilizing user collaboration (Goldberg, et al., 1992). Tapestry was
the first recommender system that utilized collaborative filtering, a recommenda-
tion technique still used by many highly rated Web sites, such as Amazon and
YouTube (Linden, et al., 2003; Davidson, et al., 2010; Resnick & Varian, 1997).

Since the mid-1990s, interest in recommender systems has dramatically in-

creased. This is supported by the following facts (Ricci, et al., 2011):

e Recommender systems play a major part in popular Internet sites such as Am-
azon, YouTube, Netflix, Yahoo*, Last.fm> and IMDB®. For example, in 2006, Net-
flix announced the Netflix Prize challenge (Amatriain & Basilico, 2012), where
$ 1 million was offered to a team that could improve the accuracy of the cur-

rent recommender system by 10 %.

4 http://www.yahoo.com
5 http://www.last.fm
6 http://www.imdb.com
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Since 2007, ACM Recommender Systems (RecSys) has been an annual event
focusing on recommender technology research and applications. Moreover,
recommender system topics are covered in many other conferences, such as
ACM Special Interest Group on Information Retrieval (SIGIR), User Modeling,
Adaptation and Personalization (UMAP), and ACM’s Special Interest Group on
Management of Data (SIGMOD).

At higher education institutions, many courses are dedicated to recommender
systems only. In addition, tutorials on recommender systems are common in
computer science conferences.

Special issues in academic journals about research and development of recom-
mender systems field, such as Al Communications (2008), IEEE Intelligent Sys-

tems (2007) and ACM Transactions on Computer-Human Interaction (2005).

The number of published research papers between years 2001 and 2010 was 210

in total. Majority of these research papers were related to movies (25.2 %) and

shopping (20.0 %), because these fields have a large number of practical applica-

tions. The most popular journals in recommendation field between years 2001

and 2010 were Expert Systems with Applications (33.3 %) and IEEE Intelligent Sys-

tems (10.0 %). In recent years, the number of research papers has been increas-

ing, as shown in Figure 1 (Park, et al., 2012).
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Figure 1: The distribution of research papers by year of publication.
The figure is taken from A literature review and classification of rec-
ommender systems research (Park, et al., 2012).



2.1.2 Core concepts and definitions

Recommendation systems are defined as software tools and techniques that pro-
vide suggestions for items to be of use to a user (Burke, 2007). In this thesis, rec-
ommender systems are also referred to as recommender systems and recom-
menders. The definition of a recommender system includes some core concepts
that are explained in more detail in the following (Ricci, et al., 2011; Barbieri, et
al., 2014; Burke, 2007).

Recommendation is an information filtering form that analyzes users’ historical
preferences on a catalog of items in order to generate a personalized list of sug-

gested items. It is an option worthy of consideration.

Users are those who use the recommender system, and to whom the items are
recommended. Users may have different goals and characteristics. Recommender
systems exploit information about the users in order to personalize the human-

computer interaction.

Items denote objects that the system recommends to users, and they can be char-
acterized by their complexity, value or utility. The value of an item is positive, if
the item is useful to the user, and negative, if the item is not useful for the user.
Recommender systems focus in various different fields, and items can be for ex-
ample CDs, documents or news. Recommender systems are also customized in
such way that the provided recommendations are useful and effective suggestions

for a specific item type.

In the following, a recommender system is defined mathematically as a scoring
function, as described by Barbieri et al. (2014) in Probabilistic Approaches to Rec-

ommendations (Barbieri, et al., 2014).

Items, users and their preferences are denoted as follows. Let U = {uy, ..., uy } be
a set of M usersand 7 = {i4, ..., iy} a set of N items, where u represents a single
user, and i represents a single item. Using this notation, users’ preferences can be
modeled with a M X N size matrix R, where each element r** of R denotes the
preference value that user u assigns to item i. In this thesis, this preference value
is referred to as rating, which is interpreted as the degree of user’s appreciation
for a certain item i. Since R describes the users’ preferences, it is also referred to

as a rating matrix.



User preference data (elements r** for each user u and item i combination) can
be explicit or implicit. Explicit user preference data are explicitly expressed by in-
dividual users on the items they have experienced. For example, explicit user pref-
erence data are retrieved when users rate movies from 1 (worst) to 5 (best) after
watching them (thus, r* € {1, 2, 3,4, 5} Vu,i). In this thesis, the focus is on im-
plicit user preference data, which are observations of user and item co-occur-
rences. Examples of implicit user preference data are users’ recorded Web ses-

sions, likes, viewing times, check-ins, and clickstreams on Web pages.

Ratings can be explicit or implicit user preference data. A generic entry of user-
item rating matrix R can be defined as a binary value. If user u has not yet experi-
enced (for example, in implicit case not clicked on the item’s Web page, or in ex-
plicit case not rated the item) item i, then implicit rating r** = 0. On the other
hand, if user u has experienced item i, then the generic entry for rating matrix is

implicit rating r* = 1.

Let (u, i) be the enumeration of all user-item pairs in R. By using the previous no-
tation, the set of items (implicitly or explicitly) rated by user u can be defined as
Jr(w) ={i € 7| (u,i) € R}. Similarly, Ug(i) = {u € U |(w,i) € R} can be de-
fined as the set of users that have (implicitly or explicitly) rated item i. With this

notation, it is possible to define the following key concepts:

Active user is any user u that has rated more than or equal to one item, and thus
for an active user it satisfies that Jg(u) # @. This means that an active user has

rating history.

Cold-start problem occurs when no items have been rated by users u, or respec-
tively, no users have rated items i. It commonly occurs when a new user or item
is added to the underlying information system, and the recommender system can-

not provide suggestions in the absence of information.

As mentioned before, a recommender system provides suggestions for items to
be of use to a user. Because this is the case, a recommender system aims to pro-
vide an active user u with a list of item recommendations, recommendation list
L,, € 7, where the items are expected to be of the user’s interest. Often the rec-
ommendation list may only include items from which the user u has no experi-

ence, and thus, it must satisfy that £,, N Jz(u) = @. In this thesis, this is referred



to as recommendation list for non-visited items, and accordingly, if the recommen-
dation list may include items that the user has experienced in the past, it is a rec-

ommendation list for visited items.

Now it is possible to define a recommender system as a mathematical function. A
recommender system can be defined as a scoring function pj: U X 7 — R that ac-
curately estimates future preferences based on information about users’ past ac-
tions. The score p;* represents the appreciation of user u for item i. Therefore, a
recommender system can be used to predict the items that are the most likely to
be purchased in the future.

An example of implicit users’ preference matrix R is illustrated in Table 1, where
the rows uy, ..., u;o represent ten (M = 10) different users, and the columns
i1, ..., 15 represent five (N = 5) different items. The ratings represent whether us-
ers u have experienced item i (r* = 1 if has, and r* = 0 if not). Typically, the
number of users is large compared to the number of items (M >> N), and the pref-
erence matrix R is sparse. By using the notation presented above, the set of users
who have experienced item i3 can be represented as Ug(i3) = {u,, us, us}, and
the set of items experienced by user u, is Jg(u,) = {iy, i4}. No users have experi-
enced item ig, and thus Ug(is) = @. This represents the cold-start problem; how
should item is be recommended? In addition, cold-start problem exists for user
u,, who has no experience from any of the items; how should items be recom-

mended to u,?

Table 1: An illustration of implicit users’ preference matrix R.

51 7) i3 Ly s
uy 0 1 0 0 0
u, 0 1 1 1 0
us 1 1 1 0 0
uy 1 0 0 1 0
ug 0 1 1 0 0
ug 0 1 0 0 0
u, 0 0 0 0 0
ug 0 0 0 1 0
Uq 1 1 0 1 0
Uy 0 1 0 0 0



In general, a recommender system focuses on producing a list of recommenda-
tions for a certain user. Recommendations can be made with the help of algo-
rithms. A general framework for an algorithm that produces recommendation list

L,, for a certain user u is shown in Algorithm 1.

Algorithm 1: A general framework for a recommender algorithm

Choose the number of candidate items D that will be taken from the full item set 7 (positive inte-
ger, D < N).

Choose the size of the recommendation list L (positive integer, L < D).

1. Choose a subset of items C € J by using business-specific criterion. The number of items in
C must satisfy |C| = D and C N Jx(u) = 0.

2. Calculate score p}* for each item i € C, where higher score means higher appreciation.

3. Select the top L items based on the highest p}*. List them in the recommendation list £,,
with respect to some ranking algorithm.

4. Return L,.

2.1.3 Goals

The movement towards providing products and services to customers through
electronic commerce has allowed companies to provide customers with more op-
tions. The amount of information that customers must process before finding an
item that meet their needs has expanded (Schafer, et al., 1999). For users, the goal
of a recommender system is often to solve this information overload problem
(Resnick & Varian, 1997; Burke, 2007). Recommender systems can also be useful

for the users in the following scenarios (Ricci, et al., 2011; Herlocker, et al., 2004):

¢ Finding (all) good items. Recommender systems try to provide a list of items
that are of use for the users. Sometimes the list provided may include item
combinations, item sequences, or all the possible items that satisfy the needs
of a certain user. Recommendation list with predicted ratings or scores can
also be helpful for the user.

e Receiving annotations. Users can be given personalized annotations in con-

text, such as a TV program recommender system which sends notifications to
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users when a TV show worth watching (based on users’ preferences) will be
aired in the near future.

e Wanting to just browse. In this case, users are given the chance of browsing
the item catalogues freely, with no intention on purchasing any items. The pur-
pose of the recommender is to browse the items that are more likely to be
interesting for the users, provided by the recommender system.

e Interacting with the recommender system. Instead of trusting in recommen-
dations coming from recommender systems, some users might just want to
test the goodness of the recommendations or the behavior of the system. Us-
ers may also be given the possibility to interact with the recommender system
and make the recommendations more personalized.

e Wanting to express themselves. In some cases, users are more interested in
expressing their opinions and beliefs through comments and ratings. In addi-

tion, users may want to contribute in order to just help or influence others.

The role that a recommender system plays for a service provider is different from
the role it plays for users. Service providers may use recommender systems for
numerous reasons, such as (Schafer, et al., 1999; Ricci, et al., 2011; Schafer, et al.,
2001):

¢ Increasing sales volume. One of the most common reasons of commercial rec-
ommender systems is to be able to sell more with the help of recommenda-
tions. This goal is attained by recommending items that the users are most
likely to buy.

e Selling items more diversely. The service provider might want to sell a variety
of items from the catalogue, not only the most popular ones. Diversification
can be achieved by recommending items that would be difficult for users to
find without recommendations.

e Understanding the user better. By gathering explicit and implicit user prefer-
ence data, the service provider will be able to understand and predict the user
behavior. The preference data can be used for various things, such as increas-
ing user satisfaction and loyalty, turning browsers into buyers, or choosing new

items for product selection.

The lists above describes how recommender systems can serve multiple purposes.
The numerous possibilities for recommender systems have initiated the need for
different sources of knowledge and recommendation techniques (Ricci, et al.,
2011; Gindiiz-Oglidiici, 2010).
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2.1.4 Recommendation techniques

Recommendation techniques are used to predict items that might be of use for
the users. Several different techniques have been proposed as the basis for rec-
ommender systems, such as collaborative filtering, content-based, hybrid-based,
knowledge-based, demographic-based, and utility-based recommendation tech-
niques (Burke, 2007; Bhuiyan, 2013). This is a broad categorization of recom-
mender systems by different techniques, and it is not by any means the only way
to categorize recommender systems (Parsons, et al., 2004). The previously men-
tioned six techniques are briefly summarized in the following.

Collaborative filtering technique builds a database of user preferences for items
(Sarwar, et al., 2001). The technique is based on the observation that human in-
terests and preferences are typically correlated, and it assumes that users’ past
behavior will tend to agree also in the future (Barbieri, et al., 2014). Collaborative
filtering exploits this correlation by recommending the target user those items
that other users with similar preferences have liked in the past (Schafer, et al.,
2001).

Content-based filtering is based on similarities between item contents and fea-
tures. Content-based recommender systems recommend items that are similar to
those that the target user have liked in the past (Pazzani & Billsus, 2007).

Vector Space Models (VSM) can be used for spatial representations of textual item
contents, and it allows for representing each item in an n-dimensional space,
where each dimension usually corresponds to a term in an overall vocabulary. By
representing user profiles and items in the same vector space, recommendations
can be derived by calculating similarities. Cosine similarity is the most widely used
similarity measure to describe the proximity of two vectors v4,v, (Lops, et al.,
2011):

V1V

Sim V4,V = —
W1, v2) = {5 sl

(2.1)

In knowledge-based filtering, a recommender system provides a list of recommen-
dations based on the knowledge about users and items. Knowledge-based recom-
menders use reasoning for finding the products that meet the target user’s re-
guirements. These systems often interact with the user to gain the knowledge,

and the recommendations are not based solely on user ratings (Bhuiyan, 2013).
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In demographic-based filtering, recommender systems recommend items based
on user demographics. These demographics can include a variety of users’ per-
sonal attributes, such as age, sex, location, education, and occupation. Demo-
graphic-based recommender systems try to learn the associations between items

and people demographics (Bhuiyan, 2013).

In utility-based filtering, recommendations are based on utility of each item for
the target user. The utility is calculated by first using item features as background
data, and then determining the utility functions from items to user preferences.
Finally, item rankings are calculated with the help of the utility functions (Bhuiyan,
2013).

Hybrid-based recommender systems combine multiple recommendation tech-
niques together, such as all the techniques presented above. In addition to com-
bining different techniques, hybrids can combine various concepts, such as fea-
tures from different knowledge sources, recommender systems themselves, or

different implementations of the same recommendation technique (Burke, 2007).

Graph-based recommender systems can combine both collaborative- and con-
tent-based filtering techniques. Graphs present relations between users and items
as a bipartite graph. Users and items are usually defined as nodes, and edges con-
nect users and items. Edge weights can be used for representing the strength of

users’ preference towards the items (Huang, et al., 2002).

