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been studied in various fields of science. In this Thesis, we consider ICA for
independent and identically distributed observations and for time series data.

We present a new approach for complex valued time series ICA. We have formu-
lated a complex version of the AMUSE (Algorithm for Multiple Unknown Sig-
nals Extraction) transformation. We compare the AMUSE transformation to the
FOBI (Fourth-Order Blind Identification) transformation. Moreover, we compare
these ICA transformations to Principal Component Analysis (PCA) and Invariant
Coordinate Selection (ICS). We consider theoretical properties of AMUSE and
FOBI transformations and we conduct a simulation study to demonstrate that
FOBI and AMUSE work in different settings. We have derived a complex version
of the minimum distance index to perform the comparison. The most promising
application for our method is the functional magnetic resonance imaging, where
the collected data is complex valued time series. We also have a short example
related to fMRI.

We demonstrate our method with an image data example. In the example, we
have signals that form two-dimensional fractals. We then mix the fractals and
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the original images.

Keywords: complex valued random variable, independent component
analysis, location functional, multivariate analysis, perfor-
mance index, scatter functional, time series

Language: English

ii



Aalto-yliopisto
Perustieteiden korkeakoulu
Teknillisen fysiikan ja matematiikan koulutusohjelma

DIPLOMITYÖN
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Tämän diplomityön tarkoituksena on tutkia riippumattomien komponenttien
analyysia kompleksiarvoisille satunnaismuuttujille. Riippumattomien kompo-
nenttien analyysissa oletetaan, että havaitun p ulotteisen vektorin alkiot ovat
lineaarikombinaatioita havaitsemattomasta p ulotteisesta vektorista, jolla on toi-
sistaan riippumattomat komponentit. Tavoitteena on löytää sekoitusmatriisin
käänteismatriisi, jonka avulla havaittu p ulotteinen vektori voidaan muuntaa riip-
pumattomiksi komponenteiksi. Johtuen riippumattomien komponenttien analyy-
sin lukuisista sovelluskohteista, sitä tutkitaan aktiivisesti niin sovellusten kuin
teoriankin näkökulmasta. Tässä työssä tarkastelemme riippumattomien kompo-
nenttien mallia, jossa havainnot ovat riippumattomia ja samoin jakautuneita.
Lisäksi tarkastelemme riippumattomien komponenttien aikasarjamalleja.

Työssä esitellään uusi lähestymistapa kompleksiarvoisien aikasarjojen riippumat-
tomien komponenttien löytämiseksi. Olemme määritelleet kompleksisen version
AMUSE (Algorithm for Multiple Unknown Signals Extraction) menetelmästä.
Vertaamme AMUSE transformaatiota FOBI (Fourth-Order Blind Identification)
transformaatioon. Lisäksi vertaamme näitä riippumattomien komponenttien ana-
lyysin menetelmiä pääkomponenttianalyysiin ja invarianttien koordinaattien va-
lintaan. Tarkastelemme AMUSE ja FOBI menetelmien teoreettisia ominaisuuksia
ja havainnollistamme eroja simulaatiotutkimuksella. Työssä on johdettu vertai-
lun suorittamiseksi kompleksinen versio lyhimmän etäisyyden indeksistä. Lupaa-
vin sovelluskohde menetelmällemme on funktionaalinen magneettikuvaus, jossa
havaittu aineisto on kompleksiarvoista aikasarjaa.

Havainnollistamme menetelmämme toimivuutta esimerkillä, jossa kompleksiar-
voiset signaalit muodostavat piirrettynä kaksiulotteisia fraktaaleja. Sekoitamme
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Chapter 1

Introduction

In the modern information society there are countless means of measuring
and acquiring vast amounts of data. Currently, we have more data that we
can process. Separating noise from the underlying and interesting structures
that hide beneath the surface is an important focus of research in various
fields of science. Finding these unobservable and hidden structures is some-
times crucial in exposing the true nature of the data. Furthermore, in many
applications the phenomenon in interest is not directly measurable, but mix-
tures of something measurable.

The problem described above is called the Blind Source Separation (BSS)
problem. The word blind is used for denoting all identification or inversion
methods based on output observations only. In the problem of BSS, we as-
sume that an unknown linear system consists of several inputs and outputs.
The aim is to recover the input vectors by estimating an unmixing matrix.
The number of phenomenon where we cannot directly measure the interest-
ing source signals is vast and include for example electroencephalography
(EEG), telecommunications signals, wind prediction, financial time series,
digital image processing, just to mention a few. See Anemüller et al. (2003);
Adali et al. (2011); Mandic et al. (2009); Kiviluoto and Oja (1998); Comon
and Jutten (2010).

According to Comon and Jutten (2010), the source separation problem
was originally formulated in the 1980s in the framework of neural modeling
(Roll (1981)) and independently in the framework of communications (Bar-
Ness et al. (1982)). Immediately the papers contributed in the mid-1980s
drew the attention of the signal processing community. Since then the blind
source separation (BSS) problem has been addressed widely in literature.
Several algorithms have been proposed to solve the BSS problem. However,
the study on the statistical properties has been insufficient, especially when
we face complex valued data. Recently, the interest towards BSS has been

1



CHAPTER 1. INTRODUCTION 2

increasing, see Chen and Bickel (2006); Ilmonen et al. (2011); Matteson and
Tsay (2011); Samworth et al. (2012); Nordhausen (2014) and their bibliogra-
phies. Theoretical analysis of some BSS functional has been studied in e.g
Ilmonen et al. (2010a); Nordhausen et al. (2011b) and Ollila (2010).

A particularly interesting submodel of BSS is the Independent Compo-
nent Analysis (ICA) model, where we further assume that the components
of the unobservable source vector are mutually independent. ICA was origi-
nally based on the use of the regular covariance matrix and the scatter matrix
based on fourth moments, see Cardoso (1989). The transformation was later
named as the FOBI (Fourth-Order Blind Identification) transformation. By
assuming statistical independence, we can identify source signatures without
any a priori model for propagation or reception, provided that the source
vectors are statistically independent and at most one them is normally dis-
tributed. For more, see Hyvärinen et al. (2001) and Comon (1994).

In this Thesis, we consider real and complex valued ICA based on simul-
taneous use of two scatter matrix functionals. The use of two scatter matri-
ces has been considered in Nordhausen et al. (2008); Oja et al. (2006) (real
data) and Ollila et al. (2008)(complex data). The asymptotical properties
have been studied in Ilmonen et al. (2010a, 2012b)(real data) and Ilmonen
(2013)(complex data).

However, the papers above do not consider the fact, that there is often
a temporal (e.g. time series) or spatial (e.g. image analysis) dependence
between the observations. This is in contrast to basic ICA model where
the observations have no particular order. In many applications, the mixed
signals are not random variables but time signals or time series. Ignoring
the time series form can lead to loss of crucial information. In time se-
ries context a scatter matrix type approach is obtained using simultaneously
two autocovariance matrix functionals with different lags. This approach is
called AMUSE (Algorithm for Multiple Unknown Signals Extraction). ICA
based on autocovariance matrix functionals has been applied to second-order
stationary time series for real valued data, see Tong et al. (1990). The asymp-
totic properties of the AMUSE transformation under general conditions has
been considered in Miettinen et al. (2012).

The complex valued AMUSE has not previously been studied in the lit-
erature. In this thesis we introduce the complex version of the AMUSE
transformation. The applications, where the complex valued AMUSE can
be utilized include functional MRI (Adali and Calhoun (2007)), prediction
of wind forecast profile (Mandic et al. (2009)), signal processing (Adali et al.
(2011)), spatiotemporal analysis of EEG (Anemüller et al. (2003)) and many
more.

