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In this thesis, we consider an NP-hard combinatorial optimization problem called
the Distance-Constrained Generalized Vehicle Routing Problem (DGVRP). The
main characteristics of this problem are unlimited vehicle fleet, limited vehicle
capacity, arrangement of customers into clusters, and an upper limit on each route
length.
We present a mathematical formulation for the DGVRP, in which we use two-
commodity and single-commodity flow formulations to describe the constraints on
vehicle capacity and maximum route length. In addition, a heuristic algorithm
is implemented for finding solutions to the DGVRP. Main components in the
algorithm include a split procedure and solving a set partitioning model.
The algorithm is tested on benchmark GVRP instances (with no distance con-
straints) as well as a new set of DGVRP instances. The results obtained by the
heuristic algorithm for the GVRP are competitive compared to those presented in
recent literature. The solutions for the DGVRP instances are at least as good as
those given by a commercial solver.
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Introduction

Problem description
The Generalized Vehicle Routing Problem (GVRP) is a combinatorial optimization
problem which generalizes the Capacitated Vehicle Routing Problem (CVRP). The
CVRP is to design a set of routes for a fleet of vehicles, based at a depot, to visit a
set of customers so that each customer is visited exactly once. The combined demand
of all customers on a route cannot exceed the vehicle capacity. An optimal solution
is one that minimizes the total cost, e.g. the sum of the lengths of all routes. The
GVRP, instead, contains clusters that include one or more customers, and exactly
one customer per cluster must be visited.

The Distance-Constrained Generalized Vehicle Routing Problem (DGVRP) is a
generalization of the GVRP, in which distance constraints limit the maximum length
of each route. The DGVRP is NP-hard, since it contains the CVRP as a special
case when distance constraints are ignored and all clusters are singletons. To our
knowledge, this particular problem has not been considered in the literature.

Application examples
Real-life applications of the GVRP and DGVRP are numerous. One such application,
as mentioned by Afsar et al. [1] is the delivery of supplies to scenes of natural disasters.
Roads and other transportation infrastructure are often damaged in natural disasters,
leaving villages dependant on airborne supply delivery. However, not every village
needs to be visited, since connections between neighbouring villages may be intact.
By representing each set of interconnected villages as a cluster, a GVRP can be used
to model the situation. In addition to this example, a more realistic model can then
be obtained by adding a constraint limiting the maximum distance the plane can
travel without refuelling. By solving this DGVRP, we obtain an optimal set of routes
that save fuel and expedite supplying operations.

Another example from an article by Bektaş et al. [2] is route design for trucks
carrying pharmaceutical products. It may be inconvenient to drive a big truck from
one small pharmacy to another, but it may be possible to drop off all the supplies
for one neighbourhood in one store and deliver the products to nearby pharmacies
with smaller vehicles. The clusters would now correspond to neighbouring areas in
a city. By adding distance constraints, we can extend this application to take into
account the maximum duration of a working day.

In addition, many different types of combinatorial optimization problems can be
transformed into a GVRP. Some such problems are presented by Baldacci et al. [3],
including the travelling salesman problem with profits, several types of arc routing
problems, and extensions of the VRP. Adding distance constraints to the GVRP
model thus allows to model more realistic variants of all such problems.
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Literature review
The CVRP was first presented in 1959 by Dantzig and Ramser [4]. The CVRP has
been studied extensively in the literature. For instance, Baldacci et al. [5] present an
exact solution algorithm for the CVRP based on a two-commodity flow formulation.
Numerous solving methods and extensions for the CVRP are presented in a book
by Toth and Vigo [6]. One extension of the CVRP is the Distance-Constrained
Capacitated Vehicle Routing Problem (DCVRP). This problem has been studied,
e.g., by Laporte et al. [7] in 1985 and more recently in 2006 by De Franceschi et al.
[8] who present a refinement heuristic for the DCVRP.

The allocation of customers into clusters has been considered already in the 1960s
in the context of the Generalized Traveling Salesman Problem (GTSP). The GTSP
is a well-known optimization problem, and the literature on the subject is rich; see,
e.g., the exact method for the GTSP by Fischetti et al. [9].

The GVRP was, to our knowledge, first presented in an article by Ghiani and
Improta [10] in 2000. The article describes a transformation of the GVRP to a
Capacitated Arc Routing Problem (CARP). Baldacci et al. [3] present several
applications for the GVRP in their 2010 article, showing that the GVRP can be
used to model a number of different combinatorial optimization problems. Bektaş et
al. [2] were the first to present a direct solution method for the GVRP in 2011. In
the article, four new mathematical formulations for the GVRP are presented, exact
methods are presented and applied, a heuristic algorithm is presented, and a data
set of test instances is created.

Recently, GVRP variants have gained more attention in the literature. Moccia et
al. [11] present the GVRP with Time Windows (GVRPTW) in their 2012 article,
which is the first to consider time windows for the GVRP. In the article, a tabu
search heuristic is presented. Hà et al. [12] consider the GVRP with unlimited
fleet size in their 2013 article. They present a two-commodity flow formulation and
develop both an exact and a heuristic method for the GVRP. In 2014, Afsar et al.
[1] describe exact and heuristic solution methods for the GVRP with unlimited fleet
size.

Thesis outline
This thesis is structured into four sections. In the first one, we describe the DGVRP
and present mathematical formulations including the distance constraints. The flow
of goods is modelled as a two-commodity flow and time as a single-commodity flow.

In section 2, we describe a metaheuristic algorithm for the DGVRP. An important
part of the algorithm is a split procedure, similar to those implemented by Hà et al.
[12] and Afsar et al. [1] which determine the optimal way of splitting a giant tour
(a route visiting all clusters) into a feasible set of routes that satisfy the capacity
constraints. Our algorithm is modified to consider distance constraints, remaining
exact in the case that the distance and time matrices are equal. The heuristic
algorithm also includes a local search procedure and a set partitioning model that
has previously not been utilized in GVRP heuristics. The set partitioning model is
based on a pool of feasible routes found by the heuristic algorithm.

Computational results are presented in section 3. We use the benchmark GVRP
instances created by Bektaş et al. [2] to evaluate the performance of the heuristic
algorithm compared to other studies. We also present a new set of test instances for
the DGVRP. Conclusions can be found in section 4.



3

1 Mathematical Formulations
In this section, we present mathematical formulations for the GVRP and the DGVRP.
We begin with defining the necessary problem properties, and continue to present the
objective functions and constraints. To model the GVRP, we use a two-commodity
flow formulation presented by Baldacci et al. [5]. To model the distance constraints,
we use a single commodity flow as described by Bektaş and Lysgaard [13]. With the
formulation, exact solutions to the DGVRP can be calculated.

1.1 Problem Description
The GVRP is defined on a directed graph G = (V,A), where V = {v0,v1,...,vn+1} is
the vertex set and A = {(i,j)| vi,vj ∈ V, i 6= j} is the arc set. All vehicles start and end
their route at the depot. For simplicity, the depot is split into two separate vertices
v0 and vn+1 so that each route begins at v0 and ends at vn+1. Vertices v1, v2,..., vn
represent the n ordinary customers. Customers are divided into K clusters, which
form the cluster set C = {C1,C2,...,CK}. Each cluster Ck is associated with a demand
qk. Because only one customer per cluster is visited, we can assign to every customer
vi a demand q̃i that is equal to the demand of the cluster of its cluster. The sum
of demands of the customers (or clusters) visited on a single route cannot exceed
the total vehicle capacity Q. Bektaş et al. [2] and Moccia et al. [11] considered the
problem with a fixed amount m of vehicles. Similarly to Hà et al. [12] and Afsar et
al. [1], we consider instead a scenario where the fleet size is flexible, i.e., we impose
no constraint on the number of vehicles in the solution.

Each arc (i,j) has a cost dij that is equal to the distance between the respective
nodes vi and vj. The costs are assumed to be symmetric, i.e., dij = dji for all vertex
pairs. In addition, each arc (i,j) is associated with a time tij . The total time it takes
to any one route to travel from v0 to vn+1 must be less or equal than T , an upper
time limit.

1.2 Two-commodity flow formulation of the GVRP
To express the GVRP mathematically, we need a set of decision variables. First, a
binary variable xij indicates whether the arc (i,j) is in use in the solution: if the
arc is used, xij equals 1, and 0 otherwise. Similarly, a binary variable yi indicates
if customer vi is visited in the solution. The number of routes or vehicles m is also
treated as a decision variable.

min
n+1∑
i=0

n+1∑
j=0

dijxij (1)

s.t.
n∑
j=1

x0j = m (2)

n∑
j=1

xjn+1 = m (3)



4

∑
i∈Cl

yi = 1 ∀ l = 1,2,... ,K (4)

n∑
i=0

xij = yj ∀vj ∈ V \ {v0,vn+1} (5)

n+1∑
k=1

xjk = yj ∀vj ∈ V \ {v0,vn+1} (6)

xij ∈ {0,1} ∀(i,j) ∈ A (7)

yi ∈ {0,1} ∀vi ∈ V \ {v0,vn+1} (8)

m ∈ Z+ (9)

The objective of the problem is to minimize the total cost of the routes (1).
Constraints (2) and (3) state that exactly m vehicles enter and leave the depot.
Constraints (4) ensure that exactly one customer per cluster is visited. Constraints
(5) and (6) imply that if a customer is visited, there is exactly one arc entering it
and one arc leaving it. If a customer is not visited, no arcs arrive at it or depart
from it. Constraints (7) - (9) simply state the variable types.
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Figure 1: An example of two-commodity flow

To mathematically describe the delivery of goods to customers, we use a two-
commodity flow formulation with variables fij. The formulation ensures that the
solution contains no subtours, i.e., directed cycles not passing through the depot.
The two-commodity flow formulation was first introduced by Baldacci et al. [5],
and adapted to the GVRP by Hà et al [12]. An example of a two-commodity flow
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modelling the solution of a GVRP instance with four clusters and one vehicle can be
viewed in Figure 1.

For each arc (i,j), fij describes the flow of goods from vi to vj , that is, the amount
of goods in a vehicle as it travels from vi to vj. This flow is illustrated with blue
arcs in Figure 1. At the same time, fji describes the amount of empty space in a
vehicle traversing from vi to vj. The empty space is modelled as a backward flow,
illustrated with red arcs in the figure. This backward flow between two customers
then simply equals Q− fij if those two customers are consecutively visited on the
route, or zero otherwise. As an example, Figure 1 illustrates the flows and backward
flows associated with a route visiting the vertex sequence (v0,v2,v5,v7,v8,v9).