2.1.5 Challenges and considerations

Research has shown that recommender systems can help users to make much bet-
ter decisions with less effort (Haubl & Trifts, 2000). On the other hand, survey find-
ings (ChoiceStream, 2008) have also shown that more than one-half of product
recommendation system users are not happy with the recommendations on elec-
tronic commerce sites (Yoo, et al., 2013). When building a recommender system,
there are many things to consider from the user’s perspective, and also from the
practical point of view. For example, the type of data available, performance of
the system, and the desired scalability and quality of recommendations should be
considered (Bobadilla, et al., 2013). The following lists some of the most relevant

considerations in the context of this thesis:
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Sparsity. Data sparsity arises when users rate a limited number of items. As
mentioned in Section 2.1.2, the number of users is typically remarkably larger
than the number of items (M > N), and therefore, the rating matrix R is ex-
ceptionally sparse. Sparsity is problematic especially when using collaborative
filtering because recommendations are based on aggregating like-minded user
preferences (Guo, 2012).

Cold start. As defined in Section 2.1.2, cold start problem arises when almost
nothing is known about the user preferences, or when recommendations are
required for items that no users have rated. Research on these problems has
mainly focused on the latter, where content-based filtering (computing item-
item similarities) has been proposed as one possible solution. Expectation
Maximization (EM) technique has been proposed to solve the user-side cold
start problem. Both types of cold-start problems are problematic when using
collaborative filtering due to insufficient information (Schein, et al., 2002; Lam,
et al., 2008).

Item churn. Some recommender systems are implemented in a dynamic envi-
ronment, where items are added and removed continuously. Recommender
systems need to be able to adapt to these dynamic environments (Barbieri, et
al., 2014).

Short- and long-term preferences. Users may have different short- and long-
term preferences that a recommender system should take into account. Gen-
erally, recommender systems are either focused on building a long-term user
profile or making recommendations based on user’s short-term preferences
(Ricci, et al., 2011).

Recommending the same items repeatedly. Beel et al. (2013) conducted a
study to find out how often (if at all) it is reasonable to make same item rec-
ommendations to same users multiple times. They found out that generally it
makes no sense to display recommendations to the same users multiple times.
However, it was also found that users might miss interesting recommenda-
tions, if they are shown only once (Beel, et al., 2013).

Personalization-privacy trade-off. Personalization techniques aim to improve
the end-user experience by supporting users in filtering, sorting, and classify-
ing information. However, there is a trade-off between user personalization
and privacy. In order to receive more personalized recommendations, users

need to be willing to sacrifice some level of their privacy (Uchyigit & Ma, 2008).
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2.2 Online auctions

Traditional auctions are the oldest forms of economic exchange (Samuelson,
2014). There are a variety of different selling institutions that can be defined as an
auction. A common aspect of auction-like institutions is that they are anonymous,
and they elicit information in the form of bids, for example, who wins what and
pays how much is determined on the basis of received information. Auctions are
universal, and they may be used to sell any good (Krishna, 2002).

Online auction is an auction, where transactions take place on an Internet portal,
and the transactions are negotiated between buyers and sellers (Jank & Shmueli,
2010). Online auctions are typically deadline auctions, where the person with high-
est standing bid before a fixed stopping time, is declared the winner (Krishna,
2002). The first online auctions were held electronically via email messages, dis-
cussion groups, and news groups in 1995. Thus, online auctions are relatively new.
Today, there are many well-known online auction sites, such as eBay” and uBid?,
where buyers and sellers can exchange goods and information. In recent years,
online auctions have become popular for many reasons: online auction Web sites
are constantly available, geographical constraints are negligible, product selec-
tions are extensive, and auctions provide entertainment (Jank & Shmueli, 2010).

Moreover, the empirical research of online auctions is thriving, and the research
of online auctions has been thriving even more than conventional, brick-and-mor-
tar auctions (Jank & Shmueli, 2010). The research of recommender systems is usu-
ally focused on business-to-customer Web sites rather than customer-to-cus-

tomer which online auction sites are based on (Li, et al., 2007).

The following sections introduce different online auction formats and auction

characteristics.

2.2.1 Auction formats

This section presents the most common online auction formats. Online auction
sites may provide both single-item auctions where only a single item is up for sale,

and multiple item auctions, where multiple items are up for sale simultaneously.

7 http://www.ebay.com
8 http://www.ubid.com



http://www.ebay.com/
http://www.ubid.com/
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The single-item online auction formats presented are the English auction, Reserve
auction and Fixed Price auction, and the multiple-item auction formats are multi-
ple-item Fixed Price auction and the multiple-item Dutch auction (eBay, 2015, p.
Overview Of The Different eBay Auction Types; Sanoma, 2015, p. Ohjeet).

English auction is the most traditional auction, where the bidders compete against
each other by raising each other’s bids until the deadline is reached. The bidder
with the highest (and last) standing bid before the deadline is declared as the win-
ner of the auction. The winner pays the seller an amount equal to the price of the
last standing bid, and receives the auction object (Samuelson, 2014; Jank &
Shmueli, 2010). It is possible that the online auction allows bids also after the
deadline, as long as the time since the last bid is under some fixed time limit (for
example 5 minutes). The seller may also set the minimum starting bid (Sanoma,
2015).

Reserve auction prevents the seller from selling the item for less than a certain
price. This price is called the reserve price, and it is set by the seller at the point of
putting the item up for auction. The price is only visible to the seller, and the price
is not revealed to the bidders until at the end of the auction. If the highest bid is
greater than the reserve price at the end of the auction, the bidder pays the seller
an amount equal to the price of the last standing bid, and receives the auction
item. If the highest bid is smaller than the reserve price, no transactions are made.
Despite the seller’s reserve price, the reserve auctions work similar to English auc-

tions (eBay, 2015, p. Overview of the Different eBay Auction Types).

In Fixed Price auction (also known as “Buy Now” auction), the seller sets a fixed
price and a deadline for the auction item. The item is on sale for the fixed price
until the deadline is reached. If only a single item is on sale, the first bidder that
offers the fixed price before the deadline wins the auction. After that, the bidder
pays the seller an amount equal to the fixed price that the seller was asking. If
multiple items are on sale, the auction remains open until all the items have been
bought for the fixed price. If no bidders are willing to pay the fixed price before
the deadline, the auction closes and the item remains unsold. In Fixed Price auc-

tions, there is no need for minimum starting bids (Sanoma, 2015).

Multiple-item Dutch auctions are rare online auctions, where the seller is selling
more than one of a certain item with a deadline. In Dutch auction, the buyers bid

a price and say how many items they are willing to buy. When the deadline is
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reached, everyone pays the lowest price that was bid by one of the winning bid-
ders and receives the item or items (eBay, 2015, p. Overview of the Different eBay

Auction Types).

Sellers may also be given the possibility to combine Fixed Price with other auction
formats, such as Fixed Price and Reserve auction (Fixed Price Reserve auction), or
Fixed Price and English auction (Fixed Price English auction). Fixed Price English
auction works similar to normal English auction, but it also allows bidders to buy
the auction item instantly by offering the fixed price. If no bidder offers the fixed
price before the deadline, the auction ends up being a normal English auction, and
if the fixed price is offered, the auction closes as it normally would in a Fixed Price

auction. The Fixed Price Reserve auction works likewise (Sanoma, 2015).

2.2.2 Special characteristics of online auctions

A recommender system in an online auction environment facilitates trading by
helping the buyers to find suitable items from the sellers. In this case, the role of
a recommender system can be to build and retain user relationships, and promote
sales (Li, et al., 2007). In order to know the type of items that should be recom-
mended to different online auction users, it is important to understand auction

characteristics and user preferences that guide users in their decision-making.

The research (Drake, 2007) on online auction characteristics separates auction se-
lection and product valuation as two separate decision-making processes of the
user. The first describes how users choose between different auctions (thus,
items), and the latter describes the decision of determining how much to bid on a
certain item. Table 2 presents the five most and least important auction charac-
teristics for both auction selection and product valuation, according to the study
conducted by Drake (2007). In addition to Table 2, some other characteristics that
were included in the study were shipping costs, shipping options, return policy,
payment methods accepted, reserve price, minimum bid, “Buy now” option, and

seller feedback.
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Table 2: The most and least important auction characteristics.

Most important Most important Least important
# | (auction selection) | (product valuation) (both)
1 | Photo of the item Photo of the item Seller location
2 Item quality Item quality Proxy bidding®
3 Item description Item description Shipping insurance
4 Security Current bid Rate of bidding
5 Time remaining Time remaining Number of bidders

Another study by Drake et al. (2015) used signal theory methods to explore differ-
ent factors that guide buyers in their online auction decision making (Drake, et al.,
2015). These are presented in Table 3.

Table 3: Factors explained by auction characteristics.

Factor loadings

(variance explained) | Factor Auction characteristics

25 % Item quality Item quality

Item description
Photo of product
12 % Logistics Shipping costs
Shipping options
Shipping insurance
Payment methods accepted
8% Competition Time remaining
Rate of bidding
Number of bidders
5% Minimum price Reserve price
Minimum bid

4% Service expectations Return policy
Seller location
4% Expected winning bid | Current bid

Time remaining

3% Reputation Feedback scores

3% Default purchase “Buy now” option

% Proxy bidding: When the highest bidder bids, the winning price is always a small increment (often
determined by the seller) above the next lowest big (Roth & Ockenfels, 2002).
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Online auction transactions are often paid-up-front, which makes the buyers vul-
nerable to frauds. Therefore, online auctions use feedback systems to give users a
possibility to build their reputation by giving each other feedback. Because nega-
tive feedbacks are very rarely given, its consequences on users’ overall reputation
are more significant than positives. Therefore, users may try to avoid the conse-
quences of negative feedback by creating multiple accounts and pseudonyms
(Wang & Chiu, 2008; Resnick, et al., 2006).

There is evidence from eBay and Amazon online auctions that the decision dynam-
ics change near the end of an auction. This is called last-minute bidding, also
known as sniping, where the bidders submit their bids near the closing seconds of
the auction. There is not just one reason for sniping, but it is the best response in
many bidding strategies. For example, bidding early could give a signal to other
buyers that the item is exceptionally valuable, and thus raise the price. Online auc-
tions can deal with sniping by giving every bidder a chance to bid, even after the
deadline, as long as the time since the last bid is under some fixed time limit (Roth
& Ockenfels, 2002).

Online auctions also deal with different types of sellers. The sellers may have large
diversity in their company types, product assortments, objectives and strategies.
Especially the corporate sellers may have different strategies, such as finding new
customers, increasing profit margins, or gaining reputation. Therefore, auction
sites often charge a listing price from the corporate sellers (Becherer & Halstead,
2004).

In addition to previously mentioned characteristics, online auctions are very dy-
namic marketplaces, where the items are unique and short-lived. Moreover, there
are usually many bidders willing to buy certain item, whereas only one of them
can win the item. Often those who made a bid but did not win the item are willing
to buy the same item or a similar item from someone else. On the other hand, the
one who won the item, is not likely wanting to buy a similar item again (Katukuri,
et al., 2013; Pinckney, 2013a).
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2.3 Recommender systems in practice

The purpose of this section is to overview recommenders that are in real-world
use on popular Web sites, such as YouTube and eBay. It should be noted that the
information presented in this section may not be up-to-date, and due to the speed
of change, the recommenders currently implemented on those sites may differ
from what is presented here. Moreover, detailed information on the techniques
and algorithms in use are challenging to find, which may be due to the business

value of the recommenders.

2.3.1 YouTube

YouTube is a popular online video community, where the recommender recom-
mends video sets to its users. The goal of the recommender is to provide very high
quality and personalized video recommendations based on both content and us-
ers’ activity data. Content data include raw video streams and video metadata,
and users’ activity data can be further divided into explicit and implicit data. Ex-
plicit data include users’ ratings, favorites, likes and subscriptions, whereas im-
plicit data is generated from activities like viewing times and interaction with vid-
eos (such as the proportion of video that a user watched). The following is based
on YouTube’s recommendation system that was in use in 2010 according to Da-
vidson et al. (2010).

One of the main techniques that YouTube use is association rule mining, where
the number of co-visitation counts c;; are calculated for each pair of vid-
eos (v;, ;). Then, a score called relatedness 7 is calculated with the help of the
following formula
Cij

(v, ) = m (2.2)
where f(v;, vj) is a normalization function, such as f(vi, vj) = ¢; - ¢j. Now, given
a seed video v;, videos vj, j # i can be ranked in a decreasing order with respect
to the relatedness measure, and top N candidate videos can be chosen in ranking
R;. These related videos in R; can be considered as a directed graph: for each pair
of videos (v;, v;), there is an edge ¢;; that connects v; and v; only if v; € R;, where

the weight of the edge is given by (2.2).
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After this, a candidate video set will be generated. The generation begins by gen-
erating a set of videos based on user’s personal activity on the site. This is called a
seed set S, which contains videos that the user has shown activity towards (such
as favorited, rated, or added to playlist). The relatedness rankings R; are calculated
for each of the videos in the seed set, v; € S, and the union of these rankings is

denoted as

Cu(S) = U R;. (2.3)

V;ES

Taking only C; as a set of candidate videos often leads to a narrow set of related
videos, which is why this candidate set is expanded by taking a limited transitive
closure over the related videos graph. Define C,, as the set of videos that are reach-

able in n steps from any video in the seed set

Cn(S) = U R;, (2.4)

Vi€Cn—1

where C,,_4 is a recursive definition, and C, = S is the first set. By removing the
original seed set S from this, and taking all the cases C; from i = 0 to N, the can-

didate set for recommendations is obtained as

N¢

i=0

Because the size of the candidate set is large, the next step is to rank the videos in
the set. The ranking is a three-step procedure, and it is done by using a linear com-
bination of the following signals: 1) video quality (assure video quality by using
view count, ratings, and such), 2) user specificity (boost user’s unique taste and
preferences), and 3) diversification (remove too similar videos from the ultimate
list). Based on the computed rankings, a small number of recommendations (from

4 to 60) are displayed through the user interface (Davidson, et al., 2010).

In the previous it was described how a number of techniques from Section 2.1.4
are used in the YouTube recommender. Therefore, this recommender could be
classified as a hybrid recommender that uses for instance collaborative-, demo-
graphic-, content-, and graph-based techniques. The YouTube recommender also
follows the general framework of a recommender algorithm (see Algorithm 1),

where a set of candidate items are first chosen, then ranked, and finally displayed.
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2.3.2 eBay

eBay is a multinational online auction site where buyers and sellers can exchange
items and information. There is little information about the current recommender
system that eBay is using, but Tom Pinckney held a speech about eBay’s graph-
based recommender system in 2013. This system is explained in the following,
based on the video (Pinckney, 2013a) and slides (Pinckney, 2013b) of Pinckney’s

speech.

