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For benchmarking, a petroleum refining company is interested in how different

market scenarios affect their competitors. This thesis is a feasibility study for the

use of a multi-objective linear programming (MOLP) model for analyzing the

impact of market prices on competing petroleum refineries.

Linear programming (LP) models are widely used for optimizing petroleum refin-

ery operation. The existing LP models can be utilized in the design of a MOLP

model which makes it a particuarly desired model type. MOLP is a method for

solving linear problems where multiple conflicting objective functions are opti-

mized simultaneously. In this case, the different objective functions depict the

profits of competing companies. Since there are several decision makers, this

problem is different from those that have been extensively studied in open liter-

ature.

In this thesis, a MOLP model labeled the Refinery Ranking Model (RRM) is de-

signed. The user sets the market parameters for the RRM which then determines

the optimal purchases and sales for each refining company.

The results indicate that MOLP can be used to analyze the market dynamics of

competing refining companies. The RRM could be expanded to include dozens of

refineries and still describe their detailed behavior well and with a very reasonable

solution time.
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Öljynjalostajille, kuten muillekin yrityksille, on hyödyllistä verrata omaa toimin-

taansa kilpailijoihinsa. Tämä diplomityö on soveltuvuustutkimus, joka selvittää

lineaarisen monitavoiteoptimoinnin (MOLP) soveltuvuutta mallintamaan mark-

kinatilanteiden vaikutuksia kilpaileviin öljynjalostamoihin.

Lineaarista ohjelmointia käytetään laajalti öljynjalostamoiden toiminnan opti-

mointiin. Koska öljynjalostajilla on osaamista tällaisista malleista, MOLP-mallin

rakentaminen on verrattain helppoa. MOLP on menetelmä, jolla ratkaistaan li-

neaarisia ongelmia, joissa yritetään minimoida tai maksimoida useita keskenään

ristiriitaisia tavoiteyhtälöitä. Tämän työn tapauksessa nämä tavoiteyhtälöt ovat

kilpailevien öljynjalostajien tulokset. Koska kukin jalostaja pyrkii optimoimaan

omaa tulostaan muista välittämättä, on ongelmassa useita päätöksentekijöitä.

Tämä erottaa kyseisen tapauksen aiemmin julkisessa kirjallisuudessa käsitellyistä

MOLP-malleista.

Tässä työssä luodaan kilpailevien jalostamoiden toimintaa ja tuottavuutta ku-

vaava MOLP-malli. Käyttäjä voi syöttää malliin markkinahintoja ja muita para-

metreja. Työn tulokset osoittavat, että MOLP-mallia voidaan käyttää tällaiseen

analyysiin. Mallia voitaisiin myös laajentaa kattamaan kymmeniä jalostamoita

ilman, että tarkkuus tai ratkaisuaika kärsisivät suuresti.
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Abbreviations and Acronyms

bbl Barrel

bbl/d Barrels per day

CCU Catalytic Cracking Unit

CDU Crude Distillation Unit

FOB Free On Board

kbbl 1000 barrels

kbbl/d 1000 barrels per day

LP Linear Programming

LPG Liquified Petroleum Gas

MOLP Multi-Objective Linear Programming

MOO Multi-Objective Optimization

RRM Refinery Ranking Model

SCP Supply Chain Planning

VDU Vacuum Distillation Unit

VGO Vacuum Gas Oil
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Chapter 1

Introduction

Linear programming (LP) is a method of mathematical optimization. It has been

used extensively in industry solutions in oil refining among other fields. Academic

articles, such as Symonds [1955], describing LP solutions for oil refining problems

date back to the 1950s. Other articles, including Bana e Costa [1990], describe the

use of Multi-Objective Linear Programming (MOLP) in oil refining. In MOLP, there

are several conflicting objectives to be optimized and a good compromise solution is

sought for [Sakawa et al., 2013]. However, to this day the public articles concerning

the refining industry concentrate on problems where the LP or MOLP problem only

covers the perspective a single decision maker. These include the optimization of

blending components into final products with several attributes to be optimized

[Bana e Costa, 1990]. This is similar to the optimization of the operation of a

refinery or a group of refineries working towards a mutual goal. Thus, there is a

void of research about using MOLP to describe systems of several decision makers

with conflicting goals. This thesis aims to create a MOLP model that can be used

to rank several competing refining companies in different market situations. In

such circumstances, the conflicts between different objective functions are highly

fascinating. No refining company is willing to give up their own good for the others.

Therefore, the model solution must be a carefully selected compromise to achieve

realism.

This thesis is commissioned by a Finnish oil refining and renewable solutions com-

pany Neste. They request a feasibility study on a mathematical model that could

be used to compare the profitability of competing oil refineries. The model should

be created on the Spiral Suite1 optimization software. The models in the software

are formulated as LP models. This naturally leads to the conclusion that the model

designed in this thesis needs to be a MOLP model since the goals of different refining

1 Spiral Suite by AVEVATM
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companies must be considered. The model is labeled the Refinery Ranking Model

(RRM).

Neste has a strong presence in the Baltic countries and the St. Petersburg region

and they aim to become the leading supplier of fuel solutions in the Baltic Sea

region. The company produces renewable products in Finland, the Netherlands,

and Singapore as well as crude oil-based products in Finland. In addition they are

co-owners of a base oil plant in Bahrain. From now on, Neste shall be referred to as

the case company. [Neste, 2017]

The RRM calculates the sales, purchases, and profitability of the competing re-

fineries in market situations given by the user. A prototype RRM containing five

European refineries is built and tested as a part of this thesis in order to assess the

accuracy and practicality of such a model.

It is worth noting that although the RRM is formulated as a linear programming

model, there are some non-linearities included. These non-linearities have to do with

how the software handles some of the properties of hydrocarbon streams. Naturally

many chemical and physical processes at a petroleum refinery are nonlinear by na-

ture. Therefore, even though the problem is formulated as a MOLP problem, the

final formulation in the software is a non-linear multi-objective optimization (MOO)

problem. This thesis does not delve into these non-linearities other than analyzing

whether the non-linear behavior seen in the model results is within acceptable limits.

Because of the non-linearities, the model can also converge into local optima. Such

a behavior can be avoided to some degree by using several starting points for the

solution algorithm.

Since the objective functions of different companies conflict, there is no single correct

solution to the problem. Instead, there are several potential solutions from which one

must be selected based on a chosen selection method. The selection method must

describe the self-interest of each competing company in order to provide accurate

results. The accuracy of the RRM can be tested by market scenarios for which the

correct results can be reliably concluded based on prior knowledge. This knowledge

can be from some combination of historical data, economical theories, or factors

related to process technology at the refineries.

This thesis is structured as follows. Chapter 2 introduces related existing work and

covers some alternative approaches to the problem. Chapter 3 introduces some of

the basic concepts of refining crude oil into petroleum products. This provides the

reader with an understanding of the processes implemented in the RRM. Chapter

4 delves into the methodology of multi-objective optimization. Chapter 5 describes
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how these methods are used to implement the RRM. The RRM is then validated in

Chapter 6, and Chapter 7 explores the model’s sensitivity to variations in market

prices. Chapter 8 discusses the challenges in the future development of the model.

Finally, Chapter 9 summarizes the thesis.



Chapter 2

Overview of Alternative Methods

Much of the existing work on practical MOLP problems deals with situations where

all of the objective functions, even though mutually conflicting, depict benefit for

a single decision maker. Bana e Costa [1990] gave a relevant example situation

where an oil refinery would try to simultaneously minimize cost, crude imports, high

sulfur crude, and deviations from demand state. In such a situation, the refinery is

a single agent looking for a Pareto-optimal solution and it can choose any feasible

solution according to its preferences. In the scope of this thesis, there exists several

companies each of which aims to maximize their own objective function. Therefore,

there is no single decision maker capable of selecting a preferred solution out of some

Pareto-optimal candidates. Several different approaches could be used to model the

dynamics of competing refining companies. This chapter delves into some of these

approaches and analyzes whether they could be efficient choices given the data

available.

The analyzed system is a subset of all the refineries in the world. Depending on the

scale of interest, this subset could easily contain dozens of interconnected refineries.

Due to the large scale and somewhat chaotic nature of such large systems, big

data methods could provide good results if the required data is available. However,

there is only limited reference data available for model design and validation. It

is challenging to maintain detailed up-to-date data of the sales, purchases, and

technical details of dozens of refineries. Therefore, the data is likely to be incomplete,

disjointed, and partially outdated. Thus, methods that require large amounts of data

are likely infeasible. In addition to big data methods, this applies to many methods

featuring time series analysis or stochasticity. If even some aspects of each refinery,

e.g. only their sales, could be obtained on a frequent basis, solutions that partially

utilize these types of models could be considered.

4
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Despite the absence of proper time series in the reference data, dynamic models are

not entirely ruled out. A model can be constructed based on a data set that depicts

a static moment in time. Combined with theoretical knowledge about refinery tech-

nology and petroleum markets, the technical and trade details of each refinery are

used to model how refinery input, output, and profitability depend on the market.

Then, market parameters are given and the model provides a solution. The solution

can be used as a starting point for a new solution. Therefore, a time series of market

parameters can be chosen and a time series of trades and profits can be obtained

as a solution. In this way, static data can be used to study dynamic scenarios. In

practice, this can be achieved with a MOLP model if multiple successive runs are

made.

Another approach is to form a state-space model. A state-space representation

depicts a system as a set of input, output, and state variables which are related to

each other by first order difference or differential equations [Friedland, 1986]. An nth

order differential equation can be replaced by a state-space representation containing

only first order difference or differential equations [Friedland, 1986]. A state-space

model is in essence a time series model in which one or several unobserved time series

are used to describe an observed time series [Leeflang et al., 2017]. The unobserved

time series are called the states of the model [Leeflang et al., 2017]. The initial

values of the time series can be defined by the user based on the desired scenario.

For instance, a time series of market prices could be given as an input and their

effects on the refineries’ profitability could be observed. In this example, the market

price time series is simply a scenario and thus no existing data is required. To discuss

the feasibility of a state-space model for a system of competing refineries, consider

the following discrete-time state-space representation of a nonlinear system

ẋ(t) = A(t)x(t) + B(t)u(t) (2.1)

y(t) = x(t)u(t) (2.2)

where

x(t) is a state vector containing the current sales and purchases, x(t) ∈ Rn

y(t) is the output vector containing the refining margins of each refinery, y(t) ∈ Rq

u(t) is the input vector containing the current market prices, u(t) ∈ Rp

A(t) is the state matrix

B(t) is the input matrix

ẋ(t) :=
d

dt
x(t) is the time derivative of x(t)
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In this case, the states are the sales and purchases of the competing refineries.