The following constraints are added to the formulation to model the flows and
backward flows:

fij + fji = Q(xij + xji) ∀(i,j) ∈ A (10)

n∑
j=1

fn+1j = Qm (11)

n∑
j=1

f0j =
K∑
k=1

qk (12)

n+1∑
j=0

fji −
n+1∑
j=0

fij = 2q̃iyi ∀vi ∈ V \ {v0,vn+1},i 6= j (13)

fij ≥ 0 ∀(i,j) ∈ A (14)
Constraints (10) ensure that when vi and vj are not visited in sequence, both

the flow and the backward flow between these vertices is zero. However, if they
are visited in sequence, the sum of goods and empty space must equal the vehicle
capacity. Constraint (11) states that the total amount of backward flow outgoing
from the destination depot equals the total space in all used vehicles, that is, all
vehicles arrive at the depot fully unloaded.

Similarly, (12) ensures that the total amount of goods loaded at the depot equals
the amount distributed to the customers. Constraints (13) describe the changes in
flows as a customer is visited. Let us examine the situation in Figure 1. Consider v7,
its predecessor v5 and its successor v8. The only flows entering v7 are f57 and f87,
which represent the actual flow from v5 and backward flow from v8. Correspondingly,
the flows leaving v7 are f78 and f75. When the amount q̃7 = 2 is unloaded at v7, the
change in empty space is f87−f75 = 9−7 = 2, which is the same as the change in the
amount of goods on the vehicle, i.e., f57− f78 = 3− 1 = 2. Thus, the total difference
in the sums of (13) equals 2q̃7 = 4. For unvisited customers, there are no flows so the
difference of flows is also zero. Constraints (14) ensure the non-negativity of each
flow variable.

The two-commodity flow formulation ensures that the vehicle capacity is never
exceeded. Because each flow variable value is non-negative and the sum of forward
flows and backward flows on each arc must equal Q, a forward flow can never exceed
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Q. The formulation also eliminates subtours from the solution. A subtour would
need to contain only customers with demand 0 in order to appear in the solution.
Otherwise the forward flow along the subtour would have to decrease after each arc
traversed. Since all the demands are strictly positive, such a subtour cannot exist.

1.3 Distance constraints
To include distance constraints (or time limits) in the problem, there is still need for
one set of flow variables. We use a set of variables hij which represent the time at
which customer vj is reached after traversing the arc (i,j). This single commodity
flow formulation is also used by Bektaş and Lysgaard [13] in the context of the
multiple Traveling Salesman Problem (mTSP).

To model distance constraints, the following constraints are added to the formu-
lation:

n+1∑
j=0

hij −
n+1∑
k=0

hki =
n+1∑
j=0

tijxij ∀ vi ∈ V \ {v0,vn+1},i 6= j (15)

hij ≤ Txij ∀ (i,j) ∈ A (16)

h0 i = t0 ix0 i ∀vi ∈ V (17)

hij ≥ 0 ∀ (i,j) ∈ A (18)

Constraints (15) simply state that the difference between the arrival times at vj
and vi must be tij if the arc (i,j) is traversed. Constraints (15) are also sufficient to
eliminate subtours. Assuming positive travel times between any pair of customers,
time flow variables can only increase along a directed path. If there was a subtour
in the solution, equations 15 would not admit a feasible solution. Constraints (16)
impose that the upper time limit cannot be exceeded when arriving at the depot,
and that the flow value is at most zero on untraversed arcs. Constraints (18) ensure
that the flow hij equals zero in this case. Constraints (17) force the arrival time at
customer vi to be equal to the time needed to travel from the depot to the customer,
if vi is the first customer on a route.

An example of the time flow variables can be viewed in Figure 2. The black
arcs measure the time between customers, and the blue curved arcs represent the
flow variables hij. The flow variables h01 and h06 simply equal the travel times from
the depot to the first customers of the two routes. The other flow variables are
determined by the formula in constraints (17). Note that if the solution included the
arc (2,4), the corresponding flow variable would have value 22. This would make the
flow variable h47 violate the upper limit constraint (16).
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Figure 2: An example of the time flow variables

1.4 Set Partitioning
As a part of our metaheuristic algorithm, we solve a set partitioning problem.
Generally, the set partitioning problem is to divide a set into subsets so that each
element belongs to exactly one subset. In the GVRP, the problem is to divide the
cluster set into routes, so that each cluster belongs to exactly one route and the total
combined cost of the routes is minimized. Let R be the set of all feasible routes. Let
cr be the cost of route r (i.e., the sum of costs of the arcs it traverses), and let zr be
a 0-1 variable taking value 1 if and only if the route r is used in the solution. Define
also a binary indicator pkr having value 1 if some customer in cluster Ck is visited
by route r, and 0 otherwise.

The set partitioning formulation for the GVRP is then the following:

min
∑
r∈R

crzr (19)

s.t.
∑
r∈R

pkrzr = 1 ∀k = 1,2,... ,K (20)

zr ∈ {0,1} (21)
Similar formulations can be used to model a wide range of VRP variants. To

the best of our knowledge, in the context of the GVRP Afsar et al. [1] are the
only to develop a solution algorithm based on the set partitioning formulation. The
formulation is simple to state, but the difficulty is in constructing the enormous
solution space of all feasible routes R. The model could be solved, for example, with
column generation techniques, but instead we only use the routes generated by the
heuristic algorithm. Thus, we have no guarantee to obtain an optimal solution.
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2 Heuristic Algorithm
Solving a GVRP to optimality becomes increasingly more difficult as more customers
are included. According to our preliminary experiments, the commercial solver
CPLEX (IBM ILOG CPLEX 12.6) is only able to find optimal solutions to GVRP
instances with up to 50 customers within a time limit of two hours, using the
formulation presented in the previous section. In addition, the computation was
performed without considering the time flow variables and thus without considering
distance constraints. Including these constraints would delay the computation even
further.

Exact solution methods are typically impractical to be used in real-world ap-
plications, where the number of customers is often in the hundreds or thousands.
Therefore, a different method of route construction is needed. In this section, we
present a heuristic algorithm that searches solutions to the problem. The cost of
any feasible solution from the heuristic algorithm is an upper limit to the optimal
objective value. The best value returned by the heuristic can be compared with the
best known solution value or a lower bound in order to evaluate the performance
of the algorithm. The algorithm only handles symmetric instances, since the test
instances are all defined on an undirected graph.

The structure of the algorithm is mainly the same as used by Hà et al. [12]. In
addition to local search techniques, the algorithm includes a large neighbourhood
search procedure called the split algorithm. The same algorithm is used by Afsar et
al. [1]. Our implementation is, however, tailored to include the distance constraints.
We have also added a heuristic set partitioning model at the end of the algorithm. To
our knowledge, this approach has not been considered in the context of the GVRP.

The pseudo-code structure for the heuristic can be viewed in Algorithm 1. The
various functions are later presented in more detail. We start by creating an initial
set of routes, and then perform a simple local search on the resulting solution. All
the routes are then merged together to form a giant tour that covers all the clusters.
This giant tour is mutated to allow for more variation. Then the split procedure
divides the giant tour into a set of feasible routes which are improved with another
round of local search. Each improved initial solution is mutated and split nm times
(we have chosen this number to be 50). The procedure is repeated ni =30 times,
and the resulting routes are stored in different stages of the algorithm. Finally, an
exact set partitioning method is used to combine the collected routes to find the best
solution.
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Algorithm 1: The metaheuristic algorithm

Parameters: ni, nm
RoutePool ← ∅
for i ← 1 to ni do

Routes ← InitialRoutes(i)
Routes ←LocalSearch(Routes)
Add Routes to RoutePool
GiantTour ← Concat(Routes)
for j ← 1 to nm do

MutatedTour ← Mutate(GiantTour)
Routes ← Split(MutatedTour)
Add Routes to RoutePool
Routes ← LocalSearch(Routes)
Add Routes to RoutePool

end
end
Solution ← SetPartitioning(StoredRoutes)

2.1 Initial Route Generation
We use two different methods to obtain as diverse initial solutions as possible. These
solutions are later improved by other algorithms. The outline of the initial route
generation algorithm is presented in Algorithm 2.

The first method is the same as used by Hà et al. [12]. Routes are constructed
iteratively using a greedy approach. At each iteration, the vehicle determines the
two unvisited clusters closest to the last one and chooses one by random. The visited
customer in that cluster is also decided randomly. At each step, it is ensured that
there is enough time to visit the chosen cluster and return back to the depot. If the
truck is fully loaded or there is no time to visit more clusters, the vehicle returns to
the depot and the process starts again, until every cluster has been visited.

One benefit of this algorithm is the generation of diverse solutions. The greedy
choices in the generation process aim at including in the heuristic some elements
that could be found in an optimal solution, which is an advantage compared to a
completely random route construction. On the downside, the resulting routes are
close to their feasibility bounds, which limits the possibilities for improvement by
local search. The routes are also similar in shape, since the first customer of each
route is always close to the depot.

The other initial route construction algorithm is much simpler. It forms exactly
K routes; one for each cluster. On any route, only one customer is visited by the
vehicle before returning back to the depot. This type of solution is known as a
’daisy’. The advantage of this procedure is that altering the routes in the local search
algorithm is easy, since the routes are not close to their feasibility bounds. On the
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other hand, the ’daisy’ lacks the random suboptimal elements that are included in
the first route generation method, so the local search algorithm has a greater effect
on these routes. These differences between the two initial route construction methods
are the reason why both methods are included in the final algorithm.

Algorithm 2: Route generation algorithm

Input: i
Routes ← ∅
if i is even then

visited ← 0
while visited < K do

Route ← ∅
load ← 0
time ← 0
node ← v0
while node 6= vn+1 do

next ← random node from one of two unvisited clusters closest to
node
N ← the cluster of next
if load + qN ≤ Q and time + tnode,next + tnext,vn+1 ≤ T then

Add arc (node, next) to Route
Label N as visited
load ← load + qN
time ← time + tnode,next
node ← next
visited ← visited + 1

end
else

Add arc (node, vn+1) to Route
node ← vn+1

end
end
Add Route to Routes

end
end
else

for k ← 1 to K do
In cluster k, choose the customer vs closest to the depot
Add arcs (v0,vs) and (vs,vn+1) to the solution

end
end
Output: Routes
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2.2 Local Search
The local search algorithm improves a given solution in order to find a local minimum.
In our approach, the local search algorithm executes three basic types of moves:
one-point move, two-point move, and 2-opt, in that order. The pseudocode for the
local search algorithm is presented in Algorithm 3.