The recommender system at eBay is based on user’s personal taste profile, which
describes the set of things that the user likes, and the set of things that the user
does not like. Taste profile is based on the assumption that likes and dislikes are
correlated. The purpose of using taste profiles is to reduce the computation time
by reducing the dimension of the problem. Back in 2013, eBay had graphs with 40

billion edges, 2 billion item nodes, and 200 million user nodes.

The graph technique is explained with the help of the following example. First,
assume user A, who likes bicycles and carrots (items). On the other hand, assume
user B who dislikes bicycles and carrots but likes cars. Now, based on the taste
profile’s correlation assumption, it is possible to infer that another user C, who
dislikes carrots, would like cars over bicycles. This is due to the fact that user B also
dislikes carrots, and therefore user C would choose similar to B. The situation is

illustrated in Figure 2.

Figure 2: Inferring correlations in eBay’s recommender system. User
C would like the car instead of the bicycle because both users B and
C dislike carrots.

In the previous scenario, information about user B and C’s preferences on certain

items were used in order to predict user C’s choice. Assuming more users (D, E, F,
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and G), and that they can describe their preferences from —2 (dislike) to 2 (like)
on each item, it is possible to plot the users’ preferences in Figure 3. It can be seen
that the users almost form a straight line, and there seems to be a hidden factor,
a latent factor, that could explain users’ preferences in less dimensions. For exam-
ple, one reason why users are either liking or disliking both carrots and bicycles
could be that some users are more ecological than others. Therefore, it could be
possible to describe user preferences to some extent by using only the ecological
factor rather than all the items themselves (Ecological axis in Figure 3). In general,
latent factors can be inferred but not observed, and there is not necessarily a rea-
sonable real-world interpretation for the factor. The exact techniques that eBay

uses for extracting the latent factors were not introduced in the source material.

Ecological
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Figure 3: Users’ preferences plotted in two dimensions, illustrating
how much users like bicycles and carrots.

In general, eBay uses a number of latent factors [; in order to create an n-dimen-
sional taste space T = (l4, ..., ;). The taste space is used for creating a taste pro-
file T* = (I}, ..., [¥) for each user u. Therefore, the taste profile consists of latent
factor coordinates l}',i = 1, ...,n, also known as taste coordinates. Moreover,
items i are described in terms of the taste coordinates, T = (li, ...,l,iq) (such as

how ecological is the carrot compared to the bicycle).
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Now, assume a graph as in Figure 2, where items and users are the nodes, and
edges can only connect users and items. Moreover, assume only two latent factors
[, and [,. By defining edge weights from users to an item to be the cross product
of taste profiles between users and the item, it is possible to constrain similar
items to be close to each other. The situation is presented in Figure 4, where the

taste profile of the bicycle can be calculated by solving

{_uficycle + Zlé)icycle =2

N Tbicycle — z _E (2 6)
2li)icycle _ 1l£)icycle =2 ' '

3" 3

bicycle bicycle
([, 5

@ (0,1)

€.-9)

bicycle ;bicycle
(L L)

Figure 4: Calculating the taste profile TPicycle =

)

for the bicycle.

The users’ taste profiles are updated as users like (for example purchases items)
or dislike (for example views the item’s Web site and ignores the item) items. Taste
profile coordinates are updated so that only the coordinates of the item and user
in question are updated. This requires checking that every adjacent nodes cross
products will remain the same as before. For example, when user C in Figure 4
buys (likes) the car, only user C's and the car’s coordinates are updated. In this
example, there are many possible coordinate combinations, and the solution is

not unique. One possible solution is presented in Figure 5.
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Figure 5: Updating the taste profile coordinates. Only the coordi-
nates of the item and user in question are changed (marked with
blue color).

As mentioned in Section 2.2.2, online auctions are highly dynamic marketplaces,
where items are added and removed constantly. eBay tackles this with the help of
graphs and low-dimensional users’ taste profiles, rather than computing large and
dynamic item-item or user-user similarity matrices. Recommendations for a cer-
tain user can be computed by calculating the distances between user’s taste pro-

file and item profiles. If necessary, too similar items are not recommended.

The exact techniques how eBay generate the end-user recommendation list from
the graphs are not revealed in the speech. It remains unknown how the latent
factors or possible candidate items are generated, if at all. However, the key idea
in their recommender is to represent both users and items in the same vector
space, and calculate similarities in this space to generate the recommendations.

Dimensionality reduction is used to reduce the computation time.
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3 Evaluating recommender systems

Numerous goals for recommender systems were introduced in Section 2.1.3. It is
useful to evaluate how well recommender systems perform with respect to these
goals, and also with respect to variety of properties such as accuracy, robustness
and scalability (Shani & Gunawardana, 2011). This chapter describes experimental
settings and evaluation metrics that help in making choices between different rec-

ommender systems.

3.1 Experimental settings

Recommender systems can be compared with the help of experimental method-
ology. The methodology follow guidelines that are common for empirical studies:
a hypothesis must be set before running the experiment, all sources of variation
must be identified, and the generalization power of the experiment must be con-
sidered when drawing conclusions (Dean & Voss, 1999; Shani & Gunawardana,
2011). Shani and Gunawardana (2011) divide experimental settings into user stud-
ies, offline experiments and online experiments (Shani & Gunawardana, 2011). The
latter two are the most relevant in the context of this thesis, and they are dis-

cussed in the following.

Offline evaluation is usually based on simulating the online environment of a rec-
ommender system by splitting the available data into training and test sets, similar
to machine learning algorithms (Barbieri, et al., 2014; Bishop, 2006). In recom-
mender evaluation, the original dataset can be split into training and test sets by
splitting in time, and using these sets the recommender can be simulated by mak-

ing predictions for the unseen test set. However, in order to make valid deductions
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from the simulations, it needs to be assumed that the user behavior would have
been the same whether the recommender was actually in use or not (Shani &
Gunawardana, 2011). Offline experiments are attractive since they require no in-
teraction with the users. However, the drawback is that offline evaluations can
only provide metrics from the past, and therefore, only a very few questions can
be answered by solely relying on offline experiments (Shani & Gunawardana,
2011; Barbieri, et al., 2014).

In an online evaluation, recommender systems are partly or fully deployed in the
target environment, where the recommender systems can be used by real users.
This allows for testing the effects of the recommender system on real users that
interact with the system. In addition, online evaluations are useful for testing mul-
tiple different recommender systems simultaneously to compare and rank them.
Online evaluations require careful planning in order to draw reliable conclusions.
For example, users need to be sampled multiple times and randomly when divid-
ing them into subsets of users in order to compare different recommender sys-
tems. Online evaluations can also be expensive and risky, which is why it is rea-
sonable to develop algorithms first by using offline evaluation (Shani &
Gunawardana, 2011).

3.2 Evaluation properties

Shani and Gunawardana (2011) have listed numerous recommender system prop-
erties for measuring and ranking different recommender approaches (Shani &
Gunawardana, 2011). Unless mentioned otherwise, the following is based on this

list with the help of notation from Section 2.1.2.

3.2.1 Predictive accuracy

Predictive accuracy measures the accuracy of predicted ratings produced by the
recommendation system. The accuracy can be measured by comparing the pre-
dicted ratings 7" and actual ratings r;* with respect to some metric. Predictive ac-
curacy is usually calculated in offline experiments, since the real ratings r;* are
typically known. In offline experiments, it is possible to choose a test set T that
contains only user-item pairs (u, i) with an actual rating r* € R (thus, Jp(u) # @

and Ug (i) # O for all (u, i) € T), and then calculate the accuracy with respect to
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some metric. Predictive accuracy can be calculated in a similar manner when per-
forming online experiments, where the only difference is that the real ratings are

usually retrieved through users’ online usage.

A typical framework for an algorithm that measures predictive accuracy is pre-
sented in Algorithm 2.

Algorithm 2: A typical framework for measuring predictive accuracy

1. Divide user-item pairs (u, i) € R into a training set S c (u,i) € Rand atestsetT c (u,i) €
R,sothatSNT =0,8§ =T # @ and T N (Ug(i), Tg(w)) # @ for all (u, i) € T. This means
that the test set contains only user-item pairs that have an actual rating, and the training set
consists of the rest of the user-item pairs.

2. Train the recommender system with training set §S.

3. Predict ratings 7 for all user-item pairs (u, i) € T. Because a recommender system was de-
fined (Section 2.1.2) to be a scoring function pj*: U X J — R that maps user-item pairs to
users’ preferences, the output of the function can be interpreted as users’ predicted rat-
ings 7*.

4. Compare predicted ratings #* and the actual original ratings r* for all (u, i) € T with re-
spect to some metric.

The Root Mean Squared Error (RMSE) is a metric that measures how close the

actual and predicted ratings are to each other with the following formula:

1
RMSE = 7 Z #* =1z, (3.1)

(w,i)eTr
where |T| is the number of user-item pairs (u, i) in the test set T.

The Mean Absolute Error (MAE) measures the absolute deviation between the

actual and predicted rating:

1
MAE = |— Z it — 1. 3.2

Instead of trying to predict the exact ratings, one could try predicting the items
that a user would choose. This is called usage prediction, where the idea is to hide

some of the items i € Jg(u) that a user u has experienced in the past, and then
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observe whether the recommender system recommends these items for the user.

The logic for this is presented in Algorithm 3.

Algorithm 3: A typical framework for measuring usage prediction

Assumptions: Let R be a binary matrix of active users’ u € U preferences, where each element
r?* € R € {0, 1} represents whether a user has experienced an item i € J. If user u has experi-
enced item i, then r* = 1, and if not, then r** = 0. Let Jg(u) be the set of items that a user u has
experienced, and Ug (i) the set of users that have rated item i.

Initialize list £L = {3}, which will be a list of lists that contain recommended items for each user u.
Choose N, to be number of recommendations that will be suggested for each user u.

1. Select user-item pairs {(u,i) € R into a test setT c (u,i) ER, so thatT =@, T N
(Ug(i),Tg(u)) = @ for some (u,i) € R,and r* = 1forall (u, i) € T. This means that the test
set contains only user-item pairs for which a user has experienced the item, but not all of
them.

2. Choose atraining matrix § = R, and modify it so that r = 0 € S forall (u, i) € T. This means
that the training matrix equals the original rating matrix with some of the items hidden.

3. Train the recommender system with the training matrix S.

4. Foreachuserudo:
4.1. Use the recommender system to produce a list of N, recommendations £L,, for user u (as
in Algorithm 1).
4.2. Expand list £ with L,,.
4.3. End for-loop

5. Compare recommendation list £ with the hidden user-item pairs in test set 7. Do the com-
parison with respect to some metric.

In offline experiments, usage prediction is based on the assumption that users
would make their decisions in the same way, whether the recommender system
was actually deployed or not. In other words, it needs to be assumed that the rec-
ommender system would not have had an effect on users’ choices in the past. This
assumption can be false, for example in a situation where an unaware user would
have wanted to experience the item, but no chance to see the item was given.
Therefore, the recommenders may seem to perform worse in comparison to if

they were actually implemented at the time of evaluation.

The comparison of users’ experiences on items with the recommendations pro-
vided by the recommender system (Algorithm 3, step 5) can be done for each user
alone, or to multiple users simultaneously. Table 4 presents four different scenar-

ios that are possible when comparing whether a certain user has experienced a
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certain item with the items on the recommendation list. If the user has experi-
enced the item and the recommender system recommends this item, it is True-
Positive (TP), and if the recommender system does not recommend the item, it is
False-Negative (FN). If the user has not experienced the item and the recom-
mender system recommends this item, it is False-Positive (FP), and if the recom-

mender system does not recommend it, it is True-Negative (TN).

Table 4: Usage prediction scenarios when comparing whether a cer-
tain user has experienced a certain item with the items on the rec-
ommendation list.

Recommended Not recommended

Experienced True-Positive (TP) False-Negative (FN)

Not experienced | False-Positive (FP)  True-Negative (TN)

By classifying each item in the user’s recommendation list to one of the cells in
Table 4, it is possible to count user-specific usage prediction measures. Some of

the most relevant measures in this thesis are presented in the following.

The first usage prediction measure is precision, which is defined as follows:

#TP

— 3.3)
#TP + #FP

Precisiony_ =

where #TP is the number of items that were classified in Table 4 cell TP, and #FP
is the number of items that were classified in cell FP. In a similar manner, #FN is
the number of items classified in cell FN, and #TN is the number of items classi-
fied in cell TN. Because the number of items that are classified in each cell de-
pends on the number of recommendations N, (see Algorithm 3), precision meas-
ure can be calculated for different recommendation list sizes, which is noted by
the sub-index Precisiony . Precision describes the proportion of items that were

suitable for the user from all the items that were recommended.

Another measure for usage prediction is recall:

#TP
Recally = TPRy = —— (3.4)
Nr Ne ™ #TP + #FN’
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which is also known as the True-Positive-Rate (TPR). The variables in the formula
were defined above where the variables of equation (3.3) were defined. Recall is
also dependent on N,., and it is denoted with similar sub-index to precision. Recall
describes the proportion of items that were correctly recommended from all the

items that would have been suitable recommendations for the user.

There is typically a tradeoff between precision and recall, and longer recommen-
dation lists typically improve recall and reduce precision. F1-Score (Rijsbergen,
1979) is a measure that summarizes this tradeoff by taking the harmonic mean of

precision and recall:

Precisiony,_ * Recally,

F1 —Scorey, =2 (3.5)

Precisiony_+ Recally

The idea of ranking measures is to measure the ordering of items in a recommen-
dation list £, that is displayed to a user through a user interface. The ordering of
the items is produced by a ranking algorithm of the recommendation system,
which aims to order the set of items according to user’s preferences (see Algo-
rithm 1, part 3). In a simple case, the ranking algorithm just orders the items in a

decreasing order with respect to the predicted ratings.

One possibility for scoring rankings is to use a reference ranking, in which the rank-
ing scores are based on correlation of some “true” ranking and the ordering of the
recommendation list. When it is only known which items users have visited and
which not, the visited items should be ranked above the non-visited items. This is
valid only if it is known that the user was aware of all the non-visited items, and
the user actually preferred visited items to the non-visited items. Constructing the
true ranking is challenging when the number of items is large, and users may only

see a fraction of these items.