We compare the complex AMUSE to the complex version of FOBI. The
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FOBI transformation and asymptotic results have been studied in both the
real and the complex case, see Ilmonen et al. (2012b) and Ilmonen (2013).
The FOBI transformation does not take into account the time dependence
of the observations. For the comparison, we have derived complex version
of the Minimum Distance (MD) index. The MD index is a tool to measure
performance of different methods in simulation studies.

This Thesis is organized as follows. In Chapter 2 we give background to
the independent component problem and discuss the required functionals for
the FOBI and AMUSE transformations. Furthermore, some basic statistical
concepts are reviewed and we give geometrical interpretation for some com-
plex valued statistics. Additionally, complex numbers are reviewed in the last
Section of Chapter 2. In Chapter 3 we review the concept of an invariant
coordinate system and the whitening and the principal component transfor-
mations. In Chapter 4 we introduce the general framework of ICA using two
scatter matrices and examine the AMUSE and FOBI transformations. Ad-
ditionally, we introduce the complex version of the Minimum Distance (MD)
index which is a performance measure for separation functionals. In Chapter
5, we have complex valued simulated examples and we measure the perfor-
mance of FOBI and AMUSE using the MD index. In Chapter 6 we have
a complex image source separation example involving separation of fractal
images and an example related to functional magnetic resonance imaging.
Finally, in Chapter 7 we introduce some possible future research related to
the topic. In Appendix A, we have derived some necessary formulas. In
Appendix B, we present some proofs for our theorems. In Appendix C, we
give the required R codes to replicate our results, since the majority of the
existing R packages do not support complex numbers.



Chapter 2

Background and Definitions

A persistent problem in statistics and related fields of science is the trouble of
finding a transformation for data such that the essential structures are made
more visible and accessible. Assume that the data consists of p observed
variables. Furthermore, we have n observations related to every variable.
We can then denote our data by xi, where every xi is a p variate random
vector and i = 1, . . . , n. Depending on the context, i can be interpreted as
time if the ordering of the observations matters. We then assume a linear
model xi = Ωzi + µ, where xi is observed and we have little information on
Ω and zi. The vector zi is some k variate random vector and Ω is a p × k
matrix. In this Thesis, we restrict to the case k = p. Our goal is to find a
transformation for the data such that the latent zi becomes visible. Usually,
only linear transformations are considered, since the computation is faster
and interpretation of the results is far more simple in the linear case.

The problem can also be formulated the following way. We have an
original p variate source signal that enters a linear mixing system. We can
only observe a p variate signal coming out of the system. The original signal
and the mixing system are both unknown. Our aim is to reverse the effects
of the mixing system by finding an unmixing matrix. This is the BSS (Blind
Source Separation) problem. The word blind refers to the fact that the
original source is unknown to us.

A classical example is the cocktail-party problem. Consider a situation
where p individuals are speaking in the same room. You have p microphones
in different locations. The microphones give you p different speech signals
that are mixtures of the general noise in the room. The aim is to find esti-
mates for the original speech signals. In most cases, it is realistic to assume
that the p speech signals are statistically independent. We can then reduce
the problem to the IC (Independent Component) problem. Actually, Inde-
pendent Component Analysis (ICA) was originally developed to deal with
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CHAPTER 2. BACKGROUND AND DEFINITIONS 5

problems that are closely related to the cocktail-party problem. Since then
the applications of ICA have grown substantially, e.g. applications in elec-
troencephalogram (EEG), econometrics and functional Magnetic resonance
imaging (fMRI), just to mention a few. See Comon and Jutten (2010) for a
collection of applications.

In this Chapter we review the definitions of some basic building blocks in
Independent Component Analysis (ICA), starting with the proper definition
of statistical independence. We give the definitions of location and scatter
functionals and give some well known examples of them. Furthermore, we
briefly discuss estimation techniques in general and give the sample versions
of the estimators that we use in this Thesis. We simultaneously consider
estimators suited for independent and identically distributed (i.i.d.) and
time series random vectors. All the variables and estimators are considered
in the multivariate setting. We first give the definitions assuming that the
variables are real valued. We then extend the definitions for complex valued
variables. Additionally, we briefly discuss the geometrical interpretation of
the estimators in the complex case. The interpretation for e.g. complex
correlation is rarely considered in literature.

2.1 Statistical Independence

A key concept in independent component analysis is the definition of statis-
tical independence. In the most simple case, consider two random variables
x and y that are mutually independent. This implies that the value of y gives
no information on the value of x. For example, let x and y be random sig-
nals originating from different physical processes that are in no way related
to each other. Such independent processes can be e.g. random variables
that are the value of a dice thrown and the value of a coin tossed. Statis-
tical independence is formally defined in terms of cumulative distribution
functions.

Definition 2.1.1 (Statistical independence). Let Fx(x) and Fy(y) denote
the cumulative distribution functions of random variables x and y, respec-
tively, and let Fx,y(x, y) denote their joint cumulative distribution function.
Variables x and y are statistically independent, if

Fx,y(x, y) = Fx(x)Fy(y).

Assuming that the probability density functions of x and y exists, statis-
tical independence can equivalently be defined by replacing the cumulative
distribution functions (cdf) by the corresponding probability density func-
tions (pdf) in Definition 2.1.1, respectively.
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Corollary 2.1.1. Independent random variables x and y satisfy the basic
property

E (g(x)h(y)) = E (g(x))E (h(y)) ,

where g(x) and h(y) are any absolute integrable functions of x and y.

Definition 2.1.1 can be generalized for more than two random variables
and random vectors. The result can be found in any premilinary mathemat-
ical statistics course book, see e.g. Hogg et al. (2005).

2.2 Location and Scatter Functionals

There are countless of different location and scatter estimators defined in
the literature. Different settings require estimators with different statistical
properties. For example robustness, convergence, computation time, limiting
distributions and efficiency are statistical properties that vary between dif-
ferent estimators. Generally, different estimators do not estimate the same
population quantities. The most suitable estimator depends on the data at
hand.

We should define our location and scatter functionals in such a way that
they change logically whenever the coordinate system is altered. The at-
tribute that guarantees that no coordinate system change affects the inter-
pretation of the results is called equivariance in the context of location and
scatter functionals. For example, we want to acquire the same results whether
we measure the observations in the metric system or the imperial system.

Consider the following for the definitions in this Section: Let x be a real
valued p variate random vector with a cumulative distribution function Fx
and let X = [x1, ..., xn], where x1, ..., xn are i.i.d. observations from the
distribution Fx.

Definition 2.2.1 (Location functional). A p variate vector valued functional
T (Fx) is a location functional if it is affine equivariant in the sense that

T (FAx+b) = AT (Fx) + b,

for all full rank p× p matrices A and for all p variate vectors b.