The one-point move relocates one cluster. First, a randomly chosen cluster is
removed from the solution and its predecessor and successor are connected to each
other. The algorithm then calculates the cost of inserting the cluster back between
each pair of clusters on all routes, at the same time determining the optimal customer
to visit in the cluster. The cluster is reallocated into the best position, leaving the
solution unchanged if no improving reallocations are possible. The one-point move
repeats this process until no improvement has been made in the last nr moves. We
use nr = max(100,n), where n is the number of customers.

The two-point move is very similar to the one-point move. At first, one cluster is
chosen randomly. Instead of reallocating the cluster, however, the algorithm tries
to swap the chosen cluster with another one. If an improving swap exists, the one
yielding the greatest saving is chosen and executed, otherwise the solution remains
the same. The algorithm runs until no improvement has been made in the last ns
moves. In our algorithm, we set ns = nr.

Finally, the 2-opt algorithm alters the improved routes. The algorithm examines
a chain of vertices, deleting arcs that connect it to the rest of the route. The chain
is then reversed and connected back to the route in the only feasible way, if the
resulting route has smaller cost than the original one. When all vertex chains are
considered and no more improvements can be made, the route is 2-optimal. Roughly
speaking, a 2-optimal route never crosses itself. The classical 2-opt algorithm is
tailored to a problem including clusters as presented by Fischetti et al. [9]. An
example of this generalized 2-opt is presented in Figure 3. The solid and dashed
black lines represent the route before and after the 2-opt move, respectively. The
reversed chain is highlighted with the red dashed line. The customers visited are
redetermined not only in the first and last cluster of the reversed chain (clusters C2
and C4), but also in all clusters neighboring C2 and C4.

Depot

C

C C

C

C

2

3 4

1

5

Figure 3: A modified 2-opt move example
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Algorithm 3: The local search algorithm
Input: Routes, nr, ns
BestInsertionCost ← ∞
counter ←0
while counter < nr do

Saving ← saving from removing cluster Ck from Routes
for all arcs (i,j) in the remaining solution do

for all customers vk ∈ Ck do
if insertion between vi and vj is feasible then

InsertionCost← min{dik + dkj − dij}
if InsertionCost<BestInsertionCost then

BestInsertionCost ← InsertionCost
(va, vb, vc)← (vi, vj, vk)

end
end

end
end
counter ← counter+1
if BestInsertionCost<Saving then

Insert vc to Routes between va and vb
counter ← 0

end
end
counter ←0
while counter < ns do

BestResult ← ∞
Choose a cluster Ck
for allCs ∈ C,Cs 6= Ck do

if swapping Ck and Cs is feasible then
Saving ← saving from removing both clusters Ck and Cs
SwapCost ← minimal cost of inserting Ck in the place of Cs and
vice versa
if SwapCost-Saving<BestResult then

BestResult ← SwapCost-Saving
(Ca, Cb)← (Ck, Cs)

end
end

end
counter ← counter+1
if BestResult<0 then

Execute swap between Ca and Cb
counter ← 0

end
end
Perform the 2-Opt move on Routes
Output: Routes
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2.3 Concat & Split
After the local search, we have a set of feasible routes of fairly good quality; they
are 2-optimal, and cannot be easily improved by simple local search methods. To
attempt improving the corresponding solution, we alter it and create a new set of
routes to be further improved by the local search. The concat algorithm concatenates
the routes in the current solution to form one giant tour, and the split algorithm
divides the resulting giant tour into feasible routes. These algorithms extend those
presented by Hà et al. [12] and Afsar et al. [1] for the GVRP. In the case where the
distances tij are directly proportional to arc costs dij, the split algorithm is exact,
meaning that the algorithm is guaranteed to optimally split the giant tour.

The concat algorithm first determines a set of ’endpoints’ which correspond to
the first and last clusters on each route. For each pair of these endpoints, it then
computes the cost saving that would be achieved by disconnecting the endpoints from
the depot and connecting them to each other. The endpoints yielding the greatest
saving are connected unless they belong to the same route, and removed from the set
of endpoints. The orientation of the routes merged this way is adjusted, if necessary.
The merging process is repeated until there are only two endpoints left. These two
last endpoints correspond to the first and the last clusters of a giant tour visiting
every cluster.

Before the resulting giant tour is split, a mutating procedure executes a two-point
move twice by making two consecutive cluster swaps. This way, the split yields
routes that are not entirely similar to routes obtained by the local search. The same
giant tour is mutated and split nm times. In our algorithm, nm = 50.

The split algorithm uses dynamic programming to split an ordered sequence
of clusters into a set of feasible routes. The algorithm is exact if there are no
distance constraints or if the distances are directly proportional the costs, i.e., if
tij = αdij ∀(i,j) ∈ A,α > 0. If this is not the case, then it is not guaranteed that the
giant tour is split optimally.
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Figure 4: An example of the split algorithm and the auxiliary graph
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Algorithm 4: The split algorithm
Input: cluster sequence (C0, C1, ..., CK)
W(0) ← 0
P(0) ← 0
for i ← 1 to K do

W(i) ← ∞
Z(Ci,vs) ←∞ for all vs ∈ V

end
for i ← 1 to K do

j ← i
load ← 0
while j ≤ K do

load ← load+qj
if load ≤ Q then

for all vs inCj do
mincost ← ∞
length ← ∞
if i=j then

mincost ← dv0vs + dvsvn+1

length ← tv0vs + tvsvn+1

U(Ci,vs) ← v0
end
else

for vr ∈ Cj−1 s.t. L(Ci, vr) + tvrvs + tvsvn+1 − tvrvn+1 ≤ T do
if Z(Ci,vr) + dvr,vs + dvsvn+1 − dvrvn+1<mincost then

mincost ← Z(Ci, vr) + dvrvs + dvsvn+1 − dvrvn+1

length ← L(Ci, vr) + tvrvs + tvsvn+1 − tvrvn+1

U(Ci,vs) ← vr
end

end
end
Z(Ci,vs) ← mincost
L(Ci,vs) ← length

end
W(j) ← min{W (j),W (i− 1) + minvs∈Cj

Z(Ci,vs)}
P(j) ← i− 1 if W(j) is changed

end
j ← j+1

end
end
Routes ← ExtractSolution(P, Z, U)
Output: Routes
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Assuming to traverse the cluster sequence in the given order, the goal is to
determine when to add a detour to the depot so that the routes between any two
consecutive depot visits are feasible and have minimum total cost. To accomplish
this, we use an auxiliary graph which contains K + 1 nodes: node 0 for the depot
and K nodes corresponding to the clusters. The nodes are connected with weighted
arcs. Each arc (i,j) emanating from node i in the auxiliary graph corresponds to
a least-cost route that starts with the cluster i+ 1 and ends with cluster j before
returning to the depot. The arc weight is the cost of that route. The problem is
then to find the least-cost path from node 0 to the final node K in the auxiliary
graph. The number of arcs on the shortest path indicates the amount of routes in
the solution and the visited nodes correspond to the clusters that are the last ones
on their routes.

To determine the shortest path, each node i in the auxiliary graph is associated
with a label W (i) corresponding to the cost of the shortest path from node 0 to node
i. Thus, the label W (i) is equal to the minimum cost of traversing all clusters up to
the i:th one and returning to the depot. W (K) is then the cost of the final solution.
In addition, each node i in the auxiliary graph has a label P (i) that indicates the
predecessor node of i in the shortest path from 0 to i. For a route ending with
the i:th cluster, the label P (i) then stores the cluster that was the last one on the
previous route. To determine the labels, we use Bellman’s algorithm. The auxiliary
graph is not constructed explicitly but each pair of labels W (i) and P (i) is updated
whenever an improved path from node 0 to node i is found.

A small example instance of four clusters and the corresponding auxiliary graph
are presented in Figure 4. In this example, the giant tour is the cluster sequence
(C1,C2,C3,C4). The cost and distance values between vertices are equal and they
are indicated by the numbers next to the arcs. Bold arrows in the DGVRP graph
represent arcs that are included in the final optimal solution. The auxiliary graph
contains arcs, nodes and labels as described above. The bold arrows in the auxiliary
graph denote the shortest path from node 0 to node K, corresponding to the optimal
split in the DGVRP graph.

The outline of the split algorithm can be found in Algorithm 4. For simplicity,
we assume that the cluster sequence is organized so that C1 is the first cluster to
be visited, C2 is the second etc. The algorithm examines each cluster Ci in turn,
extending the route starting from Ci until the vehicle capacity or the maximum route
length is exceeded. After this, routes with Ci+1 as the first cluster are considered. The
process continues, until the routes containing only cluster CK have been examined.

The algorithm stores labels Z(Ci,vs), L(Ci,vs) and U(Ci,vs) for each cluster-
customer pair (Ci,vs) such that vs can be reached on a route starting from Ci.
Z(Ci,vs) stores the minimum cost of such a route. L(Ci,vs) stores the length of the
least-cost route while U(Ci,vs) stores the predecessor of vs on that route.

As the first step, we set j = i. For each customer vs belonging to Cj, Z(Ci,vs)
and L(Ci,vs) are set equal to the cost and distance of a single-customer route and
U(Ci,vs) is set equal to v0. After this, j is set equal to j + 1. When j 6= i, the cluster
Cj is not the first one on the route. In this case, all connections between clusters
Cj−1 and Cj are considered. The labels Z(Ci,vr) have already been defined for all
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vr ∈ Cj−1. To obtain the labels Z(Ci,vs) for vs ∈ Cj, we calculate the minimum
additional cost of inserting vs between vr and the depot, added to the value of the
label Z(Ci,vr). The length of this route is stored in L(Ci,vs) and the predecessor
customer in Cj−1 is stored in U(Ci,vs).

