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Vehicle routing problems have numerous applications in fields such as transportation,

supply logistics and network design. The optimal design of these routes fall in the cat-

egory of NP-hard optimization problems, meaning that the computational complexity

increases extremely fast with increasing problem size.

The Generalized Vehicle Routing Problem (GVRP) is a general problem type that

includes a broad variety of other problems as special cases. The main special feature

of the GVRP is that the customers are grouped in clusters. For each cluster, only one

customer is visited.

In this thesis, we implement a heuristic algorithm to solve GVRP instances in reasonable

time. Especially, we include a cyclic exchange method that considers a very large search

neighborhood.

In addition, we study the related Capacitated m-Ring-Star Problem (CmRSP). We

present the Distance-Constrained Capacitated m-Ring-Star Problem (DCmRSP) and

show that it contains the Multivehicle Covering Tour Problem (MCTP) as a special

case. We show that DCmRSP instances can be transformed to (distance-constrained)

GVRP with minor adaptations and solved with the same heuristic algorithm.

Our algorithm is able to find best known solutions to all GVRP test instances; for two

of them, our method shows strict improvement. The transformed CmRSP and MCTP

instances are solved successfully by the same algorithm with adequate performance.

Keywords: Combinatorial optimization, vehicle routing,

heuristic algorithm, cyclic exchange

Language: English
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Matematiikan ja systeemianalyysin laitos

Pääaine: Systeemi- ja operaatiotutkimus

Valvoja: Prof. Harri Ehtamo

Ohjaaja: Prof. Enrico Bartolini

Ajoneuvoreititysongelmilla on lukuisia sovelluksia muun muassa logistiikan ja ver-

kostosuunnittelun aloilla. Tällaisten reittien optimaalinen ratkaiseminen kuuluu NP-

vaikeiden optimointiongelmien kategoriaan, eli ratkaisuun vaadittava laskentateho kas-

vaa erittäin nopeasti ongelman koon suhteen.

Yleistetty ajoneuvoreititysongelma (Generalized Vehicle Routing Problem, GVRP) on

ongelmatyyppi, joka kattaa joukon muita reititysongelmia erikoistapauksina. GVRP:n

selkein erityispiirre on asiakkaiden jako ryppäisiin: kussakin ryppäässä on käytävä tasan

yhden asiakkaan luona.

Tässä diplomityössä esitellään ja toteutetaan heuristinen algoritmi, joka etsii kohta-

laisessa ajassa ratkaisuja GVRP-ongelmiin. Menetelmä sisältää kiertovaihtoalgoritmin,

joka kykenee etsimään ratkaisuja hyvin laajasta ympäristöstä.

Tutkimuksen kohteena on lisäksi m-rengastähtiongelma (Capacitated m-Ring-Star

Problem, CmRSP). Esittelemme ongelman etäisyysrajoitetun version (DCmRSP), ja

näytämme, että kyseiseen ongelmaan sisältyy usean ajoneuvon peittävän reitin ongel-

ma (Multivehicle Covering Tour Problem). Näytämme, että DCmRSP-ongelman pystyy

pienin muutoksin muuntamaan GVRP-ongelmaksi ja ratkaisemaan samalla heuristisel-

la algoritmilla.

Algoritmi löytää parhaat tunnetut ratkaisut kaikkiin GVRP-testitehtäviin. Kahdessa

tapauksessa ratkaisu on parempi aiemmin löydettyihin nähden. Algoritmi kykenee rat-

kaisemaan muunnetut CmRSP- ja MCTP-testitehtävät kohtalaisella ratkaisulaadulla.

Avainsanat: Optimointi, ajoneuvoreititys, heuristiikka, syklinen vaihto

Kieli: Englanti
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Chapter 1

Introduction

It is apparent that there are numerous applications for vehicle routing problems

in transportation. Being able to find better routes for cars or airplanes can save

significant amounts of fuel, time and money. The constantly improving computer

efficiency allows for more complex and large problems to be solved. However, finding

optimal solutions remains exceedingly difficult for many real-life problems. Heuristic

algorithms that are able to find good solutions quickly are essential in practical

applications.

1.1 Problem descriptions

The Generalized Vehicle Routing Problem is a routing problem that contains many

simpler problems as special cases, including the Traveling Salesman Problem and

the Capacitated Vehicle Routing Problem. Each customer in a GVRP belongs to a

cluster and only one customer per cluster can be visited. There is also a constraint

on the capacity of each route.

The GVRP can be applied, for instance, to a logistics problem where a company

wants to deliver its product to stores in a city. It may be time-consuming and

inconvenient to visit each store with a large truck. Instead, a single visit to each

neighborhood (cluster of stores) can be more effective as local stores can distribute

the product flexibly among themselves.

Another practical application arises in disaster relief. Natural disasters, such as

earthquakes or tropical storms can disrupt the road network and leave neighboring

cities and villages stranded from other parts of the affected area. Supplies to these

1



CHAPTER 1. INTRODUCTION 2

village clusters may have to be delivered by aircraft. Optimal routes for airplanes

will help in providing the best possible utilization of available resources.

The Distance-Constrained Generalized Vehicle Routing Problem is an even more

general version of the GVRP. Adding distance constraints can help to model even

more realistic situations concerning working hours, the amount of fuel etc.

The Capacitated m-Ring Star Problem originates from a real-world need to design

cable networks. These networks are often circular so that a fault on a single edge

will not cut the data flow to the customers. Some customers can also be attached

to the ring with a more vulnerable one-way link, resulting in a ring-star shape.

The CmRSP is closely related to vehicle routing; instead of a fleet of vehicles travel-

ing on roads, information travels through cables. In fact, a vehicle routing interpre-

tation of the CmRSP would be very similar to that of the logistic GVRP. Whereas

the GVRP includes clusters where only one customer is visited, the trucks in the

CmRSP can either visit the customers or one of their possible star-connections.

1.2 Research approach

In this thesis, we have two key focal points. One is to create a competitive heuristic

algorithm for solving GVRP instances with good quality and reasonable computing

time. As a basis, we use the DGVRP algorithm created for the Bachelor’s The-

sis. This algorithm is appended with a cyclic exchange search procedure, a simple

shortest-path tool and some features to improve the computational efficiency.

The other aim of this thesis is to find other problems that can be solved with the

same DGVRP algorithm. Two such similar problems are found: the Capacitated

m-Ring-Star Problem and the Multivehicle Covering Tour Problem. Test instances

for these problems are transformed into GVRP form and solved. We are especially

interested to see if the results, without any ad-hoc adaptations, are comparable

to the current research on these problems, concerning both solution quality and

computing time.

We also present the Distance-Constrained Capacitatedm-Ring-Star Problem (DCmRSP).

This problem contains the Multivehicle Covering Tour Problem as a special case.

To our knowledge, the DCmRSP has not been previously studied. The addition of

distance constraints makes for an interesting problem. Suppose that the distance

constraint concerns the length of the ring. Then, a constrained solution would be

likely to include short rings with many star assignments, since assignments do not
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add to the length of the ring. However, a more thorough research of the DCmRSP

is left out of the scope of this thesis. The distance-constrained variant is formulated

mathematically but not solved exactly or with the heuristic algorithm.

1.3 Thesis structure

In Chapter 2 of this thesis, we review the literature related to vehicle routing prob-

lems and especially to the CmRSP, GVRP and MCTP. We also take a look at the

development of heuristic search methods for vehicle routing problems, focusing on

large neighborhood search methods.

More detailed descriptions and mathematical formulations of the problems are pre-

sented in Chapter 3. In this chapter, we present the Distance-Constrained m-Ring-

Star Problem and show that both CmRSP and MCTP are special cases of this

problem.

Chapter 4 depicts the transformation of a DCmRSP instance to a DGVRP instance.

We also discuss some problems of the transformation and add constraints to ensure

the feasibility of a GVRP solution transformed back to DCmRSP form.

In Chapter 5 we present the heuristic algorithm. We revise the Bachelor’s Thesis

algorithm that is built on the Split procedure that divides a sequence of all clusters

to feasible routes in an optimal fashion. Moreover, the cyclic exchange method is

presented in detail. In addition, we describe the implementation of shortest-path

and preprocessing algorithms.

The results of the heuristic algorithm can be found in Chapter 6. New previously

unknown best solutions for two GVRP instances are presented. Finally, conclusions

and ideas for future research can be found in Chapter 7.



Chapter 2

Background

In this chapter, we present the main concepts pertaining to the topic of the thesis.

Especially, we familiarize the reader with the history of vehicle routing problems

and common metaheuristic methods for solving them. We pay specific attention to

the problems examined in this thesis and other closely related problems.

2.1 Traveling Salesman Problem

The Traveling Saleman Problem (TSP) is perhaps the most well-known combina-

torial optimization problem and it is the basis to all vehicle routing problems. In

the standard version of the problem, a salesman must design a least-cost tour to

visit a given set of towns and return back to their home town. For a number of

n towns, there are n! possible routes for the salesman. Therefore, evaluating all

possible routes becomes extremely time consuming with increasing problem size.

Concerning computational complexity, the TSP is NP-complete, meaning that it

belongs to both complexity classes NP-hard and NP. Problems in NP are solved

in ’nondeterministic polynomial’ time, as opposed to class P with known polyno-

mial algorithms. NP-hard problems are at least as hard to solve as those in NP.

There are no known polynomial-time solution algorithms for problems in NP, but

a solution can be verified in polynomial time. Thus, finding a polynomial-time algo-

rithm for the TSP would mean that all problems in NP can be solved polynomially.

So far, no polynomial algorithms for NP-complete problems have been found, nor

has it been proved that such an algorithm does not exist. More information about

complexity theory is presented e.g. in [6].

4



CHAPTER 2. BACKGROUND 5

This question, whether P = NP, is one of the most important unanswered ques-

tions in the field of mathematics and computer science. Generally, it is considered

more likely that P 6= NP, since NP-complete problems contain very complex prob-

lems. Currently, the fastest algorithms for solving TSP instances to optimality grow

exponentially with respect to problem size.

The TSP has been extensively studied, and it is the subject of numerous variations

and generalizations, including e.g. distance constraints, asymmetricity and time

windows.

2.2 Vehicle routing problems

The Vehicle Routing Problem (VRP) generalizes the Traveling Saleman Problem.

In the VRP, there can be multiple routes to cover all the towns or customers. The

VRP was introduced in [9] and it has also attracted much attention, due to its

natural applications in vehicle fleet optimization. Current vehicle routing problem

types, solution methods and applications can be viewed in [28].

The Capacitated Vehicle Routing Problem (CVRP) is a further generalization of the

VRP. In the CVRP, each customer has a demand that must be satisfied. In addition,

the vehicles have a maximum capacity, which the demand of the customers on a route

cannot exceed.

2.3 Generalized Vehicle Routing Problem

The Generalized Vehicle Routing Problem is another generalization of the VRP. To

our knowledge, the GVRP is first introduced in [13]. The main component of the

GVRP is the presence of clusters. Each customer belongs to exactly one cluster and

all clusters contain at least one customer. The cluster set is then a partition of the

customer set. For each cluster, exactly one customer is visited on a feasible route.

The customers in the standard version of the GVRP have demands. Thus, the

GVRP reduces to a CVRP if all the clusters are singletons. A GVRP with only

one route reduces to the Generalized Traveling Salesman Problem (GTSP), another

well-known optimization problem. More applications of the GVRP are presented

in [3], including the Traveling Saleman Problem with profits and the periodic and

multi-depot VRP.
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In [13], a transformation of the GVRP to a Capacitated Arc Routing Problem is

presented with one test instance. The first solution algorithm, an Ant Colony System

heuristic is applied to a small set of test instances with up to 20 clusters in [24].

A full set of large-scale (up to more than 100 clusters) test instances for the GVRP is

proposed in [5] along with four mathematical formulations. Both exact branch-and-

cut and heuristic algorithms are applied. In [20], a tabu search heuristic is applied

to the GVRP and the variant with time windows (GVRPTW). An exact algorithm

and a metaheuristic based on the Split method is presented in both [15] and [1].

The Distance-Constrained Generalized Vehicle Routing Problem (DGVRP) gener-

alizes the GVRP to include distance constraints for the length of the routes. To our

knowledge, this variant has only been considered in [19], the Bachelor’s Thesis of

the author. In the thesis, a set of DGVRP test instances is generated and solved

with a heuristic algorithm.

2.4 Capacitated m-Ring-Star Problem

In this thesis, we also consider additional problems closely related to vehicle routing

problems. The Capacitated m-Ring Star Problem (CmRSP) is introduced in [4] for

an application in the design of a telecommunications cable network. A set of test

instances with up to 100 nodes and a branch-and-cut algorithm are introduced.

A heuristic algorithm for these CmRSP instances is presented in [21]. The same

authors consider another Integer Linear Programming -based heuristic in [22] and

present new test instances with up to 200 nodes. In [29], a memetic heuristic al-

gorithm for solving the CmRSP is presented, along with a set of even larger test

instances with up to over 400 nodes.

2.5 Multivehicle Covering Tour Problem

Another problem that we consider is the Multivehicle Covering Tour Problem (MCTP),

first presented in [16]. This problem arises from the Covering Saleman Problem

(CSP), a variant of the TSP introduced in [8], in which it is not necessary to visit a

customer if it is sufficiently close to a customer that is visited. The Covering Tour

Problem (CTP), introduced in [11], partitions the set of customers to those that can

be visited and those that must be covered. Then, the MCTP is a generalization of

the CTP where multiple routes are allowed.

Multiple exact solution methods have been applied for the MCTP [17, 14, 23] along

with heuristic approaches [16, 26, 14, 18, 23].
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2.6 Cyclic exchange

Due to the fact that vehicle routing problems belong to the class of NP-hard prob-

lems, the development of heuristic algorithms is closely associated with the history

of these problems. Usually, the local search methods used in the heuristic methods

consist of simple moves; insertions, swaps, 2-opt, etc. The neighborhood of a solu-

tion is the set of solutions that can be reached from the current one with the local

search methods. Typically, there is a fundamental trade-off between the size of the

neighborhood and the effectiveness of the algorithm; searching a bigger neighbor-

hood is likely to yield better results with the expense of increased complexity and

computational time.