Definition 2.2.2 (Scatter functional). A p × p matrix valued functional
S(Fx) is a scatter functional if it is positive definite and affine equivariant in
the sense that

S(FAx+b) = AS(Fx)A
T ,

for all full rank p× p matrices A and for all p variate vectors b.
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Scatter functionals are required to be positive (semi)definite since a func-
tional that gives negative measures of scatter is not practical in statistical
analysis. Let X denote a p×n data matrix of observations from Fx. Sample
location and scatter statistics are obtained when the functionals are applied
to the empirical cumulative distribution function, denoted by Fn, of the sam-
ple X. The location and scatter sample statistics then satisfy

T
(
AX + b1Tn

)
= AT (X) + b, (2.1)

and

S
(
AX + b1Tn

)
= AS(X)AT , (2.2)

for all nonsingular p×p matrices A and for all p variate vectors b. We use the
notation T (Fn) and S(Fn) or T (X) and S(X) for sample statistics. Scatter
matrix functionals are often standardized in a way that for the standard
normal distribution S(Fx) = I. Well known examples of a location and a
scatter functional are the expected value and the (population) covariance
matrix:

T (Fx) = E(x), (2.3)

S1(Fx) = Cov(Fx) = E
(

(x− E(x)) (x− E(x))T
)
. (2.4)

An interesting functional that is closely related to the covariance matrix
is the correlation matrix. Note, that the correlation matrix is not a scatter
functional since it is not affine equivariant in the required sense. In this Thesis
we refer to the matrix of Pearson product-moment correlation coefficients
between each of the components in the random vector x, when we speak of
correlation matrix. Pearson’s product moment correlation matrix is simply a
scaled version of the covariance matrix. We can define the correlation matrix
the following way:

Corr(Fx) = (diag(Cov(Fx))
−1/2 Cov(Fx) (diag(Cov(Fx))

−1/2 , (2.5)

if none of the components of x are degenerate and none of the components
is fully linearly dependent of the other components. Each diagonal element
in the correlation matrix is equal to one and the off-diagonal elements are
between -1 and 1. The closer an off-diagonal value is to either -1 or 1, the
stronger the linear dependency is between the corresponding components.
The components of x are said to be uncorrelated if the covariance matrix
Cov(Fx) is a diagonal matrix. Note that Corollary 2.1.1 reveals that statisti-
cal independence is a much stronger property than uncorrelatedness. In the
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Figure 2.1: Sample correlation of different bivariate distributions.

last row of Figure 2.1 we see bivariate random variables that have small sam-
ple correlations. However, it is clear that these variables are not independent.
A special case is normally distributed random variables. Uncorrelatedness
and independence are equivalent in the case of normal random variables.
This is a special property of the multivariate normal distribution. Hereby,
we require alternative ways to measure scatter alongside covariance. One
alternative measure that we use in this Thesis is the scatter matrix based on
fourth moments:

S2(Fx) = Cov4(Fx) =

1

p+ 2
E
(

(x− E(x)) (x− E(x))T S1(Fx)
−1 (x− E(x)) (x− E(x))T

)
,

(2.6)

where S1(Fx) is the covariance matrix. The scatter matrix based on fourth
moments can be used to measure multivariate kurtosis. Under symmetry
assumption, kurtosis can be seen as a measure of the peakedness (or the
strength of the shoulders), or of the tail thickness of a probability distri-
bution. The functional Cov4 (·) is scaled such that in the case of standard
multivariate normal distribution Cov4(Fx) = Ip. The scatter matrix based on
fourth moments is not defined for distributions that do not have theoretical
fourth moments.
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The off-diagonal elements in Cov4 (·) can be used to measure cokurtosis.
Random variables that satisfy Definition 2.1.1 of statistical independence
have a diagonal scatter matrix based on fourth moments. In finance, cokur-
tosis is sometimes used as a supplement to the covariance in risk estimation,
see Hwang and Satchell (1999). Figure 2.2 contains the probability density
functions of some well known univariate distributions. We formed random
vectors that have independent components following the different univariate
distributions and calculated the theoretical Cov4 (·) matrices. The results are
in Table 2.1. Note that, p has an effect on the diagonal elements on all other
distributions except the standard normal distribution. Let x be a p variate
random vector with finite fourth moments and independent components. We
now have

1

p+ 2
E
(

(x− E(x)) (x− E(x))T Cov (Fx)
−1 (x− E(x)) (x− E(x))T

)
=

1

p+ 2
E
(
yyTCov (Fx)

−1 yyT
)

=
1

p+ 2
E


y1...
yp

(y1 . . . yp
)d

−1
1 . . . 0
...

. . .
...

0 . . . d−1p


y1...
yp

(y1 . . . yp
)

=
1

p+ 2
E




y41
d1

+ y21
∑p

i 6=1
y2i
di

. . . ·
...

. . .
...

· . . .
y4p
d1

+ y2p
∑p

i 6=p
y2i
di




=
1

p+ 2


E(y41)
E(y21)

+ (p− 1)E (y21) . . . 0

...
. . .

...

0 . . .
E(y4p)
E(y2p)

+ (p− 1)E
(
y2p
)
 ,

where Cov (Fx) = diag (d1, . . . , dp) = diag
(
E (y21) , . . . ,E

(
y2p
))

and y =
(x− E(x)).

Asymptotically, if the dimension p→∞, we have

p→∞−−−→

E (y21) . . . 0
...

. . .
...

0 . . . E
(
y2p
)
 = Cov (Fx) .

Note that if yi and yj are independent, then i 6= j → E (yiyj) = E (yi)E (yj).
The required central moments are derived in Appendix A.1. When p ap-
proaches infinity, we get the regular covariance matrix. However, in this
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Figure 2.2: The probability density functions of some symmetric and asym-
metric distributions.

Table 2.1: The diagonal elements of Cov4 (·) for different p variate distribu-
tions.

Distribution p = 1 p = 3 p =∞

N (0, 1) 1 1 1
Laplace(0, 1) 4 3.2 2
Unif(−2, 2) 0.8 1.01 1.33
χ2 (5) 18 14.8 10
Gamma(0.5, 1) 12 8.8 4
Rayleigh(1) 0.46 0.45 0.43

Thesis we do not consider infinite dimensional data. We apply the Cov4 (·)
only to finite dimensional whitened data, see Section 4.1.

When we are dealing with time series observations, there is usually at
least some serial dependence between the observations. This is different for
i.i.d. data, where there is no dependence between the observations. We
often acquire more information related to the structure of the variable of
interest when we take the time dependence into account. Now assume that
there is a spatial or temporal dependency in x and this is highlighted by the
notation xt. Let xt be a real valued p variate random vector with a cumulative
distribution function Fxt , t ∈ T and let X = [x1, ..., xn], where x1, ..., xn is
time series data from the distribution Fxt . A common scatter functional that
utilizes the dependency structure of the data is the autocovariance matrix
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functional with a chosen τ :

Sτ (Fxt) = ACovτ (Fxt) = E
(

(xr − E(xr)) (xs − E(xs)
T
)
, r, s ∈ T, (2.7)

where s− r = τ is the lag of the autocovariance matrix functional. Note
that for stationary processes the autocovariance matrix functional is equiva-
lent for τ and −τ . Stationarity is defined formally in Section 2.4. Further-
more, we get the regular covariance matrix if we set τ = 0. Note that the
autocovariance matrix functional is not necessarily symmetric when τ 6= 0
and hereby it is not a scatter matrix functional. We can symmetrize the
autocovariance matrix the following way

Sτ (Fxt)symm =
1

2

(
Sτ (Fxt) + Sτ (Fxt)

T
)
,

where Sτ (Fxt)symm is a scatter matrix functional for stationary processes.
There are several other location and scatter functional defined in litera-

ture, having different properties (robustness, efficiency, limiting multivariate
normality, computation speed, etc.). See e.g. Davies (1987), Lopuhaä (1989),
Kent et al. (1996) and Maronna et al. (2006).

2.3 Independence Property

Several scatter matrix type functionals do not achieve affine equivariance in
the sense of Definition 2.2.2. However, in many applications, it is sufficient
that the functionals are so called shape functionals. Let x be a real valued p
variate random vector with a cumulative distribution function Fx.

Definition 2.3.1 (Shape Functional). If a positive definite p × p matrix-
valued functional S(Fx) satisfies

S(FAx+b) ∝ AS(Fx)A
T ,

for all nonsingular p × p matrices A and for all p variate vectors b, then
S(Fx) is called a shape functional.