When all the labels have been set for customers vs in cluster Cj, the algorithm
moves to updating the label W (j). Label W (i − 1) corresponds to the minimum
cost of traversing the cluster sequence that precedes the current route. If one of the
labels Z(Ci,vs) added to the label W (i− 1) is smaller than the current value of W (j),
the label is updated. In this case, we also update the label P (j) that stores the last
cluster on the previous route. Ci is the first cluster on the current route, so P (j) is
set to i− 1.

Consider the example in Figure 4. The algorithm starts by examining the
nodes v1 and v2 belonging to the first cluster. The label Z(C1,v1) gets the value
d01 + d18 = 6 + 6 = 12. Similarly, Z(C1,v2) = 8 + 8 = 16. The corresponding
predecessor labels are U(C1,v1) = U(C1,v2) = v0. The length labels have identical
values to the cost labels in this example and are not considered furthermore. The
label W (1) is set to the smaller value of the cost labels (added to W (0) = 0), which
is 12. The route starts at cluster C1, so P (1) is updated to 1− 1 = 0.

The algorithm then proceeds by examining nodes v3 and v4 in cluster C2. Inserting
customer v3 between v1 and the depot, an additional cost of d13+d38−d18 = 6+8−6 =
8 is accumulated. Adding this to the label Z(C1,v1) = 12 yields a result of 20. If the
insertion is made between customer v2 and the depot, a similar calculation gives the
result 18. The latter value is smaller, so we set Z(C1,v3) = 18 and U(C1,v3) = v2.
For customer v4, the label values are Z(C1,v4) = 18 and U(C1,v3) = v2. The label
W (2) is updated to equal the minimum of these values: W (2) = 18. The route
started at the first cluster C1, so P (2) = 0.

Proceeding to cluster C3, there is no feasible way of inserting customer v5 on
the route; both possibilities would result in a route longer than the upper limit T .
No more labels are updated. Instead, the process starts again with C2 as the first
cluster. Now the label W (1) cannot change. When updating each label W (i), the
value W (2− 1) = 12 must be added to the cost labels. If an improvement is made
for node i, P (i) should be set to 1.

The algorithm runs until C4 has been considered as the starting cluster. The
label W (4) = 32 corresponds to the cost of the optimal solution. P (4) = 2 and
P (2) = 0, so the solution consists of two routes that start with clusters C1 and C3.
Using the predecessor labels, the whole solution can be extracted with Algorithm 5.

After the split, the routes in the solution are stored. Local search is then performed
to improve the solution quality, and the resulting routes are stored. After this, the
original giant tour is mutated and split again.
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Algorithm 5: Algorithm for extracting the DGVRP solution by the split
algorithm

Input: P , Z, U
Routes ← ∅
endcluster ← K
while endcluster 6= 0 do

Route ← ∅
startcluster ← P(endcluster)+1
node ← vs with minvs∈endcluster Z(startcluster, vs)
Add the arc between node and vn+1 to Route
while node 6= v0 do

prev ← U(startcluster, node)
Add the arc between prev and node to Route
node ← prev

end
Add Route to Routes
endcluster ← P(endcluster)

end
Output: Routes

2.4 Set Partitioning Heuristic
Instead of keeping the best achieved solution in memory, we store all routes obtained
by local search and the split algorithm in a common solution pool. When the heuristic
has performed the desired number of iterations, we typically have a few thousands of
routes stored. The problem of choosing the optimal combination can be modelled
as a set partitioning problem as presented in section 1.4. The problem is to find a
combination of existing routes such that each cluster is visited exactly once. This
problem can be modelled as a mixed-integer problem and then solved by a mixed
integer programming solver such as CPLEX.
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3 Results
In this section, we evaluate computationally our heuristic algorithm on a set of
GVRP benchmark instances and a new set of DGVRP instances. The algorithm is
coded using C/C++ and it is run on a 2.67 GHz Intel Core2 Quad Q9400 processor.

3.1 GVRP Instances
To test the heuristic algorithm, we apply it to instances created by Bektaş et al. [2].
These instances are derived from 79 existing CVRP instances. There are two GVRP
versions of each CVRP instance, containing dn/θe clusters where the parameter θ
equals either 2 or 3. We call the resulting two instance sets T2 and T3, depending
on the value of θ. The instances are further divided into subsets A, B, P, M and
G. Subsets A, B and P contain over 20 instances each. The number of customers
in these instances varies from 16 to 101. Subset M consists of four large instances
with number of customers ranging from 101 up to 200. Finally, subset G contains
one instance with 262 customers. The complete instance set is fairly heterogeneous.
Some instances have the depot located at the center, and others at the margin. In
some instances the clusters are dense and clearly separated from each other, and in
other instances the clusters may be sparse and overlapping.

The algorithm was executed five times for each instance. The best and the average
results are presented in Table 1 for instance set T2 and in Table 2 for the set T3. The
first four columns in the tables describe the instance properties: ’Instance’ reports the
instance name, ’n’ the number of customers, ’K’ the number of clusters and ’Q’ the
vehicle capacity. The column ’m’ reports the number of routes in our best solution
and column ’Ttot’ the length of the longest route in that solution. The best known
upper bound is reported in column ’Ub∗’. These bounds are taken from either Hà et
al. [12], Bektaş et al. [2] or Moccia et al. [11]. The bound is bolded if it is known to
be the optimal solution cost. Column ’GAP 1’ gives the average percentage distance
from Ub∗ of the best upper bound obtained over the five runs without using the
set partitioning heuristic. Column ’GAP 2’, instead, reports the percentage distance
from Ub∗ when the set partitioning heuristic is used. The best percentage gap over
the five runs is reported in column ’GAP ∗’. Columns ’t1’ and ’t2’ report the average
computing time before and after solving the set partitioning model.

The heuristic algorithm is able to find the optimal objective value for all instances
for which an optimal solution is known, except for one of the larger instances (M-
n121-k7-C41). In total, only for six of the 158 instances the heuristic could not find
the best known upper bound, and only one of these instances belongs to the smaller
instance sets A, B and P.



19

Table 1: Heuristic algorithm results for the instances of set T2 with K = dn/2e
Instance n K Q m Ttot Ub∗ GAP 1 GAP 2 GAP ∗ t1 t2

A-n32-k5-C16 32 16 100 3 274 508 0.00 0.00 0.00 8.387 8.538
A-n33-k5-C17 33 17 100 3 192 451 0.00 0.00 0.00 9.331 9.487
A-n33-k6-C17 33 17 100 3 207 465 0.00 0.00 0.00 9.150 9.301
A-n34-k5-C17 34 17 100 3 225 489 0.00 0.00 0.00 9.378 9.521
A-n36-k5-C18 36 18 100 3 288 502 0.00 0.00 0.00 9.962 10.12
A-n37-k5-C19 37 19 100 3 236 432 0.00 0.00 0.00 10.06 10.19
A-n37-k6-C19 37 19 100 3 229 584 0.00 0.00 0.00 9.449 9.614
A-n38-k5-C19 38 19 100 3 205 476 0.00 0.00 0.00 9.896 10.35
A-n39-k5-C20 39 20 100 3 237 557 0.00 0.00 0.00 10.22 10.61
A-n39-k6-C20 39 20 100 3 234 544 0.00 0.00 0.00 10.26 10.45
A-n44-k6-C22 44 22 100 3 246 608 0.00 0.00 0.00 12.18 12.47
A-n45-k6-C23 45 23 100 4 202 613 0.00 0.00 0.00 12.95 13.19
A-n45-k7-C23 45 23 100 4 234 674 0.18 0.18 0.00 12.46 14.23
A-n46-k7-C23 46 23 100 4 216 593 0.00 0.00 0.00 12.80 12.99
A-n48-k7-C24 48 24 100 4 240 667 0.00 0.00 0.00 13.84 14.51
A-n53-k7-C27 53 27 100 4 197 603 0.00 0.00 0.00 16.70 16.98
A-n54-k7-C27 54 27 100 4 224 690 0.03 0.00 0.00 16.86 17.62
A-n55-k9-C28 55 28 100 5 200 699 0.65 0.00 0.00 17.33 17.75
A-n60-k9-C30 60 30 100 5 228 769 1.20 0.00 0.00 20.15 20.60
A-n61-k9-C31 61 31 100 5 165 638 0.00 0.00 0.00 21.61 22.28
A-n62-k8-C31 62 31 100 4 251 740 0.45 0.00 0.00 22.46 22.96
A-n63-k9-C32 63 32 100 5 267 912 0.71 0.00 0.00 23.69 24.13
A-n63-k10-C32 63 32 100 5 200 801 0.49 0.00 0.00 22.82 23.28
A-n64-k9-C32 64 32 100 5 252 763 0.34 0.00 0.00 23.24 23.53
A-n65-k9-C33 65 33 100 5 195 682 1.41 0.00 0.00 24.26 24.88
A-n69-k9-C35 69 35 100 5 224 680 0.00 0.00 0.00 26.87 27.96
A-n80-k10-C40 80 40 100 5 292 997 0.87 0.00 0.00 37.67 38.98
Average 0.234 0.007 0.000 16.07 16.54

B-n31-k5-C16 31 16 100 3 246 441 0.00 0.00 0.00 7.723 8.372
B-n34-k5-C17 34 17 100 3 215 472 0.00 0.00 0.00 8.712 8.892
B-n35-k5-C18 35 18 100 3 250 626 0.00 0.00 0.00 8.967 9.109
B-n38-k6-C19 38 19 100 3 225 451 0.00 0.00 0.00 9.921 10.65
B-n39-k5-C20 39 20 100 3 216 357 0.00 0.00 0.00 10.34 10.49
B-n41-k6-C21 41 21 100 3 192 481 0.00 0.00 0.00 11.17 11.34
B-n43-k6-C22 43 22 100 3 183 483 0.12 0.00 0.00 11.54 11.94
B-n44-k7-C22 44 22 100 4 208 540 0.00 0.00 0.00 11.87 12.20
B-n45-k5-C23 45 23 100 3 224 497 0.00 0.00 0.00 12.76 12.90
B-n45-k6-C23 45 23 100 4 146 478 0.00 0.00 0.00 12.55 13.36
B-n50-k7-C25 50 25 100 4 145 449 0.00 0.00 0.00 14.47 14.61
B-n50-k8-C25 50 25 100 5 323 916 0.82 0.13 0.00 14.39 19.43
B-n51-k7-C26 51 26 100 4 229 651 0.00 0.00 0.00 15.17 15.38
B-n52-k7-C26 52 26 100 4 160 450 0.00 0.00 0.00 15.51 15.70
B-n56-k7-C28 56 28 100 4 199 486 0.00 0.00 0.00 17.87 18.39
B-n57-k7-C29 57 29 100 4 204 751 0.00 0.00 0.00 18.92 19.98
B-n57-k9-C29 57 29 100 5 274 942 0.46 0.00 0.00 18.21 23.87
B-n63-k10-C32 63 32 100 5 226 816 0.00 0.00 0.00 23.01 23.38
B-n64-k9-C32 64 32 100 5 186 509 0.00 0.00 0.00 23.24 23.63
B-n66-k9-C33 66 33 100 5 268 808 1.29 0.00 0.00 24.56 25.27
B-n67-k10-C34 67 34 100 5 244 673 0.88 0.12 0.00 25.13 25.99
B-n68-k9-C34 68 34 100 5 196 704 0.98 0.00 0.00 25.56 26.06
B-n78-k10-C39 78 39 100 5 268 803 1.11 0.07 0.00 33.58 34.14
Average 0.246 0.014 0.000 16.31 17.18