Another possibility is to use utility-based ranking measures, where it is assumed
that the utility of a recommendation list is additive, and can be given as a sum of
the utilities of individual recommendations. In this case, recommended items are
discounted by a factor that depends on its position in the list of recommendations.
Usually, it is assumed that users view recommendation lists from the beginning to
the end, which is why the utility is discounted more heavily towards the end of the
list. This assumption is reasonable when it is expected that users will only view a

few of the items at the top of the recommendation list.
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R-Score (Breese, et al., 1998) metric assumes that the value of recommendations

declines exponentially down the recommendation list, yielding the following score

max(ruij -d,0)
u ] 2a—1

where i; is the item in the j:th position, 1; is user u’s rating for item i, d is a task-

for each user u:

dependent neutral rating, and «a is a half-life parameter that controls the expo-
nential decline of the position values in the list. The half-life parameter can be
interpreted as the number of items in the list such that there is a 50-50 chance the
user will review that item. For usage prediction, typically d = 0 and r; = 1 if the
user has experienced the item, and 0 otherwise. The user-specific scores can be
aggregated using

ZuRy
YuRy

where R;, is the score of the best possible ranking for user u.

R =100 (3.7)

If it expected that user might view a large proportion of the list, a slower decay is
needed. In this case, Normalized Cumulative Discounted Gain (NDCG) (Jarvelin &
Kekaldinen, 2002) with a logarithmic discount can be used. Assuming gain g,,; for
each user u being recommended an item i, the average Discounted Cumulative

Gain (DCG) for a recommendation list with N,. items can be defined as

M Nr

gul
DCG =— 2;25 ! 3.8
M max(1,logy j)’ (3.8)

where the logarithm base b is a free parameter. NDCG is the normalized version
of DCG

DCG

NDCG =1
€6 =100,

(3.9)

where DCG™ is the best possible DCG.
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3.2.2 Item coverage

Item coverage refers to the extent that items are covered when providing recom-
mendations. Item space coverage can be measured by simply examining the per-
centage of items that can be recommended by the recommender system, denoted

with Jp € J. This measure is defined as Simple Item Space Coverage (SISC):

|75 |
SISC = —, 3.10
N (3.10)

where |Jp| is the number of items in set Jp, and N is the number of items in set J.

3.2.3 Other properties

Confidence measures how much the system trusts in its recommendations. One of
the most common measures for this is the confidence interval, which statistically
guarantees that the predicted value from the recommender system lies between
a confidence interval with pre-defined probability a. Users can benefit from con-
fidence values when choosing items. For example, users might want to find more
information about an item with low level of confidence (thus, the confidence in-
terval is large). Confidence can also be used for pre-filtering low confidence level

items before making recommendations to users.

In contrary to confidence, trust measures how much a user trusts in the recom-
mendations that are produced by the recommender system. Trust can be meas-
ured by conducting user studies, or by assuming that users will use the system
repeatedly if they trust the recommendations. Trust requires user interaction, and

it cannot be measured in offline experiments.

Some users expect recommender systems to recommend products that they did
not know about. Novelty of the recommendations can be measured online by con-
ducting user studies, but also offline. In offline experiment, the data is first split by
specific point on time, meaning that the user ratings made after that point are
hidden. After that, by also hiding some items before that time point, it is possible
to simulate that the user was acquainted with these items but did not rate them.
In this case, the recommender system is rewarded for recommending items that
user rated after the split, and penalized for recommending items that user rated
before the split. Moreover, it is possible to measure novelty by using the assump-

tion that popular items are less likely to be novel.
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In a scenario where an item was successfully recommended to a user (for example,
user decided to click the item that was recommended), it is possible measure how
surprising the recommended item was to the user. This measure is known as ser-
endipity, which is as a measure for the amount of relevant information that the
user was able obtain from the recommendation. In online experiments, serendip-
ity can be measured through user studies, and in offline experiments it can be
measured by computing the distances between new successful recommendations

and user’s previous ratings.

Diversity is described as the opposite of similarity. If the recommender system sug-
gested only similar items to a user, it would be time-consuming for the user to
browse through the whole range of items. One of the most explored methods for
measuring diversity is by computing item-item similarities with the help of item
features (see content-based filtering in Section 2.1.4). The actual measure can be
based on various quantities, such as on the minimum, maximum or average dis-

tances between item pairs.

Utility measures the benefits of a recommender system for either the system pro-
vider or the user. For the system provider, utility can mean various things, such as
the generated revenue or increase in average visit time of a user (see goals of a
recommender system in Section 2.1.3). It is usually simple to evaluate by compu-
ting and comparing the quantity in question between different recommender sys-
tems through online experiments. From the user’s perspective, utility describes
the benefits that a user can gain from the recommendations, which is difficult to

model in reality.

The users of a recommender system have their own risk profiles. They can be risk-
averse or risk-seeking towards recommendations, and for example, some online
auction users might be willing to buy items from other users that have had nega-

tive feedback in the past, while some not.

Robustness measures the recommender system’s ability to tolerate fake infor-
mation. For example, if a recommender system uses viewing time of an item as an
implicit rating, and in reality the user was away from the computer for the whole
time, the recommender should not make too strong assumptions of the user’s
preferences. Moreover, a user could try to boost an item’s popularity by using fake
profiles, and on the other hand, a user could try to inject competitors’ by giving
negative ratings. Robustness can be evaluated by experimenting how sensitive the

system is to these kind of attacks with respective to the system’s goals. Another
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type of robustness is more related to the technical side of the recommendation

system, such as how to handle a large number of queries or malfunctions.

Privacy emerges when a recommender system discovers user’s preferences, and
with the help of these preferences, makes recommendations to other users. This
generates a privacy risk, and because collaborative recommendation techniques
(see Section 2.1.4) are based on this, the recommender system must be certain
not to leak any sensitive private information. In addition, user anonymity is a pri-
vacy concern, as seen in the Netflix Price (Amatriain & Basilico, 2012) case, where
researchers were able to reveal the anonymity of some Netflix users by combining
the anonymized movie rating data from multiple sources (Narayanan &
Shmatikov, 2008). Privacy usually comes at the expense of predictive accuracy,
and it can be evaluated, for example by comparing different systems with respect

to the portion of users whose private information were at risk.

Recommender systems are often implemented at large scale, which is why scala-
bility of the system plays an important role. The chosen algorithms and techniques
affect the resources that are needed, such as the computational power, memory
and time. Users expect recommender systems to provide recommendations rap-
idly, and therefore the algorithms and techniques must be chosen with respect to
available resources. Thus, it is useful to understand the consumption of these re-
sources over large data sets. Scalability can be measured by different quantities,
such as number of recommendations per second, or latency (time for making a

recommendation online).
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4 Developing the recommender

4.1 Problem description

In this thesis, a recommender system is built for a major Finnish online auction
site. The recommender system is built and evaluated offline using historical online

browsing data of the auction site users.

Figure 6 illustrates how the items are currently displayed on the front page of the
online auction site. In general, the items on the front page can be divided into
three different main categories: ‘Display window’ (‘Ndyteikkuna’ in the figure),
‘Ending soon’ (‘Vield ehdit’ in the figure), and ‘Most popular’ (‘Suosituimmat’ in
the figure). There are 15 items under the category ‘Display window’, where the
sellers have paid money to get their auction item on front page display for a cer-
tain amount of time. The category ‘Ending soon” aims to attract the last-minute
bidders by displaying five auction items that are closing soon, and ‘Most popular’

displays five of the most popular items based on item view count.
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As can be seen from the figure, items on the front page are random and likely to
be irrelevant for the users, especially for those who have the intention to buy only
certain items. For example, a car and travel enthusiastic male user might not be
interested in buying a stuffed wild boar or a woman’s handbag as displayed on the

front page in Figure 6.

This thesis aims to build a recommender system that makes the front page more
relevant and personalized for the users. This is achieved by having the recom-
mender system to choose the items to display on the front page. In this thesis,
multiple recommenders are evaluated based on their predictive accuracy.

Several challenges, constraints and requirements are to be taken into account
when building a recommender system. The following sections describe the used
approaches, experimental setup, and the building process of potential recom-

menders.

4.2 Considerations

The large number of items and dynamic nature of the online auction are significant
factors when considering recommendation techniques. There are continuously
around 1.5 million items for sale on the auction site, and the average expiration
time for them is around two weeks. Bidders may also close auctions by winning
items before they expire. Moreover, tens of thousands of items are added on sale

every day.

Nearly every item on the auction site is unique. Even items with the same product
title often have dissimilarities, such as the condition, price, seller or the location

of the item.

Even though hundreds of thousands users visit the site every week, many items
have only few views, and some items may have no item views at all. The large
number, uniqueness, and the dynamic nature of items lead to sparsity if repre-
sented in a traditional user-item rating matrix. Moreover, the dynamicity of items
would require adding and removing item columns from the rating matrix columns

continuously.

For practical considerations, the recommender system should be able to provide

the recommendations quickly. The target requirement for computing the recom-
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mendation when it is queried is less than 100 milliseconds for the recommenda-
tion computation. This time limit allows for performing the necessary queries to
display the recommendations, while not affecting the user experience through
slow page loading times. The recommender should provide N = 20 recommenda-
tions to be displayed on the front page. The recommender should be able to rec-

ommend recently added items as well.

4.3 Data

The online auction site collects data about users and their activities on the web-
site. The data available for this thesis are raw web log data of user clickstreams. In
this data, users are identified based on their IP address. No data about users’ pre-
vious events, such as sales, purchases or feedbacks exist. Moreover, detailed in-

formation about the auction items is not available.

Although the data available is limited, there is still vast amount of information to
be utilized. The data allow for building and evaluating a recommender system. The
data used in this thesis are divided into two different main datasets: Dictionary
dataset and Recommender dataset, which are described in the following. How-
ever, due to data privacy and trade secrets, a very detailed exploratory analysis of
the data is not provided.

1. Dictionary dataset

The Dictionary dataset is a one-year sample of user item views between June 2014
and May 2015. Item views are web log events where users have viewed auction
items on their item-specific web pages. Each item view event in the web log in-
cludes information about the title of the item (item title) and the category of the

item (item category).

Item titles are parsed from the web logs, and they are missing special Finnish char-
acters, such as “@” and “6”. Non-alphabetical characters, and words or numbers
with the length of one are removed from the titles. Because item titles are mostly
product names, most of the words do not have inflected forms, and stemming is

not considered necessary.
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The online auction site uses a three-level item category hierarchy, where the first
level has 22 categories, second level 95 categories, and the third level 737 catego-
ries. Item category column in this dataset represents the most specific, third level

category of the item.

The Dictionary dataset has item views for over 4.7 million unique items which to-
gether cover all possible item categories. The dataset will be used later on as a
dictionary and training data for content-based recommenders. A sample of the

Dictionary dataset is shown in Table 5.

Table 5: A five row sample from the Dictionary dataset, where the
columns are the row id, item category and item title.

Row id Item category Item title
1 417 market black music placebo
2 419 europe youth megadeth nimmareilla juliste
3 668 hyvakuntoinen gloria heinakuu lehti
4 586 caprit marimekko ritva falla suunnittelemat
5 96 disney pentujengi alaskassa puhumme suomea

2. Recommender dataset

The Recommender dataset contains all item views, category views, category
search queries and global search queries from the auction site between June 2015
and November 2015. Category views are web log events where users have
browsed items in a category page. Category search queries are events where users
have performed search queries within a category page. Global search queries are
events where users have performed searched queries from all categories. Each of
these previously mentioned events includes an IP address based user id,

timestamp, session id and item id, if it exists.

Here again, item titles are parsed from the web logs, and they are missing Finnish
special characters. Moreover, any non-alphabetical characters and words or num-
bers of length one are removed from the titles. Once again, stemming is not con-
sidered necessary. In comparison to the Dictionary dataset, item categories can be

any of the three category levels in the hierarchy.
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The recommender dataset has hundreds of millions of events. For efficiency, the
data is saved in a compressed format, where the event type can be inferred from
empty values in different columns. Moreover, a new aggregated words —column
is added to combine item titles and words used in search queries. Table 6 illus-

trates how event types can be inferred from empty values in columns.

Table 6: A sample of the Recommender dataset. The inferred event
type column is not part of the real dataset, and in the table below,
it indicates the event type of each row. For each row, the event type
can be inferred from the empty cell values of the row.

Words
Row | User Ti ' Session id Item cat- tem id Inferred event
imestam ession i emi
id id P egory (Search query type
/ Item title)
2015-11-16 o . Category search
1 36 Rkjenio54 127 - walking dead
12:51:01 query
2015-11-19 walking dead .
2 36 Epkad4df 215 383668 ) o Item view
14:52:55 figuuri rick
2015-08-16 . Global search
3 1009 4jk3l4aeds - - mcfarlane
08:15:01 query
2015-11-16
4 23 ofofdkrY3 472 - - Category view
12:22:00

When the item views of Recommender dataset are represented in a user-item rat-
ing matrix, the sparsity is approximately 0.001 %, which is very sparse. Moreover,
a large portion of the users in the dataset has only few sessions. The Recom-
mender dataset is the main dataset used for recommender training and evalua-
tion.

3. External item dataset

The External item dataset has around 4 million items with full item information.
The closing times of these items span randomly mostly around November 2015.
Only item titles and lowest level categories will be utilized from this dataset. The

purpose of this dataset will be described in more detail in Section 4.7.1.
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4.4 Implications on recommenders

The sparsity and dynamic nature of the rating matrix out rule traditional collabo-
rative filtering techniques that use the rating matrix for computing recommenda-
tions. Moreover, sparsity in the matrix would lead to cold start problem, and some
items would never get recommended since no users have experienced them. Since
items are added and removed continuously on the auction site, the columns of the

matrix should also be dynamically updated.

This problem could be approached by creating clusters, where items similar to
each other belong to the same cluster based on some pre-defined item features.
New items could be assigned to these clusters by calculating the distance to each
cluster. However, in this thesis, the lack of extensive item data makes this difficult
to implement. On the other hand, it is possible to use item categories as clusters,
since items are similar to each other within categories. Categories also remain the
same over time. Using categories as a starting point for recommendations in this

sense is reasonable.

The lack of extensive item data affects the fine-tuning of the ultimate recommen-
dation list. For example, two items with the same item title could be sorted by
additional attributes, such as the price, auction type, seller or location. These ad-
ditional attributes would also describe the implicit user preferences in more detail,

such as the significance of different factors for the user.