The concept of metaheuristic algorithms refers to the framework that combines a

simple local search procedure with a higher level strategy for creating neighborhoods

and escaping from local optima. With metaheuristic methods, the neighborhood of a

solution is typically small, but the framework ensures that the entire solutions space

is considered in a robust manner. Metaheuristic algorithms often include a procedure

that ’shakes’ the current solution to enter new neighborhoods, or iteratively create

diverse solutions. Multiple metaheuristic methods are presented in detail in [12] and

[7], including tabu search, variable neighborhood search and simulated annealing.

It is also possible to consider more complex moves and large neighborhoods, provided

that there is an effective algorithm for searching that neighborhood. Such methods

are called large neighborhood search (LNS) or very large neighborhood search (VLNS)

methods.

The cyclic exchange method, first presented in [27], is a VLNS procedure for solutions

that are partitions; for example, most vehicle routing problems are partitions as each

customer or cluster belongs to exactly one route. A cyclic exchange move removes

an element from one set of the partition and inserts it to another one. Then, an

element of the second set is removed and inserted elsewhere. The process continues,

until an element is inserted back to the first set, completing the cycle, or if an

element is inserted to a set without removal. With the restriction that each set can

only be affected once with a single move, there is an effective algorithm for searching

improving cycles using an auxiliary improvement graph. A cyclic exchange move

can potentially change every route in a VRP solution.

Cyclic exchange is used in [2] in the context of the Capacitated Minimum Spanning

Tree Problem. The method is presented in more detail in chapter 13.4 in [7].



Chapter 3

Problem formulations

In this chapter, we present mathematical formulations of the problems studied in

the thesis. For the Generalized Vehicle Routing Problem, we use a two-index arc

formulation with a two-commodity flow model for the capacity constraints. Possible

distance constraints are modelled with a single commodity flow.

We present the mathematical description and a formulation to the new Distance-

Constrained Capacitatedm-Ring-Star Problem. We show that both the Capacitated

m-Ring Star Problem and the Multivehicle Covering Tour Problem are special cases

of the DCmRSP.

3.1 Generalized Vehicle Routing Problem formulation

We define the Generalized Vehicle Routing Problem on a directed graph G = (V,A).

The vertex set V has n vertices {v1, v2, ..., vn} to represent regular customers. In

addition, there is a central depot where all routes must start and end. This depot is

divided into two vertices v0 and vn+1 so that all routes form paths from v0 to vn+1.

The cost of traversing an arc from vi ∈ V \ vn+1 to vj ∈ V \ v0 equals the distance

dij between them. In the thesis, we exclusively study the symmetric case, where

dij = dji.

Each regular vertex belongs to exactly one cluster. Each cluster can contain one or

more vertices. In total, the cluster set C consists ofK clusters: C = {C1, C2, ..., CK}.

The GVRP is a capacitated problem. This means that each vehicle has a limit Q for

the amount of goods it can carry to the customers. In this context, each cluster Ck

has a demand qk ≤ Q. Since each customer is uniquely associated with one cluster,

8



CHAPTER 3. PROBLEM FORMULATIONS 9

Figure 3.1: An example of a feasible GVRP solution

we can assign a demand q̃i = qk ∀vi ∈ Ck.

In [19], which is the Bachelor’s Thesis of the author, we presented the DGVRP

that has additional distance or time constraints that the solution must satisfy. The

length of each route is bounded by an upper limit T . Each arc (i, j) is assigned

with tij , the time it takes to traverse that arc. If tij = dij the problem is strictly

distance-constrained, but our formulation allows the distance and time to differ.

A feasible (D)GVRP solution consists of m routes. In most literature, the fleet size

is considered as a fixed parameter. We assume that the fleet size is flexible and treat

m as a decision variable, as in [14].

To formulate the problem mathematically, we use several sets of decision variables.

First, binary variables xij equal 1 if arc (i, j) is traversed and 0 otherwise. We are

forced to use arcs instead of edges in order to model the distance constraints. Binary

variables yi indicate if the customer vi is visited. Variables fij model a commodity

flow through the network and hij indicate time flow. More detailed explanations

and examples of the flows are presented after the formulation:
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min

n+1∑
i=0

n+1∑
j=0

dijxij (3.1)

s.t.
∑
i∈Cl

yi = 1 ∀ l = 1, 2, ... ,K (3.2)

n∑
i=0

xij = yj ∀vj ∈ V \ {v0, vn+1} (3.3)

n+1∑
k=1

xjk = yj ∀vj ∈ V \ {v0, vn+1} (3.4)

fij + fji = Q(xij + xji) ∀(i, j) ∈ A (3.5)

n∑
j=1

f0j =
K∑
k=1

qk (3.6)

n∑
j=1

fn+1j = Qm (3.7)

n+1∑
j=0

fji −
n+1∑
j=0

fij = 2q̃iyi ∀vi ∈ V \ {v0, vn+1}, i 6= j (3.8)

n+1∑
j=0

hij −
n+1∑
k=0

hki =
n+1∑
j=0

tijxij ∀ vi ∈ V \ {v0, vn+1}, i 6= j (3.9)

hij ≤ Txij ∀ (i, j) ∈ A (3.10)

h0 i = t0 ix0 i ∀vi ∈ V (3.11)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.12)

yi ∈ {0, 1} ∀vi ∈ V \ {v0, vn+1} (3.13)

m ∈ Z+ (3.14)

fij ≥ 0 ∀(i, j) ∈ A (3.15)

hij ≥ 0 ∀ (i, j) ∈ A (3.16)
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The objective function (3.1) is to minimize the combined cost of each traversed

arc. Constraints (3.2) mean that exactly one customer per cluster is visited, and

(3.3)-(3.4) enforce that there is exactly one arc entering and leaving each visited

customer. No arcs are connected to unvisited customers.

Constraints (3.5)-(3.8) define the two-commodity flow. A simple example of the flow

is given in Figure 3.2 where the depot v0 and its duplicate vn+1 are separated for

clarity. The blue forward flow fij describes the amount of goods that are onboard a

vehicle as it traverses the arc (i, j). The red backflow fji can be interpreted as the

empty space on a vehicle traversing the arc (i, j). Thus, the sum of the flows on a

given edge must always equal the total vehicle capacity Q if the edge is traversed

either way (3.5).

Constraints (3.6) mean that the commodity flow from v0 is equal to the combined

demand of all clusters, and (3.7) that the backflow from vn+1 equals the entire

capacity of the fleet; each vehicle arrives back at the depot fully unloaded.

The consumption of capacity is modelled by constraints (3.8). The meaning of

these constraints is that if a customer vi is visited, then the sum of flows leaving the

customer substracted from the sum of flows entering the customer must equal 2q̃i.

In other words, both the forward and the backward flow grow smaller by q̃i when

visiting vi. To illustrate, examine customer v3 in Figure 3.2. Both flows grow smaller

by q̃2 = 4; the formula expresses this as f13 + f43 − f31 − f34 = 9 + 5− 5− 1 = 8.

The two-commodity flow constraints also eliminate subtours. The demands of each

cluster can only be positive; therefore, the forward flow value must decrease after

every arc traversed. If the same arc would be encountered again on the same route,

the flow value would have to be different, creating a contradiction as long as there

are no clusters with qk = 0.

Figure 3.2: Two-commodity flow example for a GVRP, m = 1
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Distance limits are modelled with time flow constraints (3.9)-(3.11). An example is

provided in Figure 3.3 where the distances are marked in black and flow values in

green. Constraints (3.11) impose that the time flow h0i on arcs emanating from v0

must be equal to t0i if the arc is traversed and 0 otherwise. The rest of the flow

variables are determined inductively by constraints (3.9); if arc (i, j) is traversed, the

time flow leaving vi must be greater than the flow entering vi by tij . For example,

in Figure 3.3 we have h13 − h01 = t13: 7− 4 = 3. No time flow variable can exceed

the limit T (3.10).

Figure 3.3: Time flow example for a GVRP, m = 1

Finally, constraints (3.12)-(3.16) simply define the boundaries of the variables: xij

and yi are binary, fij and hij are non-negative and the number of vehicles m is a

positive integer.

3.2 Capacitated m-Ring-Star Problem formulation

Figure 3.4: An example of a feasible CmRSP solution
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Figure 3.5: An example of a feasible DCmRSP solution

The Distance-Constrained Capacitated m-Ring Star Problem is defined on a directed

graph G = (V,A). The definition of the DCmRSP is very similar to that of the

DGVRP; the vertex set V = {v0, vn+1, V
′} consists of the depot v0, its duplicate

vn+1 and the regular vertex set V ′. Now V ′ is further partitioned into two separate

sets U and S. Vertices vi in U represent customers that must be either visited or

assigned to another vertex while vertices in S serve as additional assignment points

called Steiner nodes. The arc set A is divided into two disjoint sets A1 and A2

corresponding to ring and star connections, respectively.

Rings on the graph consist of paths traversing from v0 to vn+1, arcs assigned to that

path and all vertices incident to any arc on the path. At most m rings can be used

to obtain a solution where every customer in U is either visited by or assigned to

exactly one ring. Arcs A1 = {(i, j)| vi, vj ∈ V, i �= j} represent possible connections

in the graph with non-negative costs cij = cji. The arc set A2 represents all possible

assignments of the regular nodes to other regular or Steiner nodes. For each vi ∈ U ,

the set of feasible assignment points is denoted by Ci ⊂ V ′. This arc set is thus

A2 = {(i, j)| vi ∈ U, vj ∈ Ci} with non-negative costs aij . Each vi belongs to Ci; the

customer is assigned to itself with cost aii = 0 if it is directly connected to a ring.

The capacity of each ring-star is bounded by a limit of Q. Each regular node vi has

a demand qi = 1 while Steiner nodes have zero demand. This means that at most

Q regular customers can be assigned to one ring-star.
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By adding distance constraints to the CmRSP, we can force the rings to become

smaller with the expense of more star assignments (Figure 3.5). An upper limit T

gives the maximum length of a ring, while tij describe the distance values of arcs

(i, j) ∈ A1.

To present the DCmRSP mathematically, we use a formulation very similar to the

GVRP. It is based on the two-commodity flow formulation presented in [4]. How-

ever, in order to model the distance constraints, we must include arc-based decision

variables xij as in the GVRP. We also have the flow variables fij , (i, j) ∈ V . There

is one such variable for each arc (i, j) ∈ A1. Each forward flow variable fij has

a counterpart in a backward flow variable fji, identically to the previous GVRP

formulation.

In the formulation, we have three more sets of decision variables. Binary variables

zij equal 1 for assignment arcs (i, j) ∈ A2 that are in use. Binary variables sj for

each Steiner node vj ∈ S indicate if they are visited. Time flow variables hij are

used exactly as with the GVRP.

The objective function (3.17) is to minimize the combined cost of ring and assign-

ment arcs. Constraints (3.18)-(3.21) model the behavior of the two-commodity flow

at the depot. According to constraint (3.18), the flow from v0 equals the combined

demand of each customer in V ′. This is a general formula; in the traditional CmRSP,∑
vi∈V ′ qi = |U |. The backflow to v0 must equal the difference between the total

vehicle capacity and demand (3.19), the vehicles arrive to vn+1 completely empty

(3.20) and the backflow from vn+1 equals the total fleet capacity.

Constraints (3.22)-(3.23) mean that if a regular or Steiner node is visited, then the

sum of flows entering and leaving the node must equal 2Q. The binary variables xij

are tied to the flow variables fij with constraints (3.24): the sum of empty space

and goods must always equal Q on arcs that are traversed. Every node in U must

be assigned to exactly one node (3.25).
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min
∑

(i,j)∈A1

cijxij +
∑

(i,j)∈A2

aijzij (3.17)

∑
j∈V ′

f0j =
∑
vi∈V ′

qi (3.18)

∑
j∈V ′

fj0 = mQ−
∑
vi∈V ′

qi (3.19)

∑
j∈V ′

fj,n+1 = 0 (3.20)

∑
j∈V ′

fn+1,j = mQ (3.21)

∑
i∈V

(fij + fji) = 2Qzjj ∀vj ∈ U (3.22)

∑
i∈V

(fij + fji) = 2Qsj ∀vj ∈ S (3.23)

fij + fji = Q(xij + xji) ∀(i, j) ∈ A1 (3.24)∑
j∈V ′

zij = 1 ∀vi ∈ U (3.25)

∑
i∈V

(fij − fji) = 2
∑
vi∈U

qizij ∀vj ∈ U (3.26)

∑
i∈V

(fij − fji) = 2(
∑
vi∈U

qizij + qjsj) ∀vj ∈ S (3.27)

n+1∑
j=0

hij −
n+1∑
k=0

hki =

n+1∑
j=0

tijxij ∀vi ∈ V, i 6= j (3.28)

hij ≤ Txij (i, j) ∈ A1 (3.29)

h0i = t0ix0i vi ∈ V (3.30)

xij ∈ {0, 1} ∀vi, vj ∈ V (3.31)

zij ∈ {0, 1} ∀(i, j) ∈ A2 (3.32)

sj ∈ {0, 1} ∀vj ∈ S (3.33)

fij ≥ 0 ∀vi, vj ∈ V (3.34)

hij ≥ 0 ∀vi, vj ∈ V (3.35)

m ∈ Z+ (3.36)
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Figure 3.6 gives an example of the two commodity flow on a CmRSP. Similarly to

the GVRP example, the forward flow is presented with blue arrows and backflow

with red arrows. Constraints (3.26)-(3.27) describe the consumption of capacity to

regular and Steiner nodes, respectively. For example, there are two regular nodes,

v1 and v2, assigned to v2 in the figure. Thus, both the forward and backward flows

are diminished by 2 (each node has a demand q1 = q2 = 1). The flows concerning

Steiner nodes behave similarly; we include the possibility that Steiner nodes vj can

also consume capacity with the term qjsj .

Constraints (3.28)-(3.30) model the distance constraints by adding time flow vari-

ables hij identically to the GVRP. Variable types are reported with constraints

(3.31)-(3.36).

Figure 3.6: Two-commodity flow on a CmRSP example

3.3 Multivehicle Covering Tour Problem formulation

The Multivehicle Covering Tour Problem belongs to the class of vehicle routing

problems. It is similar to the Vehicle Routing Problem (VRP) with the objective to

design a set of routes having a limit on the number of customers served on a route.