Consider Equation 2.1. The system matrix A(t) describes how the current states

affect future states. High current state should lead to low future state. For example,

a high amount of gasoline sales could mean that the inventories of the customers

are filled and the demand will be lower in the next time period. The input matrix

B(t) describes how the current input u(t) affects the future states. In this case, the

input vector would be a vector of market prices. Thus, higher input values would

lead to an increase in x(t) for those elements of u(t) that correspond to products

saleable from the refineries and decrease in x(t) for those that correspond to goods

that the refineries purchase.

Now, consider Equation 2.2. The output y(t) is a vector of profits earned by each

refinery in the model. The profit of a refinery equals the units of goods traded

multiplied by the price per unit of those goods.

Forming a state-space model requires either quality data or strong understanding

of the analyzed system. For a system of competing refining companies that goes

to such detail as in this thesis, this is a challenging task. The competitive aspect

requires careful consideration. Leeflang [2008] and Leeflang et al. [2017] discuss how

competition models have developed. They state that the first models found the

optimal solution for only a single company at a time. They continue to explain

that eventually game theoretic models were developed. In game theoretic competi-

tion models multiple players maximize their utilities simultaneously [Leeflang et al.,

2017]. The competition between several refining companies certainly has a strong

game theoretic aspect to it. Each company aims to maximize their own profit but

are affected by the simultaneous actions of their competitors. For example, the

trade deals one company can make are affected by deals of other companies because

regional supplies and demands are limited.

Fernández et al. [2005] discuss competition and cooperation in linear production

games. These are games where each player faces a linear production problem. Specif-

ically, Fernández et al. [2005] consider a game where all the players produce the same

goods but with different linear technologies and prices. Three analyses of this game

are presented. The first one is a non-cooperative analysis and the other two are

different cooperative analyses. One of the cooperative analyses features transferable

utility and the other one does not. Transferable utility refers to a situation where

the total utility of all players can be allocated freely among the players as opposed

to being strictly a result of the production of the respective player. [Fernández et al.,

2005]

The system of competing refineries can be described as a game where the players
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produce identical goods but with different prices and different technologies. The

goods sold by each refinery need to be classified under some predetermined stan-

dard products regardless of the type of model used. This is to avoid unnecessary

complexity. However, product prices need to differ from refinery to refinery since

the transportation costs differ based on geographical location. Similarly, the tech-

nologies unique to each refinery depict the respective refinery’s capability to turn

certain raw materials into certain products.

Naturally, the competition between refining companies is non-cooperative. However,

some refining companies own several refineries and there is not only cooperation but

also transferable utility between refineries belonging to the same company. There-

fore, should the system be described as a linear production game there is a question

of how to depict refining companies that own several refineries. One method is to

abstract each refining company to only have a single refinery that has the attributes

of all the refineries of that company combined. This would be a simple way to man-

age the cooperation and transferable utility that are present only within refining

companies and not between them. The downside is a loss of detail e.g. concerning

transportation costs.

In a cooperative game, the optimal solutions are in the core of the game [Barron,

2013]. The core is the set of feasible allocations where the players receive at least

as much utility as they would if they did not cooperate [Barron, 2013]. It has been

shown that for large cooperative production games the core of the game is non-empty

under certain assumptions [Fl̊am et al., 1975]. This suggests that if the problem

involves a large enough number of companies then there exists a cooperative solution

to the problem such that the companies can not improve their profit. Although such

a solution assumes cooperation, it could contribute to the use of a non-cooperative

game theoretic model or any other type of model. It could be used to explore the

optimal solutions, thus providing insight to the quality of the results of another

model. For example, convergence to local optimum could be suspected based on

comparison to the cooperative game theoretic model.

In conclusion, the Refinery Ranking Model should be implemented as a MOLP

model since the case company has existing LP models which can be used as guide-

lines for the design. Attempting to construct a large-scale state-space model or a

complicated game theoretic model is not the key competency of the case company.

However, if the MOLP model is found to be inadequate, it is possible to consider

these alternative models in the future. Other potential model types may exist, and

the system can potentially be split into sub-problems which are solved using differ-

ent types of models. On a certain level of abstraction, the production problem and
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the transportation problem of a refinery can be seen as separate problems although

in reality they affect each other.



Chapter 3

Petroleum Refining

This chapter explains how crude oil is turned into petroleum products in a petroleum

refinery. The petroleum supply chain is introduced in Figure 3.1. The petroleum

market, refinery configuration, and the process units at the refinery are explained to

help the reader understand the mathematical model described in Chapter 5.

A note should be made on terminology to avoid confusion. This thesis discusses

raw materials and end products of petroleum refining. It also discusses the markets

where both of these are sold and the refineries that turn raw materials into end

products. Sometimes goods can be sold from one refinery as products to another

refinery which processes them further and sells as more valuable products. There-

fore, the difference between raw materials and end products can be vague. In this

thesis, the term ‘goods’ refers to all materials that are either purchased, sold, or

both. The term ‘product’ refers to all goods that a refinery sells. Most of these are

‘end products’ that are sold to the market while some are ‘intermediate products’

sold to other refineries for further processing. All the purchases that refineries make

are collectively labeled ‘raw materials’. Thus, an intermediate product belongs in

both products and raw materials.

3.1 Petroleum Products

In order to understand the petroleum market, the mutual relationships of different

petroleum products are explained briefly. Petroleum is a mixture composed mainly

of hydrocarbons and is found in sedimentary rocks. A hydrocarbon is a compound

that contains only hydrogen (H) and carbon (C). Petroleum occurs as gas, liquid,

9
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Figure 3.1: Petroleum supply chain [Neiro and Pinto, 2004].

semisolid, and solid depending on the types of hydrocarbons in the mixture. Liquid

petroleum is also called crude oil and is used as the feedstock from which refineries

produce commodities such as gasoline, jet fuel, diesel, gas oil, and lubricants. [Riazi,

2005]

The basic properties of petroleum products are defined by the properties of the pure

hydrocarbons constituting the product. Although large number of these properties

exists, for the purposes of this thesis it is sufficient to introduce two of these, namely

boiling point and density. These two properties are used to classify hydrocarbons

and petroleum fractions as well as to estimate their other properties. The boiling

point is the temperature at which vapor and liquid exist together at equilibrium in a

given pressure. Density is mass per unit of volume and depends on both temperature

and pressure. [Riazi, 2005]

The boiling point and density loosely follow the number of carbon atoms in a hydro-

carbon molecule. As the number of carbon atoms increases, both boiling point and

density rise. Thus, it is useful to classify hydrocarbons by this attribute. They can

be represented such that hydrocarbons with two carbon atoms are referred to as C2,

those with three carbon atoms as C3, and so on. The fewer carbon atoms there are

in a molecule the lighter it is. As an example, naphtha is a light petroleum fraction

used in gasoline production. In an average molecule in naphtha, there are between

four and ten carbon atoms. The heaviest petroleum fraction is called residuum and

consists of molecules containing over 55 carbon atoms each. [Riazi, 2005]
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Petroleum products are obtained by separating the different hydrocarbons in crude

oil into several petroleum fractions based on boiling point [Parkash, 2003]. Some of

these petroleum fractions can be sold as such while others require further processing

[Parkash, 2003]. The separation of hydrocarbons is conducted in a distillation col-

umn [Fahim et al., 2010]. The lightest hydrocarbons are obtained from the top of the

column and the heaviest from the bottom [Fahim et al., 2010]. Common petroleum

fractions and their distillation temperature ranges are presented in Table 3.1 from

the lightest to the heaviest. The precise ranges overlap and also differ between

sources but the order of these fractions is universal. Generally, lighter petroleum

fractions are more valuable than heavier fractions [Al-Sahlawi, 2014]. Addition-

ally, the commercial products need to meet certain specifications which are met by

blending different intermediate products and additives [Fahim et al., 2010]. Hydro-

carbons and their properties are also modified using chemical reactions [Fahim et al.,

2010].

Table 3.1: Petroleum fractions [Hästbacka et al., 1993].

Initial point of End-point of

Petroleum fraction distillation (◦C) distillation (◦C)

Crude distillation

Refinery gas

Liquified petroleum gas

Naphtha -10 150-180

Kerosene 150-180 200-220

Light gas oil 200-220 280-320

Gas oil 280-320 360-400

Heavy gas oil 330-350 470-500

Bottom oil 390-420

Bottom oil vacuum

distillation

Light vacuum gas oil 290-310 530-560

Heavy vacuum gas oil 390-420 550-580

Residuals 500+
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3.2 Crude Oil

Crude oils from different regions have different characteristics. The two most impor-

tant characteristics are sulfur content and density, the latter of which is an indicator

of the crude oil’s hydrocarbon mixture [Speight, 2011]. Low-density crude oils are

described as ‘light’ and those with high density as ‘heavy’ [Speight, 2011]. Simi-

larly, crude oils with low sulfur content are described as ‘sweet’ and those with high

sulfur content as ‘sour’ [Speight, 2011]. The number of different crude oil types

amount probably over 400 [Bret-Rouzaut and Favennec, 2011]. When crude oils

are processed at a refinery, they yield different products as described briefly in Sec-

tion 3.1. The type of a crude oil used determines the ratio of different petroleum

fractions whereas refinery configuration affects the ratio of different end products

[Fahim et al., 2010]. More complex refinery configurations enable creating a higher

fraction of valuable products [Fahim et al., 2010].

Generally, crude oils that are lighter and have a lower sulfur content are more valu-

able. Lighter crude oil has a higher share of more valuable hydrocarbons whereas

low sulfur content is beneficial since the maximum sulfur content in end products is

regulated by law and sulfur removal is costly. Naturally, the locations of the crude

oil provider and the refinery customer determine the transportation costs and there-

fore affect the value of different crude oils to different refineries. [Bret-Rouzaut and

Favennec, 2011]

Due to high fixed costs, crude oil production responds slowly to changes in price.

The short-run supply elasticity with respect to price is considered to be 0.02 meaning

that the change in production is only 2% of the change in price. Also, the demand for

final petroleum products is inelastic with respect to price. [Al-Sahlawi, 2014]

3.3 Refinery Configuration

After crude oil is distilled into petroleum fractions, their chemical structure is modi-

fied in chemical reactions such as reforming, cracking, and desulfurization [Hästbacka

et al., 1993]. Distillation units and reactor units together are referred to as process

units. The Refinery Ranking Model (RRM) presented in Chapter 5 contains several

different process units. A selected few are listed in Table 3.2 and used later in this

section to describe refinery complexity.
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Table 3.2: Process units. Adapted from Al-Sahlawi [2014], Fahim et al. [2010], and

Hästbacka et al. [1993].

Process unit Purpose

Crude Distillation Unit (CDU) Separate crude oil into petroleum fractions

Vacuum Distillation Unit (VDU) Separate CDU bottom oil into petroleum fractions

Catalytic Cracking Unit (CCU) Break down large molecules into lighter

hydrocarbons with the help of a catalyst

Hydrotreating Reduce sulfur and enhance other properties

Visbreaking Break down large molecules and reduce viscosity

Reforming Increase the quality of naphtha

Alkylation Produce a motor gasoline component

The selection of process units at a refinery define the complexity and product dis-

tribution of the refinery. Refineries can be classified based on their complexity as

follows [Fahim et al., 2010]:

• Simple. The refinery is equipped with a crude distillation unit, a reforming

unit, and middle distillate hydrotreating units.