From Definition 2.3.1 it follows that every scatter matrix functional is
also a shape functional. In general, different shape functionals measure dif-
ferent population quantities. However, under the assumption of multivariate
ellipticity shape functionals measure the same population quantities up to
constant multiplication. To make different shape functionals comparable un-
der ellipticity they are often normalized, such that for example tr(S(Fx)) = p
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or ||S(x)|| = 1, where || · || is some matrix norm. For more details, see Pain-
daveine (2006). A particularly interesting class of scatter functionals consists
of those that have the independence property.

Definition 2.3.2 (Independence Property). If the scatter functional S(Fx)
is a diagonal matrix for all random vectors x that have statistically indepen-
dent components, then S(·) is said to have the independence property.

Most scatter functionals found in literature possess the independence
property only if all the components of x have symmetric distributions. The
regular covariance matrix and the scatter matrix based on fourth moments
are examples of scatter matrices with the independence property. However,
for any scatter functional S(·), a symmetrizied version can be constructed
using the following theorem, see Oja et al. (2006).

Theorem 2.3.1. Let x1 and x2 be independent random vectors with the same
cumulative distribution function Fx. Then every scatter and shape functional
S(Fx) can be symmetrized by

Ssym(Fx) := S(Fx1−x2).

The symmetrized scatter or shape matrix functional has the independence
property.

2.4 Stationary Stochastic Processes

The time series that interest statisticians are usually stochastic, rather than
deterministic. Stationarity is an important concept in time series analysis.
A stationary time series is a process that has a constant expected value,
variance and autocorrelation over time. Many statistical forecasting methods
are based on the assumption that the time series is stationary or that it
can be stationarized trough the use of transformations. It is convenient to
predict stationary processes since the statistical properties stay the same in
the future as they have been in the past. Furthermore, sample statistics such
as mean, variance and autocovariance are meaningful only if the time series
is stationary. If the process is not stationary, the sample statistics become
functions of time. Typical non stationary behavior include trends, cycles and
random-walking. The formal definition of stationary is given below.

Definition 2.4.1 (Stationary Process). The p variate time series {xt, t ∈ Z}
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is stationary if the following three conditions hold

(S1) E(Fxt) = µ, for all t ∈ Z,
(S2) Cov (Fxt) = Σ, for all t ∈ Z,
(S3) ACovτ (Fxt) = Στ for all t, τ ∈ Z,

where µ, Σ and Στ are finite constants.

Stationarity given in Definition 2.4.1 is usually referred to as weak station-
arity, covariance stationarity or second-order stationarity. However, in this
Thesis the term stationarity will refer to a process with properties specified
by Definition 2.4.1. For more wider definitions of stationarity, see Brockwell
and Davis (2013).

2.5 Estimation Theory

An important issue encountered in various fields of science is the estimation
of quantities of interest from a given finite set of uncertain measurements.
There are several estimation techniques developed for different situations.
For example, we require different estimators for constant and time-varying
variables. Finding the appropriate estimators is an import step in the con-
struction of a mathematical model that fits the data.

Let x be a random variable with a cumulative distribution function Fx(θ),
where θ = (θ1, . . . , θm) is an unknown parameter vector. Estimation meth-
ods can be divided into two classes, depending on whether the parameter θ is
assumed to be a deterministic constant or a random variable. The estimation
in the latter case often involves assumptions related to the probability dis-
tribution function of θ and are usually called Bayesian estimation methods.
The name of the Bayesian methods come from the well-known Bayes’ rule,
which is utilized in Bayesian methods. In this Thesis we will not consider
Bayesian estimation. We take the frequentist approach and assume that the
underlying parameter vector θ is not random.

Let X = [x1, . . . , xn] where x1, . . . , xn are i.i.d. observations from the dis-
tribution Fx(θ). We can estimate the parameter θ by an estimation formula

θ̂ = g(X) = g(x1, . . . , xn), (2.8)

where g(·) is an estimation function of our choice. There are multiple different
paths to perform the estimation. For example, if the distribution is known up
to the parameter of interest we can apply the maximum likelihood method,
see for example Hogg et al. (2005). In this Thesis we mainly consider unbiased
estimators that are consistent.
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Definition 2.5.1 (Unbiased Estimator). An estimator θ̂ is unbiased if

E(θ̂) = θ.

Definition 2.5.2 (Convergence in Probability). We say that an estimator
θ̂n converges to the true value of the parameter vector θ in probability, if for
all ε > 0, as the sample size n grows without a limit:

lim
n→∞

P
(
|θ̂n − θ| ≥ ε

)
= 0.

We then write θ̂n
n→∞−−−→
P

θ.

If an estimator converges in probability, it is called a consistent estimator.
Let x be a real valued p variate random vector with a cumulative distribution
function Fx and let X = [x1, ..., xn], where x1, ..., xn are i.i.d. observations
from the distribution Fx. The population mean and covariance can be esti-
mated by the well-known formulas:

µ̂x = x̄ =
1

n

n∑
i=1

xi, (2.9)

Ŝ1 (Fn) = Ŝ1 (X) =
1

n− 1

n∑
i=1

(xi − x̄) (xi − x̄)T . (2.10)

Furthermore, the scatter matrix based on fourth moments can be estimated
using:

Ŝ2 (Fn) = Ŝ2(X) =

1

n(p+ 2)

n∑
i=1

(
(xi − x̄) (xi − x̄)T Ŝ−1(X) (xi − x̄) (xi − x̄)T

)
.

(2.11)

If the second moments of the distribution Fx exists as finite quantities, then
the sample covariance matrix is consistent. Under the existence of fourth
moments it is also

√
n-consistent and asymptotically normal. For the consis-

tency of the scatter matrix based on fourth moments the existence of fourth
moments is required and for

√
n-consistence and asymptotic normality eight

moments are required.
Now consider time series observations. Let X = [x1, x2, . . . , xn] be ob-

servations from a real p variate stationary time series xt with a cdf Fxt .
The estimate for the autocovariance matrix functional Sτ (Fxt) is the sample
autocovariance matrix:

Ŝτ (Fn) = Ŝτ (X) =
1

n− τ

n−τ∑
i=1

(xi+τ − x̄) (xi − x̄)T , (2.12)
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where 0 ≤ τ < n. In literature, see for example Brockwell and Davis (2013),
divisor of n is often used rather than (n− τ). If the second moments of the
distribution Fxt exists as finite quantities, then the sample autocovariance
matrix is consistent. Under the existence of fourth moments it is also

√
n-

consistent and asymptotically normal.
An estimate given by formula 2.12 is not necessarily a symmetric matrix.

The symmetrized version that has the scatter sample statistic property can
be constructed as

Ŝτ (X)symm =
1

2

(
Ŝτ (X) + Ŝτ (X)T

)
, (2.13)

where Ŝτ (X)symm gives symmetric estimates.

2.6 Independent Component Model

In the independent component model we assume that x is a p variate vector
with mutually independent components. There are multiple ways of formu-
lating the IC model. We can permutate or multiply the independent compo-
nents and the resulting components are also independent. Furthermore, in
the complex case we can multiply the independent components with a phase
shift matrix and the resulting components are also independent.

Definition 2.6.1 (Independent Component Model). Let x = (x1, x2, . . . , xp)
T

be a p variate random vector, z = (z1, z2, . . . , zp)
T be a p variate random vec-

tor with mutually independent components and let Ω be a full rank p × p
mixing matrix and µ be a p variate location vector. Independent Component
(IC) model is now given by

x = Ωz + µ.