In the MCTP, however, it is not necessary to visit every customer; some customers

are covered if they lie sufficiently close to the tour. The covered nodes resemble the

assigned nodes in the CmRSP. In fact, the MCTP can be viewed as a special case

of the Capacitated m-Ring-Star Problem with the exception that every node adds

to the capacity limit while Steiner nodes in the CmRSP do not have this property.

More formally, the MCTP is defined on an undirected graph G = (X,E). The

customer set X consists of the depot v0 and its copy vn+1 and the set of customers
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Figure 3.7: An example of a feasible MCTP solution

X’. In X’, there is a set W of those customers that must be covered and a set Y

of customers that can be visited. In Y , there is a subset T of customers that must

be visited. Essentially, the goal is to determine which customers in Y \ T to visit

in order to cover every node in W . An example of an MCTP instance is given in

Figure 3.7.

For each covered node vi ∈ W of the MCTP, we define Ci as the set of feasible

assignment points consisting of nodes vj ∈ Y that lie within the given distance r

from vi. The difference to assigned nodes in the CmRSP is that vi /∈ Ci. That is, a

covered node can only be assigned to a node in Y and never to itself. For any node

vj ∈ T , the feasible set Cj consists of only vj itself. Nodes in T must be visited, so

no other assignments are possible.

With these distinctions, the assignment arc set is then defined as A2 = {(i, j)| i ∈
W, j ∈ Ci}∪{(j, j)| j ∈ T}. All assignment costs aij = 0. The arc set for nodes that

can or must be visited is simply A1 = {(i, j)| vi, vj ∈ Y }.

The demands qi for each vi in X’ depend on the type of interpretation of the MCTP.

If the capacity limit Q is on the amount of vertices in the ring, then qi = 1 for vi ∈ Y

and qi = 0 for vi ∈ W . If the covered nodes are included in the capacity, then also

they have demand of 1. Usually only the capacity of the ring is considered, so we

choose the former option. Note that whereas the DCmRSP formulation was quite

general, this MCTP formulation considers the classical version with fixed demands

and no distance constraints.
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The formulation is reduced from the two-commodity flow CmRSP formulation with

binary arc variables xij and flow variables fij . Variables zij correspond to arc

assignments and sj to optionally visited nodes. In addition to setting the demands

to either 1 or 0, we have aij = 0. The set U of regular nodes in the CmRSP is

replaced with W ∪ T and some redundant constraints are eliminated; for example,

the capacity consumption constraints (3.46) only include the set T because qi = 0

for vi ∈ W . The set of Steiner nodes (S in the CmRSP) is replaced with the set of

optional nodes Y \ T .

With these notations, the mathematical formulation of the MCTP is as follows:

min
∑

(i,j)∈A1

cijxij (3.37)

∑
j∈X′

f0j = |T |+
∑

i∈Y \T

si (3.38)

∑
j∈X′

fj0 = mQ− |T | −
∑

i∈Y \T

si (3.39)

∑
j∈X′

fj,n+1 = 0 (3.40)

∑
j∈X′

fn+1,j = mQ (3.41)

∑
i∈X

(fij + fji) = 2Q ∀vj ∈ T (3.42)

∑
i∈X

(fij + fji) = 2Qsj ∀vj ∈ Y \ T (3.43)

∑
j∈X′

zij = 1 ∀vi ∈W (3.44)

zii = 1 ∀vi ∈ T (3.45)∑
i∈X

(fij − fji) = 2 ∀vj ∈ T (3.46)

∑
i∈X

(fij − fji) = 2sj ∀vj ∈ Y \ T (3.47)

fij + fji = Q(xij + xji) ∀(i, j) ∈ A1 (3.48)

xij ∈ {0, 1} ∀(i, j) ∈ A1 (3.49)

fij ≥ 0 ∀vi, vj ∈ X (3.50)

zij ∈ {0, 1} ∀(i, j) ∈ A2 (3.51)

sj ∈ {0, 1} ∀vj ∈W (3.52)
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Transformations

In this chapter, we present the transformations of the (D)CmRSP instances to

(D)GVRP instances and the MCTP instances to DGVRP instances. Inconsistencies

in the transformation are discussed and additional constraints are proposed.

4.1 CmRSP to GVRP

A Capacitated m-Ring-Star Problem can be transformed into a Generalized Vehicle

Routing Problem with some minor relaxations. This way, we can utilize a compete-

tive heuristic algorithm for the GVRP, constructed in the Bachelor’s Thesis of the

author. [19]

The main feature of the transformation is expanding the customer set U in a CmRSP

to a cluster set C in a GVRP. For each customer, we have mutually exclusive choices

to either visit the customer directly or assign it to available customers or Steiner

nodes. Each choice for customer vi ∈ U is represented as a customer in cluster Ci

in the GVRP transformation. The size of the cluster is thus the amount of arcs

emanating from vi plus one. We denote the choice of visiting customer vi directly

by a GVRP vertex uii, and assigning vi to another customer vj by a vertex uij .

With the customer set in place, we need to define the costs dij between vertices

in the GVRP. First, we note that a CmRSP instance with no feasible assignments

(aij = ∞ ∀i ∈ U, j ∈ V ′) reduces to a Capacitated Vehicle Routing Problem; the

same as a GVRP with only one customer per cluster. Thus, the cost dij between

GVRP customers uii and ujj is equal to the cost cij of arc (i, j) in the CmRSP.

For other edges in the GVRP, the assignment costs of the CmRSP must be taken

19
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into account. The cost of an edge between GVRP vertices ukk and uij consists of the

cost between vk and vj in the CmRSP and half the assignment cost aij/2. Because

a visited vertex always has two incident edges, the entire transformation cost is

indeed considered. The same principle is applied when both nodes correspond to

assignments.

Figure 4.1: A CmRSP instance with three regular nodes

Figure 4.2: The corresponding GVRP instance with three clusters

An example of the new cost structure is given in figures (4.1-4.2). In the CmRSP

graph, we have bolded a ring visiting a Steiner node v4 and a regular node v3 with

v1 assigned to v4 and v2 assigned to v3. The total cost of this ring is c0,4 + c4,3 +
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c3,5 + a1,4 + a2,3 = 4 + 6 + 6 + 3 + 4 = 23. In the GVRP graph, node u1,4 is visited

since v1 is assigned to v4. The cost of this edge equals c0,4 + 0.5a1,4 = 4 + 1.5 = 5.5.

Next, v2 is assigned to v3; this is equivalent to traversing the edge between u1,4 and

u2,3. The cost of this edge is 0.5a1,4 + c4,3 + 0.5a2,3 = 1.5 + 6 + 2 = 9.5. Assigning

v3 to the route brings only the additional cost 0.5a2,3 = 2. In the GVRP graph, we

move to the third cluster. Finally, the cost of returning to the depot is the same

c3,5 in both graphs. The cost of the GVRP route is 5.5 + 9.5 + 2 + 6 = 23; the same

as the corresponding CmRSP solution.

Note that in the CmRSP we can arbitrarily choose if v3 is visited before or after v2

is assigned to it. In the GVRP, a change in the order will result in a different route,

traversing the path u1,4, u3,3, u2,3. The cost of this route still equals 5.5+7.5+2+8 =

23.

The capacity limit of the CmRSP is for the amount of customers that are either

visited or assigned to a ring. Steiner nodes are not included in the capacity. A

cluster in the transformed GVRP contains all the possibilities to visit or assign a

single customer; therefore, all these options spend one ’capacity unit’. Setting qi = 1

for each cluster Ci in the GVRP results to a correct capacity limit.

If the CmRSP is distance-constrained, then the distance matrix in the DGVRP

counterpart is calculated in a similar fashion. The difference is that while assign-

ments can be costly, they do not require any actual distance travelled. For example,

the edge between u1,4 and u2,3 in figure 4.1 would have a distance value of 6 (distance

c4,3 in Figure 4.2). If the distance values are being used to model time as a resource,

then a small constant could be added to each distance matrix value corresponding to

assignments, modeling the additional time it might take to handle the assignment.

4.2 MCTP to DGVRP

The transformation of the MCTP to DGVRP form is very similar to the CmRSP,

as the problems are nearly identical. There are two kinds of clusters: those that

correspond to vertices that must be visited, containing only one customer (denote

this set as C1) and those that model the assignments with one customer for each

option (C2). The DGVRP cost matrix is defined as with the CmRSP. Assignments

cost nothing in the MCTP so the transformed costs remain simple.

However, a small difference in capacity interpretations between CmRSP and MCTP

leads to a problem in the transformation. In the MCTP, only the visited nodes



CHAPTER 4. TRANSFORMATIONS 22

Figure 4.3: MCTP capacity constraint modelled with distance constraints in the
DGVRP transformation

(including those that are voluntarily visited) are included in the capacity calcula-

tions. This would mean that qi must be 0 for cluster set C2 and qi = 1 for C1.

Still, a persisting problem is that the capacity consumed by the MCTP vertices

that can be visited (set Y \ T ) is not considered. Because the cluster structure

is suitable for mutually exclusive and collectively exhaustive choices, the optional

nodes cannot be modelled this way. Instead, we apply a handy work-around: all

cluster demands are set to zero or the capacity limit is increased so that the cluster

capacities become redundant. The capacity constraints are then implemented by

using distance constraints in the DGVRP. The distance between nodes uij and ukj

in the DGVRP is set to 0 and for every other node pair uij , ukl, j �= l the distance is

1. Then the distance limit T is set to Q+ 1. An example of a MCTP instance and

the DGVRP transformation with distance values is presented in figure 4.2. Because

of this procedure, distance-constrained MCTP instances cannot be transformed to

DGVRP form.

4.3 Transformation issues

There are some issues in transforming the (D)CmRSP to a (D)GVRP. The GVRP

transformation is, in fact, a relaxation of the original CmRSP. There are two possible

ways in which the original requirements of the CmRSP may be violated. We present

both these cases separately.

The first problem concerns the possible violation of the CmRSP degree constraints.

A feasible solution in the GVRP transformation may correspond to a CmRSP solu-
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tion with two arcs emanating from and traversing to a node. This is due to the fact

that the GVRP formulation ’forgets’ that many customers correspond to the same

nodes in the CmRSP. The choices are considered independently in each cluster.

An example of such a situation is presented in Figure 4.4 with two regular nodes

assigned to a third one. The GVRP cluster sequence (1,2,3,4) corresponds to the

following CmRSP route: ’assign v1 to v2’, ’visit v2’, ’visit v3’, ’assign v4 to v2’. Thus,

the node v2 is visited twice which violates constraint (3.22) of the CmRSP; the sum

of all flows connected to v2 now equals 4Q. However, the GVRP solution is feasible.

In practice, such routes will not be present in good-quality solutions. If the triangle

inequality holds, it must be suboptimal to visit a node twice.

Figure 4.4: An infeasible CmRSP solution (v2 visited twice) is feasible in the trans-
formed GVRP.

The same problem can also arise if the two paths traversing through the node belong

to different routes. This situation is presented in Figure 4.5. Assuming the triangle

inequality, it would be cheaper to visit v2 straight after v1 on the black route.

However, with the additional trip to v7, the load of customer v3 is now allocated to

the black route instead of the red one. It is not inevitable that v7 can be skipped on

the red route; there may be other customers assigned to it and it is not necessary

that the cost of the route is strictly improved. The possibility of redistributing the

loads can make this type of violation beneficial.

In the MCTP, this problem can not lead to improved solutions. The loads of covered

nodes are set to zero, so redistributing these loads among routes achieves nothing.



CHAPTER 4. TRANSFORMATIONS 24

Figure 4.5: An infeasible CmRSP solution (v7 visited twice) is feasible in the trans-
formed GVRP.

To forbid these violations, we must impose additional constraints in the transformed

GVRP. We add binary variables x(i,j),(k,l) that equal 1 if the arc (ui,j , uk,l) is tra-

versed and add the constraint:

∑
vi,vk,vl∈V

x(i,j),(k,l) ≤ 1 ∀j �= l (4.1)

These constraints mean that for any node vj in the CmRSP, there is at most one

arc emanating from nodes ui,j such that the CmRSP node is changed to vl. This

means that all assignments to vj , indicated by visits to nodes ui,j must be made

consequently. The situation in Figure 4.4 would be forbidden since there are two

arcs, emanating from u2,2 and u4,2, leading to some node uk,l, l �= 2. Similarly, in

Figure 4.5, the arcs emanating from u7,7 and u3,7 violate the constraint.

The second type of violation occurs when a regular node is assigned to another

regular node that is already assigned elsewhere. An example of this violation is

given in Figure 4.6. The GVRP cluster sequence (1,3,2,4) means the following

CmRSP route: ’assign v1 to v2’, ’visit v3’, ’assign v2 to v4’, ’visit v4’. Now v2 is both

assigned to v4 and visited when assigning v1 to it. The GVRP solution is feasible.

Of course, the assignment inflicts an extra cost that would not be present if v2 was

visited directly after the assignment of v1. However, it can be the case that v2 is

assigned to another route and thus the capacity of the original route is reduced by

one. This can lead to savings greater than the additional assignment cost.

In the MCTP, this type of violation is not present as no node can be both visited

and assigned.
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Figure 4.6: An infeasible CmRSP solution (v2 is both visited and assigned) is feasible
in the transformed GVRP.

The violation can be eliminated from the GVRP by adding additional constraints.

We use variables yi,j ∈ {0, 1} to indicate if node ui,j is visited.

∑
i|(i,j)∈A

yi,j ≤ Myj,j ∀j ∈ V (4.2)

Constraints 4.2 state that assignments to CmRSP customer vj can only be made if

vj is visited directly (assigned to itself). Here M is a sufficiently large number to

allow any amount of assignments; M ≥ n.

While these faults in the transformation formulation can be fixed with additional

GVRP constraints, we have chosen not to implement them. The focus of this thesis is

to see if the GVRP heuristic is capable of solving CmRSP instances with no major

ad-hoc adaptations. We also do not try to solve the CmRSP instances exactly

based on the GVRP formulation, so the implementation is not necessary. Including

the additional constraints in the heuristic algorithm would require significant and

computationally expensive changes, since even simple local moves may have large-

scale consequences that should be taken into account on every step.