• Complex. In addition to the process units of a simple refinery, a complex refin-

ery has conversion units such as hydrocrackers, and a fluid catalytic cracker.

• Ultra-complex. In addition to the process units of a complex refinery, an ultra-

complex refinery has deep conversion units to convert atmospheric or vacuum

residue to light products.

Simple and complex refineries are illustrated in Figures 3.2 and 3.3, respectively.

Following the categorization in Fahim et al. [2010], the refinery in figure 3.3 could

alternatively be considered an ultra-complex refinery.
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Figure 3.2: A simple refinery setup [Leffler, 2008].

A refinery contains multiple distillation units responsible of splitting streams into

desired fractions. All crude oil flows through a crude distillation unit (CDU) but

some of the resulting fractions are later fed into further distillation units. This

is done in order to obtain more precise division or to fractionate a feed after some

chemical processing. Distillation units can be classified into atmospheric and vacuum

distillation units (VDU). [Hästbacka et al., 1993]

A CDU is an atmospheric distillation unit that separates crude oil into petroleum

fractions. The operating principles of a CDU are illustrated in Figure 3.4. The

temperature in the unit is highest at the bottom of the column and gradually de-

creases towards the top. Pre-heated crude oil is fed into the CDU where most of
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Figure 3.3: A complex refinery setup [Leffler, 2008].

its hydrocarbon components are vaporized. These components rise up to the cooler

parts of the column. The lighter the hydrocarbon molecules are the higher they rise

in the column before condensing back into liquid. Different parts of the column are

separated by trays that allow vaporized hydrocarbons to flow upwards but prevent

liquid hydrocarbons from flowing downwards. When a hydrocarbon reaches the sec-

tion of the column where it condenses, it flows out as a liquid side stream. Therefore,

different hydrocarbons can be extracted at different parts of the distillation column.

Note that the process is not ideal and these petroleum fractions still contain some

amounts of undesired hydrocarbons. [Fahim et al., 2010]

A vacuum distillation unit (VDU) separates more of the valuable distillates from the

heaviest bottom oil fraction of the CDU. These distillates are referred to as vacuum



CHAPTER 3. PETROLEUM REFINING 16

Figure 3.4: Crude distillation unit [BBC, 2017].

gas oils and the remaining residue is called vacuum residue. Similarly to the CDU,

the feedstock flows into the lower part of the distillation column and petroleum

fractions are separated along the height of the column. However, a VDU uses both

temperature and vacuum to cause the feedstock to boil. [Fahim et al., 2010]

After the initial distillation, several chemical reactions are utilized at refineries for

example in gasoline production. To produce gasoline, products with high octane

number are required. The octane number is a measure of gasoline fuels’ resistance

to auto-ignition during compression and prior to spark ignition. A high octane

number corresponds to high resistance. The octane number of heavy naphtha can be

raised using catalytic reforming whereas for light naphtha isomerization is used. In

preparation for the catalytic reforming, the naphtha flow from the crude distillation

unit is first run through a hydrotreater to remove sulfur, nitrogen, and oxygen which

could interfere with the reforming. [Fahim et al., 2010]



CHAPTER 3. PETROLEUM REFINING 17

3.4 Refining Margin

The profitability of running a refinery includes several factors. In the scope of this

thesis, these factors must be understood well enough to decide which are relevant

to the optimization model. Figure 3.5 illustrates historical import prices to Finland

for crude oil, middle distillates, and fuel oil. It is evident from the figure that the

price gap between crude oil and products refined from it is not constant. This is

one factor that affects the profitability of refineries and the effect can be different

on refineries of different complexity, location, and so on.

Figure 3.5: Historical import prices of oil to Finland [Statistics Finland, 2017].

Refinery profitability can be measured by a refining margin which depicts the profits

per unit of crude oil processed. In the petroleum industry, the amount of petroleum

goods are measured in both mass and volume. A common unit of measure for a

volume of a petroleum good is the barrel which is defined as 158.9873·10−3 m3 [Fahim

et al., 2010] [National Institute of Standards and Technology, U.S. Department of

Commerce, 2008].

Three different refining margins are defined by Fahim et al. [2010], namely gross

margin, net margin, and cash margin. Gross margin is calculated by reducing the

cost of the purchased crude oil from the combined value of the refined products. Net

margin can be derived from gross margin by reducing variable refining costs. Cash

margin is obtained in a similar manner by reducing fixed costs from the net margin.
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Therefore a positive cash margin indicates that the refinery is profitable [Fahim

et al., 2010]. However, a refining margin can be deceptive. A refinery analyzed

individually could have a low refining margin even if it contributes strongly to the

refining margin of a company. This is because some intermediate products could be

delivered to a differently configured refinery for further processing. In such a case

the refining margin of this other refinery could be very high. This is one reason

why there are synergy benefits for a company for owning several refineries. The

calculation of the different refining margins is summarized below.

Gross margin = Value of products− Cost of crude (3.1)

Net margin = Gross margin− Variable refining costs (3.2)

Cash margin = Net margin− Fixed costs (3.3)

Refinery costs are affected by the refinery’s location, size, and complexity as well

as crude quality, capacity utilization, and environmental constraints [Fahim et al.,

2010]. The breakdown of typical operating costs of an ultra-complex refinery are

shown in Table 3.3. The prices per barrel are calculated assuming the type of crude

oil to be Brent.

Table 3.3: Operating costs of a typical ultra-complex refinery. Adapted from Fahim

et al. [2010].

Operating cost $ per ton of crude feed $ per bbl of crude feed

Variable cost 4 0.7

Fixed cost 15 2.6

Cost of capital 25 4.3

Total 44 7.6

Oil products are sold as spot sales, term contracts, and wholesale transactions [Al-

Sahlawi, 2014]. Spot sales are sales where the commodity is delivered immediately,

term contracts are contracts of future delivery, and wholesale transactions are dis-

counted transactions where the buyer then usually sells the commodities to smaller

clients. The prices given as model parameters to the RRM are averages over one

or more years selected to match the desired market scenario. Therefore all prices

are represented in the model in the same way. Different types of contracts can be

implemented in the model by adding supply and demand constraints and setting

detailed prices to specific contracts. In the scope of this thesis, the markets are of

some interest because the following three questions have to be answered in order to

create the RRM described in Chapter 5.
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1. For each refinery, which markets can it reasonably access?

2. For each refinery, what are the transportation costs associated with each of

the markets it is involved in?

3. For each market, what is the maximum supply and demand of each type of

goods?

These can be answered based on historical transaction observations, geographical

location, and local infrastructure of each refinery.

In practice, when the RRM is ran, it will provide such a cash margin for each refinery

that includes the following costs: crude oil and other import costs, refinery operating

expenses, and transportation costs. The refinery operating costs include electricity,

steam, and catalysts as well as workforce cost. This calculated cash margin is used

for ranking the refineries and the refining companies. Alternatively, a gross or net

margin can be selected if so desired. The questions given above are essential in

determining the parameters that affect the ranking solution.

3.5 Supply Chain Planning

This section introduces supply chain planning (SCP) and explains how the RRM

could be utilized in different processes and subprocesses in SCP. Figure 3.6 depicts a

SCP matrix where subprocesses such as ‘cooperations’ are organized by term length

(rows) and by parent process (columns). The terms are defined as follows. Long-

term planning covers strategic decisions noticeable over periods of several years.

Medium-term planning outlines regular operations for periods of 6 to 24 months.

Short-term planning concerns detailed operational plans for up to three months

into the future. The RRM is designed to be run for periods of one or more years.

Therefore it aims to support mid to long-term planning. Next, the long-term and

mid-term rows of the supply chain planning matrix are analyzed to determine which

of the listed activities might benefit from the use of the RRM. [Fleischmann et al.,

2015]

In the procurement parent process, long-term planning could benefit in the activities

of materials program and supplier selection. The RRM can provide insight to the

profitability and demand of different crude oils from different suppliers. This could

be analyzed by observing the changes in the crude palettes and profitability of

different refineries in the RRM. In the mid-term, material requirements and contracts

could benefit from similar analysis.
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Figure 3.6: Supply chain planning matrix [Fleischmann et al., 2015].

In the long-term, the production system could be planned better in the sense that

potentially desirable changes to the refinery configuration could be identified. These

could be found by observing the profitability of differently configured refineries under

various market scenarios. Plant location planning in the petroleum refining industry

is performed at such a long time scale that the RRM structure and parameters

become highly inaccurate. Thus, the RRM is likely of little to no benefit when

considering such a decision. In the mid-term the effects of analyses performed with

the model would likely only affect production through the other processes of the

company.

Distribution and sales could also benefit especially in the mid-term since the RRM

provides solutions that specify the sales and purchases of each refinery. In the long-

term, the RRM could help improve the distribution network or sales contracts by

helping assess the attractiveness of certain markets. Since distribution is imple-

mented in the RRM in a rather simplified manner, the model does not help with

the smaller details of the distribution planning.
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3.6 Petroleum Refining in the Refinery Ranking

Model

The topics covered in this chapter are essential for the design of the RRM described

in Chapter 5. Combined with the optimization methods introduced in Chapter 4

and real-world reference data of the refineries and markets, they enable the creation

of the RRM.

In the RRM, the petroleum refining industry is described from crude oil purchases

to end product sales. The separation of crude oil into petroleum fractions and

further processing into end products is described through detailed functions. These

functions are based on the properties of the crude oils, the specifications of the end-

products, and the theory of how different process units operate. How the process

units are configured into a refinery affects the ratio of end products obtained by the

refinery and therefore also the refining margin. Since the economic aspect is also

central, an understanding of the refining margin is required to properly describe

the goals of the refining companies. Since supply and demand play a major role in

any market, understanding of the petroleum market is also required for successful

utilization of the RRM. Finally, understanding of the SCP allows identification of

potential benefits the RRM could offer.



Chapter 4

Optimization Methods

This chapter introduces methods used in MOO and especially in MOLP. Addition-

ally, these methods are compared with each other and those feasible for the Refinery

Ranking Model (RRM) are identified.

4.1 Multi-Objective Optimization

This thesis discusses a MOO problem. For MOO problems with conflicting objective

functions, a completely optimal solution does not always exist. Therefore, Pareto-

optimality is used as a solution concept. Consider a set of objective functions fi(x),

i = 1, 2, 3, ..., where x ∈ X is a vector of decision variables. Each objective function

fi(x) is to be minimized. A point x∗ ∈ X is said to be a Pareto-optimal solution

if and only if there exists no other x ∈ X for which fi(x) ≤ fi(x
∗) for all i and

fi(x) 6= fi(x
∗) for some i [Sakawa et al., 2013]. A point x∗ is said to be a weakly

Pareto-optimal solution if and only if there exists no other x for which fi(x) < fi(x
∗)

for all i [Sakawa et al., 2013]. Pareto-optimality and weak Pareto-optimality are

presented graphically in Figure 4.1. The Pareto-optimal solutions form a Pareto

front [Miettinen, 1999]. In Figure 4.1 the Pareto front is the line connecting the

labeled Pareto-optimal solutions.