To be able to recommend the most recently added items, part of the recommen-
dation calculation has to be left for online computation, or at least the recommen-
dations have to be updated frequently offline. To meet the recommendation time
requirements, the recommendations should be pre-calculated offline as far as pos-
sible. In this thesis, a combination of offline and online calculation is used. User
history is aggregated offline, but the actual recommendations are computed

online, as close to user’s query for recommendation as possible.

4.5 Recommendation process

Based on the requirements and implications described in the previous chapters, a
general recommendation process is developed. The overview of this process is il-

lustrated in Figure 7. It is a six step process that provides a general framework for
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producing the recommendation list from start to finish. The process is described

in more detail in the following.

e Query for
recommendation

e Compute category
rankings

|

|

Offline 1
e Compute word queries

|

e Fetch candidate items

|

Calculate similarities and

Online 1 .
rank items

|

Generate the ultimate
recommendation list

Figure 7: The six step recommendation process.

1. Query for recommendation

In the first step, the recommender receives a recommendation query from the

auction site to fetch top 20 items to be displayed for a certain user on the front

page.
2. Compute category rankings

In the second step, categories of any level are selected by looping the most recent
sessions of the user in chronological order. The categories can be of any category
level in the category hierarchy. As long as there are more sessions to loop through,
parameter nSearches is not reached, and more than three sessions have not been
looped through, categories are taken from the most recent sessions. nSearches
is a parameter that controls the number of user word queries that will be used in
cosine similarity calculation (see formula (2.1)) later on. User word query refers to
the word column in user’s browsing history, and it can be either item title, cate-

gory search query, or a global search query, as illustrated in Table 6.
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Categories are then ranked in chronological order, where the most recent cate-
gory is ranked the highest. Duplicate categories are removed by choosing the high-
est ranking for each of the duplicates. If the user has less than nSearches user
word queries available in the user history, and/or less than three experienced ses-
sions, then all available categories are used. On the other hand, if the user has no
previously experienced categories or word queries, the recommended items are

selected randomly.

After ranking the categories obtained in the loop, similar categories to those are
taken from pre-calculated category similarities (calculation described in Section
4.7.1). This is done by looping through the already ranked categories, and then
fetching and ranking the similar categories after the already ranked categories. For
example, if ten categories were obtained when looping through the most recent
sessions of the user, the most similar category to the category that was ranked as
#1 is ranked as #11, the most similar category to the category that was ranked as
rank #2 is ranked as #12, and so on. Once again, duplicate categories are removed
by choosing the highest ranking for each of the duplicates. The last step is to re-
move categories that are not of the lowest hierarchy level, in order to avoid fetch-
ing all candidate items from just one category later on. Because the pre-calculated
category similarities has similarities between different hierarchy levels, it is possi-
ble to obtain ranking for all of the lowest level categories for the user. The ob-

tained category rankings are used in later steps to fetch the candidate items.
3. Compute word queries

The third step is done in parallel with the second step. In the third step, word que-
ries are selected from the most recent sessions in the same loop as for categories
in step 2. As long as there are more sessions to loop through, parameter
nSearches is not reached, and more than three sessions have not been looped
through, categories are taken from the most recent sessions in chronological or-
der, and unique word queries are taken from the word column. Collecting user
word queries this way guarantees that word queries chosen are relevant to the
top ranked categories chosen. Similarly to step 2, if the user has less than
nSearches user word queries available in the session history, and/or less than

three experienced sessions, then all available word queries are chosen.

At this point, category rankings and user word queries have been obtained. It is
possible that more than nSearches is collected when looping through the user’s

most recent events. Therefore, a simple heuristic is used to reduce the number of
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queries. First, cosine similarity is calculated between all the queries, where the
vector space used is determined by the recommender. The end result is a similarity
matrix where queries are in both the rows and the columns. Second, the column
sums are calculated, and finally nSearches number of queries with the smallest
summed similarities are chosen. This heuristic aims to quickly choose the

nSearches number of distinct user word queries from all the available queries.
4. Fetch candidate items

In the fourth step, candidate items are fetched from the categories that were
ranked in step 2. Items are chosen from the categories in the ranked order until
nCandlItems number of items has been obtained from the categories. The param-
eter nCandItems controls the maximum number of items chosen for similarity
calculation against the user word queries from step 3. Items are assumed to be
stored in an in-memory database, and the vector space is determined by the rec-

ommender.
5. Calculate similarities and rank items

In the fifth step, cosine similarities are calculated between the user word queries

obtained in step 3 and the candidate items obtained in step 4. This results into a

. . . R
matrix of size nSearches xnCandItems. After this, top round (&) num-
nSearches—1

ber of most similar items are chosen for each query (row-wise). Candidate items
with zero similarity are removed from each row. Parameter nRecs controls the
target number of ranked items for the recommendation list. For each query, the
candidate items are sorted in descending order based on the similarity. The end
result is a matrix, where each is row is sorted column-wise. This matrix is then
transposed and flattened into a 1-dimensional array (2™ transposed row comes
after 1%t transposed row, 3™ after 2", and so on). Possible duplicate candidate
items are removed from this array by keeping only the first occurrence for each.
The resulting array represents the top items to be recommended for the user, in
descending order based on the user word queries. Most of the consecutive items
in the array are dissimilar, since they correspond to top items for different user
word queries, and on the other hand, the queries were chosen to be distinct in

step 3.
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6. Generate the ultimate recommendation list

The sixth and final step is about generating the recommendation list. Instead of
taking only the items from step 5, a simple modification is applied first. Based on
initial experiments with different approaches, it was observed that users tend to
visit the same items they have previously visited. Therefore, at most five of the
most recently visited items by the user are chosen to be the first five items on the
recommendation list. Thus, they are placed on ranks #1-5 on the recommendation
list, depending whether the items are still available for sale. The recommendations
computed in step 5 are added after the previously visited items to the recommen-

dation list, with no modifications made in the ordering.

In the end, a ranked recommendation list is obtained. Maximum of five of the first
five items are ones that the user has experienced before. Since items with zero
similarity are removed from the recommendation list and only unique items are
taken from the flattened array, it is possible that the number of ranked items in
the end is more or less than nRecs. By controlling nRecs in step 5, it is possible to
guarantee a certain number of ranked items. However, increasing nRecs requires

more calculation and leads to slower recommendation times.

As shown in Figure 7, the category rankings and user word queries can be pre-
calculated offline for each user as their user profile. Then, time will only be needed
for fetching this pre-calculated user profile at the point of recommendation. The
rest of the steps in the recommendation process have to be done online. The most
time-consuming part is the similarity calculation in step 5, which could be parallel-
ized if necessary. The time spent in online calculation can also be controlled via
the previously mentioned parameters. The parameters that allow for controlling

the recommendation process and calculation time are summarized in Table 7.
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Table 7: Recommendation process parameters.

Description

nSearches

nCandltems

nRecs

The maximum number of user word queries that are taken from the brows-
ing history of a user. The queries are used in similarity calculation against
the candidate items. This parameter allows for controlling the similarity cal-
culation time, and it can also be used for controlling the diversity of the
output, since it allows for taking older word queries into account from the

user’s past.

The maximum number of items that are chosen from all possible items that
are for sale. This parameter allows for controlling the similarity calculation
time against the user word queries, and it directly controls the item cover-

age (see Section 3.2.2).

The target number of ranked items that is needed from the recommender.
It is time-efficient to not rank every possible item. However, it is not guar-
anteed that nRecs number of items are ranked. If n, is the number of

items that needs to be guaranteed to be ranked, nRecs should be chosen

to be n, * (nSearches — 1).

4.6 Recommenders

A total of seven different recommenders are used in this thesis: Lastitems, Ran-
domized, TFIDF, LSI, LSlub, LDAub and W2V. Lastltems and Randomized are used

as reference point recommenders, and their recommendation process differs

from the process described in Section 4.5 by not using the user word queries at
all. Recommenders TFIDF, LSI, LSIub, LDAub and W2V obey the recommendation

process and represent items in their respective vector spaces. They also use dif-

ferent kinds of training methods.

To illustrate the recommendations by each of these recommenders, a randomly

chosen user browsing history is used as a case example. The browsing history of

the chosen user is shown in Figure 8.
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ts session cat itemid words
userid
378187 2815-11-25 15:55:84 he83cb2ljz3 932 376643711 burberry lompakko
378187 2815-1@-26 89:25:85 t@6foghymr 797 338933190 tove rillimuki silmalasimuki uwusi
378187 2815-18-12 12:27:8#@ w6B6%uabdl 254 NaN Hal
378187 2815-18-12 12:23:24 w6B6%uabsl 283 NaN Hal
378187 2815-1@-12 12:23:84 w6B6%uab®l 797 330185260 arabian muumitytto muki
378187 2015-18-18 11:12:38 e3d79%uuzwv Nal NaN muumimuki
378187 2015-88-85 12:48:87 lzjBuppoyt 191 NaN MaN
378187 20815-87-18 10:82:26 olswff4q53 797 369841362 toven juhla rilleilla uusi ja tarra kiinni
378187 20815-87-18 18:82:87 olswffag53 NalN NaN muumimuki
378187 2015-86-84 14:87:38 c2aBftSpnz 49 NaN pajazzo
378187 20815-86-84 14:86:18 c2a8ftSpnz 49 363744789 lasi ja posliini
378187 2015-86-84 14:85:89 c2a8ftSpnz 49 363812368 puudelit seinalle
378187 2015-86-84 14:83:28 c2a8ftSpnz 49 363636289 arabia kala seinalautanen  anja juurikkala
378187 2015-86-84 14:8@:43 c2a8fTtSpnz 49 358534882 koira posliini karner nymphenburg v 1921
378187 2015-86-84 13:59:38 c2aBftSpnz 49 NaN E
378187 20815-86-84 13:58:41 c2aBftSpnz 27 NaN Mal
378187 20815-86-84 13:57:31 c2aBftSpnz  Nal NaN bianca

Figure 8: User history used as a case example to illustrate the output
of different recommenders.

As it can be seen from the figure, the case example follows the format of the Rec-
ommender dataset as illustrated in Table 6. The user history consists of 7 unique
sessions and categories visited over the past 6 months period, with a total of 12
user word queries available (NaN represents a missing value). This user history is
used as an input for the recommenders to illustrate the output produced by dif-
ferent recommenders. Top 20 recommendations are produced by each of the rec-
ommenders. The available items for sale in the recommenders are the same that
will be used in offline simulation later on (Section 4.7.1). Each recommender and

the output for the case example is presented in the following sections.

4.6.1 Recommending previously visited items

Many users come back to see the same items they have previously visited. The
recently visited items recommender, Lastltems recommender, utilizes short-living
items by ranking those items higher that the user has experienced in the past. The
recommender ranks items based on their recency — the most recent item being
ranked as #1, the second most recent as #2, and so on. If none of the previously
visited items are still for sale, ranks are assigned randomly. This simple recom-
mender is considered as a reference point recommender. The recommender
avoids heavy computations, and allows for only storing maximum of N,, most re-

cent items for each user. This is also the only parameter of the recommender.

The intuition behind the recommender is that users may want to come back to

view the items they have previously considered interesting. For example, user
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might want to review the current bidding situation of an item. This simple recom-
mender should already make the front page more relevant for the users, although
it does not provide anything new to the users. However, since items are short-

lived, users will not see the same items on the front page for a long time.

Figure 9 illustrates the output of this recommender for the case example in the
ranked order. As it can be seen, from all the items visited by the case example
user, only “burberry lompakko” is still available for sale, and thus it is ranked as
#1. The rest of the items are chosen in the order they appear in the recommender,
and they are most likely not relevant for the user.

cat words
itemid
376643711 932 burberry lompakko
346787608 373 jouluverho kangas 1 8 m kuin uusi
373413654 368 12 kpl mustia ja muita lentavia perhosia ei pk
373846943 368 12 kpl kauniita lentavia perhosia ei pk
382815094 809 lasten taulut ompelu hki
384340841@ 368 joulu viirimaalaisromantiikkaa
382185183 368 viinipulle joulukoriste poro pukki kuusi ei pk
382977836 368 selkanojan joulukoriste 2x tonttulakki ei pk
382298877 368 ruckailuvaline joulukoriste 18x sukka ei pk
382887484 B8le pyoreat puurasiat 2 kpl hieno lukitus uudet
383446383 811 partylite piparmintun ilo kynttilaalusta somiste
384135179 794 setti uusia tekstiileja keittioon
384275686 355 patalappuja 2 kpl
384861795 367 hevenen  varsa taulu kanavatyo ristipisto
382816240 142 ristipistomalli joulupukki lahjoja tuomassa ooe
382875458 142 atelje margarethan ristipistomalli kuusen haku
382874871 142 ristipistomalli joululiinaan sydamia ja rinkel...
383650856 808 sisustusviirinauha jouluinen uusi
382826014 Be9 kaksi thaimaalaista kehystettya kangastaulua

382843885 547 arabian kannu ja sckerikko seka kannu hulschen...

Figure 9: Top 20 recommendations for the case example by the
Lastltems recommender.

4.6.2 Recommending items from previously
visited categories

The Randomized recommender ranks those items higher that are from the same
lowest level categories that the user has experienced in the past. The intuition
behind this recommender is that users are more likely to rank those items higher
that are from the same categories they have previously experienced than those
from other categories. This recommender ranks items in a certain category ran-

domly, but only for the top N,,; categories, which are selected based on the sec-
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ond step of the recommendation process (compute category rankings, as de-
scribed in Section 4.5). The parameters for this recommender are N, and

nSearches, where the latter controls the ranking of the categories.

The Randomized recommender is also considered as a baseline model to which
compare other recommenders to. It provides a simple heuristic for making the
displayed items more relevant to the users.