The assumptions imposed on z define the course of our analysis. Note
that z is not observed, only x is directly measurable. In some cases z can
have an interpretation and it can be the goal of the analysis to recover it,
when only x is observed. Nevertheless, the one of the first challenges we face
in practical data analysis is to evaluate the assumptions that we can justify
on z.

The following two models are considered in this Thesis and they differ by
their assumptions on z.

M1: Independent Component (IC) model. The components of z are inde-
pendent with E (z) = 0p, Cov (z) = Ip and Cov4 (z) = D, where D
is diagonal with diagonal elements d1 > d2 . . . > dp. Furthermore, at
most one of the components of z has a normal distribution.
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M2: Time dependent Independent Component (tIC) model. The compo-
nents of zt are independent with E (zt) = 0p, Cov (zt) = Ip and
ACovτ (Fzt) = Στ is diagonal for all τ = 1, 2, . . ..

Note that the assumptions in Model M2 imply the (weak) stationarity and
uncorrelatedness of the p variate time series in zt. The main difference be-
tween Models M1 and M2 is that we allow more than one of the components
in z to be normally distributed and we assume that zt has a spatial or tempo-
ral dependency between the observations. The normality constraint on the
components can be dropped due to the extra information gained from the
time structure. For example, time series following some stationary ARMA-
model can be normally distributed. However, they have a well defined time
structure and hereby we can find the latent zt vector using this extra infor-
mation.

Note that the IC model is clearly not uniquely defined. For any p × p
permutation matrix P and any full rank diagonal matrix D, we can always
write

x = (ΩPD)
(
(PD)−1 z

)
+ µ = Ω̃z̃ + µ, (2.14)

where z̃ has independent components with expected value zero. Furthermore,
if x, z and Ω are complex valued we can write

x = (ΩPDL)
(
(PDL)−1 z

)
+ µ = Ω̃z̃ + µ, (2.15)

where L = diag (exp(θ1i), . . . , exp(θpi)) and z̃ has independent components
with expected value zero. Hereby, in the real case the IC model is unique up
to the order, scales and signs of the independent components. In the complex
case, the IC model is unique up to the order, scales and arguments of the
independent components. We can solve this identifiability problem by stan-
dardizing either z or the mixing matrix Ω. The necessary standardizations
of z are given in the definitions of M1 and M2.

2.7 Complex Numbers

In this Section, we review basic properties of complex numbers. Each ele-
ment, zj, of a complex valued random vector z has two components, zj =
xj + yji, where xj, yj ∈ R and i is the imaginary unit ( i2 = −1). The
complex plane is illustrated in Figure 2.3. The angle between the real axis
and the vector sum of x and y is often referred to as the argument of the
complex number. In some applications the argument is referred to as the
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Figure 2.3: An illustration of the complex plane generated using LATEX
package tikzpicture.

phase. The argument is denoted by θ ∈ [0, 2π). Furthermore, the length of
the complex number is often referred to as the modulus and it is denoted by
r. The modulus is the length of the vector sum of x and y.

A complex number zj can also be presented as zj = rj exp(θji). The
complex conjugate of zj is z̄j = xj − yji = rj exp(−θji). The cumulative
distribution function of zj is defined as F (c) = P (xj ≤ c1, yj ≤ c2), c =
c1+c2i. The expectation of zj is E(zj) = E(xj)+E(yj)i. Note that Definition
2.1.1 of statistical independence holds for complex random variables.

In some situations a complex valued p variate random vector can be trans-
formed to a 2p variate real valued random vector. After the transformation
from Cp to R2p, all information is lost related to the dependency between the
real and imaginary parts. For a detailed example related to functional MRI,
see Adali and Calhoun (2007), where discarding the information related to
the argument of the complex numbers leads to suboptimal results.

2.8 Complex Functionals

We can extend many of the real valued functionals to the complex plane by
simply replacing the transposes with conjugate transposes. We denote the
conjugate transpose of A by A∗. We give the definitions in the same order as
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they are introduced in this Chapter. First, the Definition 2.2.1 for location
functionals is the same for complex variables as for real variables. However,
the definition for a scatter functional is different for complex variables.

Let x be a complex valued p variate random vector with a cumulative
distribution function Fx and let X = [x1, ..., xn], where x1, ..., xn are i.i.d.
observations from the distribution Fx.

Definition 2.8.1 (Complex Scatter Functional). A complex valued p × p
matrix valued functional S(Fx) is a scatter functional if it is positive definite
and affine equivariant in the sense that

S(FAx+b) = AS(Fx)A
∗,

for all full rank p× p matrices A and for all p variate vectors b.

The scatter sample statistic then satisfy the following relation:

S(AX + b1Tn ) = AS(X)A∗, (2.16)

for all nonsingular p× p matrices A and for all p variate vectors b. Note that
A and b can have complex valued elements. The complex valued covariance
matrix is defined the following way:

S1(Fx) = E ((x− E(x)) (x− E(x))∗) , (2.17)

and the corresponding sample statistic is then

Ŝ1(X) =
1

n− 1

n∑
i=1

(xi − x̄) (xi − x̄)∗ . (2.18)

The complex covariance matrix is conjugate symmetric, hereby the diagonal
elements are real valued. However, the off-diagonal elements can be complex
valued. We can formulate the complex correlation matrix the same way as in
the real case using Equation 2.5. The interpretation of complex correlation
is not as straightforward as in the real case. Let z1 and z2 be complex valued
random variables and let σ12 be the complex valued correlation between them.
Now the modulus of σ12 is the measure of linear dependency. The modulus,
r, is always between zero and one and we can interpret it similarly to real
numbers.

We can see the sign of the correlation from the argument of σ12. Whenever
θ is 0 or π, then the correlation matrix contains only real valued elements.
The argument is zero or π only if z1 and z2 are distributed perpendicularly
in the complex plane. Likewise, the σ12 has only an imaginary component if
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the variables are orthogonally distributed. Otherwise, σ12 is a linear combi-
nation of a real and an imaginary component. Some complex valued correla-
tions are illustrated in Figure 2.4. Note that for complex random variables,
Cov(x, y) 6= Cov(y, x). Instead, the relation Cov(x, y) = Cov(y, x) holds,
where Cov(y, x) is the complex conjugate of Cov(y, x).

The complex scatter matrix on fourth moments is defined the following
way:

S2(Fx) =

1

p+ 1
E
(
(x− E(x)) (x− E(x))∗ S1(Fx)

−1 (x− E(x)) (x− E(x))∗
)
,

(2.19)

and the corresponding sample statistic is then

Ŝ2(X) =

1

n(p+ 1)

n∑
i=1

(
(xi − x̄) (xi − x̄)T Ŝ−1(X) (xi − x̄) (xi − x̄)T

)
.

(2.20)

The interpretation of the complex valued kurtosis is similar to the com-
plex valued correlation. The diagonal elements are again real numbers and
hereby the interpretation is exactly the same as for real numbers. The mod-
ulus of the off-diagonal elements indicates the strength of the cokurtosis and
the argument indicates how the cokurtosis is spread between the real and
imaginary axis.

We choose the scaling parameter as 1/(p + 1) to scale S2 (·) to be 1
for the standard complex normal distribution. The analytical proof is in
Appendix A.2. Note that the scaling is different for real valued S2 (·). We
also performed a small simulation study to compare the scaling parameters
1/(p + 1) and 1/(p + 2) for the complex standard normal distribution. In
the simulation we calculated the S2 (·) estimate 1400 times from a p variate
random complex standard normal distribution with 105 observations. The
number of dimensions p was randomly selected from the set {3, 4, . . . , 20} in
each iteration. Then we subtracted the identity matrix from the estimate
and calculated the Frobenius norm from the subtraction. The results are
in Figure 2.5. The histograms show that 1/(p + 1) is the logical scaling
parameter for complex valued random variables. However, the choice of the
scaling parameter has no effect in the framework of this Thesis, see Section
4.1. This is due to the whitening part of our transformations.