Several methods for solving MOO problems exist. These can be classified into four

classes which are no-preference methods, a posteriori methods, a priori methods,

and interactive methods. [Miettinen, 1999]

22
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Figure 4.1: Pareto-optimal and weak Pareto-optimal solutions to a minimization

problem with two objective functions [Yoshimi et al., 2012].

No-preference methods are the most simplistic class as they do not assume prefer-

ence relations between Pareto-optimal solutions. The three other classes require a

decision maker whose preferences are utilized to form criteria on how to select a

preferred solution from a set of Pareto-optimal solutions. This can mean, e.g., that

preference relations are created between the different conflicting objective functions

such that an increase in one is deemed more desirable than an equal increase in an-

other. In a posteriori methods, Pareto-optimal solutions are generated first and the

decision maker selects a satisfactory solution afterwards. A posteriori methods are

often computationally heavy. In a priori methods, the decision maker’s preferences

are surveyed in advance and implemented into the solution method. Interactive

methods are iterative in nature. Practically, this means that Pareto-optimal solu-

tions are generated and improved based on the input from the decision maker until

the decision maker accepts a solution. [Miettinen, 1999]

To find (weak) Pareto-optimal solutions to a MOLP problem, a scalarization method

is used. These methods are introduced in Section 4.2 and the choice of method

used in the RRM is explained in Section 4.3. Some of these methods can be used

in different ways so that they belong to different classes of solution methods. It

is also noteworthy that some methods for solving MOO problems can find all the

Pareto-optimal solutions while others can only find Pareto-optimal extreme solutions
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[Miettinen, 1999].

4.2 Multi-Objective Linear Programming

As explained in Chapter 1, the problem presented in this thesis is formulated as

a MOLP problem although the final model in the software is a non-linear MOO

problem. For MOLP problems, there are several solution concepts from which to

choose from. First, some scalarization methods for MOLP problems are introduced.

These methods are used to characterize Pareto-optimal solutions such that there is a

non-arbitrary rule for selecting among the solution candidates [Sakawa et al., 2013].

The following three methods will be introduced: the weighting method, the weighted

minimax method, and the constraint method. Then, linear goal programming is

discussed as an alternative method. Methods that rely on using a certain algorithm

are of no interest in the scope of this thesis since there is no control over the algorithm

used by the selected software.

A general MOLP problem can be formulated as follows:

min
x∈X

z(x) = (z1(x), ..., zk(x)) , (4.1)

where z1(x), ..., zk(x) are k distinct objective functions of the decision variable vector

x = (x1, ..., xn)T and

X = {x ∈ IR | Ax ≤ b, x ≥ 0} (4.2)

is the linearly constrained feasible region where A is an m × n matrix and b is a

m-vector [Sakawa et al., 2013].

In the weighting method, a weighted sum of all the objective functions is minimized

(or maximized). It is defined by

min
x∈X

wz(x) =
k∑

i=1

wizi(x) , (4.3)

where w = (w1, ..., wk) ≥ 0, w 6= 0 is a vector of weighting coefficients. The

benefit of the weighting method over some of the others is that it guarantees Pareto-

optimality rather than only weak Pareto-optimality. [Sakawa et al., 2013]

The weighted minimax method looks for a solution where the greatest objective

function value is minimized according to

min v (4.4)

subject to wz(x) ≤ v ,
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Figure 4.2: If f2(x) is constrained between a and b only a weak Pareto-optimal

solution to the original problem can be found. Adapted from Yoshimi et al. [2012].

where v is an auxiliary variable [Sakawa et al., 2013]. Only weak Pareto-optimality

can be guaranteed by the weighted minimax method [Sakawa et al., 2013]. From

Figure 4.1 it can be observed that this method results in solutions in the middle

region of the Pareto front since large values are avoided for all objective functions.

For a maximization problem, the equivalent would be a maximin problem where the

minimum objective function value is maximized. This could be beneficial for the

RRM since there would be a good chance of avoiding solutions where some refineries

are given either unrealistically high or low emphasis.

In the constraint method, one of the objective functions is selected and the others are

treated as inequality constraints. Only weak Pareto-optimality can be guaranteed

by the constraint method [Sakawa et al., 2013]. This is demonstrated in Figure 4.2

where objective function f2(x) is turned into a constraint and limited to only get

values in the interval [a, b] while objective function f1(x) is minimized. Since all the

Pareto-optimal solutions are below f2(x) = a and therefore outside the new feasible

region, only a weak Pareto-optimal solution can be found.



Table 4.1: Summary of different MOLP methods.
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Advantages:

Pareto-optimal solutions x

More balanced solutions x

Specific undesired solutions can be ruled out x

Disadvantages:

Need to assign desired weighting coefficients x

Only weak Pareto-optimality guaranteed x x

Need to assign desired values for all objective functions x

In linear goal programming, the decision maker sets aspiration levels for the objective

functions and then the deviation from these targets is minimized [Sakawa et al.,

2013]. The advantages and disadvantages of each method are summarized in Table

4.1.

4.3 Selection of Multi-Objective Linear Program-

ming Methods

In this section, a rationale is provided for the choice of method for choosing between

Pareto-optimal solutions in the RRM. General attributes of such methods were

described in Section 4.2. Pareto-optimal solutions, weakly Pareto-optimal solutions,

and optimization methods for finding these were also introduced in Section 4.2.

When selecting between the alternative methods, it is crucial to take into account

any limitations imposed by the choice of software. In this case, the Spiral Suite1

software is used to implement the model.

Since the nature of the problem at hand is finding realistic scenarios and an exact

correct outcome can not be known, there is no single correct method for selecting

between Pareto-optimal solutions. It is not trivial to say whether weak Pareto-

1 Spiral Suite by AVEVATM
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optimality will suffice. Companies do not have incentive to change their behavior

unless their own profits would increase and therefore a weak Pareto-optimal solution

would be possible. However, a company would never be content with a situation

where its own actions could increase its profit. Thus, a weak Pareto-optimal solution

might exist that would not depict a realistic situation in the model. Such a solution

is undesirable and therefore a method that yields strong Pareto-optimal solutions is

preferable.

A single company can not select the solution of their choice. Instead, the RRM

is used to give insight to possible market scenarios. This would suggest using a

no-preference method for the optimization method. No-preference methods are also

the most simple method class and thus the easiest to implement. However, if the

model exhibits behavior such that some refineries are emphasized excessively, it

might be preferable to adjust the model performance by giving such a refinery lower

preference. A priori methods would allow this and therefore be more robust. Future

development of the RRM could utilize some other method class. For example,

regular use of the model and comparison of its results to reality could allow an

analyst to develop an expertise sufficient for acting as the decision maker required

for the other method classes.

To make use of an a priori method, one of the methods introduced earlier in this

chapter is selected. In the scope of this thesis, linear goal programming is hardly a

reasonable approach since the aim of the analysis is to produce the very knowledge

required as an input for this method. However, the decision maker could have a

good idea of the realistic levels of some objective functions. Therefore, this method

could possibly be utilized to some degree in a more complex future implementation

of the model. Only the three scalarization methods remain as potential methods of

choice.

The simplest scalarization method for the problem would be the weighting method.

If all refineries are given equal weights, the RRM is equivalent to a no-preference

model. Adjusting the weights turns it into an a priori model instead. Desirable

weights could be found through iteration by comparing the model results to existing

data after every change in the weighting coefficients.

Another scalarization method that could be easily implemented is the constraint

method. This would mean adding a constraint that sets the refining margins of all

but one company between some limits determined for each company. Whether or

not such a constraint is added, the flow rate of each refinery will be constrained be-

tween two values determined by the properties of the refinery’s process units. This is

a technological constraint since a sufficient flow rate is required to operate the CDU



[Fahim et al., 2010]. A refinery will run on at least the technical minimum flow rate

even if the refinery is temporarily not profitable since the shutdown and restarting

of a refinery is an expensive and complicated process [Lenahan, 2006]. Further-

more, there is a need for maintaining a sufficient supply of petroleum products to

meet international regulations and national requirements in the event of disruptions

[Ministry of Economic Affairs and Employment, Finland, 2018]. Therefore, shutting

down a refinery is rare and the bounds of a refinery’s refining margin are defined

by the minimum and maximum feed rates of its process units, mainly the CDU.

Thus, the objective functions of all but one company could simply be removed and

there would still be a valid LP problem which would yield somewhat realistic results.

However, these results could be only weakly Pareto-optimal and unrealistic in the

scale of the entire network model. The company whose gross margin is maximized

would likely enjoy an unrealistic advantage. In theory, the potentially unrealistic

weak Pareto-optimal solutions could be ruled out by selecting the constraints con-

veniently. In practice, however, it can not be known what the perfect constraint

choices would be. It might be possible to improve the results by selecting tighter

constraints based on an overview of the current price set. For example, if a cer-

tain refinery is know to do well under certain market prices, then its minimum flow

rate could be set higher than normal when running scenarios with those beneficial

prices.

The weighted maximin method on the other hand could not be implemented using

the Spiral Suite1 software. There is no way to formulate this kind of an objective

function in the software since it only maximizes the total sum of the refining margins

of all refineries. In the case of the constraint problem, this can be circumvented by

limiting the flow rates and setting prices of the raw materials, transportation, and

products of the constraint refineries to zero. This way the sum of all refineries’

margins are analogous to that of the refinery whose margin is to be maximized.

For the maximin problem, such a workaround is not possible since in the software

there is no way to implement the required auxiliary variable v that was described

in Equation 4.4. The function to be maximized must explicitly include z(x).

Under these limitations, the conclusion is that the weighting method would be fitting

for the RRM. Additionally, the constraint method can be easily implemented and

could be useful under some circumstances. The presumption is that the weighting

method could be used to simulate the effect of different market scenarios on the gen-

eral profitability of the industry and the ranking of different refineries. Furthermore,

it is presumed that the constraint method could be used to create best case scenarios

for an individual refinery. The clear downside of the constraint method is that all

but one refinery are highly susceptible to sub-optimal behavior when compared to

1 Spiral Suite by AVEVATM
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their real-life behavior.



Chapter 5

The Refinery Ranking Model

The Refinery Ranking Model (RRM) is built to analyze the profitability of several

refineries and refining companies given specific market prices for crude oils and

petroleum products. It depicts a system that contains several refineries and market

nodes. These are linked together to form a network where goods are traded based on

supply and demand. The RRM is used to analyze time periods of one or more years.