Furthermore, while the violations are not in line with the mathematical CmRSP

formulation, the implied alterations can be understood as a part of the application

in telecommunications. It should be physically possible to lay two sets of cables

through a customer or lay a cable through a specific customer while assigning that

customer elsewhere.

With these relaxations, we must monitor if our solutions contain elements that

are forbidden in the traditional CmRSP instances to maintain comparability with

results found in literature.
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Computational methods

In this chapter, we present the computational methods that were used in order to find

solutions for the DGVRP. We briefly describe the heuristic algorithm version used

in the Bachelor’s Thesis of the author [19] and present a preprocessing algorithm

to remove dominated vertices from the GVRP. We present new implementations of

a simple shortest-path algorithm and describe the cyclic exchange search method

in detail, including the creation of an improvement graph and a label-correcting

algorithm to find negative-cost cycles in the graph.

5.1 Heuristic algorithm

In the Bachelor’s Thesis of the author [19], we presented a heuristic algorithm that

was able to reliably solve small and medium instances to their best known values.

The algorithm resembles the one implemented in [14] and mainly consists of a set

of local search moves and an exact Split method to determine optimal routes for a

fixed sequence of clusters.

In this thesis, we use the same basic algorithm structure with some additional fea-

tures. The entire structure is presented in Algorithm 1. Functions Preprocessing

and CyclicExchange are new features.

InitialRoutes creates an initial set of feasible routes. Two methods are used; the first

one creates a route for every cluster, each visiting only one customer. The second

initialization method is a randomized greedy procedure that starts from the depot

and proceeds to a customer picked randomly from one of the two closest unvisited

clusters. The route returns to the depot when capacity or distance constraint limits

26
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Algorithm 1: The metaheuristic algorithm

Parameters: ni, nm

Preprocessing()

RoutePool ← ∅
for i ← 1 to ni do

Routes ← InitialRoutes(i)
Routes ←LocalSearch(Routes)
Routes ← CyclicExchange(Routes)
Add Routes to RoutePool
GiantTour ← Concat(Routes)
for j ← 1 to nm do

MutatedTour ← Mutate(GiantTour)
Routes ← Split(MutatedTour)
Add Routes to RoutePool
Routes ← LocalSearch(Routes)
Routes ← CyclicExchange(Routes)
Add Routes to RoutePool

end

end
Solution ← SetPartitioning(RoutePool)

are reached. The combination of these two methods ensures that the initial routes

can be diverse and complicated but not always close to feasibility limits.

LocalSearch function is presented in more detail in Algorithm 2. It contains simple

moves: OnePoint removes a random cluster from the solution and finds the cheapest

feasible insertion back to one of the routes. The process is repeated until no new

improvements are made in a given amount of iterations. TwoPoint chooses a random

cluster and determines the best swap with another cluster. This function is also

iterated until there are no improvements. The function ShortestPath is presented

later in more detail. TwoOpt is a 2-opt algorithm that is tailored for the GVRP in

[10]. A route is called 2-optimal, if there is no improving way of removing a chain

of vertices from the route and reinserting them backwards. In practice, a 2-optimal

path should not cross itself.

CyclicExchange is, similarly to ShortestPath, a new feature and presented later in

detail. Concat merges the existing locally optimal set of routes to one giant route,

preparing the problem for the Split algorithm. The same giant route is split multiple

times, so there is a function Mutate that performs small random perturbations on

the giant route.
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Algorithm 2: The local search method

Input: Routes

Routes ←OnePoint(Routes)
Routes ←TwoPoint(Routes)
Routes ←ShortestPath(Routes)
Routes ←TwoOpt(Routes)
Routes ←ShortestPath(Routes)

Split is the most important and computationally the most consuming phase of the

algorithm. Split yields the optimal way to divide a fixed sequence of clusters (the

giant tour) into feasible routes. If the distance matrix is not identical or proportion-

ate to the cost matrix, optimality is not guaranteed. The algorithm is presented in

more detail in [19], [14] and [1]. In short, the algorithm creates an auxiliary graph

where an arc (i, j) represents a route including clusters from the i+1:th to the j:th.

The algorithm calculates the costs of these paths dynamically and labels each node

with the shortest distance to that node. The label of the final node K is the cost of

the optimal solution and the optimal division as well as the visited customers can

be backtracked from the final node.

A local search is performed for each solution given by Split. Then the original

giant route is mutated and split again nm times. Eventually, new initial routes are

created; this happens ni times. We use values ni = 30, nm = 50. All the time,

locally optimal routes are added to RoutePool.

The final part of the algorithm is the SetPartitioning procedure. This method

utilizes an alternative formulation of the GVRP. Assuming a decision variable zr

for every feasible route for the GVRP with cost cr, the problem would be to find

a least-cost set of routes so that each cluster belongs to exactly one route. The

solution space of all feasible solution is enormous; analytically, the problem could

be solved with column generation techniques [1]. In this heuristic context, we simply

use the set of routes obtained during the entire algorithm, RoutePool, and solve the

problem with a mixed integer programming solver.
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5.2 Preprocessing

5.2.1 GVRP

To reduce the sizes of GVRP instances, we use a preprocessing algorithm (Algorithm

3) proposed in [5]. The algorithm searches for dominated customers. A customer

vi is dominated if any route visiting vi can be improved by moving to another

customer in the cluster. The index of the cluster of vi is denoted as α(i). More

precisely, a customer is dominated if there is no such pair of customers vk, vl,

α(i) 6= α(k) 6= α(l) 6= α(i), such that a path (vk, vi, vl) with cost dki + dil is strictly

better than any other path (vk, vj , vl), α(i) = α(j).

When a dominated customer is found, it is removed. After the removal, a previously

undominated customer may become dominated. This is why the entire preprocessing

algorithm is then started again.

Algorithm 3: GVRP preprocessing algorithm

Start
for allCa ∈ C do

for all vi ∈ Ca do
IsDominated← TRUE
IsNecessary ← TRUE
for all vk ∈ V \ vn+1, α(k) 6= α(i) do

for all vl ∈ V \ v0, α(l) 6= α(i), α(l) 6= α(k) do
for all vj ∈ Ca, i 6= j do

if q̃i + q̃k + q̃l ≤ Q then
if dki + dil ≥ dkj + djl then

IsNecessary← FALSE
end

end

end
if IsNecessary == TRUE then

IsDominated ← FALSE
end
IsNecessary ← TRUE

end

end
if IsDominated == TRUE then

Remove vi
Go to Start

end

end

end
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5.2.2 CmRSP

In the transformation of CmRSP to GVRP, each feasible assignment option adds

one customer to the GVRP. Since there may be multiple such options for each

regular node in the CmRSP, there is a risk of the GVRP transformation becoming

excessively large. To mitigate this effect while maintaining good solution quality,

we try eliminating assignments with the greatest cost; these are less likely to be

used. We test the effect of the removals with three scenarios: 1 assignment option, 2

assignment options and unlimited assignment options. In case of a tie, all equal-cost

assignments are included. In the optimal situation, the heuristic removals succeed

in lowering the average computation time while leaving solution quality unchanged.

5.3 Shortest-path algorithm

We append our Local Search algorithm with a simple shortest-path algorithm, pre-

sented in Algorithm 4. This procedure makes sure that each route is, in fact, the

shortest possible way of traversing the clusters of that route in the given order. The

algorithm is based on setting labels L for each customer of the route. The labels

are set one cluster at a time, considering all connections between the cluster and its

predecessor. The labels are updated to equal the shortest-path cost from the depot

to that customer. Finally, the label L(n + 1) equals the cost of the shortest path

traversing from v0 to vn+1. The optimal predecessors for each customer are stored

with labels P . This way, we can backtrace the optimal path from P (n+ 1).

Algorithm 4: Shortest-path algorithm

Input: sequence of clusters (C1, C2, ..., Cu)
for j ← 1 to n do

L(j) ← ∞
P(j) ← ∅

end
L(0) ← 0
for i ← 1 to u do

for all vj ∈ Ci do
L(j) ← min

k∈Ci−1

L(k)+dkj

P(j) ← argmin
k∈Ci−1

L(k)+dkj

end

end
L(n+1) ← min

k∈Cu

L(k)+dk,n+1

P(n+1) ← argmin
k∈Cu

L(k)+dk,n+1
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5.4 Cyclic exchange

The methods used in the local search procedure consider changes in the local neigh-

bourhood of the solution. The moves used by the current local search algorithm

(relocation, swap and 2-opt) are only capable of altering two routes at a time, mak-

ing their neighbourhoods relatively small.

Solving the problem to optimality with respect to these small neighbourhoods may

not yield the best solutions concerning the whole problem. In order to escape

from local optima we use a Very Large Neighbourhood Search method called Cyclic

Exchange. This method can potentially alter every route of the solution with each

move.

5.4.1 Improvement graph

A feasible GVRP solution consists of m tours covering K clusters so that all clusters

are visited exactly once. The solution is thus a partition, in which the cluster set

C = {C1, C2, ..., CK} is partitioned into m subsets. We denote the set of m routes

as S = {S1, S2, ..., Sm}.

It is possible to perform a cyclic exchange neighbourhood search on a feasible so-

lution. In the search, we remove a set of clusters from one route and insert them

to another route. A set of clusters is, in turn, removed from this other route and

inserted elsewhere. In this implementation, the considered cluster sets are either

singletons (one cluster) or pairs of clusters that are connected by an arc.

This process of removals and insertions is completed when a set of clusters is inserted

back to the original route, completing the cycle. This is the cyclic exchange method.

Each route can only appear in the cycle once. Because of this, we can be sure

that the cost of any route after an insertion and a deletion will not be changed

later. Thus, the exact cost of each possible insertion/deletion pair can be calculated

beforehand.

We can also end the process without completing the cycle, by choosing not to remove

any clusters from a route after an insertion. This method is known as path exchange.

Path exchange is possible if the final route can extend to contain a longer route with

more load. If the starting point of the path contains no more clusters than the ones

removed, the amount of routes can reduce by one.
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Algorithm 5: The improvement graph construction algorithm

for i ← 1 to K do
Add node pi

end
for j ← 1 to K −m do

Add node pj
end
for k ← 1 to m do

Add node sk
end
for i ← 1 to 2K −m do

for j ← 1 to 2K −m, i 6= j do
Route ← S(pj)
NewRoute ← Route without cluster or pair j
(B(pi,pj),mincost) ← Insert(Ci,NewRoute)
αij ← cost(NewRoute) + mincost – cost(Route)

end
for l ← 1 to m do

Route ← Sl
(B(pi,sl),mincost) ← Insert(Ci,Route)
αil ← mincost

end

end
for l ← 1 to m do

for i ← 1 to 2K −m do
NewRoute ← Route without cluster or pair i
αli ← cost(NewRoute)-cost(Route)

end

end

To find improving cyclic moves, we create an improvement graph to search negative-

cost paths. The graph construction is presented in Algorithms 5-6. The graph

contains a set of regular nodes pi for each of the K clusters and another set pij for

the K −m consecutive cluster pairs in the original problem. We denote the route

that contains node pi as S(pi). Additionally, there are m pseudonodes sk for every

route Sk. In total, the improvement graph consists of 2K nodes.

An example GVRP solution with 6 clusters and 3 routes and the corresponding

improvement graph are presented in Figure 5.1.

Traversing an arc (i, j) between regular nodes pi and pj in the improvement graph

represents the cluster Ci replacing cluster Cj on route S(pj). The same principle
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Algorithm 6: Cluster insertion algorithm

Parameters: (Ci, Route)
place ← ∅
mincost ← ∞
if load(Ci)+RouteLoad(Route)≤ Q then

for allCk ∈ {Route ∪C0} do
Cnext ← the cluster directly after Ck

insert Ci between Ck and Cnext

addedcost ← cost(Modified route) – cost(Route)
if addedcost < mincost then

mincost=addedcost
place=Ck

end

end

end
return place, mincost

applies when cluster pairs are involved. For infeasible insertions, the weight αij of

the arc is very large. Otherwise, αij is equal to the increase in the cost of route S(pj)

after the deletion and the optimal insertion. If the cost of the route is decreased,

the arc has a negative weight. The optimal places for replacements are stored in

matrix B.

Note that the saving created by removing Ci from its original route is not taken into

account in the cost αij , since it is considered in the arcs leading to pi. Similarly, the

cost of inserting Cj to another route is considered with arcs emanating from pj .

Arcs (i, k) between regular nodes and pseudonodes describe the insertion of a cluster

or pair to route Sk without removing any clusters from it. The weight αik of a feasible

arc equals the increased cost of route Sk after optimal insertion.

With path exhange, we have to separately consider the saving caused by deleting a

cluster from the first node in a chain. This is executed by defining additional arcs

from each pseudonode sk to a termination node u with weight 0, and from u to

every regular node with negative weight corresponding to the saving obtained by

deleting that cluster or pair. This way, also path exhange solutions form cycles in

the improvement graph.

To illustrate, we calculate some arc weights for our example improvement graph

and examine how the solution is altered. In Figure 5.2, the arc from p3 to p5 is for

replacing cluster C5 with cluster C3 on route S2. The old cost of route S2 is 12.

With the deletion and insertion, the cost is 9; thus, the weight of the arc is -3.
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Figure 5.1: A GVRP solution and the corresponding improvement graph

The arc from p5 to the triangular pseudonode s3 means that the newly removed

cluster C5 is inserted to S3 without removing clusters from it. This increases the

cost of S3 from 2 to 4, so the weight of the arc is 4. The pseudonode is connected to

the termination node u, which is connected to all regular nodes, including p3. The

weight of this arc is equal to the saving caused by deleting cluster C3 from route S1,

which has not yet been considered. The saving, according to Figure 5.2, is -2.

The resulting cycle (p3, p5, s3, u, p3) has a combined weight of -1. This means that

executing the cycle improves the solution by 1. After this move, the improvement

graph must be updated according to Figure 5.3. Weights need to be recalculated for

every arc such that either one of its endpoints belong to routes that were altered.

In addition, the route (or ’color’) of the regular nodes on the cycle have changed.