Now consider complex time series observations. Let X = [x1, x2, . . . , xn]
be observations from a complex p variate stationary time series xt with a cdf
Fxt .
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1 1
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)
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0.95 + 0.06i 1

)
Figure 2.4: Correlation matrix calculated from z, where z = (zred, zblue).
The data points are labeled as numbers, where the numbers denote the cor-
responding observations.
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Figure 2.5: Histograms of ||S2(X)− Ip||F with 1400 iterations using two dif-
ferent scaling factors. The sample X follows the p variate complex standard
normal distribution with 105 observations and p is randomly selected from
{3, 4, . . . , 20} in each iteration.

Sτ (Fxt) = E ((xr − E(xr)) (xs − E(xs)
∗) , r, s ∈ T, (2.21)

where s− r = τ . The corresponding sample statistic is then

Ŝτ (X) =
1

n− τ

n−τ∑
i=1

(xi+τ − x̄) (xi − x̄)∗ , (2.22)

The symmetrized version is

Sτ (Fxt)symm =
1

2
(Sτ (Fxt) + Sτ (Fxt)

∗) , (2.23)

and the corresponding sample statistic is

Ŝτ (X)symm =
1

2

(
Ŝτ (X) + Ŝτ (X)∗

)
, (2.24)

where Ŝτ (X)symm gives conjugate symmetric estimates. Note that the def-
inition of stationarity given in Section 2.4 also holds for complex valued
variables.



Chapter 3

Linear Data Transformations

The human eye can simultaneously visualize random variables at maximum
in three dimensional spaces. However, in various real life applications, the
data we face is more than three dimensional. Fortunately, the information
contained in the p variate case can sometimes be summarized by a smaller set
of variables. One approach to the problem is through Principal Component
Analysis (PCA). The principal components achieved through transformation
are ordered in decreasing order of importance. In various applications we
can replace the set of p original variables by a smaller set of variables, pro-
vided that they contain a sufficient amount of information concerning the
original observations. These new variables give us the possibility to reduce
the dimension of the original data and sometimes reveal hidden structures.
Furthermore, a transformation called whitening is often the first step in ICA.
The whitening transformation is closely related to the PCA transformation.

When facing multivariate data with a significant amount of dimensions,
the PCA transformation is sometimes used to reduce the dimensions of the
variables before the ICA transformation. This is due to the fact that si-
multaneous diagonalization of two scatter matrix functionals requires clearly
distinct eigenvalues. The numerical softwares used by us make approxima-
tions and sometimes the eigenvalues do not seem to be distinct. Also the
algorithms used to conduct the ICA transformation are usually much heav-
ier compared to the PCA algorithm.

In this chapter we will review the PCA and whitening transformations
and give the definition of an invariant coordinate system. Furthermore, the
dimension reduction using PCA will be discussed. The different effects of
the whitening and PCA transformations are clearly visible in Figure 3.1.
We give the definitions for complex variables in this Chapter. The real ver-
sions are simply achieved by replacing the conjugate transposes with regular
transposes.

22
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3.1 Invariant Coordinate System

We defined affine equivariant location and scatter functionals in Section 2.2.
In the context of multivariate testing the desired property is called invari-
ance. Invariance means that the results of the statistical test do not change
whenever we perform scaling or location shifts to the original data. By re-
quiring affine invariance, we ensure that the results are not affected by the
choice of the coordinate system. Let x denote a p variate random vector with
a cdf Fx and let X = [x1, . . . , xn], where x1, . . . , xn is a random sample from
the distribution Fx.

Definition 3.1.1 (Affine Invariance). A functional Q(Fx) is affine invariant
if

Q(FAx+b) = Q(Fx),

for all full rank p× p matrices A and for all p variate vectors b.

A statistic Q(X) is affine invariant if

Q(AX + b1Tn ) = Q(X),

for all full rank p× p matrices A and for all p variate vectors b.
A definition of an invariant coordinate system functional is given below.

Definition 3.1.2 (Invariant Coordinate System Functional). An invariant
coordinate system functional is a non-singular p × p matrix valued function
G(Fx) satisfying

G (FAx+b) = G (Fx)A
−1,

for all full rank p× p matrices A and all p variate vectors b.

Furthermore, the sample statistic of the invariant coordinate system func-
tional satisfies the following,

G
(
AX + b1Tn

)
= G(X)A−1, (3.1)

for all full rank p×pmatrices A and all p variate vectors b. Note that invariant
coordinate system functional can be used to pre-process data to obtain affine
invariant or equivariant statistical procedures. For more details, see Ilmonen
et al. (2012b). Note that the definitions in this Section also hold for complex
valued statistics and functionals.
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3.2 Whitening

As already discussed, the ICA problem is significantly simplified if the ob-
served output vectors are first whitened. The origin of the term ”white”
comes from the fact that the power spectrum of white noise is constant over
all frequencies, similarly like the visible light spectrum of white light contains
all colors. Sometimes the term sphered is used instead of white. The whiten-
ing procedure is simply decorrelation followed by scaling. First we subtract
the mean vector to move the location center to the origin, then we rotate the
data to jointly uncorrelate the variables and finally rescale the variables to
have unit variances.

Let x be a complex p variate random vector with a cumulative distribution
function Fx and let X = [x1, ..., xn], where x1, ..., xn are observations from
the distribution Fx. The whitening transformation can be formulated the
following way.

Definition 3.2.1 (Whitening Transformation).

y = S
−1/2
1 (Fx)(x− E(x)),

where S
−1/2
1 (Fx) is a square root of the inverse of the covariance matrix of

Fx. After the transformation the following are true:

E(Fy) = 0p and S1(Fy) = Ip.

All the directions have the same variance after the whitening transfor-
mation. The whitening transformation makes normally distributed variables
independent, whereas for other distributions the transformation uncorrelates
the variables. Note that S

−1/2
1 (Fx) is defined only up to an orthogonal trans-

formation: if QΛQT = Ip, then also (V Q) Λ (V Q)∗ = Ip for all orthogonal
matrices V . We can define the inverse square root of a matrix uniquely using
the spectral decomposition.

Definition 3.2.2 (Spectral Decomposition). Let S(Fx) be a p × p positive
definite and symmetric scatter functional. Then S(Fx) can be factorized as

S(Fx) = QΛQ∗

where Λ is a diagonal matrix containing the eigenvalues of S(Fx) in de-
scending order and Q is an orthogonal matrix containing the corresponding
eigenvectors as columns.

The spectral decomposition always exists for the covariance matrix since
S1(Fx) is a positive semidefinite and conjugate symmetric matrix, see Horn
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and Johnson (1985) for more details. If we further assume that all the com-
ponents of x are non-degenerate and none of the components is fully linearly
dependent of the other components, the covariance matrix is then positive
definite. Now we can define the inverse square root as

S1(Fx)
−1/2 = QΛ−1/2Q∗, (3.2)

where S1(Fx)
−1/2 is uniquely defined. The following theorem holds for the

invariance of the matrix inverse square root of a scatter functional.

Theorem 3.2.1. If S(Fx) is a scatter functional then

S−1/2 (FAx+b) = OS−1/2(Fx)A
−1,

for some orthogonal O = O (Fx, A) .