This chapter presents the structure and rationale of the model. Since the model

contains over 17 000 equations and over 16 000 variables these are not presented

individually. The general structure of the model is described in Section 5.1, the

notation used in the model is listed in Section 5.2, and general assumptions and

mathematical formulation of the model are covered in Sections 5.3-5.6. The model

validation is covered in Chapter 6. The RRM is built using Spiral Suite1 software

build version 5.3.

Certain requirements are placed on the RRM. The user of the model has to be able to

study different scenarios by setting the corresponding market prices and optimization

constraints into the model. The optimization constraints include, but are not limited

to, the amounts of raw materials available and end products demanded in different

countries. The model is to be designed in a manner that allows it to be expanded in

the future with relative ease. It consists of a network of refinery models each of which

contains several process unit models. For ease of expansion and maintenance, the

process unit models are built in a generic manner such that each different refinery

can be described using the same process unit models.

1 Spiral Suite by AVEVATM



5.1 General structure

The RRM is formulated as a multi-objective linear programming model. It consists

of 3 companies which own 5 refineries in total. Two of the companies own two

refineries each and one company owns a single refinery. Each company aims to

maximize the sum profit of their own refineries. The inputs, outputs, and objective

functions of the model are illustrated in Figure 5.1.

First, the user inputs the market scenario price set into the Spiral Suite1 software.

Then, the RRM aims to maximize the total objective function of the system. The

software runs an optimization algorithm that starts from an arbitrary point. It

then iterates from one potential solution to another staying within the limits set

by the optimization constraints. The algorithm stops once there is indication that

the current solution can not be improved any further. If the weighting method is

used, the total objective function is a weighted sum of refinery objective functions.

If the constraint method is used instead, then the total objective function equals the

sum of objective functions of one or more, but not all, refineries. For the constraint

method the total objective function would most likely be the objective function of a

single refinery or a single refining company. It should be noted that a combination

of the weighting and the constraint method could be used if so desired.

Once the optimization algorithm stops, the model provides a listing of all purchases,

sales, material flows, technical refinery operating parameters, and the net margin

and cash margin of each refinery and consequently each refining company. The cash

margin of a refinery or a refining company matches the respective objective function

if and only if the objective function is given a weight of 1.

The model as a whole consists of three levels. This hierarchy is illustrated in Figure

5.2. The highest level is the refinery network level which links each refinery to

markets and describes supply, demand, and transportation of goods. On this level,

the transportation of goods to and from each refinery is optimized. The second level

contains the LP models of the refineries. On this level, the crude oil entering the

refinery is turned into intermediate products and end products in a manner that

aims to maximize the value added to the products. These refinery LP models are

formed by linking process unit models together as well as to purchases and sales

determined for that particular refinery. The combination of process unit models

in a refinery defines the possible product portfolios of that refinery. The lowest

level contains the linear models of the process units. These models describe the

functionality of individual process units within a refinery. Each process unit takes

in a feed of either crude oil, petroleum fraction, or intermediate product. It then

1 Spiral Suite by AVEVATM
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Figure 5.1: The structure of the RRM. Refinery-to-refinery sales are omitted for

clarity.

turns this material into a number of new material streams. The process unit model

describes the yields and properties of these new material streams as a function of

the properties of the feed material. These process unit models are used as common

building blocks from which each refinery is built. Elements on each level of the
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Figure 5.2: The hierarchy of the RRM. From left to right: network level, refinery

level, and process unit level. Randomly selected locations are used for this graphical

representation of the network level. The figures are screenshots from the Spiral Suite

software by AVEVATM.

hierarchy can be multiple-input and multiple-output systems since several different

goods can simultaneously both enter and exit process model units and refineries.

The market nodes have only inputs or outputs but not both.

Since the case company has several existing LP models in operational use those are

also used as guidelines and additional reference during the design and validation of

the RRM. The existing LP models are used for production and supply chain opti-

mization. Thus, they share similarities with the RRM although they are generally

much more detailed.

5.2 Notation

The following notation is used for the RRM. Supply nodes refer to any network

level nodes that sell goods. These include some of the market nodes and all refinery

nodes. Similarly demand nodes refer to appropriate market nodes and all refinery

nodes. For the RRM implemented in this thesis, the number of companies is kc = 3

and the number of refineries kr = 5.
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f(O,P,S) A kc-vector of objective functions for refining companies,

f(O,P,S) = (f1(O,P,S), ..., fkc(O,P,S))T

z(O,P,S) A kr-vector of objective functions for refineries,

z(O,P,S) = (z1(O,P,S), ..., zkr(O,P,S))T

Pf (Yf ) Pareto front for the refining company level objective functions

Pz(Yz) Pareto front for the refinery level objective functions

Yf The feasible set of criterion vectors for the

refining company level objective functions,

Yf = {yf ∈ Rkc : yf = f(x), x ∈ X}
Yz The feasible set of criterion vectors for the

refinery level objective functions,

Yz = {yz ∈ Rkr : yz = z(x), x ∈ X}
X A compact set of feasible decisions in Rn

C A np × nS matrix of purchase costs

D A ns × nD matrix of sales prices

E An ne × kr matrix of operating cost coefficients

O An no × kr matrix of refinery operation decision variables

P A ng × np × kr matrix of purchase decision variables

S An ng × ns × kr matrix of sales decision variables

T A kr × n matrix of transportation prices

kc Number of companies

kr Number of refineries

m Number of constraints

n Total number of sales and purchase decision variables

ne Number of equations in the model

ng Number of goods, ng = np + ns

no Number of operating parameters

np Number of purchasable goods

ns Number of salable goods

nD Number of demand nodes

nS Number of supply nodes

h, i, j Generic indices
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5.3 Assumptions

Next, the assumptions and abstractions made in the design of the RRM are de-

scribed.

The model covers a limited set of refineries which, in reality, function as a part of a

world-wide system of refineries where each individual agent is affected by the system

as a whole. The external agents are described as markets that have constant supply

and demand and limit the demand of goods from internal agents based on the actual

sales figures in the reference data. These external supply and demand are model

parameters and are in addition to any supply and demand of the same goods that

the refineries may provide themselves.

For simplicity, the number of goods in the model is limited to include only those

that have a considerable impact on the included refineries. Other goods are either

ignored or pooled into these chosen categories. As a result of reduced number of

different goods the refineries themselves have also been simplified in the sense of

removing process units and streams that deal with goods or characteristics that

are not included in the model. This is also required because the data available of

some refineries is not detailed enough for accurately describing some of the more

elaborate processes. An additional benefit of simplified refinery models is ease of

model upkeep. For further ease of upkeep, generic process unit models are used such

that each refinery model is built of the same constituent parts as the others. To

eliminate redundant solution options the model is designed such that each refinery

has access only to the markets that they would realistically get involved with in the

real world. This considerably reduces the number of equations in the model.

In Section 3.2, it was stated that in the short run the change in crude oil production

is only 2% of the change in crude oil price. As a result it is assumed that the user

can select crude oil prices for their chosen scenario without needing to change the

constraints of available crude oil. It was also stated that the demand for petroleum

products is inelastic with respect to price. Therefore, the user can also change the

price of these products without changing the demand constraints of the markets.

Thus, the supply and demand of the markets is assumed constant and does not

require updating when changing the values of the price parameters. The supply and

demand of the refineries in the RRM changes from solution to solution.

In forming the constraints of the problem it is assumed that each refinery sells all

their products instead of having an inventory where they might store some of the

products. Such an option could be added to the model in the future but in the
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scope of this thesis this approach depicting long-term mean throughput is deemed

sufficient. Furthermore, the model is assumed to be run for periods divisible by one

year. In this way, average production and demand can be used instead of accounting

for seasonal changes.

For simplicity, a constant price for each product on each market is assumed. In

addition, transportation costs apply and are determined by the supply and demand

locations. An exception is one market region where two different price levels are

defined such that once the initial demand is filled the price drops but the secondary

demand is infinite. This is to ensure all products can be sold somewhere in the model

since goods can not be stored at the refineries in the model as stated previously.

Furthermore, the problem at hand has network optimization features in the form of

a transportation problem. The network qualities of the problem do not cause issues

as long as the implementation does not include zero-cost transfers between nodes

such that they would create loops where the algorithm might become stuck.

5.4 Decision Variables

The decision variables include the purchases P, sales S, and operating parameters O

for each refinery. The most central decision variables in the model are the sales and

purchases. Each combination of a good, origin, and destination is represented by a

decision variable which represents either a sale to market, a purchase from market,

or a transfer between refineries. These make up most of the decision variables in the

model while refinery operating parameters amount for only a small fraction. The

refinery operating parameters are used to adjust the product palette of a refinery by

running the process units in alternative operating modes or directing some hydro-

carbon flows to different process units. Only some process units and hydrocarbon

flows have such alternative processing options.

5.5 Objective Functions

Consider a vector of refinery objective functions z(O,P,S). Let Oh,j denote the

value of operating parameter h of refinery j. Let Ph,i,j denote the amount of good

h purchased from market i by refinery j. Let Sh,i,j denote the amount of good h

sold to market i by refinery j. Let Dh,i denote the price of a unit of good h sold to

demand node i. Let Ch,i denote the cost of a unit of good h purchased from supply
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node i. Let Th,i,j denote the cost per unit of good h transported between market

i and refinery j regardless of direction. Let Eh,j denote the operating expense per

unit of operating parameter value for operating parameter h at refinery j. Then,

each objective function is of the form

zj(O,P,S) =

ng∑
h=1

nD∑
i=1

Sh,i,jDh,i −
ng∑
h=1

nS∑
i=1

Ph,i,jCh,i

−
ng∑
h=1

nN∑
i=1

(Sh,i,j + Ph,i,j)Th,i,j −
no∑
h=1

Oh,jEh,j , (5.1)

where j = 1, ..., kr, the first term is the total sales income, the second the total pur-

chasing costs, the third the total transportation costs, and the fourth the operating

costs, respectively. The refinery objective functions zj(O,P,S) correspond to refin-

ery cash margins. The refining company objective functions fj(O,P,S) correspond

to the cash margins of refining companies and equal the sum of the refinery cash

margins for that company’s refineries. When the operating costs terms are set to

zero the objective functions correspond to gross margins instead.

5.6 Constraints

There is a set of constraints associated with every level of the model. On the process

unit level, each process unit model has a set of built-in equality constraints such as

sulfur concentration in the naphtha fraction is equal to 0.01 + 0.2α, where α is the

sulfur concentration in the input feed. On the refinery model level and the refinery

network level, the purchases and sales of each refinery are described as equality

and inequality constraints such as the Urals crude oil purchase of refinery 3 must

be greater than or equal to 1000 barrels per day. These are due to geographical

location, refinery configuration, and market supply and demand.

Each refinery model is built using the same generic process unit model options, some

of which are presented in Table 3.2. Crude Distillation Unit (CDU) and Vacuum

Distillation Unit (VCU) are described using a different technical solution than the

other process units. Regardless of which solution is used, each process model is

specified to have a number of input feeds and petroleum fraction outputs. Each of

these process units also has minimum and maximum feed rate parameters that are

defined by their physical specifications.