Figure 10 illustrates recommendations by the Randomized recommender for the
case example. Because previously visited items are only taken into account
broadly only through their category, users may find new items that are similar to
previously visited items. Since no user word queries are used to produce the rec-
ommendations, items from those categories are also recommended where the
user has only visited but not viewed an item. For example, in this case example,
user has visited category 191, but did not view any item or perform a search query

in that category. Even so, items from category 191 are recommended.

cat words
itemid
383738372 254 belgia 5@ cent v28@9 km279 kierrosta
374734973 931 ruskea marimekko laukku
383@l11522 797 pentik inkivaari pikari lautanen sin
383579676 797 marimekon unikko keltainen mehusetti
385188986 931 kasilaukku
383485179 49 arabia iso crownband olga osol matala lautanen...
385568317 49 riihimaen ludwig sarjan 2 asettia
384786843 547 arabia 60 78 luvun retro kahvikupin aluslautan...
383128258 931 upea abro ruskea nahkalaukku
384841268 191 valkokultaketju
385428769 257 fin uusin 2 erikoiskolik akseli gallen kallela...
383571876 931 marimekkoe laukku tummansininen
385638074 0931 todella upea paljettilaukku
Jg4287483 191 Sormus
384278659 191 kultainen kivi timanttisormus @@82ct 1542
385728662 931 ugg aito mokkainen olkalaukku
385375309 547 arabia maisema kahvikuppi
383981974 547 arabia illusia sokerikko ja kermakko
384336287 547 muumimuki purjehtien tuutikin ja tahmatassun k...
385229571 257 188 markkaa 2681 aino ackt proof harvinainen

Figure 10: Top 20 recommendations for the case example by the
Randomized recommender.

4.6.3 Term Frequency-Inverse Document Fre-
quency

The Term Frequency-Inverse Document Frequency (TFIDF) recommender repre-

sents items in TFIDF vector space, where those items are ranked higher that have
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similar item titles to those items that the user has experienced in the past. Adopt-
ing from Lops et al. (2011), the general TFIDF vector space model is represented
in the context of this thesis (Lops, et al., 2011).

In TFIDF every item can be represented as a vector of term weights, where each
weight indicates the degree of association between the item and the term. Let
Jy = {i;, i3, ..., iy} be aset of itemtitles and T = {ty, t, ..., t,,} be the set of words
in the set of item titles. Now, by representing each item i, as a vector in drppr
dimensional space, it is possible to obtain iy = {wyy, Wy, ..., Wni}, Where wy is a

weight for term ¢; in item ij.

In TFIDF, those terms that occur frequently in one item title but rarely in other
item titles, are more likely to be relevant to that item title. The weights can be

written as follows

N
wjj = TF(t;, i) X log, (n—> (4.11)
j

where N is the number of items in the set of items J;, and n; is the number of
items in the set of items in which the term tj occurs at least once. Here, the term

frequency is

fix

TFE(t;, i) =————
( j lk) mZaXfZ,k

(4.12)
where the maximum is computed over the frequencies f, of all terms ¢, that
occur in item title i;,. Now, with normalization to unit length the weights can be

represented as

j.k mZaXfZ,k 2 n] ) .

which means that each item ij, can be represented as a vector in drp;pr dimen-
sional space. By following formula (2.1), the similarity of two items can be com-
puted with cosine similarity

> iWja Wjbp

2 2
\/ 2 Wia-® \/ 2j Wi'p

sim(iy, ip) =

(4.14)
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TFIDF recommender follows the general recommendation process as described in
Section 4.5, and in TFIDF vector space. TFIDF recommender allows for represent-
ing both the user browsing history (experienced items) and the items for sale in

the same drp;pr-dimensional space for quick online similarity computation.

The computation time is mostly spent on the similarity calculation, where the time
depends on the number of user word queries used, and the number of candidate
items chosen. However, item titles are short, and the number of terms is smaller

than the dimension drg;pr, Which allows for sparse matrix representation.

The parameters for TFIDF recommender are the dimension drg;pr, Which can be
controlled by choosing the number of most frequent terms to keep. The recom-
mendation process parameters nSearches, nCandItems and nRecs are also pa-

rameters of the TFIDF recommender.

Figure 11 illustrates recommendations by the TFIDF recommender for the case
example. Since recommendations are based on the words as is, each recommen-
dation must contain words that are already present in the user search queries. For
example, words “arabia” and “burberry” are included in many of the recommen-

dations.

cat words
itemid
376643711 932 burberry lompakko
372631431 49 koira posliini karner nymphenburg v 1921
382642288 797 tove rillimuki silmalasimuki uusi
383p44953 797 toven juhla rilleilla uusi ja tarra kiinni
377348418 932 burberry lompakko
383083846 547 arabia ruskeasavyiset pajazzo mokkakupit 2 kpl
382212485 547 arabia muki muumitytto
385088859 287 sotilaspapin ja panssarivaunumiehen kangaslami...
384834388 32 kyttilajalat seinalle
382192389 49 leijonabaijerin vaakunaaito nymphenburg figuur...
383577867 547 tove 188 rillimuki 6 kpl
375837329 547 muumimuki towen juhla rilleilla
382618386 932 burberry aito lompakko
385249791 547 arabia ruskeasavyiset pajazzo mokkakupit 2 kpl
377225444 797 muumitytto
385774118 287 sotilaspapin ja panssarivaunumiehen kangaslami...
385454814 49 arabia wvanhoja lautasiavaikkapa seinalle
383483733 795 viilikeppo walk posliini
385751818 797 tove rillimuki silmalasimuki uusi
384357897 797 arabia muumimuki towven juhla rilleilla ei hv

Figure 11: Top 20 recommendations for the case example by the
TFIDF recommender.
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4.6.4 Latent Semantic Indexing

Latent Semantic Indexing (LSl), also known as Latent Semantic Analysis (LSA), was
proposed by Deerwester et al. in 1990 (Deerwester, et al., 1990). It is a theory and
method that extracts and represents contextual-usage meaning of words by sta-
tistical computations applied to a text corpus. It determines the similarity of mean-
ing of words and sets of words by aggregating all the word contexts in which a

given word does and does not appear (Landauer, et al., 1998).

LSI applies a singular value decomposition (SVD) to a document-term matrix,
where unique term weights are in the rows and documents are in the columns.
SVD decomposes this matrix into a product of three other matrices. One compo-
nent matrix describes the original row entities as vectors of derived orthogonal
factor values, another describes the original column entities in the same way, and
the third is a diagonal matrix containing scaling values. The original matrix can be
reconstructed by multiplying these three matrices, and SVD allows for dimension
reduction by ordinarily deleting coefficients from the diagonal matrix, starting

from the smallest (Landauer, et al., 1998).

In this thesis, item titles are considered as documents. The LSI recommender
transforms items from TFIDF vector space to LSl space by reducing the dimension
of TFIDF weighted term matrix from drppr to d;g;. The highest valued coefficients
of the diagonal matrix are used for transforming new, unseen items into the LSI

space.

The parameters for LS| recommender include all the parameters from TFIDF rec-
ommender, such as the dimension d;z;pr and recommendation process parame-
ters arches, nCandltems, and nRecs. Moreover, parameter d;g; controls the

target LSI-dimension.

Figure 12 illustrates recommendations by the LSI recommender for the case ex-
ample. Since LSI aggregates all the word contexts in which a given word does and
does not appear, it is possible to have items on the recommendation list that con-
tains no words or only few words from the original user word queries. For exam-
ple, “walt disney nalle puh ja nasu kainalossa jaakaappimagneetti” is fourth on
the list, even though “ja” is a common Finnish word and it is the only word that
appears in the user word query. The high ranking could be due to similarities be-

27 ”

tween words “muki” and “disney”, “nalle” or “puh”. These word similarities are
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learned by the recommender in advance, during the training process of the rec-
ommender. The training of each recommender is described on a high-level in Sec-
tion 4.7.2.

cat words
itemid
376643711 932 burberry lompakko
377348418 0932 burberry lompakko
383839834 49 arabia kala seinalautanen anja juurikkala
388886827 215 walt disney nalle puh ja nasu kainalossa jaaka...
38@718781 547 salla kahvikuppi vihrea malli ep arabia
372631431 49 koira posliini karner nymphenburg v 1921
384884388 32 kyttilajalat seinalle
383928687 797 muumimuki 2814
383644958 797 toven juhla rilleilla uusi ja tarra kiinni
378125842 932 dkny lompakko
385387813 49 arabia kala seinalautanen anja juurikkala
384261056 797 disney nasu muki nalle puh

38825739@ 549 arabia kilta keltainen ja vihrea munakuppi mun...
385470771 287 metalli muistolevy laatta hakaristi kennel koi...

383885923 29 puulaatikko seinalle
384848277 215 muumimuki
384391403 549 muumilautanen hemuli uusi tarra
385489593 0932 dkny lompakko
385@57953 215 arabia seinalautanen janis pensaassa
382643137 797 disney nalle puh muki

Figure 12: Top 20 recommendations for the case example by the LSI
recommender.

4.6.5 User-based Latent Semantic Indexing

User-based Latent Semantic Indexing (LSlub) recommender is similar to LSI recom-
mender, and the only difference is in the training process. In the training process
of LSlub, new word contexts are artificially created by joining the words of user
sessions in a training corpus. The intuition is to show the recommender which
words have tendency to appear together within a single browsing session, and use
these as individual training documents. The parameters for LSlub are similar to LSI,

including d;¢;, drripr, nSearches, nCandltems and nRecs.

Figure 13 illustrates recommendations by the LSlub recommender for the case ex-
ample. Since LSlub not only aggregates all the word contexts in which a given word
does and does not appear, but also creates new word contexts by aggregating
words from the sessions of different users in the past, it is possible to have recom-
mendations that are significantly different from the original user word queries. For

example, LSlub recommends a 2€ coin “2 euro ranska 2010 kenraali charles de
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gaullen” for the case user, even though only the category 254 view indicates that
the user could be interested in coins. However, the new artificially created con-
texts might have had examples where users have experienced both “ara-
bia”/”muumi” and coin related items during the same session. This would be rea-

sonable since all the previously mentioned words are popular among collectors.

cat words
itemid
376643711 932 burberry lompakko
377348418 932 burberry lompakko
385888676 797 muumimuki w285
379817359 215 wanha lasinen eiffel torni pullo vanha parfum ...
385331984 254 2 euro ranska 2818 kenraali charles de gaullen
384884388 32 kyttilajalat seinalle
385387813 49 arabia kala seinalautanen anja juurikkala
384943014 7397 arabian vanha muki
382642288 797 tove rillimuki silmalasimuki uusi
382762011 931 burberry pikkulaukku
385@95967 797 muumimuki sosuli
385388457 2087 heikkovirtaeristelasi  karhulan lasitehtaan r...
383233834 254 2 euro ranska 2818 kenraali charles de gaullen
383885923 29 puulaatikko seinalle
383839834 49 arabia kala seinalautanen anja juurikkala
382339403 797 arabian muki 2867
383577867 547 tove 188 rillimuki 6 kpl
384259018 931 burberry prorsum pikkulaukku
38341e4@2 797 muumimuki sosuli

383777037 207 heikkovirtaeristelasi karhulan lasitehtaan r...

Figure 13: Top 20 recommendations for the case example by the
LSlub recommender.

4.6.6 User-based Latent Dirichlet Allocation

In general, Latent Dirichlet Allocation (LDA) is a generative probabilistic topic
model introduced by Blei et al. in 2003. The underlying idea in LDA is that docu-
ments are represented as random mixtures over latent topics k, where topics are
characterized by a distribution over words. LDA assumes that each document in a
collection of documents is generated through the following process (Blei, et al.,
2003):

1. Choose a number of words N~Poisson(¢) from the document, where
Poisson is the Poisson distribution.

2. Generate d;p, topics by randomly choosing a word distribution 6, ~Dir(f)
for each topic k € K, where Dir is the Dirichlet distribution.

3. For each of the N words w;:
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a. Choose atopic z;~Multinomial(0), where Multinomial is the multi-
nomial distribution.
b. Choose a word w; from P(w;|z;, ), which is a multinomial probability

conditioned on topic z;.

Because distributions for the model parameters are difficult to compute directly,
approximate inference algorithms have been proposed, such as variational infer-
ence (Blei, et al., 2003) or Gibbs sampling (Griffiths & Steyvers, 2004).

In LDA vector space, items are represented as d;p, dimensional vectors, where
the vector elements are the latent topics. Similar to LSlub recommender, LDAub
recommender is trained on documents, where each document consists of the
words that appear within a single browsing session. In early experimentation with
LDA it was observed that LDA solely trained on individual words leads to poor ac-
curacy due to short length of individual item titles. Therefore, only LDAub is con-

sidered in this thesis.

LDAub follows the previously presented recommendation process with parame-
ters arches, nCandItems, and nRecs. In addition, the number of latent topics

d;pa is a parameter of the recommender.

Figure 14 illustrates recommendations by the LDAub recommender for the case
example. Since recommendations in LDAub are based on similarities of latent top-
ics rather than exact words, many items are recommended even when the exact
words do not appear in the original user word queries. Some of the recommended
items, such as gun related “piipunsuun suojus kivaariin m 39 eli pystykorvaan” or
handcraft related “tuunaajalle wanha lankaharveli”, would seem to be irrelevant

based on the user’s history.
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cat words
itemid
376643711 932 burberry lompakko
372631431 49 koira posliini karner nymphenburg v 1921
383690087 797 muumimamma ja marjat
385728623 0931 musta nahkainen naisten laukku michael kors
383644958 797 toven juhla rilleilla uwusi ja tarra kiinni
381848881 032 louis vuitton lompakko
383846758 704 lasinen sckerikko
385885687 287 piipunsuun suojus kivaariin m 39 eli pystykorvaan
383830834 40 arabia kala seinalautanen  anja juurikkala
384645467 32 tuunaajalle wanha lankaharveli
382645571 797 muumimuki vihrea sarjakuva 1998 1993
37734418 932 burberry lompakko
385296488 797 muumimamma ja marjat
370534057 931 louis vuitton saleya mm damier
378843692 794 glogi kannu ja kuumennin uusi
384474634 31 karuselli eli gustavsbergin upea tarjeoiluastia...
385387813 49 arabia kala seinalautanen  anja juurikkala
384897686 258 norppa viitoset 1992 26861
380937788 547 muumimuki sarjakuva vihrea
383084868 031 burberry laukku

Figure 14: Top 20 recommendations for the case example by the
LDAub recommender.

4.6.7 Word2Vector

In 2013, Mikolov et al. proposed two novel model architectures for computing
continuous vector representations of words for large datasets (Mikolov, et al.,
2013). Their Word2Vec (W2V) model learns vector representations for words by
using a shallow neural network language model. One of these is the skip-gram
neural network architecture that consists of an input layer, a projection layer and
an output layer to predict nearby words. Due to its simple architecture, the skip-
gram model can be trained with billions of words per hour on a single conventional
desktop computer. Word vectors are trained to maximize log probability of neigh-

boring words in a given sequence of words wy, w,, ..., wy

N
1
NZ Z IOgP(lewt), (4.15)

t=1 jEnb(t)

where nb(t) is the set of neighboring words of w;, and P(wj|wt) is a hierarchical
softmax of the associated word vectors Uy, and v,,,. The model can learn complex

word relationships, such as vec(Japan) — vec(Sushi) + vec(Germany) =
vec(bratwurst) (Kusner, et al., 2015; Mikolov, et al., 2013).