The proof of Theorem 3.2.1 is pretty straightforward, see Appendix B.1.
The real versions of the definitions are achieved by replacing the conjugate
transpose with the regular transpose. For more details in the real case, see
Ilmonen et al. (2012b).

Hereby, the coordinate system obtained by the whitening transformation
is not affine invariant. It only holds that

S
−1/2
1 (FAx+b) (Ax+ b− E (Ax+ b)) = OS

−1/2
1 (Fx) (x− E (x)) , (3.3)

for some orthogonal matrix O(Fx, A). For the sample version it holds that

S
−1/2
1 (Y )

(
Y − µY 1Tn

)
= OS

−1/2
1 (X)

(
X − µX1Tn

)
, (3.4)

where Y = AX + b1Tn , µi is the corresponding sample mean and O(X,A) is
some orthogonal matrix.

3.3 Principal Component Analysis

Similar to the whitening transformation, the Principal Component Analysis
(PCA) transformation also creates a coordinate system where the variables
are uncorrelated. The uncorrelated variables are called principal compo-
nents. The difference to whitening is that in classical PCA the variables are
not scaled to have unit variances. The PCA transformation creates linear
combinations of the original variables such that the variance is maximized
under the constraint of being orthogonal to the previous variables. The PCA
transformation is obtained using the spectral decomposition of the covariance
matrix.
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Let x be a complex p variate random vector with a cumulative distribution
function Fx and let X = [x1, ..., xn], where x1, ..., xn are observations from
the distribution Fx.

S1(Fx) = QΛQ∗, (3.5)

where Λ is a diagonal matrix containing eigenvalues of S1(Fx) in decreasing
order and Q is orthogonal matrix containing the corresponding eigenvalues
as columns. The classical approach to PCA is to use the covariance matrix
as S1 (·). However, S1 (·) can be replaced with any scatter matrix functional
to obtain e.g. a more robust transformation. The new coordinates are called
principal components, when we use the regular covariance matrix.

Definition 3.3.1 (Principal Components). The principal components of a
p variate random vector x are obtained through the transformation

y = Q∗ (x− E(x)) ,

where the columns of Q contain the eigenvectors of the covariance matrix of
x.

The sample principal components are then

Y = Q̂∗ (X − µX) , (3.6)

where Q̂ contains the eigenvectors of the sample covariance matrix of X and
µX is the sample mean. Now S1(y) = Ip and E(y) = 0p. If we use a different
scatter matrix functional, we can for example call y the principal components
with respect to the chosen scatter matrix functional.

If the components of x have completely different scales, it is recommended
to scale the components before the PCA transformation. By scaling the
components xi ← xi/σi, where σ2

i is the variance of xi, we give all the
components same weight in the analysis. This transformation corresponds
to performing the PCA transformation using the correlation matrix instead
of the covariance matrix. In general PCA does not make any distributional
assumptions except the existence of second moments. The difference between
PCA and whitening transformations is demonstrated in Figure 3.1 where
the two transformations are applied to a sample of 200 bivariate normal
observations. The larger variance in the first principal direction is lost after
the whitening transformation. The PCA transformation only centers and
rotates the data here. Thus, the first principal direction has a larger variance
compared to the second principal direction.



CHAPTER 3. LINEAR DATA TRANSFORMATIONS 27

One of the main applications for PCA is dimension reduction. Given a
data set on p dimensions, we can use PCA to find a linear subspace of dimen-
sion d lower than p. Such reduced subspace attempts to maintain as much
of the variability of the data as possible. The variances of the principal com-
ponents are directly given by the eigenvalues of the covariance matrix. The
sum of k first eigenvalues divided by the sum of all eigenvalues represents
the proportion of total variance explained by k first principal components.
Hereby, it is straightforward to calculate the amount of variance that is re-
tained after the dimension reduction. In optimal situations, a small number
of principal components is sufficient and the dimension reduction allows us
to visualize multivariate data in 2D or 3D graphics.

The principal components are not independent in general. Furthermore,
traditional PCA is a very nonrobust method. However, we can replace the
covariance matrix and the mean vector with some more robust estimators to
achieve a robust version of PCA. It is obvious that PCA is not an invariant
coordinate system functional in the sense of Definition 3.1.2. Simple scaling
of the variables can result in completely different principal components and
hereby completely different interpretations. Thus, when performing PCA
we should always be careful that the results are not simply artifacts of the
chosen coordinates system.
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Figure 3.1: The top figure contains 200 observations simulated from a real
bivariate normal distribution, the middle figure contains the principal compo-
nents and the bottom figure contains the whitened coordinates of the original
data.



Chapter 4

Affine Invariant Transformations

In this Chapter we introduce the independent component functionals based
on the use of two scatter matrices. We achieve different transformations by
choosing different S1 (·) and S2 (·) functionals. There are several other solu-
tions to the independent component problem alongside FOBI and AMUSE,
see Comon and Jutten (2010) and Hyvärinen et al. (2001).

FOBI and AMUSE are suited for different setting. The more optimal
method depends on the situation. When we use FOBI, we assume i.i.d. data
and hereby the order of the observations does not matter. Contrarily, when
using AMUSE we assume that we have time series like data and construct
our functionals based on the time structure of the data. Hereby, the complex
FOBI has worse performance than AMUSE when considering complex time
series data. Furthermore, we illustrate that AMUSE actually works for com-
plex valued time series data. In this Chapter, we first give general theory that
applies for both AMUSE and FOBI. Then we consider them individually. In
the last Section of this Chapter, we generalize the Minimum Distance (MD)
index for complex valued setting. This new formulation of MD index allows
us to compare the complex FOBI and AMUSE.

4.1 ICS Functionals Based on the Use of Two

Scatter Matrices

In this Section we discuss the simultaneous use of two scatter functionals.
The theory behind the joint usage of two scatter functional has been devel-
oped quite recently. It was first discussed by Cardoso (1989). See also Oja
et al. (2006) for the usage of two scatter matrices for real valued ICA and
Ollila et al. (2008) for complex valued ICA.

A general approach to the problem without the IC-model assumption was

29
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given by Tyler et al. (2009). The approach was named Invariant Coordinate
Selection (ICS). The idea of ICS is to compare two scatter functionals S1(Fx)
and S2(Fx) by solving Γ(Fx) and Λ(Fx) from the eigenvector-eigenvalue prob-
lem

S−11 (Fx)S2 (Fx) Γ (Fx)
∗ = Γ (Fx) Λ (Fx) , (4.1)

where Fx is the cdf of a complex valued p variate random vector x, Λ is a di-
agonal matrix containing the p eigenvalues of S−11 (Fx)S2(Fx) and the column
vectors of Γ(Fx) are the corresponding eigenvectors. Let X = (x1, . . . , xn)
be a sample from the distribution Fx. Since the order, sign and length of
the eigenvectors are not uniquely defined, we need to fix them. The eigen-
vectors are scaled using S1 (·) and ordered using S2 (·). We denote the val-
ues of the functionals from the empirical cdf as Ŝ1 = S1(Fn) = S1(X) and
Ŝ2 = S2(Fn) = S2(X). Define Γ̂ = Γ(X) and Λ̂ = Λ(X) as the solution to
the equations

Γ̂Ŝ1Γ̂
∗ = Ip and Γ̂Ŝ2Γ̂

∗ = Λ̂, (4.2)

where Λ̂ is a diagonal matrix with diagonal elements λ̂1 ≥ . . . > 0. Note that
the solution always exists. If λ1 > . . . > λp > 0, then the unmixing matrix Γ
is uniquely defined up to multiplication with L = diag (exp (θ1i, . . . , θpi)). In
the real case, replace L with a sign change matrix. In the case of non-distinct
eigenvalues of S−11 (Fx)S2(Fx), see Tyler et al. (2009).