P-n16-k8-C8 16 8 35 5 72 239 0.00 0.00 0.00 5.113 5.162
P-n19-k2-C10 19 10 160 2 119 147 0.00 0.00 0.00 5.139 5.194
P-n20-k2-C10 20 10 160 2 130 154 0.00 0.00 0.00 5.315 5.372
P-n21-k2-C11 21 11 160 2 140 160 0.00 0.00 0.00 5.443 5.659
P-n22-k2-C11 22 11 160 2 142 162 0.00 0.00 0.00 5.644 5.741
P-n22-k8-C11 22 11 3000 5 115 314 0.00 0.00 0.00 5.889 5.954
P-n23-k8-C12 23 12 40 5 88 312 0.00 0.00 0.00 6.082 6.157
P-n40-k5-C20 40 20 140 3 104 294 0.00 0.00 0.00 10.54 10.72
P-n45-k5-C23 45 23 150 3 143 337 0.00 0.00 0.00 12.42 12.62
P-n50-k7-C25 50 25 150 4 102 353 0.00 0.00 0.00 14.62 14.96
P-n50-k8-C25 50 25 120 5 111 372 0.00 0.00 0.00 14.38 14.60
P-n50-k10-C25 50 25 100 5 109 410 0.05 0.00 0.00 14.20 14.47
P-n51-k10-C26 51 26 80 6 97 427 0.00 0.00 0.00 14.75 14.94
P-n55-k7-C28 55 28 170 4 100 361 0.00 0.00 0.00 17.43 17.88
P-n55-k8-C28 55 28 160 4 100 361 0.00 0.00 0.00 17.32 17.64
P-n55-k10-C28 55 28 115 5 100 415 0.19 0.00 0.00 16.94 17.30
P-n55-k15-C28 55 28 70 9 90 551 0.00 0.00 0.00 16.37 16.59
P-n60-k10-C30 60 30 120 5 112 443 0.63 0.45 0.45 19.39 19.95
P-n60-k15-C30 60 30 80 8 107 565 0.00 0.00 0.00 18.48 18.72
P-n65-k10-C33 65 33 130 5 121 487 0.00 0.00 0.00 23.62 24.13
P-n70-k10-C35 70 35 135 5 107 485 0.00 0.00 0.00 27.32 27.79
P-n76-k4-C38 76 38 350 2 222 383 0.10 0.00 0.00 34.67 35.21
P-n76-k5-C38 76 38 280 3 154 405 0.00 0.00 0.00 34.18 34.83
P-n101-k4-C51 101 51 400 2 245 455 0.13 0.00 0.00 70.85 71.30
Average 0.046 0.019 0.019 17.34 17.62

G-n262-k25-C131 262 131 500 13 415 3249 4.43 1.68 1.10 1192.0 1204.4
M-n101-k10-C51 101 51 200 5 144 542 0.11 0.00 0.00 66.13 66.71
M-n121-k7-C61 121 61 200 4 224 719 2.78 1.15 0.28 109.3 110.9
M-n151-k12-C76 151 76 200 6 130 659 2.37 0.39 0.00 217.4 219.4
M-n200-k16-C100 200 100 200 9 114 789 5.11 0.88 0.25 495.4 499.3
Average 2.960 0.820 0.326 416.0 420.1
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Table 2: Heuristic algorithm results for the instances of set T3 with K = dn/3e
Instance n K Q m Ttot Ub∗ GAP 1 GAP 2 GAP ∗ t1 t2

A-n32-k5-C11 32 11 100 2 256 386 0.00 0.00 0.00 7.359 7.449
A-n33-k5-C11 33 11 100 2 259 315 0.00 0.00 0.00 7.026 7.091
A-n33-k6-C11 33 11 100 2 260 370 0.00 0.00 0.00 7.031 7.135
A-n34-k5-C12 34 12 100 2 231 419 0.00 0.00 0.00 7.504 7.620
A-n36-k5-C12 36 12 100 2 313 396 0.00 0.00 0.00 7.577 7.655
A-n37-k5-C13 37 13 100 2 274 347 0.00 0.00 0.00 8.092 8.162
A-n37-k6-C13 37 13 100 2 268 431 0.00 0.00 0.00 7.883 7.997
A-n38-k5-C13 38 13 100 2 235 367 0.00 0.00 0.00 8.197 8.275
A-n39-k5-C13 39 13 100 2 256 364 0.00 0.00 0.00 8.323 8.415
A-n39-k6-C13 39 13 100 2 265 403 0.00 0.00 0.00 8.281 8.392
A-n44-k6-C15 44 15 100 3 290 491 0.00 0.00 0.00 9.986 10.01
A-n45-k6-C15 45 15 100 3 231 474 0.00 0.00 0.00 10.14 10.25
A-n45-k7-C15 45 15 100 3 218 475 0.00 0.00 0.00 10.18 10.30
A-n46-k7-C16 46 16 100 3 234 462 0.00 0.00 0.00 10.98 11.16
A-n48-k7-C16 48 16 100 3 244 451 0.00 0.00 0.00 11.77 11.91
A-n53-k7-C18 53 18 100 3 240 440 0.00 0.00 0.00 13.71 13.84
A-n54-k7-C18 54 18 100 3 235 482 0.00 0.00 0.00 13.58 13.73
A-n55-k9-C19 55 19 100 3 183 473 0.00 0.00 0.00 14.57 14.73
A-n60-k9-C20 60 20 100 3 250 595 0.00 0.00 0.00 16.14 16.35
A-n61-k9-C21 61 21 100 4 171 473 0.00 0.00 0.00 16.51 16.72
A-n62-k8-C21 62 21 100 3 280 596 0.36 0.00 0.00 17.23 17.54
A-n63-k9-C21 63 21 100 3 269 642 0.00 0.00 0.00 17.23 17.48
A-n63-k10-C21 63 21 100 4 225 593 0.34 0.07 0.00 17.20 17.42
A-n64-k9-C22 64 22 100 3 270 536 0.00 0.00 0.00 18.15 18.41
A-n65-k9-C22 65 22 100 3 201 500 0.00 0.00 0.00 18.32 18.48
A-n69-k9-C23 69 23 100 3 203 520 0.04 0.00 0.00 20.17 20.51
A-n80-k10-C27 80 27 100 4 275 710 0.00 0.00 0.00 27.56 28.55
Average 0.027 0.003 0.000 12.62 12.80

B-n31-k5-C11 31 11 100 2 248 356 0.00 0.00 0.00 6.636 6.718
B-n34-k5-C12 34 12 100 2 234 369 0.00 0.00 0.00 7.276 7.378
B-n35-k5-C12 35 12 100 2 270 501 0.00 0.00 0.00 7.377 7.477
B-n38-k6-C13 38 13 100 2 246 370 0.00 0.00 0.00 8.090 8.172
B-n39-k5-C13 39 13 100 2 210 280 0.00 0.00 0.00 8.013 8.080
B-n41-k6-C14 41 14 100 2 228 407 0.00 0.00 0.00 8.718 8.815
B-n43-k6-C15 43 15 100 2 181 343 0.00 0.00 0.00 9.472 9.718
B-n44-k7-C15 44 15 100 3 172 395 0.00 0.00 0.00 9.714 9.842
B-n45-k5-C15 45 15 100 2 256 410 0.00 0.00 0.00 9.660 9.741
B-n45-k6-C15 45 15 100 2 181 336 0.00 0.00 0.00 9.869 9.954
B-n50-k7-C17 50 17 100 3 186 393 0.00 0.00 0.00 11.48 11.61
B-n50-k8-C17 50 17 100 3 279 598 0.00 0.00 0.00 11.38 11.51
B-n51-k7-C17 51 17 100 3 204 511 0.00 0.00 0.00 11.66 11.77
B-n52-k7-C18 52 18 100 3 216 359 0.00 0.00 0.00 12.15 12.41
B-n56-k7-C19 56 19 100 3 272 356 0.00 0.00 0.00 13.82 13.96
B-n57-k7-C19 57 19 100 3 245 558 0.00 0.00 0.00 14.20 14.43
B-n57-k9-C19 57 19 100 3 270 681 0.03 0.03 0.00 14.01 14.66
B-n63-k10-C21 63 21 100 3 233 599 0.00 0.00 0.00 16.58 16.71
B-n64-k9-C22 64 22 100 4 184 452 0.00 0.00 0.00 17.70 17.88
B-n66-k9-C22 66 22 100 3 282 609 0.03 0.00 0.00 18.13 18.46
B-n67-k10-C23 67 23 100 4 256 558 0.00 0.00 0.00 19.64 19.86
B-n68-k9-C23 68 23 100 3 208 523 0.27 0.00 0.00 19.43 19.65
B-n78-k10-C26 78 26 100 4 204 606 0.00 0.00 0.00 25.29 25.51
Average 0.014 0.001 0.000 12.62 12.80