The W2V recommender utilizes W2V model’s ability to learn associations from
neighboring words by combining words from users’ sessions, similar to LSIub and

LDAub. The intuition is to show W2V model which words tend to appear together
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within a browsing session, aiming to include this information in the vector repre-
sentations of words. For example, if two words appear within the same browsing
session often, their vectors should be more similar than of those words which

never appear within a session.

Since each word is represented by a vector, user word queries and item titles that
consist of multiple words need to be aggregated. To tackle this problem, different
techniques have been proposed, such as Paragraph2Vec (Mikolov & Le, 2014).
These techniques take the word order into account, but in the case of item titles
and user word queries, the word order is not crucial. During initial experiments
with W2V recommender, it was found that decent predictive accuracy could be
achieved by taking the mean of the word vectors and using cosine similarity to

calculate similarities in the W2V vector space.

The parameters for W2V are the recommendation process parame-
ters nSearches,nCandItems and nRecs. Moreover, parameter dy,; controls
the word vector representation dimension, and window parameter controls the

maximum distance to be considered as the word neighborhood within a sentence.

Figure 15 illustrates recommendations by the W2V recommender for the case ex-
ample. Since recommendations in W2V are based on neighboring words and user
sessions, some items are recommended even though the exact words do not ap-
pear in the original user word queries, such as “paketti disney nalle puh ser-
vetteja”. This behavior is similar to LSlub and LDAub. On the other hand, nearly all
the words that appear in the query also appear in the recommendation list as in
TFIDF.
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cat words
itemid
376643711 932 burberry lompakko
385249791 547 arabia ruskeasavyiset pajazzo mokkakupit 2 kpl
377348418 932 burberry lompakko
385387313 49 arabia kala seinalautanen anja juurikkala
385751018 797 tove rillimuki silmalasimuki uusi
385485288 795 tytolle disney princess ateriasarja
384884388 32 kyttilajalat seinalle
372631431 49 koira posliini karner nymphenburg v 192ﬂ
383p44058 797 toven juhla rilleilla uusi ja tarra kiinni
383083346 547 arabia ruskeasavyiset pajazzo mokkakupit 2 kpl
382618386 932 burberry aito lompakko
383839334 49 arabia kala seinalautanen  anja juurikkala
332642288 797 tove rillimuki silmalasimuki uusi
384396063 794 paketti disney nalle puh servetteja
383885923 29 puulaatikke seinalle
373322947 49 koira posliini figuuri 1926 1938 wvuosita gotha...
375837329 547 muumimuki toven juhla rilleilla
385117232 49 riihimaen apolle kynttilalyhty des nanny still...
383578466 931 burberry  laukku

3773473844 549 arabia lasten syva lautanen zoo anja juurikkala

Figure 15: Top 20 recommendations for the case example by the
W2V recommender.

4.7 Experimental setup

The following describes the experimental setup that is used for simulation and
evaluation of the recommenders. First, it is described how the available data is
preprocessed and split into smaller datasets. Second, the simulation setup and
training of the recommenders are described. Third, the evaluation metrics are in-

troduced.

4.7.1 Data preprocessing

The three datasets introduced in Section 4.3 were the Dictionary dataset, Recom-
mender dataset and External Item dataset. Figure 16 illustrates how the Recom-
mender dataset and External ltem dataset are processed into smaller datasets for

simulation purposes.
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Raw clickstream data External item dataset
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Tl dataset similarities dataset I S dataset I

Model training datasets Evaluation datasets

Figure 16: Datasets used in the experimental setup.

The Recommender dataset is filtered to only contain users that have item views
between dates 15.11.2015 — 30.11.2015. Moreover, only those users are chosen
who have at least 6 sessions (1 session / month), and at most 1800 sessions (10
sessions / day) between the six month period 1.6.2015 — 30.11.2015. This dataset
is called the Filtered Recommender dataset, still including tens of millions of rows,
and the same five columns as the original Recommender dataset: user id,

timestamp, session id, item category, item id and words.

The Filtered Recommender dataset is further on processed into Session dataset.
The Session dataset is the Filtered Recommender dataset that is filtered by dates
between 1.6.2015 — 14.11.2015. This data is then aggregated by sessions so that
all the words that appear within a session are joined together with white spaces.
The Session dataset is used for training the user-based models LSlub, LDAub and
W2V. This dataset has several million sessions, and since the session id’s are not

needed, the dataset is only a list of the joined words.

The Filtered Recommender dataset is also processed into Category Similarities.
Category similarities are calculated by first filtering the Filtered Recommender da-
taset to only contain data from dates between 1.6.2015 — 1.11.2015. Then, a
sparse session id — category id binary rating matrix is constructed. In this matrix,
sessions are in the rows and categories in the columns. If a certain category was
visited in a session, the value of the category-session pair is 1, and 0 otherwise.
The categories may be of any level in the category hierarchy. Finally, cosine simi-

larity between the categories is calculated, and the results are sorted to have the
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most similar categories to a certain category in descending order in the columns.
The similarity of a category to itself is ranked as last. In the end, the Category Sim-
ilarities contain the most similar categories for all existing categories, and across

all category levels.

The Holdout dataset is used for recommender evaluation, and it is obtained by
filtering dates 20.11.2015 — 27.11.2015 from the Filtered Recommender dataset.
The data from these dates is not seen beforehand by any of the recommenders,

which allows for recommender evaluation on this dataset.

The Item dataset is combined from External Item dataset and Holdout dataset.
This dataset approximates the items that are available for sale during the evalua-
tion period 20.11.2015 —27.11.2015. It is based on the assumption that the items
available on the auction site between dates 20.11.2015 — 27.11.2015 stay rela-
tively constant. With this assumption, it is possible to collect item titles from all
unique item views in the Holdout dataset, and combine these with items in the
External ltem dataset. The External ltem dataset is filtered to consist of items that
have listing date before 20.11.2015 and closing date after 27.11.2015. By combin-

ing these datasets, a total of 1 354 476 items with their item title and category
are obtained. The total number of items is close to the average number of 1.5

million items that are for sale on the auction site.

4.7.2 Simulation

The recommenders are evaluated offline by simulating them in a real life scenario
for one week time period 20.11.2015 —27.11.2015. All the recommenders are im-
plemented in Python, with the help of topic modelling library gensim by Radim

Rehiifek (Rehltek, 2016). The simulation steps are described in the following.

First, the recommenders are trained. The exact training process depends on the
recommender, and more information about the training process of each vector
space model can be found in their corresponding literature. However, the datasets
used for training are described here. Terms and term weights for TFIDF, LSI, LSIlub
and LDAub recommenders are trained using the Dictionary dataset. Words that
appear less than 5 times are removed from the vocabulary, and only the 200 000
most frequent words are kept in the dictionary. Terms for W2V are taken from the
words that appear in the Session dataset, and only the words that appear more
than 20 times are kept in W2V. User based recommenders LSlub, LDAub and W2V
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are also trained on the Session dataset, using the terms trained in each of the rec-
ommenders. For TFIDF and LSI, only the Dictionary dataset is needed in the train-
ing phase. Lastltems and Randomized recommenders use only the user history

data, and they do not require training.

The parameters for each recommender are chosen based on initial experiments
with the recommenders. In these experiments, the prediction accuracy, coverage,
diversity, and time spent in producing the recommendations are taken into ac-
count. The parameters chosen are presented in Table 8. Because the recommen-
dations are made for the front page, nRecs = 100 are chosen as target for the
VSM recommenders. Choosing nCandItems = 80 000 to limit the possible items

80009+ 591 %.

to recommend results in item space coverage of SISC = Tasaave



Table 8: Parameters chosen for each recommender.

Recommender

Parameter

Lastltems

Randomized

TFIDF

LSI

LSlub

LDAub

w2av

N, = 100

Ncat =10
nSearches = 8

drripr = 200 000
nSearches = 8
nCandltems = 80 000
nRecs = 100

dysr = 100

drripr = 200 000
nSearches = 8
nCandltems = 80 000
nRecs = 100

disr = 100

drripr = 200 000
nSearches = 8
nCanditems = 80 000
nRecs = 100

dipa =100
nSearches = 8
nCandltems = 80 000
nRecs = 100

dy.y = 100

window =5
nSearches = 8
nCanditems = 80 000
nRecs = 100
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Second, samples for evaluation are chosen from the Holdout dataset. To keep the
user activity balanced in the sample, a stratified sample of 14 218 users is selected
from the Holdout set. The stratification is based on binning the users into the fol-
lowing session count quantiles: [0,10], (10,25], (25,50], (50,75], (75,90], and
(90,100]. This ensures that both more and less active users are chosen for evalu-
ation. The chosen sample has a total of 153 847 item views to be predicted during
the simulation time period.

Third, each recommender is evaluated by making recommendations for each user
in the sample, one day at a time. To simulate real life scenario, the user history is
updated to have the latest information about the users’ activities from the previ-
ous day. For example, on 25.11.2016, the recommenders are able to see the users’
activities from 24.11.2016 and before. The user information is assumed to be up-
dated every night when the day changes, with no additional update delays. The
evaluation metrics for each recommendation made are computed and stored, and

they are described in the following.

4.7.3 Evaluation

As described in Chapter 3, recommenders can be evaluated with respect to many
different criteria. In this thesis, user ratings to be predicted are implicit and binary
(whether the user experienced the item or not). By assuming that correctly pre-
dicted items would make the site more relevant, it is reasonable to measure pre-

diction accuracy and the ranking of items overall.

Since the number of recommended items is around 100 for most of the recom-
menders (see Table 8), it is reasonable to measure True-Positive-Rate, precision,
and F1-Score at different recommendation list sizes N < 100. The sizes chosen
are N =1,5,10,15, 20, 25, 30, 40, 60, 80 and 100.

To examine how well the recommenders can recommend new items to users, the
previously mentioned metrics are also computed by using only those items that
the users have not seen before. The metrics computed using all items are called
visited items, and the metrics calculated with new items only are called non-visited
items. As mentioned in Section 3.2.1, it should be noted that the number of False-

Positives is likely to be overestimated in offline evaluation. Therefore, the recom-
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menders may seem to perform worse in comparison to if they were actually im-
plemented at the time of evaluation. After simulation, the metrics are aggregated

for all recommendation list sizes and for both visited and non-visited items.

Because predicting a small number of items out of a large collection of items is
difficult, it makes sense to measure how high items in the holdout set are ranked
by the recommender. Therefore, NDCG and R-Score with @ = 20 (R20) and 100
(R100) are chosen for measuring the ranking of items. The items not ranked by the
recommender due to nRecs limitation are all set to have rank of the last possible
rank position, which is the number of items in the recommender. The ranking met-

rics are calculated for visited items only.

The recommenders are also evaluated with respect to aggregation time and pre-
diction time. Aggregation time is the time taken by steps 2-4 in the recommenda-
tion process (Figure 7), whereas prediction time is the time taken by steps 5-6 in

the same figure.
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5 Results

In order to obtain an overview of the performance of each recommender, the re-
sults are visualized in the following. The exact numerical results are shown in Ap-

pendix A — Table of evaluation results.

The True-Positive-Rate for visited and non-visited items at different recommenda-
tion list sizes is shown in Figure 17. The figure shows that there are three recom-
mender groups that have similar performance: TFIDF/W2V, LSI/LSlub, and
LDAub/Lastltems. TFIDF and W2V are the best performers for all recommendation
list sizes, and for both visited and non-visited items. Thus, the proportion of cor-
rectly predicted items from all items that users have experienced is on average the
highest for these recommenders. For both non-visited and visited items, and at all
recommendation list sizes, LS| and LSlub perform better than LDAub and Lastltems
but worse than TFIDF and W2V. For visited items, all the previously mentioned
recommenders perform better than the Randomized recommender, whose per-

formance is clearly the worst.

As expected, TPR for the non-visited items is zero for Lastltems recommender,
since it does not recommend unseen items. Moreover, the non-visited item curve
for all recommenders show a gentle slope because five of the most recently expe-
rienced items are ranked in the top five, assuming that they are still available for

sale. Overall, TPR is lower for non-visited items than for the visited items.
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Figure 17: True-Positive-Rate for visited and non-visited items at dif-

ferent recommendation list sizes N.
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The precision for visited and non-visited items at different recommendation list
sizes is shown in Figure 18. For visited items, Lastltems recommender is the best
performer. Thus, the proportion of correctly predicted items and all items recom-
mended by the recommender is the highest for Lastitems. TFIDF and W2V perform
similar to each other, being better than all others but Lastltems. LSl and LSlub also
perform similar to each other, being slightly worse than TFIDF and W2V but better
than LDAub and Randomized. LDAub is the worst performer from the VSM recom-
menders. However, all the recommenders perform remarkably well in comparison

to Randomized recommender.

For non-visited items, the results are similar to those of the TPR for non-visited
items, where TFIDF and W2V are the top performers, followed by LSlub and LSI,
then LDAub, and finally weak performers Randomized and Lastltems. Since
Lastltems does not recommend any new items, the precision is zero. Once again,
the recommendation of top five most recently experienced items is reflected in
the non-visited items figure. For most of the recommenders, the precision is the
highest when the recommendation list size is around 15.

Figure 18 also shows that precision decreases when the recommendation list size
increases. This applies for all recommenders. This means that the more items are
recommended, the less is the chance that the predicted items are correct. More-
over, it is possible to increase the recommendation list size even when all items to
be predicted have already been predicted by the recommender, which decreases
the precision. Overall, the precision for non-visited items is significantly lower for

non-visited items than visited items.
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The F1-Score for visited and non-visited items at different recommendation list
sizes is shown in Figure 19. F1-Score indicates an overall utility of the recommen-

dations, taking into account both precision and TPR.

For visited items, Lastltems is the best performer, and all the VSM recommenders
perform similar to each other, being slightly worse than Lastltems. Randomized
recommender is clearly the worst performer.