Also the cluster pairs are now different, but the number of pairs remains the same.

Figure 5.2: The arc weights of the improvement graph are based on the costs and
savings in the GVRP.
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Figure 5.3: The improvement graph is changed after an improving cyclic exchange
move.

5.4.2 Label-correcting algorithm

All cyclic and path exhange solutions have a corresponding cycle of arcs in the

improvement graph. The total sum of weights on each cycle equals the change in the

objective function if the corresponding move is executed. Thus, finding a negative-

cost path in the graph is equivalent of finding an improved solution. In order to

find such cycles in the improvement graph, we use a label correcting algorithm

(Algorithm 7) similar to that used in [2] in the context of the Capacitated Minimum

Spanning Tree Problem.

The negative-path search algorithm can be rooted at any node. However, it is not

guaranteed that every node can be reached from the root node. In order to search

the whole graph at once, we add another artificial root node p0 that is connected to

every regular node pi with weight α0i = 0. This way, every node is included in the

initial list and must be examined at least once. There are no arcs leading to p0 so

it cannot be a part of a feasible cycle.

In the algorithm we use distance labels d for all the nodes. These labels are first set

to ∞ and corrected as the algorithm proceeds. The predecessors of each node are

stored in Pred. The path of a node pi is denoted as P (i). The path consists of all

the nodes and arcs that can be backtraced from pi to p0.



CHAPTER 5. COMPUTATIONAL METHODS 36

Algorithm 7: Finding improving cycles

for j ← 1 to (2K) do
d(j) ← ∞

end
d(0)=0
List ← {0}
while List not empty do

i ← a random node from List
for all arcs (i,j) do

if d(i) + αij < d(j) then
backtrace path P(i) using labels Pred(i)
if P(i) already includes a node from the route of j (not j itself)
then

do nothing
end
else if j ∈ P (i) then

an improving cycle ((i, j), P (i) \ P (j)) is found; return
end
else if j is a regular node then

d(j) ← d(i) + αij

Pred(j) ← i
add j to List

end
else

denote t as the second node on path P (i) after p0

a cycle (P (i), (i, j), (j, u), (u, t)) is found
if the cycle is improving return

end

end

end
remove i from List

end
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Figure 5.4: The first actual step of the label correcting algorithm

The list of nodes that should be inspected (List) contains only p0 at first. When

inspecting a node pi, all possible values of d(i) + αij are considered. If d(i) + αij <

d(j) and the path P (i)∪ (i, j) remains subset-disjoint (containing no more than one

element from each route), the label d(j) is updated to d(i) + αij and pj is added to

List.

After the first step including p0, d(i) = 0 for all regular nodes pi and all regular

nodes are included in List. An example is presented in Figure 5.4. All label values

can be seen in Table 5.1.

A random node p1 is then selected from List. Labels d(j) are updated for each node

pj that does not belong to the subset of p1 and such that α1j < 0. When pseudonodes

s2 and s3 are considered, the potential cycle, e.g., (p1, s3, u, p1), is checked (Figure

5.5). In the example in the figure, 7 − 3 > d(1) = 0; no improving cycle is found.

The algorithm continues; the label for s3 is updated and p1 is removed from List.

Next, another random node p4 is selected in Figure 5.6. Because path P (4) already

includes a red node, the labels for any red (or green) nodes remain unchanged. The

only exception is p1: if it would be so that d(4) + α41 < d(1) then a valid cycle

would have been found. This is not the case here. Only the purple nodes p6 and s3

can then be feasibly included in the path and their labels are corrected.

Finally, assume p6 is the next random node from List (Figure 5.7). The path P (6)

already contains all colors so the options are limited to those nodes that belong to

P (6). Of these two, we observe that d(6)+α61 < d(1): −4+2 < 0. Thus, (p1, p4, p6)

is a valid negative cycle and it is returned.

If no improvements were found, the algorithm would continue with another random

choice from List. Note that although nodes of all colors have now been examined,
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Node List Label Pred

p1 1 0 0

p2 1 0 0

p3 1 0 0

p4 1 0 0

p5 1 0 0

p6 1 0 0

s1 - ∞ -

s2 - ∞ -

s3 - ∞ -

Table 5.1: Labels corresponding to the
initial situation

Figure 5.5: Checking a possible path ex-
change cycle

they are not permanently ’used’; because the subset-disjoint condition only concerns

the path of the current node, all totally unexamined nodes (such as p2 or p5) are

free to form more paths as long as the label-correcting condition d(i) + αij < d(j)

is met. If the label for already examined nodes p4 or p6 can be improved, they are

again added to List and examined at some later time.

The label-correcting terminates whenever an improving cycle is found or when List

is empty.

Figure 5.6: Second step: examining p4

Node List Label Pred

p1 0 0 0

p2 1 0 0

p3 1 0 0

p4 1 -2 1

p5 1 -1 1

p6 1 0 0

s1 - ∞ -

s2 - 4 1

s3 - 7 1

Table 5.2: Labels after examining p1

The cyclic exchange method is based on the property that the cost of moves is easy

to calculate as long as at most one cluster or pair of clusters is removed from one

route. Enforcing this subset-disjoint condition in the label-correcting algorithm does

narrow the scope of the search. Even with the current restrictions, it is possible

that a path will include more than one node of the same color. Assume a node

pi with color label li and its path P (i) that contains a node pj with color label
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Figure 5.7: Third step: examining p6

Node List Label Pred

p1 0 0 0

p2 1 0 0

p3 1 0 0

p4 1 -2 1

p5 1 -1 1

p6 1 -4 4

s1 - ∞ -

s2 - 4 1

s3 - 2 4

Table 5.3: Labels after examining p4

lj . Now, consider that another node pk with color li is being examined and that

d(k) + αkj < d(j). If the path P (k) does not include color lj , pj can be appended

to path P (k), and thus the path P (j) is updated to (P (k) ∪ pj). Path P (i) now

includes two nodes with color li.

Based on our previous examples, it may seem that there are very few choices to

expand paths and that the random choices strongly determine the outcome. This

is true to a certain extent. However, the more there are routes the less nodes are

eliminated from consideration. More importantly, typically only a small amount of

the arc weights αij are negative and this condition is required to form initial two-

node paths. Thus, the entire graph is not ’exhausted’ as quickly as in the example.

It is important to stress that the label-correcting algorithm we use is a heuristic

method. The algorithm may go through all of the nodes and find no negative cycles

even though some exist. Additionally, our implementation does not try to find the

best cycle but returns the first one it finds. This is not that much of a drawback,

since the algorithm is executed iteratively until no improvements are found.
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Results

In this chapter, the results of the heuristic algorithm are presented. The algorithm

is tested on a set of GVRP instances as well as the transformed CmRSP and MCTP

instances. Concerning GVRP, the algorithm outperforms all approaches found in

literature and is able to find two previously unknown best solutions. On the CmRSP

and MCTP, the algorithm performs adequately but does not reach the level of

current literature by means of solution quality or computational efficiency.

6.1 Heuristic performance on GVRP

The revised GVRP algorithm is tested on a set of 158 instances. These instances

were introduced in [5] based on a set of CVRP instances. The instances are divided

into five sets A, B, P, M and G. Sets A, B and P contain 20-30 small to medium

instances each, with the customer amount ranging from 16 to 101. Set M contains

four larger instances with 101-200 customers and set G has one instance with 262

customers.

There are two versions of each instance that differ with regard to clusters: the

amount of clusters K is dn/θe where θ ∈ {2, 3}. All instances where there are

two customers per cluster on average belong to set T2 and those with three to T3.

Note that the amount of customers per cluster is on average; there are singleton

clusters and large clusters in all instances. The number of customers and clusters

can be deduced from the instance name; for instance ’P-n45-k5-C23’ would include

45 customers and 23 clusters.

The small and medium instances are solved once each and the results are presented

40
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in tables 6.1 to 6.6. In these tables, the column ’Instance’ reports the instance

name and ’n’ the number of customers after the preprocessing algorithm may have

removed some. The number of removed customers is reported in ’R’, the number

of clusters in ’K’ and the fleet size in ’m’. Column t reports the computing time

of each instance. Columns Ub and Ub∗ contain the best upper bounds found by

our heuristic algorithm and the known optimal solution cost or best known upper

bound, respectively. The value of Ub is bolded if the heuristic solution reaches the

best known upper bound.

Table 6.1: Heuristic algorithm results for the instances of set T2-A with K = dn/2e
Instance n R K m t Ub Ub∗

A-n32-k5-C16 30 2 16 3 2.60 508 508

A-n33-k5-C17 32 1 17 3 2.54 451 451

A-n33-k6-C17 29 4 17 3 2.17 465 465

A-n34-k5-C17 30 4 17 3 2.56 489 489

A-n36-k5-C18 36 0 18 3 2.79 502 502

A-n37-k5-C19 34 3 19 3 2.83 432 432

A-n37-k6-C19 36 1 19 3 3.18 584 584

A-n38-k5-C19 37 1 19 3 3.08 476 476

A-n39-k5-C20 36 3 20 3 3.66 557 557

A-n39-k6-C20 36 3 20 3 3.82 544 544

A-n44-k6-C22 41 3 22 3 4.85 608 608

A-n45-k6-C23 39 6 23 4 4.26 613 613

A-n45-k7-C23 41 4 23 4 5.97 674 674

A-n46-k7-C23 45 1 23 4 4.65 593 593

A-n48-k7-C24 43 5 24 4 5.98 667 667

A-n53-k7-C27 49 4 27 4 7.56 603 603

A-n54-k7-C27 53 1 27 4 9.19 690 690

A-n55-k9-C28 51 4 28 5 7.48 699 699

A-n60-k9-C30 55 5 30 5 13.04 769 769

A-n61-k9-C31 56 5 31 5 9.57 638 638

A-n62-k8-C31 59 3 31 4 15.31 740 740

A-n63-k9-C32 62 1 32 5 14.76 912 912

A-n63-k10-C32 59 4 32 5 13.16 801 801

A-n64-k9-C32 61 3 32 5 13.71 763 763

A-n65-k9-C33 59 6 33 5 11.31 682 682

A-n69-k9-C35 58 11 35 5 12.81 680 680

A-n80-k10-C40 77 3 40 5 27.00 997 997
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Table 6.6: Heuristic algorithm results for the instances of set T3-P with K = dn/3e
Instance n R K m t Ub Ub∗

P-n16-k8-C6 9 7 6 4 0.54 170 170

P-n19-k2-C7 16 3 7 1 0.47 111 111

P-n20-k2-C7 15 5 7 1 0.46 117 117

P-n21-k2-C7 17 4 7 1 0.48 117 117

P-n22-k2-C8 16 6 8 1 0.50 111 111

P-n22-k8-C8 16 6 8 4 0.83 249 249

P-n23-k8-C8 16 7 8 3 0.69 174 174

P-n40-k5-C14 33 7 14 2 1.75 213 213

P-n45-k5-C15 39 6 15 2 2.20 238 238

P-n50-k7-C17 45 5 17 3 3.14 261 261

P-n50-k8-C17 45 5 17 3 3.03 262 262

P-n50-k10-C17 45 5 17 4 2.99 292 292

P-n51-k10-C17 47 4 17 4 3.04 309 309

P-n55-k7-C19 51 4 19 3 4.48 271 271

P-n55-k8-C19 51 4 19 3 4.57 274 274

P-n55-k10-C19 51 4 19 4 3.79 301 301

P-n55-k15-C19 51 4 19 6 3.36 378 378

P-n60-k10-C20 53 7 20 4 4.25 325 325

P-n60-k15-C20 54 6 20 6 3.82 374 374

P-n65-k10-C22 63 2 22 4 5.30 372 372

P-n70-k10-C24 67 3 24 4 6.44 385 385

P-n76-k4-C26 73 3 26 2 8.89 309 309

P-n76-k5-C26 73 3 26 2 9.83 309 309

P-n101-k4-C34 100 1 34 2 20.42 370 370

The algorithm is able to find the optimal or best known solution on every instance

of the sets A, B and P in both T2 and T3. The preprocessing algorithm is able to

reduce the problem size on nearly every instance, with up to 19 removals on some

instances in T3-B. The smallest instances are solved within a few seconds and the

largest ones in about 20 seconds.

A summary of the results and comparison to the Bachelor’s Thesis [19] and related

literature [5, 20, 14, 1] can be found in Table 6.7. Columns ’Succ’ and ’t̄’ report the

amount of instances solved to best known values and the average computing time

for each instance set with θ values 2 and 3. We also report the CPU clock speed

(in GHz) and processor type for each algorithm, and indicate how many times the

algorithm was run to obtain the results.
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Compared to the Bachelor’s Thesis, we have been able to reduce the average com-

putation time with more than a half on instance set T2 and more than two thirds

on set T3. This is because of the preprocessing phase and some in-code optimiza-

tion. In addition, we were able to reach all best known solutions with a single run

whereas there was one instance in T2-P that could not be solved with five trials in

the Bachelor’s Thesis.

Concerning the results in related literature, only Hà et al. are able to find all best

known solutions. Taking the processor types into account, we can compare the

computing times as conducted in the Bachelor’s Thesis [19]. Our processor is the

fastest, with performance similar to that of Afsar et al. The processor of Hà et al.

is about 20% slower and the other about 50% slower than the fastest processors.

This implies that our algorithm is clearly faster than that of Hà et al. and about

as fast as that of Moccia et al. The algorithms of Bektaş et al. and Afsar et al. are

clearly the fastest but they are also poorer when it comes to solution quality.

The large instances in sets M and G are solved five times. The summary and

comparison of these results are presented and compared in Table 6.8. Columns

’Instance’, ’θ’ and ’Lb’ report the instance name, clustering type and known lower

bounds from literature (respectively). Only three of these instances have been solved

to optimality. We report the best found upper bounds in columns ’Ub’; concerning

this thesis, the average bound of five runs is reported in ’Avg’. Columns ’m’ report

the number of routes in the best solution found; because we treat m as flexible, the

results are not necessarily comparable. Columns ’t̄’ contain the (average) computing

times. Best known upper bounds and optimal lower bounds are bolded.