P-n16-k8-C6 16 6 35 4 65 170 0.00 0.00 0.00 4.980 5.023
P-n19-k2-C7 19 7 160 1 111 111 0.00 0.00 0.00 4.774 4.795
P-n20-k2-C7 20 7 160 1 117 117 0.00 0.00 0.00 4.842 4.861
P-n21-k2-C7 21 7 160 1 117 117 0.00 0.00 0.00 4.942 4.962
P-n22-k2-C8 22 8 160 1 111 111 0.00 0.00 0.00 5.013 5.036
P-n22-k8-C8 22 8 3000 4 98 249 0.00 0.00 0.00 5.585 5.632
P-n23-k8-C8 23 8 40 3 92 174 0.00 0.00 0.00 5.554 5.598
P-n40-k5-C14 40 14 140 2 111 213 0.00 0.00 0.00 8.500 8.675
P-n45-k5-C15 45 15 150 2 141 238 0.00 0.00 0.00 9.769 9.890
P-n50-k7-C17 50 17 150 3 108 261 0.00 0.00 0.00 11.44 11.59
P-n50-k8-C17 50 17 120 3 108 262 0.00 0.00 0.00 11.34 11.44
P-n50-k10-C17 50 17 100 4 107 292 0.00 0.00 0.00 11.64 11.74
P-n51-k10-C17 51 17 80 4 95 309 0.00 0.00 0.00 11.70 11.85
P-n55-k7-C19 55 19 170 3 110 271 0.00 0.00 0.00 13.19 13.42
P-n55-k8-C19 55 19 160 3 109 274 0.00 0.00 0.00 13.48 13.63
P-n55-k10-C19 55 19 115 4 100 301 0.00 0.00 0.00 13.35 13.52
P-n55-k15-C19 55 19 70 6 90 378 0.00 0.00 0.00 12.98 13.10
P-n60-k10-C20 60 20 120 4 115 325 0.00 0.00 0.00 15.12 15.29
P-n60-k15-C20 60 20 80 6 94 374 0.00 0.00 0.00 14.70 14.98
P-n65-k10-C22 65 22 130 4 125 372 0.00 0.00 0.00 18.17 18.50
P-n70-k10-C24 70 24 135 4 117 385 0.00 0.00 0.00 21.01 21.22
P-n76-k4-C26 76 26 350 2 172 309 0.00 0.00 0.00 25.07 25.27
P-n76-k5-C26 76 26 280 2 172 309 0.00 0.00 0.00 25.28 25.46
P-n101-k4-C34 101 34 400 2 262 370 0.00 0.00 0.00 47.19 47.44
Average 0.000 0.000 0.000 13.32 13.46

G-n262-k25-C88 262 88 500 9 386 2463 3.05 1.15 0.93 820.7 830.7
M-n101-k10-C34 101 34 200 4 143 458 0.00 0.00 0.00 45.80 46.37
M-n121-k7-C41 121 41 200 3 242 527 3.44 1.20 0.75 79.41 79.52
M-n151-k12-C51 151 51 200 4 134 483 0.33 0.00 0.00 155.3 155.8
M-n200-k16-C67 200 67 200 6 119 605 0.85 0.00 0.00 352.9 354.8
Average 1.534 0.470 0.336 290.8 293.4
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Solving the set partitioning model improves the quality of solutions considerably.
The difference can be as large as a few percentage units with large instances. After
the set partitioning heuristic, all the solutions are within 2% of the best known upper
bounds. The instances in the set T3 seem to be more easy for the heuristic, since
only for one instance of subsets A, B and P the algorithm cannot find an optimal
solution even before the set partitioning phase. With the set T2, this number is six
instead. The set partitioning phase takes only a small fraction of time compared to
the rest of the algorithm for both small and large instances.

The computing time on the instances of set T3 is consistently smaller than that
required for the instances of the set T2. The difference becomes slightly greater as
instance size increases. Overall, the computing time for the instances with up to
one hundred customers is about half a minute, and the largest examined instance is
solved within a reasonable time of 20 minutes.

The summary of the results for the small and medium instances A, B and P are
reported in Table 3. Our results are compared with the heuristic algorithm results of
Bektaş et al. [2], Moccia et al. [11], Afsar et al. [1] and Hà et al. [12]. The heuristic
algorithm of Bektaş et al. [2] uses a large neighborhood search similar to that of
Ropke and Pisinger [14] in a simulated annealing framework. Moccia et al. [11] use
an incremental taboo search heuristic while Hà et al. [12] use an evolutionary local
search heuristic similar to ours. Finally, the results of Afsar et al. [1] are obtained
by two different versions of an iterated local search algorithm.

In Table 3, the column ’θ’ reports the average cluster size in the instances. The
column ’Succ’ reports for each algorithm the number of instances within each subset
for which the heuristic found the best known upper bound. For each subset, the best
results are bolded. The column ′t̄′ reports for each algorithm the average computing
time of instances within a subset. In addition, for each algorithm we report the
processor speed in GHz and the number of times the algorithm was executed to
obtain the results. For Afsar et al. [1], ’Succ’ reports the number of instances where
at least one of their heuristics found the best known upper bound and t̄ is calculated
using the computing time of the faster algorithm finding the best solution.

Bektaş et al. [2] and Moccia et al. [11] consider the problem with a fixed number
of vehicles while the other algorithms assume an unlimited fleet size. Because the
problems are different, the results may not be comparable. However, there are in
total only three instances in subsets A, B and P for which the optimal upper bound is
affected by this additional constraint. These instances are left out of the comparison
which is why the total number of instances is less for columns corresponding to
Bektaş et al. [2] and Moccia et al. [11].

Over our five runs of the algorithm, there was only one instance (P-n60-k10-C30)
in the subsets A, B and P for which we could not find the best known upper bound.
Comparing the results with the others in terms of the number of best-known upper
bounds found, our algorithm is able to find more than any other except Hà et al. [12]
who found for all the instances their best known upper bounds. It must be noted,
however, that none of the five individual runs of our algorithm produced equally
good results.

The average computing times reported for the different algorithms in tables 3
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and 4 cannot be directly compared due to the different computers used and since
the specific processor models used by some of the authors are unknown. Using
the information available, we try to estimate the relative CPU speed by using the
CPU2006 bencmarks reported by the Standard Performance Evaluation Corporation
(SPEC 2006) [15]. It seems that our 2.67 GHz Intel Core2 Quad Q9000 processor
and the 3 GHz Intel Core2 Duo of Afsar et al. [1] are the fastest. The 2.4 GHz Intel
Xeon of Hà et al. [12] seems to be about 20% slower than these two. The other
processors appear to be similarly fast and about half as fast as the fastest processors.
Because the processor types are not known, these relations are only the best estimate
we can make and are not guaranteed to be correct.

Bektaş et al. have the fastest heuristic with an average computing time of about
half a second. The algorithm of Afsar et al. [1] takes less than a second in average
computing time but is performed with a faster computer. The computing times of
Moccia et al. [11] are similar to ours with the average being about 15 seconds; taking
the difference in processor speed into account, our algorithm is the slower one of the
two. Finally, the algorithm of Hà et al. [12] is the slowest with an average computing
time of about half a minute. The algorithm of Hà et al. [12] and the one presented
in this paper yield good results but are also computationally the most extensive.

For the large instances of subsets M and G, a more detailed comparison is
presented in Table 4. These instances were not considered by Afsar et al. [1].
Column ’θ’ reports the average cluster size, while column ’Lb’ reports the best known
lower bound for each of the instances. If the instance has been solved to optimality,
the lower bound is bolded. The remaining columns Ub, m and t̄ report for each
algorithm the best upper bound found, the number of vehicles used and the average
computing time in CPU seconds. The best known upper bound values are bolded
in the comparison section. Note that the results of Bektaş et al. [2] and Moccia et
al. [11] are calculated assuming a fixed number of vehicles, so the best known result
for the instance M-n200-k16-C100 is not feasible for their algorithm. With large
instances, our algorithm does not match the results of the others; it found 5 best
known upper bounds, while the other algorithms found at least seven. In addition,
the computing time for our algorithm increases with the problem size much faster
than for the other algorithms.

We are interested in comparing our results and computation times with those of
Hà et al. [12], since their algorithm structure is very similar to ours. Our local search
algorithm is much less sophisticated than theirs and our algorithm performs ≈30
times less split operations. Considering these facts, our algorithm seems to perform
well on small to medium instances. On the larger instances of subsets M and G
there were four instances where the algorithm of Hà et al. [12] obtained a better
result than ours, and for the largest instance, G-n262-k25-C131, our algorithm found
a better solution. Our algorithm is typically about twice as fast as the algorithm
of Hà et al. [12], which is only faster with the smallest instances (n ≈ 20) and the
largest one. However, the difference in computing time is small compared to the
difference in the number of iterations, which suggests that our implementation is not
as efficient as possible.
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Table 3: Summary and comparison of the algorithm performance on small and
medium instances

Thesis Bektaş et al. Moccia et al. Hà et al. Afsar et al.
Subset θ Succ t̄ Succ t̄ Succ t̄ Succ t̄ Succ t̄
A 2 27/27 16.54 25/25 0.48 25/25 16.74 27/27 26.54 27/27 0.74
B 2 23/23 17.18 23/23 0.50 21/23 17.07 23/23 28.17 20/23 0.88
P 2 23/24 17.62 22/24 0.53 20/24 20.12 24/24 35.18 22/24 0.92

A 3 27/27 12.80 25/26 0.32 25/26 11.34 27/27 23.55 27/27 0.39
B 3 23/23 12.80 22/23 0.32 23/23 11.56 23/23 24.16 23/23 0.45
P 3 24/24 13.46 21/24 0.34 23/24 10.45 24/24 41.59 23/24 0.45
CPU speed (GHz) & Runs 2.67 5 2.4 1 1.83 1 2.4 1 3.0 2
Processor type Intel Core2 Quad Q9400 AMD Opteron 250 Intel Core Duo Intel Xeon Intel Core2 Duo

Table 4: Heuristic algorithm result comparison for big instances
Thesis Bektaş et al. Moccia et al. Hà et al.