As explained in Section 5.3 each refinery is assumed to sell all their products which

means that there is an equality constraint for each product of each refinery such that
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the sum of sales of any particular product must be equal to the produced amount

of that product.

The markets in the model can be divided into crude oil markets from which the

refineries buy raw materials and product markets to which refineries sell their prod-

ucts. Some markets might always buy at least or at most a certain amount of some

products which is manifested as inequality constraints.



Chapter 6

Validation of the Refinery Ranking

Model

This chapter describes the validation of the Refinery Ranking Model (RRM) such

that it can be stated whether the results match the reference data and whether solu-

tions are obtained in a robust and timely manner. Firstly, it is determined whether

the model can reproduce the cash margins of each refinery and refining company

in the reference data given the market prices in the reference data. Secondly, the

robustness and solution time of the model is tested in order to analyze the practical

usability. Section 6.1 presents the results of each individual refinery model whereas

Section 6.2 delves into the results of the complete RRM where the refinery models

are linked together into a network. Finally, Section 6.3 deals with the robustness

and solution time of both the refinery models and the complete model.

6.1 Validation of the Refinery Linear Program-

ming Models

Each refinery model is an LP model and as such has a single-objective function.

These models can be run separately from the rest of the MOLP RRM. In order

to find out whether these refinery models match the reference data, they are run

individually with the market price set and the material purchases set to match

those in the reference data. In addition, the results from refineries owned by the

case company can be compared to the results of existing LP models which have been

verified to match actual process data over the years. In the case of refineries owned

by the case company, the complexity of the previously existing models is higher than

39
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that of those created for this thesis. However, the results of the new models should

roughly match those of the older models. In this section, when referring to RRM

results they mean specifically the results of the refinery LP models runs separately

from the rest of the RRM.

The results of each refinery LP model in the RRM are compared to both technical

and economic reference data. The technical reference data specifies the input and

product palettes of each refinery. For example, a refinery might take three different

crude oils as input and produce eight different end products. For ease of comparison,

the input flow of each refinery is scaled such that the total input of petroleum goods

to each refinery is set to 100 kbbl/d. Air and hydrogen are not taken into account

in this input flow and thus the output flows of the refineries can be above 100

kbbl/d. The input crude oil palette in RRM is set to match the reference data when

validating refinerywise results. For the economic reference data, both gross margin

and cash margin are considered. These are scaled such that the gross margin of

Refinery 1 is set to 10 $/bbl and others are adjusted proportionally to that. Thus,

the signs and proportions are maintained.

When considering the product palettes of refineries, it is importance to notice that

there are some differences in how the different petroleum fractions are defined in the

RRM and in the reference data. For example, abstractions had to be made in how

gasoline products are pooled together and in the product specification constraints.

Furthermore, as explained in Section 3.1, there is overlap in the different petroleum

fractions. Since there is no precise knowledge on how these abstractions are made

in the reference data, there are bound to be differences between the RRM and the

reference data. When comparing the product palette of a refinery in RRM to its

counterpart in the reference data, it is worth looking at each product individually but

also comparing the three broader main categories to each other. These categories are

heavy products, middle distillates, and light products. It was stated in Section 3.1,

that lighter products are generally more valuable than heavier ones and that higher

sulfur concentration reduces value. Thus, products within the same main category

are often of similar value. Figure 6.1 illustrates the product palettes of each refinery

in the reference data and in the RRM. Heavy product are presented in shades of

brown whereas middle distillates are red and light products blue. The product

labeled ‘loss’ refers to the material flows that are directed to combustion instead

of being sold as end products. These belong to the light products category since

they are mostly gases. Both the reference data and the RRM actually contain more

products than shown here but further complexity would lend little added benefit to

the analysis of the results.
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Figure 6.1: The product palettes of each refinery in the reference data and in the

RRM. Heavy products are illustrated in shades of brown, middle distillates in shades

of red, and light products in shades of blue.

Figure 6.1 shows that for refineries 1, 3, and 5 the rough categorization of the product

palette yields very similar results in the RRM and the reference data. For Refinery

2, the RRM clearly gives a higher amount of heavy products at the expense of light

products. However, this refinery has gone through a change of refinery configuration

after collecting the reference data. It is decided that the current configuration should

be implemented in the RRM even if it complicates model validation. In the new

configuration, a smaller proportion of heavy fractions is converted into light products

which explains the change in the product palette. For refinery 4, the RRM gives

higher amounts of light products and less middle distillates than the reference data.

Investigation reveals two potential factors for the difference. One factor is that

the general process unit models do not necessarily represent the changes in density

during the process for this particular refinery. If, in reality, the density of the middle
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distillates is lower and that of light products is higher that could explain a deviation

similar to that shown in the figure. However, the possible mismatch in densities is

unlikely to be sufficient to explain a deviation of such a proportion. The second

potential cause of the difference between the RRM result and the reference data lies

in the data that describes the crude oils. If the composition of a crude oil has major

differences between the RRM and the reference data then the petroleum fraction

yields will inevitably differ. In such a case, only making changes to the refinery model

configuration can remove this difference from the results. Naturally, this would then

be inaccurate compared to the configuration in the reference data. It is also possible

that there is an error in the reference data such that the refinery configuration and

product palette in the reference data do not match each other.

Taking a look at the products on the more precise level, it is clear that there is

some difference in the ratios of the actual products between the reference and the

RRM. These are generally caused by minor differences in the process unit models

and the product specifications between RRM and the reference data. For example,

since the different refinery models in the RRM use the same process unit models,

the kerosene fraction that comes from the CDU differs between RRM and reference

for Refinery 5. If a CDU is tailored to match the reference data for Refinery 5,

then this difference can easily be accounted for. Concerning the effect of product

specifications, Refinery 3 allows for a good example. The sum of gasoil and diesel

produced at Refinery 3 is quite well matched between the reference data and the

RRM. The product specifications for gasoil are much more lenient than for diesel. If

possible, a refinery will attempt to process all their gasoil into more valuable diesel

but in some cases the specifications, e.g. sulfur concentration, can not meet the

specification if all of the gasoil is processed. Thus, some of the gasoil needs to be

sold as is.

A comparison of the refining margins of each refinery and refining company are

plotted in Figure 6.2. The blue bars indicate gross margins and the red ones cash

margins. Darker bars indicate reference data and lighter bars RRM results. For

each individual refinery and refining company, the difference between the reference

bar and the RRM result bar is the same for the gross margins and the cash margins.

Since cash margin is gross margin minus operational expenses, this indicates that

the operational expenses in the RRM match exactly to those in the reference data.

Calculations show that the operational expenses in the RRM are a precise match

to the reference data. However, it is clear from Figure 6.2 that in many cases the

difference between the reference and RRM bars is considerable. For the refineries,

the ranking from the most profitable to the least profitable in the RRM matches the

reference data. When summing the results of the refineries to obtain the results for
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the refining companies, the differences accumulate such that the RRM claims Com-

pany 2 to be more profitable than Company 3 wheres the reference data indicates

otherwise.

Figure 6.2: Gross and cash margins for each refinery and refining company in the

reference data and in the RRM.

As shown before, comparison of the reference data and the RRM results shows

differences in both the product palettes and the refining margins. It should be

investigated whether the differences in refining margins can be explained by the

deviation from the reference product palettes. For Refinery 1, the refining margins

are lower than reference. On the production side, there are more heavy products,

less middle distillates and more light products. The deviation from middle distillates

to heavy products indicates lower refining margin. However, the extra amount of

light products and especially a higher proportion of gasoline as compared to naphtha

indicates the opposite. Therefore, for Refinery 1, there is no clear indication as to

why the refining margins are too low. More precise inspection of the exact products

and their prices would be needed in order to identify the cause.
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For Refinery 2, the higher amount of heavy products in the RRM as compared to the

reference would indicate lower refining margin which is the opposite of the obtained

results. A cause is identified from the precise product palette. The low-sulfur and

high-sulfur heavy products categories include products called fuel oil and vacuum

gas oil (VGO). In the RRM, the proportion of the more valuable VGO is higher.

Since the portion of heavy products is very high for this refinery this creates a great

difference in the results.

Considering Refinery 3, the RRM indicates slightly higher refining margins than

the reference data. As the product palette from the RRM matches well with the

reference data, there is no single source of deviation in the refining margins. The

small differences in the product palette simply accumulate.

Refinery 4 has the smallest error in the refining margin results. The RRM results

give slightly too high margins. This is an interesting result as the product palette

of this refinery differs considerably from the reference data. The conclusion is that

the profit from diesel is similar to that of gasoline for this refinery. In the RRM,

Refinery 4 creates more diesel and gasoline and not as much of the less valuable

gasoil which explains the increased refining margin.

Finally, Refinery 5 is managing its economy much better in the RRM than in the

reference data. In the RRM, they are producing more kerosene and diesel and less

gasoil which explains part of the result. Another factor is that the RRM shows

a much higher yield of valuable specialty light products which are not separately

categorized in Figure 6.1.

In conclusion, the refinery models yield similar results to the reference data but

still have some differences that have a considerable impact on the refining margins.

In order to achieve the capability to reliably predict the profitability of refineries

under varying market situations these differences need to be fixed. In one case, the

reference data is outdated. It is decided to describe the current situation rather

than attempting to precisely replicate the reference data. For more rigid validation,

it is recommended to replicate the historical situation for model validation before

introducing the RRM into practical use.
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6.2 Validation of the Multi-Objective Linear Pro-

gramming Model

This section investigates how the differences between the refinery LP model results

and the reference data are carried over to the complete RRM which contains all the

refinery models. The RRM is run with the market price set of the reference data

in order to determine whether the net cash margins of each company are consistent

with the reference data. Unlike when testing the refinery models’ match with the

reference data, now the material feed of each refinery is not fixed although the total

materials available in the model are. This is because it is desired that the model

is designed so that the refineries tend to use the same raw materials as they would

in reality. This should be achieved by describing their refinery configuration and

transportation costs precisely enough to present the refineries with the best profits

when refining the same raw materials in the model as in the real world. The previous

section presented the results of the refinery LP models when run separately from

the rest of the RRM. In this section, RRM results refer to the results obtained when

running the MOLP model as a whole.

When running the MOLP model, the weighting method which was explained in

Chapter 4 is implemented. Each refinery is given a weight and these weights are

varied such that the solution emphasizes the refineries’ objective functions in dif-

ferent ways. In this way, different solutions can be explored without changing the

market price parameters. These different solutions can then be used to analyse the

Pareto front. Also, if desired it is possible to give some refineries or refining com-

panies greater weight in order to account for some advantage they have. This could

be, e.g., a greater ability to secure desired trade contracts. Thus, the model is more

likely to allocate valuable but limited resources to those refineries rather than some

others.