First, we note that our algorithm is able to find all best known solutions, two of

which (M-n200-k16-C100 and G-n262-k25-C131) were previously unknown. All of

the results are also feasible concerning the problem with fixed fleet size. Each of the

algorithms from literature only finds seven of the ten best known values. Compared

to the Bachelor’s Thesis, there is clear improvement; only half of the best known

values were found with five runs. The computing times have also lowered, but not

to such an extent as with the smaller instances.

The computation time of our algorithm seems to grow faster with increasing problem

size than the other algorithms. Taking processor types into account, the algorithm

is faster than that of Hà et. al but slower than the others.

The two new best known solutions for instances M-n200-k16-C100 and G-n262-k25-

C131 are presented in figures 6.1 and 6.2.
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Figure 6.1: Best known solution for instance M-n200-k16-C100
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Figure 6.2: Best known solution for instance G-n262-k25-C131
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6.2 Heuristic performance on CmRSP

The tests instances used for the CmRSP are generated in [4] using three existing

Traveling Salesman Problem instances eil51, eil76 and eil101 [25]. An additional

smaller instance set is constructed by choosing the first 26 nodes of eil51. The

instances can be divided into two sets: A and B. Given the Euclidian costs eij in

the original TSP, set A has equal ring and assignment costs; cij = aij = eij . In set

B, assignments are cheaper than ring connections; cij = 7eij , aij = 3eij .

For each instance in A and B, there are two additional variables. First, the capacity

limit Q is set tight in order to generate exactly m ∈ {3, 4, 5} routes. Second, a

variable fraction γ of the nodes are made regular nodes (the rest are Steiner nodes);

γ ∈ {0.25, 0.5, 0.75, 1}. Note that the number of regular nodes is equal to the number

of clusters in the GVRP transformation. In total, there are 9 versions of instance

eil26 and 12 versions each of the other instances.

The GVRP algorithm results on transformed CmRSP instances are reported in Ta-

bles 6.9 to 6.14. Each instance is solved three times. Column ’Instance’ reports the

instance name. Columns ’n’, ’R’ and ’K’ report the number of customers, customers

removed in preprocessing, and clusters, respectively. In the transformed GVRP in-

stances, the number of routes is given in column ’m’. The average computing time

is under ’t̄’. Columns ’Ub’ and ’Avg’ report the best and average upper bounds

found by the algorithm, respectively. Finally, column ’Ub∗’ reports the best known

solution values, as reported in [29], for each instance.

Tables 6.9-6.10 contain the results for the case where only the cheapest assignment

is allowed. The case with two cheapest assignments is presented in Tables 6.11-6.12

and the unrestricted case in Tables 6.13-6.14. If our algorithm finds the best known

solution, that value in column ’Ub’ is bolded, as well as the average in ’Avg’ if the

best known value is reached on all the solutions.
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Table 6.9: Heuristic results on CmRSP-A with only 1 assignment option
Instance n R K m t̄ Ub Avg Ub∗

eil26.tsp.3.12.5.A 14 0 12 3 1.25 242 242.0 242

eil26.tsp.4.12.4.A 14 0 12 3 1.11 (251) 251.0 261

eil26.tsp.5.12.3.A 14 0 12 4 1.03 (279) 279.0 292

eil26.tsp.3.18.7.A 21 0 18 3 2.34 301 301.0 301

eil26.tsp.4.18.5.A 21 0 18 4 2.24 339 339.0 339

eil26.tsp.5.18.4.A 21 0 18 5 2.15 375 375.0 375

eil26.tsp.3.25.10.A 30 0 25 3 4.43 325 325.0 325

eil26.tsp.4.25.7.A 30 0 25 4 4.71 362 362.0 362

eil26.tsp.5.25.6.A 30 0 25 5 4.76 382 382.0 382

eil51.tsp.3.12.5.A 17 1 12 3 1.26 242 242.0 242

eil51.tsp.4.12.4.A 17 1 12 3 1.18 (251) 251.0 261

eil51.tsp.5.12.3.A 17 1 12 4 1.09 (279) 279.0 286

eil51.tsp.3.25.10.A 38 0 25 3 5.25 322 322.0 322

eil51.tsp.4.25.7.A 38 0 25 4 5.48 360 360.0 360

eil51.tsp.5.25.6.A 38 0 25 5 5.40 379 379.0 379

eil51.tsp.3.37.14.A 56 1 37 3 16.40 (373) 373.0 373

eil51.tsp.4.37.11.A 56 1 37 4 15.82 (405) 405.0 405

eil51.tsp.5.37.9.A 56 1 37 5 15.37 (432) 432.0 432

eil51.tsp.3.50.19.A 78 1 50 3 47.66 (458) 458.0 458

eil51.tsp.4.50.14.A 78 1 50 4 46.97 (490) 490.0 490

eil51.tsp.5.50.12.A 78 1 50 5 44.51 (520) 520.0 520

eil76.tsp.3.18.7.A 32 0 18 3 2.99 330 330.0 330

eil76.tsp.4.18.5.A 32 0 18 4 3.40 385 385.0 385

eil76.tsp.5.18.4.A 32 0 18 5 3.19 448 448.0 448

eil76.tsp.3.37.14.A 66 4 37 3 23.65 402 402.0 402

eil76.tsp.4.37.11.A 66 4 37 4 22.44 457 457.3 457

eil76.tsp.5.37.9.A 66 4 37 5 24.05 479 479.0 479

eil76.tsp.3.56.21.A 108 3 56 3 103.89 471 471.3 471

eil76.tsp.4.56.16.A 108 3 56 4 93.21 519 519.0 519

eil76.tsp.5.56.13.A 108 3 56 5 91.75 545 545.7 545

eil76.tsp.3.75.28.A 150 0 75 3 353.95 567 568.0 564

eil76.tsp.4.75.21.A 150 0 75 4 299.63 604 605.7 602

eil76.tsp.5.75.17.A 150 0 75 5 272.45 640 641.7 640

eil101.tsp.3.25.10.A 49 2 25 3 6.18 363 363.0 363

eil101.tsp.4.25.7.A 49 2 25 4 6.28 418 418.0 415

eil101.tsp.5.25.6.A 49 2 25 5 5.85 448 448.0 448

eil101.tsp.3.50.19.A 95 1 50 3 50.23 500 500.0 500

eil101.tsp.4.50.14.A 95 1 50 4 45.75 529 529.7 528

eil101.tsp.5.50.12.A 95 1 50 5 44.90 567 567.0 567

eil101.tsp.3.75.28.A 152 1 75 3 278.52 596 597.7 595

eil101.tsp.4.75.21.A 152 1 75 4 254.44 625 625.3 623

eil101.tsp.5.75.17.A 152 1 75 5 219.66 657 657.0 657

eil101.tsp.3.100.38.A 230 0 100 3 1110.12 656 658.3 646

eil101.tsp.4.100.28.A 230 0 100 4 976.67 681 682.0 679

eil101.tsp.5.100.23.A 230 0 100 5 837.87 705 706.7 700
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Table 6.10: Heuristic results on CmRSP-B with only 1 assignment option
Instance n R K m t̄ Ub Avg Ub∗

eil26.tsp.3.12.5.B 14 0 12 3 1.07 1684 1684.0 1684

eil26.tsp.4.12.4.B 14 0 12 3 1.12 (1757) 1757.0 1827

eil26.tsp.5.12.3.B 14 0 12 4 1.01 (1950) 1950.0 2041

eil26.tsp.3.18.7.B 21 0 18 3 2.25 2104 2104.0 2104

eil26.tsp.4.18.5.B 21 0 18 4 2.31 2370 2370.0 2370

eil26.tsp.5.18.4.B 21 0 18 5 2.12 2615 2615.0 2615

eil26.tsp.3.25.10.B 30 0 25 3 4.42 2251 2251.0 2251

eil26.tsp.4.25.7.B 30 0 25 4 4.83 2510 2510.0 2510

eil26.tsp.5.25.6.B 30 0 25 5 4.60 2674 2674.0 2674

eil51.tsp.3.12.5.B 18 0 12 3 1.25 1681 1681.0 1681

eil51.tsp.4.12.4.B 18 0 12 3 1.22 (1751) 1751.0 1821

eil51.tsp.5.12.3.B 18 0 12 4 1.08 (1923) 1923.0 1972

eil51.tsp.3.25.10.B 38 0 25 3 5.65 2176 2176.0 2176

eil51.tsp.4.25.7.B 38 0 25 4 5.75 2470 2470.0 2470

eil51.tsp.5.25.6.B 38 0 25 5 5.34 2579 2579.0 2579

eil51.tsp.3.37.14.B 57 0 37 3 18.04 2490 2490.0 2490

eil51.tsp.4.37.11.B 57 0 37 4 17.99 2721 2721.0 2721

eil51.tsp.5.37.9.B 57 0 37 5 15.65 2908 2908.0 2908

eil51.tsp.3.50.19.B 79 0 50 3 58.74 3015 3015.0 3015

eil51.tsp.4.50.14.B 79 0 50 4 53.21 3260 3260.0 3260

eil51.tsp.5.50.12.B 79 0 50 5 50.89 (3401) 3402.0 3404

eil76.tsp.3.18.7.B 32 0 18 3 2.99 2253 2253.0 2253

eil76.tsp.4.18.5.B 32 0 18 4 3.29 2625 2625.0 2620

eil76.tsp.5.18.4.B 32 0 18 5 3.05 3059 3059.0 3059

eil76.tsp.3.37.14.B 67 3 37 3 26.37 2720 2720.0 2720

eil76.tsp.4.37.11.B 67 3 37 4 24.39 3100 3100.0 3100

eil76.tsp.5.37.9.B 67 3 37 5 25.90 3291 3291.0 3284

eil76.tsp.3.56.21.B 109 2 56 3 136.84 3064 3064.0 3044

eil76.tsp.4.56.16.B 109 2 56 4 112.73 3440 3444.3 3415

eil76.tsp.5.56.13.B 109 2 56 5 110.29 3649 3649.0 3631

eil76.tsp.3.75.28.B 150 0 75 3 447.75 3669 3670.0 3652

eil76.tsp.4.75.21.B 150 0 75 4 398.25 4003 4003.0 3964

eil76.tsp.5.75.17.B 150 0 75 5 333.05 4217 4217.0 4217

eil101.tsp.3.25.10.B 50 1 25 3 6.54 2445 2445.0 2434

eil101.tsp.4.25.7.B 50 1 25 4 6.59 2837 2837.0 2782

eil101.tsp.5.25.6.B 50 1 25 5 6.30 3019 3019.0 3009

eil101.tsp.3.50.19.B 95 1 50 3 56.70 3328 3328.0 3322

eil101.tsp.4.50.14.B 95 1 50 4 53.20 3549 3549.0 3533

eil101.tsp.5.50.12.B 95 1 50 5 48.52 3868 3868.3 3834

eil101.tsp.3.75.28.B 152 1 75 3 340.77 3894 3898.0 3887

eil101.tsp.4.75.21.B 152 1 75 4 299.97 4087 4087.7 4082

eil101.tsp.5.75.17.B 152 1 75 5 238.70 4365 4371.7 4358

eil101.tsp.3.100.38.B 230 0 100 3 1515.00 (4156) 4164.0 4109

eil101.tsp.4.100.28.B 230 0 100 4 1270.27 4389 4397.0 4355

eil101.tsp.5.100.23.B 230 0 100 5 1044.47 4608 4608.7 4565
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Table 6.11: Heuristic results on CmRSP-A with 2 assignment options
Instance n R K m t̄ Ub Avg Ub∗

eil26.tsp.3.12.5.A 14 0 12 3 1.38 242 242.0 242

eil26.tsp.4.12.4.A 14 0 12 3 1.16 (251) 251.0 261

eil26.tsp.5.12.3.A 14 0 12 4 1.10 (279) 279.0 292

eil26.tsp.3.18.7.A 21 0 18 3 2.23 301 301.0 301

eil26.tsp.4.18.5.A 21 0 18 4 2.28 339 339.0 339

eil26.tsp.5.18.4.A 21 0 18 5 2.18 375 375.0 375

eil26.tsp.3.25.10.A 30 0 25 3 4.43 325 325.0 325

eil26.tsp.4.25.7.A 30 0 25 4 4.80 362 362.0 362

eil26.tsp.5.25.6.A 30 0 25 5 4.71 382 382.0 382

eil51.tsp.3.12.5.A 17 1 12 3 1.24 242 242.0 242

eil51.tsp.4.12.4.A 17 1 12 3 1.18 (251) 251.0 261

eil51.tsp.5.12.3.A 17 1 12 4 1.09 (279) 279.0 286

eil51.tsp.3.25.10.A 38 0 25 3 5.28 322 322.0 322

eil51.tsp.4.25.7.A 38 0 25 4 5.39 360 360.0 360

eil51.tsp.5.25.6.A 38 0 25 5 5.25 379 379.0 379

eil51.tsp.3.37.14.A 56 1 37 3 16.82 (373) 373.0 373

eil51.tsp.4.37.11.A 56 1 37 4 16.06 (405) 405.0 405

eil51.tsp.5.37.9.A 56 1 37 5 15.64 (432) 432.0 432

eil51.tsp.3.50.19.A 78 1 50 3 44.98 (458) 458.3 458

eil51.tsp.4.50.14.A 78 1 50 4 44.64 (490) 490.0 490

eil51.tsp.5.50.12.A 78 1 50 5 43.34 (520) 520.0 520

eil76.tsp.3.18.7.A 33 0 18 3 3.02 330 330.0 330

eil76.tsp.4.18.5.A 33 0 18 4 3.33 385 385.0 385

eil76.tsp.5.18.4.A 33 0 18 5 3.24 448 448.0 448

eil76.tsp.3.37.14.A 70 4 37 3 23.67 402 402.0 402

eil76.tsp.4.37.11.A 70 4 37 4 23.98 457 457.0 457

eil76.tsp.5.37.9.A 70 4 37 5 24.90 479 479.0 479

eil76.tsp.3.56.21.A 117 3 56 3 115.87 471 471.0 471

eil76.tsp.4.56.16.A 117 3 56 4 103.82 519 519.0 519

eil76.tsp.5.56.13.A 117 3 56 5 100.88 545 545.0 545

eil76.tsp.3.75.28.A 162 0 75 3 375.06 567 568.7 564

eil76.tsp.4.75.21.A 162 0 75 4 339.94 604 605.0 602

eil76.tsp.5.75.17.A 162 0 75 5 269.61 640 640.0 640

eil101.tsp.3.25.10.A 54 1 25 3 6.68 363 363.0 363

eil101.tsp.4.25.7.A 54 1 25 4 6.64 415 415.0 415

eil101.tsp.5.25.6.A 54 1 25 5 6.16 448 448.0 448

eil101.tsp.3.50.19.A 102 1 50 3 59.57 500 500.0 500

eil101.tsp.4.50.14.A 102 1 50 4 51.99 528 528.0 528

eil101.tsp.5.50.12.A 102 1 50 5 46.57 567 567.0 567

eil101.tsp.3.75.28.A 163 1 75 3 337.41 596 598.7 595

eil101.tsp.4.75.21.A 163 1 75 4 302.51 624 625.3 623

eil101.tsp.5.75.17.A 163 1 75 5 250.51 657 657.7 657

eil101.tsp.3.100.38.A 254 0 100 3 1327.32 656 657.3 646

eil101.tsp.4.100.28.A 254 0 100 4 1170.23 681 682.7 679

eil101.tsp.5.100.23.A 254 0 100 5 1013.73 705 706.0 700
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Table 6.12: Heuristic results on CmRSP-B with 2 assignment options
Instance n R K m t̄ Ub Avg Ub∗