Instance θ Lb Ub m t̄ Ub m t̄ Ub m t̄ Ub m t̄
M-n101-k10-C51 2 542.00 542 5 66.7 542 5 1.50 542 5 57.8 542 5 124.2
M-n121-k7-C61 2 705.84 721 4 110.9 719 4 2.15 720 4 98.3 719 4 234.3
M-n151-k12-C76 2 634.65 659 6 219.4 659 6 3.24 659 6 113.1 659 6 306.0
M-n200-k16-C100 2 752.14 791 9 499.3 791 8 5.34 805 8 158.7 789 9 454.0
G-n262-k25-C131 2 2945.02 3285 13 1204.4 3249 12 6.22 3319 12 193.6 3303 13 822.8

M-n101-k10-C34 3 458.00 458 4 46.4 458 4 0.86 458 4 36.8 458 4 152.3
M-n121-k7-C41 3 527.00 531 3 79.5 527 3 1.19 527 3 63.3 527 3 238.2
M-n151-k12-C51 3 474.32 483 4 155.8 483 4 1.89 483 4 85.5 483 4 434.3
M-n200-k16-C67 3 572.81 605 6 354.8 605 6 3.03 605 6 108.4 605 6 602.0
G-n262-k25-C88 3 2239.50 2486 9 830.7 2476 9 4.92 2463 9 134.3 2477 9 861.7
CPU speed (GHz) & Runs 2.67 5 2.4 1 1.83 1 2.4 1
Processor Intel Core2 Quad Q9400 AMD Opteron 250 Intel Core Duo Intel Xeon

3.2 Distance-constrained GVRP instances
Knowing that the heuristic algorithm performs well with the GVRP instances,
we proceed to test its performance on the distance-constrained GVRP. Since no
benchmark instances are available we create a set of test instances by modifying the
GVRP instances of Bektaş et al. [2]. We choose a subset of 14 GVRP instances as
diverse as possible which contains instances from subsets A, B, P and M with both
values of θ and with size varying from 20 to 151 customers.

We have transformed each one of these instances into a DGVRP instance by
taking the maximum length of a route in the best solution to the GVRP instance,
and by setting the distance limit T to be smaller than this value. This ensures that
the GVRP solution is infeasible. Therefore, the heuristic algorithm will find a new
solution if the problem itself remains feasible after adding the distance constraint.
We repeat the process three times for each instance to obtain increasingly tight
distance constraints. Each time, we choose the new distance limit to be equal to
the length of the longest route in the best solution of the instance obtained in the
previous step minus 5 units. A smaller difference might lead to only small changes
in the new solution, whereas a bigger decrease would make many instances infeasible.
Overall, we obtain this way 3 DGVRP instances for each original GVRP instance.



24

Table 5: Test instances with limited distance

Instance θ Ub∗ t∗ m∗ T m UbH GAP tH UbCX LbCX tCX

P-n20-k2-C10 2 154 5.87 2
125 2 164 0.00 6.67 164 164 3.20
117 2 166 0.00 6.66 166 166 1.35
99 2 171 0.00 6.76 171 171 4.72

A-n34-k5-C17 2 489 8.91 3
220 3 515 0.00 9.79 515 515 743
199 3 535 0.00 9.91 535 535 834
193 3 549 0.00 9.46 549 549 1599

B-n38-k6-C19 2 451 10.40 3
220 3 520 3.65 11.17 520 501 7200
197 4 579 0.00 11.10 579 579 3680
192 4 663 0.00 10.71 663 663 2880

A-n48-k7-C24 2 667 15.53 4
235 4 671 10.58 15.29 671 600 7200
217 4 686 11.08 15.91 686 610 7200
209 4 714 11.90 15.92 715 629 7200

P-n55-k8-C28 2 361 19.13 4
95 5 403 7.69 18.36 403 372 7200
89 6 451 9.53 18.20 451 408 7200
84 6 451 1.33 17.60 451 445 7200

B-n66-k9-C33 2 808 26.89 5
263 5 816 11.76 26.97 861 720 7200
223 5 855 12.98 26.32 862 744 7200
210 5 907 17.09 25.30 915 752 7200

M-n101-k10-C51 2 542 66.14 5
139 5 543 3.50 64.31 573 524 7200
133 5 562 6.41 62.81 590 526 7200
128 5 571 6.48 62.14 624 534 7200

P-n23-k8-C8 3 174 6.14 3
87 3 187 0.00 6.29 187 187 19.68
80 3 192 0.00 6.24 192 192 26.41
73 - infeas. - - infeas. - -

A-n37-k6-C13 3 431 8.52 2
263 3 432 7.64 8.66 432 399 7200
242 2 447 0.00 8.71 447 447 2580
230 3 469 0.00 8.80 469 469 1320

B-n43-k6-C15 3 343 10.28 2
176 3 380 0.00 10.53 380 380 394.1
170 3 420 0.00 10.61 420 420 313.6
163 3 458 0.00 10.50 458 458 120.4

P-n45-k5-C15 3 238 10.34 2
136 2 239 0.00 10.69 239 239 146.8
125 2 241 0.00 10.91 241 241 100.0
119 3 257 0.00 11.17 257 257 424.2

B-n52-k7-C18 3 359 13.22 3
211 3 388 0.00 13.69 388 388 2460
182 3 392 0.00 13.71 392 392 1731
148 4 504 0.00 13.60 504 504 1471

A-n63-k9-C21 3 642 17.28 3
264 3 644 14.44 17.93 644 551 7200
253 3 647 13.76 18.31 647 558 7200
237 4 713 9.26 18.31 727 647 7200

M-n151-k12-C51 3 483 159.5 4
129 5 531 18.46 143.7 597 433 7200
122 5 533 16.51 143.9 584 445 7200
116 5 566 16.78 143.7 590 471 7200
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Using the heuristic algorithm, we only obtain upper bounds for the instances. We
do not have any information about how far these bounds are from the optimal cost.
Therefore, the DGVRP instances were also solved using CPLEX. For each instance,
CPLEX was given a time limit of 2 hours. Only the smallest ones were solved to
optimality, but the exact algorithm at least provides a lower bound in addition to
the upper bound.

The results are reported in Table 5. For each one of the original GVRP instances,
there are three DGVRP instances with different values of T. The first columns
’Instance’ and ’θ’ report the name of the original GVRP instance and its average
cluster size. Column ’Ub∗’ reports the best known upper bound of the original
GVRP instance, which is optimal in all cases except for the instance M-n151-k12-
C51. The computing time for solving the GVRP instance is reported in column ’t∗’,
and the number of routes in the GVRP solution is reported in column m∗. The
remaining columns contain results for the corresponding DGVRP instances solved
by the heuristic. Columns ’T ’, ’m’, ’UbH ’, ’GAP’ and ’tH ’ report the maximum tour
length, number of routes, best upper bound found by the heuristic, optimality gap
percentage with respect to the lower bound and computing time of the heuristic.
The last three columns ’UbCX ’, ’LbCX ’ and ’tCX ’ report the upper and lower bounds
provided by CPLEX and the total computing time of CPLEX.

In all of the 41 feasible instances, the heuristic algorithm finds upper bounds
that are at least as good as those provided by CPLEX. 21 of these upper bounds
are proved to be optimal, since CPLEX can solve these instances within the 2-hour
time limit. In the cases where the optimal solution is not found, the percentage gap
between the upper and lower bound is typically very large. Even with medium-size
instances (n ≈ 50) the gap can reach 10%, and with the big instances the gap can
be almost 20%.

There is little difference between the computing times of the heuristic for the
GVRP and DGVRP instances. Tightening the maximum route length also seems to
have little effect on the computing time of the heuristic. Depending on the instance,
the computing time can slightly decrease or increase as the maximum route length
is being restricted. In the cases where CPLEX succeeded in solving the DGVRP
instances to optimality, Table 5 shows that the computation time is usually shorter
as the value of T becomes smaller.

An example of three DGVRP instances derived from a GVRP one is presented
in Figure 5. The top-left figure corresponds to the routes in the optimal solution for
the GVRP instance B-n52-k7-C18. The three other figures show the solutions for
the three distance-constrained DGVRP instances that are derived from it. These
solutions are optimal, as is shown in Table 5. The limit on the routes’ duration is
reported as T , and the optimal solution value as z. We can see how the total length
of the routes increases as the length of the longest route is more tightly limited. In
the bottom-right solution, an additional route must be added so that all clusters can
be visited while satisfying the distance constraint.
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T = -

T = 148

z = 392

T = 211

z = 359

z = 504

T = 182

z = 388

Figure 5: An illustration of a GVRP instance and three corresponding DGVRP
instances and their optimal solutions



27

4 Conclusions
We have presented a mathematical formulation for the distance-constrained GVRP
and a heuristic algorithm. The algorithm includes a new set partitioning heuristic,
which appears to be effective regarding both computing time and solution quality.
We have computationally tested our algorithm both on a set of GVRP instances
created by Bektaş et al. [2] and on a newly generated set of DGVRP instances. The
results for the GVRP instances show that the upper bounds found by our algorithm
match the best known upper bounds on all of the 158 tested instances but six. A new
set of 41 test instances for the DGVRP is derived from 14 of the GVRP benchmark
instances. These instances were solved using both the heuristic algorithm and the
commercial solver CPLEX. The upper bounds provided by the heuristic were equal
or better than those found by CPLEX in all cases.

Ideas for future research include improving the lower bounds for DGVRP instances,
in order to properly test the performance of the heuristic algorithm in the precence
of distance constraints. Our algorithm only considers the case where the distance
and time matrices are equal. Modifying the algorithm to allow different distance
and time values between two customers would result in a more generic model to use
in real-world applications. There are many problems that can be transformed into
a GVRP, and the performance of the heuristic algorithm could be tested on these
problems as well. By adding distance constraints, it is possible to model an even
more wide variety of problems.
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A Thesis summary in Finnish / Yhteenveto
Kandidaatintyössä ”The Distance-Constrained Generalized Vehicle Routing Problem”
tutkittiin etäisyysrajoitettua yleistettyä ajoneuvoreititysongelmaa. Kyseessä on
kombinatorisen optimoinnin piiriin kuuluva matemaattinen ongelma, joka on pitkälle
yleistetty. Siksi moni vastaavanlainen ongelma voidaan ilmaista tutkitun ongelman
muodossa. Työssä esitettiin ongelman matemaattinen muotoilu sekä heuristinen
algoritmi, joka etsii kokeilemalla ongelmaan mahdollisimman hyviä käypiä ratkaisuja
kohtuullisessa ajassa. Algoritmia testattiin valmiiden testitehtävien avulla jättämällä
etäisyysrajoitus huomiotta. Rajoitettua tapausta varten luotiin sen sijaan uusi sarja
tehtäviä.