Figure 6.3 displays the sensitivity of refinery objective functions to the weight given

to different refineries. As predicted, the subplots on the diagonal indicate that

increasing the weight of a refinery also increases the objective function value of that

refinery. However, the relation is clearly nonlinear and unpredictable. Taking a look

at each subplot column, it can be seen that increasing the weight of one refinery

reduces the objective function values of the other refineries. This is not surprising

since as the value of one objective function increases at least some of the others

should decrease if the solution is on the Pareto front. The changes on the diagonal

are generally much greater than in the other subplots. The increase in the objective

function of a refinery when its weight is increased is thus compensated by several
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other refineries. The single exception is that a change in the weight of Refinery

1 sometimes has a great impact on the objective function of Refinery 2. It seems

that there are solutions where the totals of all objective functions are almost equal

although the values of the decision variables vary greatly between these solutions.

In a problem of this complexity this is not surprising. Although the results suggest

that such behavior is relatively rare, it is beneficial for the future use of the RRM

to recognize that such situations may occur.

Figure 6.3: Sensitivity of the refinery objective functions to the weight of other

refineries.

Figure 6.4 displays the refining company objective functions from the different runs

as a scatter matrix. The reference data point is indicated as a red dot. The refining

company level Pareto front Pf (Yf ) can be estimated from the figure. The reference
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point can be seen slightly behind the Pareto front in all dimensions. Thus, on the

refining company level, the reference point should be in the feasible region of the

RRM.

Figure 6.4: Refining company level objective function values for Pareto front esti-

mation. The reference data point is plotted in red.

Similarly, the refinery level Pareto front Pz(Yz) can be estimated from Figure 6.5.

Here, it is clear that in the dimension of Refinery 5 the reference point is far outside

the Pareto front. For the other dimensions, the reference point seems to be either

on the Pareto front or behind it. The conclusion is that currently the RRM does

not depict Refinery 5 with sufficient precision. Refinery 5 is not as profitable in

the MOLP model as it should be. This is surprising since, when run separately,

the LP model of Refinery 5 produced a higher objective function value than in the
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reference data. The parameters of the RRM, such as transportation costs, supply

and demand constraints, and market prices seem to cause Refinery 5 to become less

profitable in comparison to the other refineries.

Figure 6.5: Refinery level objective function values for Pareto front estimation. The

reference data point is plotted in red.

6.3 Robustness and Solution Time

Since the intended use of the model requires it to be vastly expanded, it is critical

that the model is sufficiently efficient and robust. Efficiency is measured in solution

time whereas robustness is measured in number of iterations and convergence. The
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number of iterations of the optimization algorithm naturally are directly related to

solution time. The refinery models and the RRM as a whole are run several times

with different starting points for the optimization algorithm. A model is efficient if

the solution times a re consistently low. A robust model has a high portion of runs

that both converge and have a low number of iterations. The solution times during

100 runs of each refinery LP model are shown in Figure 6.6. Similarly, the numbers

of iterations are shown in Figure 6.7. From these, it is evident that the number or

iterations and solution time of the refinery LP models A and B are quite constant.

Refinery D has more variation in solution time although it has the most consistent

number of iterations. Refineries C and E have considerable variation in solution time

as well as higher numbers of iterations on average than the other refinery models.

Thus, refinery LP models C and E are the least robust although not problematic.

With the current settings, all runs converged fully. In conclusion, each refinery LP

model is reasonably robust. Objective function results are unchanged between runs

for at least 98% of runs for each refinery LP model.

Figure 6.6: Solution times for the refinery LP models.

The efficiency and robustness metrics for the whole RRM with multiple starting

points are illustrated in Figure 6.8. The time required to solve a refinery LP model
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Figure 6.7: Optimization algorithm iterations for the refinery LP models.

is a second or a few whereas for the RRM containing five refineries the solution time is

usually around 10 seconds. The RRM also requires dozens of iterations to converge.

The solution time is good and the number of iterations reasonable. However, the

cash margin that is the objective function of the model shows less robust behavior.

Half of the runs had considerably worse objective function values than the other

half. This means that at least in those cases the algorithm has converged to a very

poor local optimum. The first third of the runs from the left have converged to the

same best value which could be the global optimum. Due to this behavior, several
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runs with different starting points need to be made when the model is used. At

least 10 is recommended in order to reliably obtain the best result. To decide the

precise amount, similar graphs as shown here should be plotted with the candidate

number of runs. If a considerable portion of the runs converge to the highest result,

then the number of runs is sufficient.

Figure 6.8: Efficiency and robustness metrics for the RRM.

Testing the functionality of the constraint method shows that setting the maximum

for the gross margin of a refinery sometimes results in irrational actions. These

include purchasing large amounts of unneeded hydrogen and burning it in order to

lower the refining margin. The desired behavior would be to purchase lower-quality

raw materials rather than purchasing expensive ones and squandering them. This

problematic behavior in particular can theoretically be prevented by building care-



CHAPTER 6. VALIDATION OF THE REFINERY RANKING MODEL 52

ful constraints within the refinery models. Such safeguards are implemented in the

RRM to some degree. However, even if all such loopholes would be found adding

too many constraints like these could considerably increase the effort required to

correctly setup the model for a desired scenario. Thus, it is preferable to avoid set-

ting maximum limits to the objective functions of any subset of the model. If such

limits are put in place, it is recommended that they should not be much smaller than

the value that the unconstrained function would converge to. Unrealistic behavior

caused by the constraint method might be detected by comparison to results ob-

tained without the constraint method. With the constraint method, some decision

variables associated with very unprofitable decisions might have higher solution val-

ues. If more profitable decisions would be available without changing the decisions

of other refineries then it is likely that the constraint method is not yielding realistic

results for the scenario. If a constraint causes irrational behavior, then it should not

be used for the scenario.

In conclusion, the RRM model converges reliably and in reasonable time but the

individual objective functions exhibit unreliable behavior since they do not seem

to be directly related to the input parameters. A more extensive study should be

conducted before the model is taken into use or attempts are made to either expand

it or add detail. Also, use of the constraint method should be avoided.



Chapter 7

Market Price Sensitivity of Refin-

ing Margins

This chapter presents a sensitivity study using the Refinery Ranking Model (RRM)

built in this thesis. Generally, topics of interest include study of the conditions under

which the profitability order of different companies change, a competitor changes

their crude oil palette, or a refinery becomes unprofitable. The aim of this sensitivity

analysis is to test whether changes in the market scenario yield expected results.

Thus, a scenario should be selected such that the correct response to market change

can be confidently predicted. For example, all other things being equal, the increase

in all crude oil prices decreases the cash margin of all refineries. The sensitivity

of the refinery cash margins is tested by varying the prices of gasoline products

and crude oil. The market prices of the reference data are used as the median

for the analysis such that prices are varied below and above the reference values.

Neither the weighting method nor the constraint method are used in this sensitivity

analysis.

The effect of changes in gasoline products prices is displayed in Figure 7.1. Note

that the line illustrating the cash margins of all refineries is a weighted average

calculated from the cash margin and the volume throughput of each refinery. As

expected, the cash margins of each refinery tend to rise as the prices of the gasoline

products rise. However, between the point where the prices are altered -10 $/tonne

and the reference point there is a strong anomaly. The cash margins are lower

in the reference point than when the gasoline products prices are altered by -10

$/tonne. For a pure LP problem, the refining margins of all refineries should never

decrease when the price of a product increases. At most the refining margins of

some refineries could decrease and those of other refineries increase such that the
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sum of the margins would also increase. This suggests that here the optimization

algorithm has converged into a local maximum rather than the global one. Thus,

the expectation that the model is susceptible to converging into local extrema is

proven correct.

Figure 7.1: Refinery cash margins as functions of gasoline price.

The price of crude oil has historically varied greatly. Specifically, the historical prices

of two different crude oils can be seen in Figure 7.2. In the figure, spot price refers

to the price of the crude oil if purchased and delivered immediately. The prices are

given as Free On Board (FOB) which means that the seller is responsible of the

goods only until they have been loaded on the transport [International Chamber of

Commerce, 2000]. Thus, transportation is not included in the price. As mentioned

in Chapter 5, the RRM is designed to analyze a time period of one or several years.

The figure shows that historically crude oil prices have changed up to 100 $/bbl

during such periods of time. However, the price of only one crude oil is altered

in this sensitivity analysis while others are kept unchanged. Therefore, the change

should not be greater than historical differences in prices between different crude

oils. In the figure, the price gap varies between 0 $/bbl and 20 $/bbl. For this

sensitivity analysis, variations up to ±3 $/bbl are used.

Given the market prices in the reference data, the RRM has a tendency to utilize

high amounts of Grane crude oil in every refinery. This is not actually a realistic

situation and indicates that further adjustments would be needed in the model. The

production rates of different crude oils should be included in the RRM as constraints

to avoid such situations. However, for the purpose of this case study it is interesting

to see how changes in the price of Grane affect the refinery cash margins. Figure 7.3
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Figure 7.2: Historical crude oil prices [U.S. Energy Information Administration,

2018].

illustrates the effects of Grane price on the cash margins of the refineries. The line

plot of the sum of the objective functions has no trend but instead varies slightly

around the value it has in the reference point. The results indicate that in the RRM

the refineries have several options for crude purchases between which they are rather

indifferent. The higher the price of Grane the fewer refineries use it extensively but

they can replace it with other options that are nearly as good to begin with.

As an additional note concerning Figure 7.3, at +3 $/bbl the solution clearly changes

drastically. The cash margin of Refinery 1 drops dramatically and that of Refinery

2 rises a similar amount. It is noteworthy that the previous changes in the price of

Grane did not have a major impact on the cash margins of any refineries nor the

overall cash margin of the RRM. This indicates that sometimes, as a result of a

minor change in the model parameters, the RRM can make drastic changes in the

allocation of valuable resources.
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Figure 7.3: Refinery cash margins as functions of Grane crude oil price.



Chapter 8

Discussion

This chapter discusses the challenges discovered in the earlier chapters as well as

potential pitfalls in future development of the RRM. Section 8.1 provides recommen-

dations for dealing with the undesirable behavior identified in the RRM in Chapters

6 and 7. In future development and use of the Refinery Ranking Model (RRM),

model complexity and the price parameters require attention. When the number

of refineries in the RRM is increased, it is imperative that robust solutions can be

obtained in reasonable time. Thus, the number of equations in the model must not

increase uncontrollably. An exponential increase in the number of equations is pos-

sible if model extensions are designed carelessly. This danger is addressed in Section

8.2. Also, a good understanding of the RRM requires a proper interpretation of the

price parameters. An arbitrary combination of price parameter values is not nec-

essarily realistic even if each parameter value is realistic on its own. The prices of

goods depend on supply and demand which, for some goods, the refining companies

could potentially affect. Section 8.3 explorers this phenomenon.