eil26.tsp.3.12.5.B 14 0 12 3 1.08 1684 1684.0 1684

eil26.tsp.4.12.4.B 14 0 12 3 1.10 (1757) 1757.0 1827

eil26.tsp.5.12.3.B 14 0 12 4 1.01 (1950) 1950.0 2041

eil26.tsp.3.18.7.B 21 0 18 3 2.29 2104 2104.0 2104

eil26.tsp.4.18.5.B 21 0 18 4 2.21 2370 2370.0 2370

eil26.tsp.5.18.4.B 21 0 18 5 2.11 2615 2615.0 2615

eil26.tsp.3.25.10.B 30 0 25 3 4.53 2251 2251.0 2251

eil26.tsp.4.25.7.B 30 0 25 4 4.86 2510 2510.0 2510

eil26.tsp.5.25.6.B 30 0 25 5 4.72 2674 2674.0 2674

eil51.tsp.3.12.5.B 18 0 12 3 1.22 1681 1681.0 1681

eil51.tsp.4.12.4.B 18 0 12 3 1.24 (1751) 1751.0 1821

eil51.tsp.5.12.3.B 18 0 12 4 1.08 (1923) 1923.0 1972

eil51.tsp.3.25.10.B 38 0 25 3 5.53 2176 2176.0 2176

eil51.tsp.4.25.7.B 38 0 25 4 6.03 2470 2470.0 2470

eil51.tsp.5.25.6.B 38 0 25 5 5.76 2579 2579.0 2579

eil51.tsp.3.37.14.B 57 0 37 3 18.35 2490 2490.0 2490

eil51.tsp.4.37.11.B 57 0 37 4 17.59 2721 2721.0 2721

eil51.tsp.5.37.9.B 57 0 37 5 15.98 2908 2908.0 2908

eil51.tsp.3.50.19.B 79 0 50 3 56.68 3015 3015.0 3015

eil51.tsp.4.50.14.B 79 0 50 4 52.31 3260 3260.0 3260

eil51.tsp.5.50.12.B 79 0 50 5 50.22 (3401) 3411.3 3404

eil76.tsp.3.18.7.B 33 0 18 3 3.16 2253 2253.0 2253

eil76.tsp.4.18.5.B 33 0 18 4 3.47 2620 2620.0 2620

eil76.tsp.5.18.4.B 33 0 18 5 3.09 3059 3059.0 3059

eil76.tsp.3.37.14.B 71 3 37 3 27.86 2721 2721.0 2720

eil76.tsp.4.37.11.B 71 3 37 4 27.11 3100 3100.0 3100

eil76.tsp.5.37.9.B 71 3 37 5 27.54 3284 3284.0 3284

eil76.tsp.3.56.21.B 118 2 56 3 151.96 3044 3046.7 3044

eil76.tsp.4.56.16.B 118 2 56 4 124.18 3415 3422.3 3415

eil76.tsp.5.56.13.B 118 2 56 5 122.40 3631 3631.0 3631

eil76.tsp.3.75.28.B 162 0 75 3 532.86 3654 3654.3 3652

eil76.tsp.4.75.21.B 162 0 75 4 448.80 4000 4001.0 3964

eil76.tsp.5.75.17.B 162 0 75 5 378.51 4217 4221.7 4217

eil101.tsp.3.25.10.B 54 1 25 3 7.30 2434 2434.0 2434

eil101.tsp.4.25.7.B 54 1 25 4 6.95 2785 2785.0 2782

eil101.tsp.5.25.6.B 54 1 25 5 6.65 3012 3012.0 3009

eil101.tsp.3.50.19.B 102 1 50 3 63.97 3323 3324.7 3322

eil101.tsp.4.50.14.B 102 1 50 4 57.67 3536 3536.0 3533

eil101.tsp.5.50.12.B 102 1 50 5 54.39 3846 3846.0 3834

eil101.tsp.3.75.28.B 163 1 75 3 387.41 3887 3903.3 3887

eil101.tsp.4.75.21.B 163 1 75 4 343.51 4082 4091.0 4082

eil101.tsp.5.75.17.B 163 1 75 5 294.99 4360 4371.0 4358

eil101.tsp.3.100.38.B 254 0 100 3 1856.14 4141 4160.0 4109

eil101.tsp.4.100.28.B 254 0 100 4 1506.09 4379 4383.3 4355

eil101.tsp.5.100.23.B 254 0 100 5 1327.77 4587 4600.3 4565
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Table 6.13: Heuristic results on CmRSP-A with unlimited assignment options
Instance n R K m t̄ Ub Avg Ub∗

eil26.tsp.3.12.5.A 14 0 12 3 2.03 242 242.0 242

eil26.tsp.4.12.4.A 14 0 12 3 1.11 (251) 251.0 261

eil26.tsp.5.12.3.A 14 0 12 4 1.02 (279) 279.0 292

eil26.tsp.3.18.7.A 21 0 18 3 2.28 301 301.0 301

eil26.tsp.4.18.5.A 21 0 18 4 2.27 339 339.0 339

eil26.tsp.5.18.4.A 21 0 18 5 2.12 375 375.0 375

eil26.tsp.3.25.10.A 30 0 25 3 4.38 325 325.0 325

eil26.tsp.4.25.7.A 30 0 25 4 4.71 362 362.0 362

eil26.tsp.5.25.6.A 30 0 25 5 4.69 382 382.0 382

eil51.tsp.3.12.5.A 17 1 12 3 1.23 242 242.0 242

eil51.tsp.4.12.4.A 17 1 12 3 1.18 (251) 251.0 261

eil51.tsp.5.12.3.A 17 1 12 4 1.09 (279) 279.0 286

eil51.tsp.3.25.10.A 38 0 25 3 5.23 322 322.0 322

eil51.tsp.4.25.7.A 38 0 25 4 5.28 360 360.0 360

eil51.tsp.5.25.6.A 38 0 25 5 5.21 379 379.0 379

eil51.tsp.3.37.14.A 56 1 37 3 16.82 (373) 373.0 373

eil51.tsp.4.37.11.A 56 1 37 4 15.76 (405) 405.0 405

eil51.tsp.5.37.9.A 56 1 37 5 16.04 (432) 432.0 432

eil51.tsp.3.50.19.A 78 1 50 3 46.37 (459) 459.0 459

eil51.tsp.4.50.14.A 78 1 50 4 44.25 (490) 490.0 490

eil51.tsp.5.50.12.A 78 1 50 5 40.78 (520) 520.0 520

eil76.tsp.3.18.7.A 33 0 18 3 3.02 330 330.0 330

eil76.tsp.4.18.5.A 33 0 18 4 3.38 385 385.0 385

eil76.tsp.5.18.4.A 33 0 18 5 3.19 448 448.0 448

eil76.tsp.3.37.14.A 71 4 37 3 25.14 402 402.0 402

eil76.tsp.4.37.11.A 71 4 37 4 24.10 457 457.0 457

eil76.tsp.5.37.9.A 71 4 37 5 24.89 479 479.0 479

eil76.tsp.3.56.21.A 121 3 56 3 124.75 471 471.0 471

eil76.tsp.4.56.16.A 121 3 56 4 104.42 519 519.0 519

eil76.tsp.5.56.13.A 121 3 56 5 103.60 545 545.0 545

eil76.tsp.3.75.28.A 172 0 75 3 433.58 568 568.7 564

eil76.tsp.4.75.21.A 172 0 75 4 360.81 604 605.3 602

eil76.tsp.5.75.17.A 172 0 75 5 331.90 640 640.0 640

eil101.tsp.3.25.10.A 62 2 25 3 7.83 363 363.0 363

eil101.tsp.4.25.7.A 62 2 25 4 7.28 415 415.0 415

eil101.tsp.5.25.6.A 62 2 25 5 7.25 448 448.0 448

eil101.tsp.3.50.19.A 117 1 50 3 71.84 500 500.0 500

eil101.tsp.4.50.14.A 117 1 50 4 63.30 528 528.0 528

eil101.tsp.5.50.12.A 117 1 50 5 58.85 567 567.0 567

eil101.tsp.3.75.28.A 191 1 75 3 486.64 597 599.0 595

eil101.tsp.4.75.21.A 191 1 75 4 390.98 623 623.0 623

eil101.tsp.5.75.17.A 191 1 75 5 335.98 658 658.0 657

eil101.tsp.3.100.38.A 349 0 100 3 2680.85 (651) 652.3 646

eil101.tsp.4.100.28.A 349 0 100 4 2312.63 (681) 682.0 679

eil101.tsp.5.100.23.A 349 0 100 5 1943.48 (705) 707.0 700
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Table 6.14: Heuristic results on CmRSP-B with unlimited assignment options
Instance n R K m t̄ Ub Avg Ub∗

eil26.tsp.3.12.5.B 14 0 12 3 1.08 1684 1684.0 1684

eil26.tsp.4.12.4.B 14 0 12 3 1.11 (1757) 1757.0 1827

eil26.tsp.5.12.3.B 14 0 12 4 1.03 (1950) 1950.0 2041

eil26.tsp.3.18.7.B 21 0 18 3 2.27 2104 2104.0 2104

eil26.tsp.4.18.5.B 21 0 18 4 2.31 2370 2370.0 2370

eil26.tsp.5.18.4.B 21 0 18 5 2.10 2615 2615.0 2615

eil26.tsp.3.25.10.B 30 0 25 3 4.59 2251 2251.0 2251

eil26.tsp.4.25.7.B 30 0 25 4 4.86 2510 2510.0 2510

eil26.tsp.5.25.6.B 30 0 25 5 4.71 2674 2674.0 2674

eil51.tsp.3.12.5.B 18 0 12 3 1.21 1681 1681.0 1681

eil51.tsp.4.12.4.B 18 0 12 3 1.25 (1751) 1751.0 1821

eil51.tsp.5.12.3.B 18 0 12 4 1.09 (1923) 1923.0 1972

eil51.tsp.3.25.10.B 38 0 25 3 5.46 2176 2176.0 2176

eil51.tsp.4.25.7.B 38 0 25 4 5.96 2470 2470.0 2470

eil51.tsp.5.25.6.B 38 0 25 5 5.53 2579 2579.0 2579

eil51.tsp.3.37.14.B 57 0 37 3 18.59 2490 2490.0 2490

eil51.tsp.4.37.11.B 57 0 37 4 17.99 2721 2721.0 2721

eil51.tsp.5.37.9.B 57 0 37 5 15.86 2908 2908.0 2908

eil51.tsp.3.50.19.B 79 0 50 3 55.56 3015 3015.0 3015

eil51.tsp.4.50.14.B 79 0 50 4 54.94 3260 3260.0 3260

eil51.tsp.5.50.12.B 79 0 50 5 51.20 (3401) 3401.0 3404

eil76.tsp.3.18.7.B 33 0 18 3 3.02 2253 2253.0 2253

eil76.tsp.4.18.5.B 33 0 18 4 3.43 2620 2620.0 2620

eil76.tsp.5.18.4.B 33 0 18 5 3.18 3059 3059.0 3059

eil76.tsp.3.37.14.B 72 3 37 3 27.04 2720 2720.0 2720

eil76.tsp.4.37.11.B 72 3 37 4 26.44 3100 3100.0 3100

eil76.tsp.5.37.9.B 72 3 37 5 27.35 3284 3284.0 3284

eil76.tsp.3.56.21.B 122 2 56 3 159.81 3044 3044.0 3044

eil76.tsp.4.56.16.B 122 2 56 4 132.91 3415 3422.7 3415

eil76.tsp.5.56.13.B 122 2 56 5 130.53 3631 3631.0 3631

eil76.tsp.3.75.28.B 172 0 75 3 612.36 3655 3657.7 3652

eil76.tsp.4.75.21.B 172 0 75 4 462.80 3970 3980.7 3964

eil76.tsp.5.75.17.B 172 0 75 5 417.26 4217 4218.0 4217

eil101.tsp.3.25.10.B 63 1 25 3 8.93 2434 2434.0 2434

eil101.tsp.4.25.7.B 63 1 25 4 7.92 2782 2782.0 2782

eil101.tsp.5.25.6.B 63 1 25 5 7.56 3009 3009.0 3009

eil101.tsp.3.50.19.B 117 1 50 3 78.28 3322 3322.0 3322

eil101.tsp.4.50.14.B 117 1 50 4 76.05 3533 3535.3 3533

eil101.tsp.5.50.12.B 117 1 50 5 63.44 3834 3834.0 3834

eil101.tsp.3.75.28.B 191 1 75 3 566.04 3887 3891.0 3887

eil101.tsp.4.75.21.B 191 1 75 4 481.30 4082 4082.0 4082

eil101.tsp.5.75.17.B 191 1 75 5 403.62 4358 4367.3 4358

eil101.tsp.3.100.38.B 349 0 100 3 4102.98 (4134) 4140.0 4109

eil101.tsp.4.100.28.B 349 0 100 4 3380.47 (4376) 4381.0 4355

eil101.tsp.5.100.23.B 349 0 100 5 2773.91 (4575) 4581.3 4565
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The results on the six cases are mutually quite similar; the small instances are solved

quickly to best known values, while solving the large instances can take up to an

hour and yield suboptimal results. With the largest instances in the unrestricted

case, there are 349 customers; a significant increase to the 100 nodes in the CmRSP.