Yleistetty ajoneuvoreititysongelma on yleistys kauppamatkustajan ongelmasta,
joka puolestaan on kuuluisimpia ja tutkituimpia optimoinnin alan sovelluksia. On-
gelmassa kauppamatkustajan tulee suunnitella mahdollisimman lyhyt myyntireitti
siten, että hän käy jokaisen asiakkaan luona tasan kerran ja palaa lopuksi lähtöpis-
teeseensä. Helposti ymmärrettävä tehtävä on kuitenkin laskennallisesti vaikea. Kun
asiakkaiden määrää nostetaan useisiin tuhansiin, mahdollisten reittien määrä muut-
tuu niin suureksi, että parhaan vaihtoehdon laskeminen on työlästä tehokkaallekin
tietokoneelle.

Yleistetyssä ajoneuvoreititysongelmassa on kolme merkittävää eroa perinteiseen
kauppamatkustajan ongelmaan verrattuna. Ensimmäiseksi kauppiaalla on käytössään
kuorma-autolaivue, jolle hänen täytyy suunnitella reitit. Reittejä voidaan siis suun-
nitella enemmän kuin yksi. Toiseksi kullakin asiakkaalla on oma kysyntä kauppiaan
tuotteelle. Kuorma-autojen tilavuus on rajallinen, joten kukin auto voi palvella vain
sellaista asiakasjoukkoa, jonka yhteenlaskettu kysyntä ei ylitä sen kapasiteettia. Kol-
manneksi asiakkaat on tässä ongelmassa ryhmitelty suuremmiksi joukoiksi. Näissä
ryppäissä voi olla yksi tai useampi asiakas, ja jokainen asiakas kuuluu vain yhteen
ryppääseen. Samaan joukkoon kuuluvat asiakkaat voivat välittää kauppiaan tuotetta
toisilleen. Siispä kussakin ryppäässä vieraillaan vain yhden asiakkaan luona.

Kun reittien pituudelle asetetaan yläraja, saadaan lopulta etäisyysrajoitettu
ajoneuvoreititysongelma, jota kandidaatintyössä tarkasteltiin. Kyseistä ongelmaa ei
ollut entuudestaan tutkittu, mutta sillä on lukuisia käytännön sovelluksia. Kuorma-
autolaivueen esimerkissä etäisyysrajoitus voi mallintaa vaikkapa työpäivän mak-
simikestoa, jolloin saatava malli on realistisempi. Toinen esimerkkisovellus liittyy
tarvikkeiden jakamiseen luonnonkatastrofien jälkeen. Maanjäristyksen seurauk-
sena tieverkko voi olla vahingoittunut, jolloin alueella sijaitsevat kylät muodostavat
toisistaan eristyneitä ryppäitä. Jokaiselle ryppäälle tulee toimittaa lentokoneilla
avustuskuorma, mutta kunkin reitin pituutta rajoittaa polttoaineen riittävyys.

Kandidaatintyössä tarkasteltu monimutkainen ongelma on työläs ratkaistavaksi.
Parhaan mahdollisen ratkaisun etsintään kului tietokoneella yli kaksi tuntia jo 40–50
asiakkaan tapauksessa. Käytännöllisemmäksi katsottiin hyvien ratkaisujen etsiminen
kokeilemalla eli heuristisesti. Työn pääpainoksi valittiinkin heuristisen algoritmin
kuvailu ja toteutus.

Algoritmiin sisältyi monta pientä funktiota. Ensin aloitusalgoritmi loi alku-
ratkaisun, jota muokkaamalla parannuksia etsittiin. Reittien luomiseksi käytettiin
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kahta erilaista tapaa: joko jokaista rypästä varten luotiin oma reittinsä, tai yhdestä
ryppäästä siirryttiin arpomalla jompaankumpaan sen lähimmistä naapureista.

Lähietsintäfunktion tehtävänä oli puolestaan parantaa olemassa olevia reittejä
tekemällä yksinkertaisia liikkeitä. Liikkeisiin kuului muun muassa ryppään sijoittami-
nen uuteen paikkaan ratkaisussa sekä kahden ryppään paikan vaihtaminen. Lisäksi
lähietsinnässä varmistettiin, etteivät ratkaisureitit koskaan ylitä itseään.

Koko heuristisen algoritmin tärkeimpiä osia oli jakajafunktio. Funktiolle syötettiin
jättiläisreitti, joka saatiin liittämällä senhetkisen ratkaisun kaikki reitit yhteen. Jät-
tiläisreitissä siis kuljetaan kaikki ryppäät läpi palaamatta kertaakaan lähtöpisteeseen.
Dynaamista optimointia käyttäen tällainen reitti pystyttiin jakamaan optimaalisella
tavalla kapasiteetti- ja etäisyysrajoitukset täyttäviksi reiteiksi. Jakaja-algoritmi on
tehokas, mutta koko ongelman parhaan mahdollisen ratkaisun löytäminen vaatisi
kaikkien rypäsjärjestysten tutkimista.

Heuristinen algoritmi perustui toistoon, jossa yhtä reittiä parannettiin vuorollaan
ja lyhin löydetty reitti pidettiin muistissa. Ensin aloitusratkaisua parannettiin lähi-
etsintäfunktiolla; tämän jälkeen reitit yhdistettiin jättiläisreitiksi, jota muokattiin
satunnaisesti. Samaa jättiläisreittiä muokattiin ja jaettiin useaan otteeseen. Jakaja-
funktion palauttamaa ratkaisua yritettiin vielä parantaa lähietsintäfunktiolla, jonka
jälkeen prosessi aloitettiin alusta luomalla uusi aloitusreitti.

Uutena piirteenä heuristisessa algoritmissa oli aivan lopuksi suoritettava ositus-
vaihe. Hyvälaatuisia ratkaisuja tallennettiin koko ratkaisuprosessin ajan säilöön aina
lähietsintä- ja jakajafunktioiden tekemien muokkausten jälkeen. Ositusvaiheessa
näistä reiteistä koottiin kaupallisen sovelluksen avulla paras ratkaisu, jossa jokaisessa
ryppäässä vierailtiin tasan yhden kerran.

Heuristisen algoritmin suorituksen laatua mitattiin käyttämällä testitehtäviä,
jotka on luotu yleistettyä ajoneuvoreititysongelmaa varten. Näitä tehtäviä oli 158,
ja niiden koko vaihteli 16 asiakkaasta yli 260:een. Tehtävät on suunniteltu monimuo-
toisiksi esimerkiksi lähtöpisteen suhteellisen sijainnin ja ryppäiden läpimitan suhteen.
Myös tarvittavien reittien määrä vaihteli kahdesta yli kymmeneen.

Algoritmi ajettiin läpi viidesti, ja parasta ratkaisua vertailtiin muissa tutkimuk-
sissa saavutettuihin arvoihin. Sataan asiakkaaseen asti heuristinen algoritmi pystyi
löytämään parhaan tunnetun ratkaisun kaikissa paitsi yhdessä tapauksessa. Samoja
testitehtäviä oli käytetty neljässä muussa tutkimuksessa, ja näistä vain yhdessä oli
saatu parempi tulos. Ositusvaiheen lisääminen algoritmiin paransi tuloksia merkit-
tävästi, eikä vaihe vaatinut juurikaan lisää aikaa muuhun algoritmiin verrattuna.
Tyypillinen laskenta-aika pienille ja keskikokoisille tehtäville oli kymmenestä sekun-
nista minuuttiin, mikä oli muihin toteutuksiin verrattuna hitaimmasta päästä. Yli
sadan asiakkaan tehtävissä tulokset eivät puolestaan aivan yltäneet samalle tasolle
kuin muiden tutkimusten tulokset. Samoin laskenta-aika oli suhteessa vielä hitaampi
suurten tehtävien kohdalla. Kaikista suurimpienkin tehtävien laskentaan kului vielä
kuitenkin kohtuullinen 20 minuutin aika.

Etäisyysrajoitettua tapausta varten luotiin oma sarja testitehtäviä muokkaamalla
valmiiden tehtävien osajoukkoa. Näitä tehtäviä valittiin yhteensä neljätoista kaik-
ista kokoluokista. Kutakin alkuperäistä tehtävää vastasi kolme uutta rajoitettua
tehtävää, joissa etäisyysrajoitusta muutettiin aina tiukemmaksi. Jotta heuristisen
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algoritmin tuloksia voitaisiin arvioida, tehtävät myös ratkaistiin optimiinsa kaupal-
lisen sovelluksen avulla. Kaikissa tapauksissa sovellus ei löytänyt kahden tunnin
aikarajan sisällä optimivastausta, mutta palautti sen sijaan parhaalle tulokselle ylä-
ja alarajat. Algoritmi löysi kaikille etäisyysrajoitetuille tehtäville ratkaisun, joka oli
vähintään yhtä hyvä kuin kaupallisen sovelluksen antama optimitulos tai yläraja.
Etäisyysrajoitteiden lisääminen ei vaikuttanut merkittävästi algoritmin tarvitsemaan
laskenta-aikaan.

Kandidaatintyössä pystyttiin luomaan toimiva ja kohtalaisen kilpailukykyinen
heuristinen algoritmi etäisyysrajoitetun yleistetyn ajoneuvoreititysongelman ratkaisemiseksi.
Erityisesti uuden ositusvaiheen tuominen osaksi algoritmia paransi tuloksia huo-
mattavasti. Algoritmin tarkempi arviointi etäisyysrajoitusten läsnä ollessa vaatisi
kuitenkin vielä tarkempaa tutkimusta muun muassa parempien alarajojen määrit-
tämiseksi.

Toisena kehitysmahdollisuutena on jakajafunktio: nyt funktio vaati olettamuk-
sen, että kahden pisteen välinen etäisyys on aina yhtä suuri kuin pisteiden välin
kulkemiseen kuluva aika. Mikäli tämän oletuksen saisi poistettua, algoritmilla
olisi vielä laajemmat sovellusmahdollisuudet; esimerkiksi kuorma-autojen reittejä
suunnitellessa kahden kaupungin välinen etäisyys voi olla suurikin, mutta suora
moottoritieyhteys mahdollistaisi vierailun kummassakin työpäivän aikana.

Laajat mallinnus- ja sovellusmahdollisuudet tekevätkin aiemmin tutkimattomasta
etäisyysrajoitetusta yleistetystä ajoneuvoreititysongelmasta mielenkiintoisen jatko-
tutkimuksia ajatellen.
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