The case company has run several market scenarios where each price parameter is

specifically set for the scenario. These same scenarios should be run in the RRM

and the results compared to the existing ones. This could provide further insight

to the quality of both the RRM and the previous forecasting method. The RRM

is expected to outperform the older forecasting method especially in scenarios that

considerably differ from the reference data.
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8.1 Avoiding Undesired Behavior in the Refinery

Ranking Model

The results of the RRM often differ from the reference data. Potential causes of

deviation from the reference include differences in complexity and modeling solu-

tions, incomplete data, combining different data sources, averaging process data,

and differences in valuation of inter-refinery flows within companies.

In Chapter 7, two types of undesirable behavior were detected. First, convergence

to local optima was encountered. This was expected, as stated in Chapter 1. Sec-

ond, unpredictable allocation of resources among the refineries was detected. Small

changes in parameter values can have drastic effect on the operation of individual

refineries. For future applications of the RRM, it should be studied whether the

probability of such unpredictable and unrealistic solutions can be reduced. This

might be achieved through tighter constraints, more varied transportation prices

based on refinery location, or the utilization of the weighting method. Both types

of problematic behavior can be avoided to some degree by running the optimiza-

tion algorithm with several starting points as well as conducting sensitivity analysis.

The sensitivity of the solution of any scenario can be analyzed by altering the RRM

parameters. However, the number of parameters is high and sensitivity analysis for

the RRM is cumbersome. Therefore, only the most significant parameters can be

reasonably analyzed for most scenarios. The sensitivity analysis results can be used

to alter the parameters slightly in order to avoid a local optimum or a solution with

an unrealistic allocation of resources.

8.2 Model Complexity

Currently, the RRM comprises of five refinery nodes, five demand nodes, and a single

supply node which yield a grand total of 17 007 equations. There are 973 transport

links, 55 goods, 135 combinations of goods and locations for demands, as well as 30

combinations of goods and locations for supplies. In Europe there are around 80

refineries. Including all of those in the same manner as the model has been built so

far would result in the number of nodes increasing by a magnitude of ten or more.

The number of equations would increase exponentially. A rough estimation of the

number of equations ne is given as
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ne = kr(2500 + np · nS + ns · nD) + 1500 + C , (8.1)

where C is the number of additional case-by-case network-level constraints. In

the current RRM structure, C is small and directly proportionate to the number

of refineries. Thus, it is of no major concern. The constant 2500 is a result of

implementing one refinery LP model in more detail than the others. In Formula

8.1 it can be seen that, as more refineries are added, increasing also the number

of supply or demand nodes would lead to exponential increase in the number of

equations. Assuming 80 refineries, 80 demand nodes, and a single supply node the

theoretical number of equations would be more than one million.

Since using and updating the model requires labor it is not realistic to assume such

a huge amount of equations could be handled with reasonable effort and acceptable

risk of human error. Luckily, when more refineries are added, a notable portion of

the equations will be redundant because often faraway clients are not viable to a

given refinery. By identifying the redundant connections between nodes it is possible

to divide the model into market regions. These would likely compete for the same

crude oil supply but sell their products to different markets. Therefore, by carefully

selecting which nodes are connected to each other, the RRM could be built such

that the number of equations approximately follows the following formula

ne = kr(2500 + np · n′S + ns · n′D) + 1500 + C , (8.2)

where n′S, and n′D are the numbers of supply and demand nodes, respectively, in a

single market region only. It is assumed that these figures are roughly the same for

each market region. Assuming that each market region contains 10 refineries, every

additional 10 refineries increase the number of equations by an amount equal to the

toal number of equations in a model that includes only the first 10 refineries.

In case there is need to further limit the number of equations, the model structure

needs to be altered considerably. Three alterations are suggested. Firstly, refineries

could be classified such that a smaller number of different refinery topologies would

need to be implemented and maintained. Secondly, refineries that have a lesser

market impact on the case company could be depicted such that all refineries of

a company are represented as a single refinery with increased capacity. Thirdly,

markets that have a lesser impact on the case company could be described with less

detail such that the markets of several countries would be pooled together into a

single demand node and a supply node if necessary.
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8.3 Price Parameters and Game Theory

Any set of price parameters used in the model depicts some market equilibrium.

This equilibrium can be selected based on historical observations, predictions of the

future, or simply curiosity towards otherwise interesting scenarios. In practice, such

an equilibrium is reached as the result of the actions taken by all the agents that can

affect the industry. These agents include several petroleum exploration companies,

petroleum refineries, end-customers, and policymakers. However, subsets of these

agents can be identified and their behavior potentially understood and predicted

with enough precision to gain some understanding of the dynamics that form the

market equilibrium. For example, an attempt could be made to understand the

behavior of the refining companies by describing their mutual competition as a

game. Such an analysis might provide further understanding on whether a selected

set of prices or some solution given by the RRM is feasible.

A problem with the RRM introduced in this thesis is that some scarce supplies

might be excessively allocated to a certain refinery even if in reality others would

compete for it as well. This kind of a situation was shown in Chapter 7. In such

situations, assuming perfect competition, the price of the good would rise to the

highest level that any refinery would be willing to pay. That price would then

match the true market equilibrium price. It is noteworthy that the refinery willing

to pay the final price might not be the same as the refinery that the resource is

currently allocated to in the RRM. This shows how the price parameters selected

for the model can sometimes be poorly selected but it is not easy to detect whether

that is the case.

An attempt to simulate such market reactions could be made by running the model

repeatedly with the analyzed price increased by a step for each run. The refinery

that the scarce good is originally allocated to should be inactive for the duration of

the test. Once the price would reach a level where that good is no longer allocated

or it is allocated to a very poor option, the inactive demand could be reactivated.

If the good would still be allocated to that demand it would indicate that this is

the price that only this particular refinery is willing to pay for that good. However,

this is problematic since the model dynamics are affected by the inactivation of that

particular refinery. A solution to this might be to increase the supplied amount of

the good to be analyzed and then increase the price to find the point where there

remains only one refinery that is willing to pay for the good. Of course, there could

be several reasons for some refinery to obtain certain goods for a better price than

others. The transportation costs of the RRM are used to account for such situations
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where the price of a good is different for different refineries.

As briefly discussed in Chapter 2, describing the system of the RRM additionally

as a cooperative game could be used to explore the best possible refining margins

attainable by the refineries should they choose to cooperate. Although the coop-

erative situation itself is unrealistic, its results could be compared to those of the

RRM to better understand the MOLP model. The realistic allocation of resource

in the RRM proved problematic due to the inherent difficulty of strictly specifying

competition in a MOLP model. When using the weighting method or no scalariza-

tion method at all the optimization algorithm sees the RRM as a cooperative model

with transferable utility. It only maximizes the total refining margin of the system

as a whole. Although some ideas are represented for encouraging the RRM towards

realistic behavior, it is not easy to judge the results given limited reference data.

Thus, comparison with both a competitive and a cooperative game theoretic model

could be used to analyze how close the RRM solutions are to either cooperation or

competition.



Chapter 9

Conclusions

In this thesis, a competition situation of multiple refining companies was formulated

as a multi-objective linear programming problem. A practical implementation of the

problem was introduced and labeled the Refinery Ranking Model (RRM). It ranks

the profitability of competing petroleum refineries under different market scenarios.

The solution of the RRM provides detailed values of the purchases, sales, operating

costs, and operating parameters of the different refineries. Although the model

is formulated as a optimization model the main practical use is simulations that

identify the impact of different market scenarios. The most intuitive use of the

RRM is to simulate the relative and absolute profitability of refineries in different

market situations. Another beneficial simulation study is to explore the effect of

market prices on the behavior of competitors. This can help understand, e.g, when

a competitor will change from one crude oil to another. A third basic use for the

RRM is running a sanity check for extreme scenarios before applying them to other

analysis. For example, if a majority of refineries in the RRM become unprofitable in

a given market scenario then the scenario might be overly pessimistic. The RRM is

developed for the Finnish oil refining and renewable solutions company Neste using

Spiral Suite1 optimization software.

The RRM consists of several refinery models linked together into a network. Each

refinery affects their competitors as well as having synergy benefits with other re-

fineries owned by the same refining company. The greatest challenge in utilizing

multi-objective linear programming for such a competition situation is obtaining

results where each refinery aims to maximize the profit of its own company rather

than the total profit of all companies. In order to find the desired Pareto-optimal

solutions using the Spiral Suite1 software, the weighting method and the constraint

method were explored. Under certain circumstances, the constraint method can

1 Spiral Suite by AVEVATM
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yield very unrealistic results even if realistic constraints and parameters are used.

In these cases, the profits of some refineries are brought down artificially to circum-

vent some constraints and increase the total profit in the model. Thus, the use of the

constraint method is not recommended. The weighting method is more robust and

is successfully used to emphasize the importance of some refineries over others.

The refineries in the RRM are single-objective LP models. Each refinery model is

built of the same process model units although configurations differ. This reduces

the burden of maintenance when changes are made to the RRM in order to expand

or update it. The refineries’ product palettes and profitability were compared to

reference data and some deviations were found. However, potential causes for these

deviations were identified and they can be eliminated in future development.

To validate the results of the RRM, they were compared to existing reference data.

Furthermore, the RRM’s sensitivity to some market price parameters was tested

and the feasibility of the results evaluated. Analysis on the results of the RRM

revealed that there are local maxima into which the model can converge. This

was expected due to the nonlinear nature of some of the refining processes in the

RRM. It was also discovered that the model sometimes allocates scarce resources

unrealistically such that the competition situation becomes skewed. Revising the

constraints and geographical impact or using the weighting method are suggested

as possible solutions.

Since there are over 80 refineries in Europe alone, the RRM is currently very con-

stricted and as such does not reflect the wider dynamics of the industry. Future

development would likely include adding further refinery models and possibly ad-

justing the level of detail in both markets and refineries. Other market areas such as

Asian and American markets, including their refineries, would be sensible to describe

simply as large supply and demand nodes with their parameters and transport links

set accordingly. A similar approach could be taken also with regions within Europe

to reduce solution time as well as effort in implementation, maintenance, and usage.

The trade-off in this approach is the loss of detail in the model.

There are two major issues in the RRM design. The first one is the quality of the

reference data. The data is at times incomplete or outdated. Also, since several

data sources are used it is questionable whether the data from different sources

matches the same market and refinery operating conditions. The second issue is

the competition dynamics of the refining companies. The selection between Pareto-

optimal solutions would benefit from further market and technical insight. If the

RRM is expanded to include dozens of refineries, then the task of selecting the so-

lution becomes even more difficult. Therefore, an iterative method is recommended
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for finding the realistic options among the Pareto-optimal solutions.

In conclusion, the RRM can be utilized for several useful simulations. These sim-

ulations can assist in planning company strategy and increase understanding of

competitors’ potential actions. The RRM can be expanded to cover large systems

of refineries with reasonable increase in solution time. Expanding and maintaining

the RRM requires low effort since all of the refinery models are constructed of the

same process unit models.
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