Allowing only two cheapest assignments, the customer amount is less by a hundred.

In all of the six cases, there are four instances based on eil26 and eil51 that yield

better results than the current best known value. This is because our results can have

a flexible amount of routes; the capacity limit in these instances is not tight, allowing

us to use one route (or ring) less than the solutions in the literature. Concerning

these instances, our best known values are in parenthesis. Similarly, parentheses

are used every time our best solution is not a feasible CmRSP solution as explained

in Chapter 4. This occurs systematically for six eil51 -based instances in set A.

However, the instances are small and the results are always equal to the upper bound

that is known to be optimal; this implies that we happen to find solutions that are

nearly identical to the correct one with small zero-cost alterations. There is only

one instance (eil51.tsp.5.50.12.B) for which we are able to find strictly improving

infeasible solutions. Overall, only a handful of our solutions are infeasible in the

original CmRSP; we are able to compare the results to current literature.

To examine the effect of the restriction of assignment options, observe Table 6.15.

In columns ’Best’ and ’t̄’, we report the success rate and average computing time for

sets A and B and for each of the options. The success rate is the amount of instances

that we were able to solve to best known values. From the total 45 instances, we

include only those with comparable results in the comparison.

Table 6.15: Algorithm performance summary on the CmRSP with different con-
strictions on the amount of assignments

1 option 2 options Unrestricted

Set Best t̄ Best t̄ Best t̄

A 26/35 119.1 28/35 137.6 28/32 225.2

B 21/39 150.5 28/40 178.2 35/37 315.9

It seems clear that the solution quality increases as more assignment options are

included. Apparently, not only the cheapest assignments are used in the solutions;

especially in the large ones. In set B, the assignments are relatively cheaper than in

set A. This means that good solutions are likely to use more assignments in set B.

It is then not a surprise that restricting assignment options leads to clearly poorer
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solutions on set B. With the unrestricted case, we are able to find the best known

solutions with adequate reliability, especially with set B. It must be noted that the

three biggest instances are not included in the comparison in the unrestricted case

due to infeasibility.

Comparison to current literature is performed in Table 6.16. with familiar columns

’Best’ and ’t̄’. We use our results from the unrestricted case.

Table 6.16: CmRSP Results compared to literature

Thesis Baldacci et al. Naji-Azimi et. al Zhang et. al

Set Best t̄ Best t̄ Best t̄ Best t̄

A 28/32 225.2 36/45 2098 44/45 2.02 45/45 59.6

B 35/37 315.9 29/45 2953 44/45 2.29 44/45 85.5

The table includes the results from the exact method of Baldacci et al. and the

heuristics of Naji-Azimi et. al and Zhang et. al. In a sense, it is not obvious

that comparing heuristics with exact methods gives any useful insight; especially

concerning computing times, as exact algorithms are typically terminated after a

fixed time limit if no optimal solutions are found (7200 seconds in this case). Here,

we can merely state that our algorithm is able to find better solutions to set B than

the exact algorithm.

Compared to the heuristic algorithms, our algorithm is clearly inferior. They are

able to find nearly all best known solutions with little time. This time, we do not

have sufficient information on the processor types, so computation time comparisons

are made in a rough manner. As our algorithm appears to be at least four times

slower than the slower of the two heuristics and over a hundred times slower than

the other, it should be safe to say that our algorithm is nowhere near the current

level of research.
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6.3 Heuristic performance on MCTP

The heuristic GVRP algorithm was tested on available MCTP instances. These

instances are based on TSP instances kroA100, kroB100, kroC100 and kroD100.

They were generated in [17] and later used in [14] and [18].

In the instances, the parameter |Y | ∈ {25, 50} denotes the amount of customers

belonging to set Y (customers that can be visited). The depot v0 is included in this

set and it is the only node that must be visited: T = {v0}. The second parameter

implies the amount of remaining nodes that must be assigned. Finally, there is

a customer limit p ∈ {4, 5, 6, 8} for all routes. The names of the CTP instances

are then constructed as follows: ’TSP instance name’-’|Y |’-’|W |’-’p’. For example,

the first instance ’kroA100-25-75-4’ is an instance derived from the TSP instance

’kroA100’ with 25 potential customers to visit, 75 customers to cover and a limit of

4 customers per route.

Each customer can be covered by a node within a radius r. Here r is set in such a

way that there are at least two options for each node. Otherwise, there would be no

other choice than to visit the only possible assignment node; then that node would

belong to T and the covered node could be eliminated altogether.

We do not consider cutting out any assignments in the transformation as with the

CmRSP. This is because the assignments have no cost; we cannot assume that

long-distance assignments would be made less frequently. Thus, the clusters in the

transformed GVRP instances contain as many nodes as there are visitable nodes

within radius r of the corresponding covered node. In many cases, there are clusters

with a size of 10 customers or more.

Each instance is solved three times. The computational results can be found in table

6.17. In addition to our own results, we report the upper bounds and computing

times by the heuristic methods of [14] and [18]. As before, ’Instance’, ’n’, ’K’, ’Q’

and ’m’ stand for instance name, number of customers, number of clusters, capacity

and number of routes. For each method, ’t̄’ and ’Ub’ report the (average) computing

time and best upper bound.

The algorithm is able to find 23 of the 32 best known solutions. These solutions

are also optimal as they are all solved to optimality in [14]. The GVRP problems

are very large compared to the original instances. For example, the solution to

instance kroB100-25-75-6 contains one route with at most 6 nodes visited; in the

transformation, there are 75 clusters and 459 customers.
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Table 6.17: Heuristic algorithm performance and comparison on 32 MCTP instances

Thesis Hà et al. Kammoun et. al

Instance n K Q m t̄ Ub Avg t̄ Ub t̄ Ub

kroA100-25-75-4 416 75 4 2 420.5 8479 8479.0 0.16 8479 0.016 8479

kroA100-25-75-5 416 75 5 2 469.5 8479 8479.0 0.17 8479 0.016 8479

kroA100-25-75-6 416 75 6 2 538.4 8479 8479.7 0.16 8479 0.013 8479

kroA100-25-75-8 416 75 8 1 595.9 7985 7985.7 0.16 7985 0.014 7985

kroA100-50-50-4 301 50 4 3 174.3 10271 10271.0 0.80 10271 0.022 10271

kroA100-50-50-5 301 50 5 2 196.5 9220 9220.0 0.78 9220 0.017 9220

kroA100-50-50-6 301 50 6 2 208.7 9130 9130 0.81 9130 0.023 9130

kroA100-50-50-8 301 50 8 2 234.6 9130 9130 0.81 9130 0.018 9130

kroB100-25-75-4 459 75 4 2 531.3 7146 7179.3 0.22 7146 0.004 7146

kroB100-25-75-5 459 75 5 2 598.5 6901 6917.7 0.18 6901 0.005 6901

kroB100-25-75-6 459 75 6 1 610.4 6450 6483.3 0.23 6450 0.004 6450

kroB100-25-75-8 459 75 8 1 582.5 6450 6450.0 0.20 6450 0.004 6450

kroB100-50-50-4 385 50 4 3 312.5 10524 11207.0 0.62 10107 0.012 10107

kroB100-50-50-5 385 50 5 2 336.0 9732 9852.3 0.64 9723 0.009 9723

kroB100-50-50-6 385 50 6 2 361.0 9382 9382.0 0.58 9382 0.016 9382

kroB100-50-50-8 385 50 8 2 417.4 8552 8977.0 0.58 8348 0.016 8348

kroC100-25-75-4 617 75 4 1 964.4 6161 6499.3 0.16 6161 0.004 6161

kroC100-25-75-5 617 75 5 1 1067.8 6161 6161.0 0.16 6161 0.004 6161

kroC100-25-75-6 617 75 6 1 1065.6 6161 6161.0 0.15 6161 0.004 6161

kroC100-25-75-8 617 75 8 1 903.1 6161 6161.0 0.17 6161 0.004 6161

kroC100-50-50-4 287 50 4 3 208.9 11372 11372.0 0.64 11372 0.028 11372

kroC100-50-50-5 287 50 5 2 224.9 9900 9900.0 0.67 9900 0.013 9900

kroC100-50-50-6 287 50 6 2 246.9 9895 9895.0 0.67 9895 0.017 9895

kroC100-50-50-8 287 50 8 2 275.1 8712 9008.3 0.65 8699 0.007 8699

kroD100-25-75-4 469 75 4 2 532.0 7671 7671.0 0.16 7671 0.020 7671

kroD100-25-75-5 469 75 5 2 599.0 7666 7666.0 0.16 7465 0.022 7465

kroD100-25-75-6 469 75 6 1 674.1 6651 6670.3 0.15 6651 0.015 6651

kroD100-25-75-8 469 75 8 1 634.0 6651 6651.0 0.16 6651 0.014 6651

kroD100-50-50-4 276 50 4 3 168.8 12170 12634.0 0.93 11606 0.021 11606

kroD100-50-50-5 276 50 5 3 191.3 11143 11206.3 0.85 10770 0.263 10770

kroD100-50-50-6 276 50 6 2 207.0 10820 10896.0 0.82 10680 0.026 10525

kroD100-50-50-8 276 50 8 2 241.9 9790 9910.7 0.93 9361 0.028 9361
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The heuristic of Hà et al. can find all but one optimal solutions while that of

Kammoun et al. finds an optimal solution to all instances. Generally, the computing

time per instance is less than one second for Hà et al. and less than a tenth of a

second for Kammoun et al. In comparison, our heuristic algorithm could not find

any solutions in under two minutes (120s), and most instances took hundreds of

seconds to solve. In fact, even the exact branch-and-cut method of Hà et al. was

faster than our heuristic one on every instance.

The solutions contain few routes. In all cases, m ∈ {1, 2, 3}. This is one factor

explaining the poor performance of the heuristic; with m = 1, both the cyclic ex-

change and split algorithms are practically useless. To improve solution quality and

reduce computing time, some ad-hoc local search manoeuvres would be necessary.

Our heuristic solves the instances with 50 visited and 50 covered nodes faster than

those with 25 visited and 75 covered customers. This is probably due to 50-50

instances containing less clusters. It is an opposite trend to the other heuristics

which perform faster on the 25-75 instances. However, we are able to find fewer

optimal solutions for the 50-50 instances.



Chapter 7

Conclusions

This thesis concentrates on two main points: building a competitive algorithm for

the GVRP and utilizing this algorithm to solve CmRSP and MCTP instances. Both

goals can be claimed to have been met.

The revised GVRP heuristic algorithm with cyclic exchange, shortest-path and pre-

processing methods is very competitive. In terms of solution quality, it outperforms

all methods in current literature. It can reliably find optimal solutions to small and

medium instances with computing times that are also competitive. The algorithm

is able to find best known solutions to all large instances with two new unique best

solutions discovered. The computational load of the algorithm does increase faster

with problem size than its rivals. However, even with the largest instances of 262

customers, the algorithm cannot be considered actually slow.

We have shown that the Capacitated m-Ring-Star Problem and the Multivehicle

Covering Tour Problem can be transformed into a GVRP and solved with the same

algorithm. The algorithm is able to find best known solutions to most small CmRSP

instances, but the quality for bigger ones is poor concerning both the upper bounds

and computing time. This is, in part, due to the GVRP problem size increas-

ing rapidly with respect to the original CmRSP. In addition, the cost structure of

the GVRP becomes peculiar in the transformation process; the triangle equality

generally does not hold, which is a setback to most heuristic moves and the Split

algorithm. Keeping in mind the competitiveness of the algorithm in the GVRP, the

algorithm does not seem like a sensible way to solve CmRSP instances practically.

The CmRSP instances considered in this thesis only contained up to one hundred

nodes, and the computing times could reach one hour. In the related literature,
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instances with over 400 nodes are considered. This algorithm would not be capable

of solving these instances; at least, not without a major renovation of the GVRP

metaheuristic framework and search moves to better utilize the characteristics of

the CmRSP.

Utilizing the CmRSP transformation, the MCTP instances could be turned into

GVRP instances in a very straight-forward fashion. The algorithm could succes-

fully solve these instances as well, but the problems encountered with the CmRSP

were even stronger in this context. Even simple instances resulted in excessively

large transformations, and the zero-cost assignments were also a drawback. Typical

solutions to these MCTP instances can only include one route, which makes the

cyclic exchange search mostly redundant. The exact algorithms used in current lit-

erature can solve the MCTP instances faster than the heuristic. This implies that

our heuristic algorithm is not a sensible method for solving the MCTP, but the

transformation itself can be useful if solved with different algorithms.

In addition to these two main goals, we presented the Distance-Constrained Capaci-

tated m-Ring Star Problem. The problem was formulated in general form, allowing

for general demands to both regular and Steiner nodes. The MCTP was shown to

be a special case of this problem. The DCmRSP would be an interesting subject for

further study; a constraint on the length of the rings would encourage the utilization

of star assignments. This problem might be relevant in the original context of the

CmRSP in telecommunications, or in the vehicle routing interpretation.
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[5] Bektaş, T., Erdoğan, G., and Røpke, S. Formulations and branch-and-cut

algorithms for the generalized vehicle routing problem. Transportation Science

45, 3 (2011), 299–316.

[6] Bertsimas, D., and Tsitsiklis, J. Introduction to linear optimization.

Athena Scientific, 1997.

[7] Burke, E. K., and Kendall, G., Eds. Search Methodologies: Introductory

Tutorials in Optimization and Decision Support Techniques, 2 ed. Springer US,

2014.

[8] Current, J. R., and Schilling, D. A. The covering salesman problem.

Transportation Science 23, 3 (1989), 208–213.

[9] Dantzig, G., and Ramser, J. The truck dispatching problem. Management

Science 6 (1959), 80–91.

64



BIBLIOGRAPHY 65
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