For non-visited items, the F1-Score for all recommenders but Randomized perform
similar to each other. Randomized recommender is the worst performer. The F1-
Score for Lastltems is not defined, since it would require division by zero because

of the non-visited items.
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The results for ranking metrics R20, R100 and NDCG for different recommenders
are shown in Figure 20. These rankings are for visited items only. Both TFIDF and
W2V are the top performers on all the ranking metrics, whereas the reference
recommenders Lastltems and Randomized are the worst performers together

with LDAub. LSlub and LSl are placed in the middle performance-wise.

Ranking evaluation metrics

7.5 =
Metric
504 R20
R100
. NDCG
2.5
0.0 -

Value

1

T T T
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N N N a2 QO G
S & K N
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Recommender

Figure 20: R20, R100 and NDCG evaluation metrics for each recom-
mender.

The average time spent in making the recommendation is visualized in Figure 21,
and the corresponding numerical values are presented in Table 9. From these it
can be observed that all the recommenders have prediction time less than 40 mil-
liseconds. The total time required for recommendation in the case of reference
recommenders Lastltems and Randomized is very low. The prediction and aggre-
gation times of VSM recommenders are similar, apart from W2V that is signifi-

cantly slower than others, and TFIDF that is slightly faster than others.
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Table 9: Average time spent in recommendation.

Aggregation  Prediction Total time
Recommender i .

time (ms) time (ms) (ms)

Lastltems 0,98 1,95 2,93
LDAub 71,06 11,47 82,53

LSI 67,68 12,86 80,54

LSlub 68,14 12,87 81,02
Randomized 4,73 7,09 11,82
TFIDF 48,71 10,49 59,19
w2v 70,58 36,17 106,76

Time spent in recommendation
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Figure 21: Average time spent in recommendation for each recom-
mender.
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6 Discussion and conclusions

The goal of this thesis was to make the front page of an online auction site more
relevant to its users by building a recommender system that chooses the items to
display. A general recommendation process was developed to serve as a basis for
several recommenders that were built. Randomized and Lastltems recommenders
were based on simple heuristics and they were used as reference points for other
recommenders. TFIDF, LSI, LSlub, LDAub and W2V recommenders were based on
representing user profile and items in the respective vector space of each recom-
mender. The recommenders were evaluated offline by simulating them in a real-
life scenario for one week. The predictive accuracy was used as an evaluation met-
ric for both visited and non-visited items, and the recommendation time was also

considered.

The results show that the simple Lastltems recommender performed surprisingly
well for visited items. This shows that users tend to revisit the items they have
already visited. Therefore, it would make sense to display at least a small number
of previously visited items on the front page. Initial experiments with different
recommenders already showed this kind of behavior from users, and it is also the
reason for ranking previously visited items in the top five in the recommendation

process.

Revisiting the same items could be for various reasons. For instance, users may
want to keep up with the bids and comments of an interesting auction item. On
the other hand, sellers may want to do the same. Simply recommending previously

visited items should make the front page more relevant, and also more user-
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friendly by providing a shortcut to a potentially interesting item. With more exten-
sive data available it would be possible to examine possible reasons for this kind

of behavior in more detail.

On the other hand, it would be uninteresting for the users to only see previously
visited on the front page. Therefore, it would make sense to also recommend un-
seen items for the users. Based on the results, the best performers for non-visited
items were TFIDF and W2V. Interestingly, these recommenders are based on to-
tally different approaches. TFIDF is more of a content-based approach that only
takes into account exact words in the item titles, whereas W2V uses more collab-
orative-based approach by taking into account neighboring words in users’ ses-
sions in general. The accuracy of W2V could be enhanced by using more advanced
heuristics for combining individual words, such as Paragraph2Vec. Moreover, in-
creasing the dimensionality dy, could lead to better results, but it would also
increase the required computation time. Because W2V has to aggregate individual
words in to sentences, on average it takes almost double the time of TFIDF to com-
pute a recommendation. Therefore, TFIDF is more scalable than W2V.

For the online auction site, W2V could be an interesting approach with many ex-
tension possibilities. Because the online auction is owned by a large media corpo-
ration, W2V would allow for using user data from other sources than the auction
site as well. For example, if there were data about news articles that users have
read or Facebook comments that users have posted, this information could be ex-
ploited by W2V since it tries to identify the contexts of words. Moreover, the av-
erage performing topic model recommenders LSI and LDA could also perform bet-

ter when trained with more extensive data.

The more traditional TFIDF recommender was simple, efficient, and performed
well, even with limited amount of data available, as in this thesis. However, the
recommendations of TFIDF are based on exact word matches, which users may
consider uninteresting in reality. On the other hand, TFIDF recommender per-
forms search queries based on words in previous sessions of a user, and items
similar to those previously visited are obtained as a result. Due to its simplicity and
scalability, TFIDF recommender is a good candidate for further examination and

online evaluation.

One of the main challenges in this thesis was the uniqueness and dynamic nature
of items. In this thesis, the approach to tackle this problem was to offline calculate

user profile and online calculate item similarities in the same vector space, with
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the help of cosine similarity and natural language processing based recommend-
ers. Static item categories were used for fetching the candidate items to calculate
similarities against. One approach that was not comprehensively considered in this
thesis was clustering. Item categories were used as pre-defined static clusters, but
by clustering items based on other types of item features, such as location and
price, it would be possible to create more specific clusters and apply more tradi-
tional recommendation techniques that require more computation time. For ex-
ample, when users add items for sale, these items could automatically be clus-
tered into more detailed, pre-defined static clusters. Traditional recommendation
techniques could then be applied to these static clusters instead of single items,

and items could be chosen from these clusters based on some heuristics.

The recommendation process in this thesis was based on initial experiments with
possible approaches in order to meet the desired time and scalability require-
ments. The process utilizes both offline and online calculation which allows for
producing recommendations quickly. In fact, the total aggregation and prediction
time is under 100 milliseconds for almost every recommender, which indicates
that user profiles could be aggregated near real-time, and the information of the
current session could also be utilized when computing the recommendations.
Moreover, for most recommenders, more candidate items or user word queries

could be used while still reaching the target prediction time.

On the other hand, the recommendation process only takes into account the most
recent sessions of a user. For some users this could be sufficient, but for some
users it could be beneficial to create a longer-term user profile that takes a larger
portion of the user history into account. However, creating a long-term profile
would be more useful with more extensive user data available, such as previous

items bought and sold.

Because the recommenders used in this thesis were mostly content-based, rec-
ommendations can easily be made for users with only a few events in their user
history. Moreover, since category similarities were calculated using a collaborative
approach, new categories can be recommended to users with experience from

only few categories. These choices aim to tackle the cold-start problem.

As mentioned, the data used in this thesis were limited. User browsing history was
used as an input for the recommenders, and on the item side, only the item titles

and categories were utilized. Given that users’ previous sales, bids, purchases,
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feedbacks and demographic information was available with extensive item infor-
mation, recommenders with more predictive accuracy could be built. This extra
information could be utilized, for example, in the item similarity calculation by
adding the extra information as new features in the vector representation of the
item. However, adding more features would increase the recommendation com-
putation time. Another use case for additional information could be the creation
of a more extensive user profile that could be pre-calculated offline. This profile
information could be utilized when constructing the final rankings for a smaller
number of items (as in the YouTube example in Section 2.3.1), for example by
ranking those items higher that are located closer to the user. Information about
users’ previous purchases would also allow for obvious post-purchase recommen-

dations, such as recommending an iPad cover after buying an iPad.
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Appendix A - Table of evaluation re-

sults
F1-Score
Recommender N TPR TPR (non- Precision Precision F1-Score | (non-vis-
visited) (non-visited) ited)
Lastltems 1 0,0092 0,0000 0,0385 0,0000 0,3352 -
Lastltems 5 0,0207 0,0000 0,0207 0,0000 0,2365 -
Lastltems 10 0,0262 0,0000 0,0145 0,0000 0,1748 -
Lastltems 15 0,0292 0,0000 0,0115 0,0000 0,1413 -
Lastltems 20 0,0311 0,0000 0,0096 0,0000 0,1195 -
Lastltems 25 0,0322 0,0000 0,0082 0,0000 0,1042 -
Lastltems 30 0,0331 0,0000 0,0072 0,0000 0,0928 -
Lastltems 40 0,0342 0,0000 0,0058 0,0000 0,0766 -
Lastltems 60 0,0353 0,0000 0,0042 0,0000 0,0574 -
Lastltems 80 0,0359 0,0000 0,0033 0,0000 0,0462 -
Lastltems 100 0,0362 0,0000 0,0027 0,0000 0,0386 -
LDAub 1 0,0092 0,0000 0,0386 0,0001 0,3351 0,2679
LDAub 5 0,0217 0,0014 0,0209 0,0005 0,2380 0,2626
LDAub 10 0,0262 0,0059 0,0121 0,0013 0,1636 0,1478
LDAub 15 0,0293 0,0087 0,0089 0,0014 0,1273 0,1103
LDAub 20 0,0315 0,0110 0,0071 0,0013 0,1048 0,0906
LDAub 25 0,0323 0,0120 0,0058 0,0012 0,0890 0,0758
LDAub 30 0,0330 0,0127 0,0050 0,0011 0,0773 0,0646
LDAub 40 0,0344 0,0142 0,0039 0,0009 0,0618 0,0514
LDAub 60 0,0362 0,0160 0,0027 0,0007 0,0442 0,0367
LDAub 80 0,0377 0,0176 0,0021 0,0006 0,0346 0,0288
LDAub 100 0,0384 0,0183 0,0017 0,0005 0,0284 0,0235
LSI 1 0,0094 0,0002 0,0388 0,0004 0,3364 0,5816




LSI 5 0,0224 0,0022 0,0213 0,0010 0,2389 0,2731

LSI 10 0,0283 0,0079 0,0130 0,0020 0,1654 0,1494

LSI 15 0,0321 0,0115 0,0098 0,0020 0,1296 0,1125

LSI 20 0,0348 0,0145 0,0079 0,0019 0,1075 0,0915

LSI 25 0,0362 0,0160 0,0065 0,0017 0,0916 0,0779

LSI 30 0,0375 0,0173 0,0056 0,0016 0,0800 0,0674

LSI 40 0,0391 0,0189 0,0044 0,0013 0,0637 0,0530

LSI 60 0,0410 0,0210 0,0031 0,0010 0,0457 0,0379

LSI 80 0,0423 0,0225 0,0024 0,0008 0,0357 0,0295

LSI 100 | 0,0434 0,0237 0,0020 0,0007 0,0294 0,0245
LSlub 1 0,0094 0,0002 0,0387 0,0002 0,3366 0,8333
LSlub 5 0,0226 0,0023 0,0213 0,0009 0,2391 0,2718
LSlub 10 0,0291 0,0087 0,0130 0,0020 0,1661 0,1545
LSlub 15 0,0330 0,0124 0,0098 0,0021 0,1302 0,1142
LSlub 20 0,0356 0,0152 0,0079 0,0020 0,1070 0,0926
LSlub 25 0,0372 0,0168 0,0066 0,0017 0,0913 0,0779
LSlub 30 0,0381 0,0179 0,0056 0,0016 0,0796 0,0673
LSlub 40 0,0397 0,0196 0,0044 0,0013 0,0639 0,0533
LSlub 60 0,0425 0,0225 0,0031 0,0010 0,0459 0,0380
LSlub 80 0,0440 0,0243 0,0024 0,0008 0,0361 0,0297
LSlub 100 | 0,0451 0,0255 0,0020 0,0007 0,0297 0,0244
Randomized 1 0,0000 0,0000 0,0001 0,0001 0,2667 0,2698
Randomized 5 0,0001 0,0000 0,0001 0,0001 0,1434 0,1357
Randomized 10 0,0002 0,0001 0,0001 0,0001 0,0900 0,0876
Randomized 15 0,0002 0,0002 0,0001 0,0001 0,0712 0,0710
Randomized 20 0,0003 0,0002 0,0001 0,0001 0,0602 0,0607
Randomized 25 0,0003 0,0003 0,0001 0,0000 0,0509 0,0527
Randomized 30 0,0003 0,0003 0,0001 0,0000 0,0448 0,0463
Randomized 40 0,0005 0,0004 0,0001 0,0000 0,0364 0,0381
Randomized 60 0,0006 0,0006 0,0001 0,0000 0,0268 0,0279
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Randomized 80 0,0009 0,0009 0,0001 0,0000 0,0209 0,0216
Randomized 100 | 0,0010 0,0010 0,0000 0,0000 0,0174 0,0178
TFIDF 1 0,0093 0,0001 0,0387 0,0003 0,3353 0,3460
TFIDF 5 0,0229 0,0026 0,0215 0,0011 0,2395 0,2756
TFIDF 10 0,0313 0,0111 0,0136 0,0025 0,1683 0,1540
TFIDF 15 0,0359 0,0156 0,0103 0,0025 0,1313 0,1140
TFIDF 20 0,0397 0,0196 0,0085 0,0024 0,1091 0,0930
TFIDF 25 0,0420 0,0222 0,0072 0,0022 0,0932 0,0778
TFIDF 30 0,0442 0,0244 0,0062 0,0021 0,0818 0,0680
TFIDF 40 0,0470 0,0275 0,0050 0,0018 0,0657 0,0546
TFIDF 60 0,0511 0,0318 0,0036 0,0014 0,0475 0,0396
TFIDF 80 0,0539 0,0348 0,0028 0,0012 0,0374 0,0311
TFIDF 100 | 0,0554 0,0364 0,0023 0,0010 0,0309 0,0257
w2v 1 0,0095 0,0003 0,0389 0,0004 0,3370 0,6045
w2v 5 0,0233 0,0029 0,0216 0,0012 0,2389 0,2660
w2v 10 0,0302 0,0099 0,0136 0,0025 0,1680 0,1533
w2v 15 0,0359 0,0156 0,0105 0,0026 0,1323 0,1144
w2v 20 0,0400 0,0200 0,0086 0,0025 0,1097 0,0931
wav 25 0,0419 0,0221 0,0072 0,0023 0,0940 0,0789
w2v 30 0,0439 0,0243 0,0063 0,0021 0,0822 0,0687
wav 40 0,0470 0,0277 0,0050 0,0019 0,0664 0,0553
wav 60 0,0512 0,0324 0,0036 0,0015 0,0480 0,0398
w2v 80 0,0541 0,0354 0,0029 0,0013 0,0379 0,0314
wav 100 | 0,0564 0,0378 0,0024 0,0011 0,0313 0,0261
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