In this case, x is first uncorrelated and scaled by performing the whitening
transformation, y = S

−1/2
1 (Fx)(x). Then PCA transformation is performed

on y using S2(Fy). Actually, ICS gets its name from transformation that
yields an invariant coordinate system in the sense that

Γ(FAx+b) = L(FAx+b)Γ(FAx+b)A
−1, (4.3)

where L = diag (exp(θ1i), . . . , exp(θpi)) fixes the the diagonal elements of
Γ(FAx+b) to be positive real numbers. The new coordinates are independent
with respect to two different measures of dependence. Since the modulus of
each of the diagonal elements of L is equal to one, we can replace L with a
sing change matrix if we assume real valued variables. If we want to obtain
full affine invariance in the sense of Definition 3.1.2, we can standardize the
eigenvectors of S−11 (Fx)S2 (Fx) using two affine equivariant location func-
tionals T1 (·) and T2 (·). However, we choose to fix the model by assuming
that the diagonal elements of Γ(FAx+b) are positive real numbers. This is
due to the asymptotic results in Ilmonen (2013). Fixing the argument of the
independent components using the location functional complicates the deriv-
ing of asymptotic results. The matrix Γ can now be used in transforming the
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random vector x to invariant coordinates under the IC-model assumption.
The transformation solves the ICA problem.

4.2 FOBI

The Fourth Order Blind Identification (FOBI) functional is probably the
first solution for the independent component problem, first introduced in
Cardoso (1989). We obtain the FOBI functional Γ(Fx) if the scatter func-
tionals S1(Fx) and S2(Fx) in Formula 4.1 are chosen to be the covariance
matrix and the scatter matrix based on fourth moments respectively. FOBI
is computationally one of the most efficient ICA methods. Note that, FOBI
requires distinct kurtosis values for the independent components. If some
of the independent component have identical kurtosis values, we can still
estimate those that have distinct kurtosis values.

Let X be a random sample from the complex IC model. We can construct
the complex valued FOBI estimate Γ̂(X) using the following steps:

1. Whitening transformation: Yi ← S1 (X)−1/2 (Xi − µX), where A1/2 is
the conjugate symmetric square root of A and µX is the sample mean.

2. Compute the scatter matrix based on fourth moments: S2 (Y )

3. Finding eigenvalue - eigenvector decomposition of S2 (Y ) = UDU∗,
where D is a diagonal matrix and U is orthogonal.

4. Compute the final unmixed observations: Ẑ = U∗Y .

Note that for a real A, A∗ = AT . The asymptotic properties of FOBI have
been studied in the real case in Ilmonen et al. (2010a) and in the complex
case in Ilmonen (2013). Under the IC-model assumption, consistency of the
FOBI estimator is obtained if the fourth moments of the independent compo-
nents exists as finite quantities and are distinct. Moreover,

√
n-consistency

and asymptotic normality follow it the eight moments of the independent
components are finite.

4.3 AMUSE

The Algorithm for Multiple Unknown Signals Extraction (AMUSE) was first
proposed by Tong et al. (1990). We obtain the AMUSE functional Γ(Fx)
if the scatter functionals S1(Fx) and S2(Fx) are the covariance matrix and
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the autocovariance matrix with a chosen time lag τ . Usually, AMUSE per-
forms well with the choice of τ being 1. In order to obtain positive definite
scatter functionals and estimates, we only apply symmetrized autocovariance
matrices.

Let X = [x1, . . . , xn] where x1, . . . , xn is a time series data from the
distribution Fxt . We can construct the complex valued AMUSE estimate
Γ̂(X) using the following steps:

1. Whitening transformation: Yti ← S1 (X)−1/2 (Xti − µXt), where A1/2 is
the conjugate symmetric square root of A and µXt is the sample mean.

2. Compute the autocovariance matrix: Sτ (Yt), for a chosen τ .

3. Symmetrizing the autocovariance matrix:
Sτ (Yt)symm = (Sτ (Yt) + Sτ (Yt)

∗) /2.

4. Finding eigenvalue - eigenvector decomposition of Sτ (Yt)symm = UDU∗,
where D is a diagonal matrix and U is orthogonal.

5. Compute the final unmixed time series: Ẑt = U∗Yt.

The asymptotic properties of AMUSE have been studied in the real case
in Miettinen et al. (2012). Under the IC-model assumption, consistency of
the AMUSE estimator is obtained if the second moments of the indepen-
dent components exists as finite quantities and are distinct. Moreover,

√
n

consistency and asymptotic normality follow if the fourth moments of the
independent components are finite.

The asymptotic behavior of the complex valued AMUSE functional has
not yet been considered in the literature. However, the asymptotic results in
the complex case will be considered in Lietzén et al. (2016). The simulation
results in Chapter 5 already hint that the AMUSE estimator is asymptotically
normal if the fourth moments of the independent components are finite.

The behavior of complex valued AMUSE, FOBI and PCA are illustrated
in Figures 4.1 and 4.2. In Figure 4.1 we have a small simulated example
that illustrates the separation of bivariate complex valued distributions. The
first row contains the original simulated data which is then mixed with a
complex valued mixing matrix. The mixed distributions are on the second
row. Then, we use PCA, FOBI and AMUSE to separate the signals. We see
that only AMUSE manages to find the original distributions. This is due
to the spatial dependence between the observations in the Φ distribution.
The Φ distribution is rotated compared to the original distribution since the
functional Γ(·) is unique up to permutations and phases.
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In Figure 4.2 we apply AMUSE, FOBI and PCA to a bivariate complex
normal distribution that is on the first row. We see that FOBI and AMUSE
transformation lose the information regarding the variation on the first com-
ponent. This is due to normally distributed variables being independent after
performing the whitening transformation. However, the PC transformation
retains the variation in the first component.

4.4 Minimum Distance Index

Let X = (x1, . . . , xn) be a random sample from the independent component
model M1 or M2 defined in Section 2.6.1 with some choice of Ω and z. An
estimate of Γ (Fx) is obtained, when we apply the functional to the sample
cumulative distribution function Fn. We denote the estimate by Γ̂, Γ(Fn)
or Γ(X). The gain matrix Ĝ = Γ̂Ω is used to compare the performance of
different estimators. We have multiple ways of comparing matrices Ĝ that
converge to a population value that is dependent on the functional Γ and
the choice of Ω and z. We can for example use canonical parametrization,
adjusted functionals or the Minimum Distance (MD) index, see Ilmonen et al.
(2012a).

In this Thesis we measure the performance of the estimators using MD in-
dex. Furthermore, we consider the MD index in the complex valued case that
to our knowledge has not been considered before. Let
C = {DP : P is a p× p permutation matrix, D is a p× p diagonal matrix} .
The sets {CA : C ∈ C} partition the set of p × p matrices into equivalence
classes. If B ∈ {CA : C ∈ C}, notation A ∼ B is used. The shortest squared
distance between the set {CA : C ∈ C} of matrices that are equivalent to A
and Ip is given by

D2(A) =
1

p− 1
inf
C∈C
||CA− Ip||2F , (4.4)

where || · ||F is the Frobenius norm.

Remark 4.4.1. Note that D2 (A) = D2(CA) for all C ∈ C.

Theorem 4.4.1. Let A be any p× p full rank matrix. The shortest squared
distance D2(A) fulfills the following four conditions given below:

1. 1 ≥ D2(A) ≥ 0,

2. D2(A) = 0 iff A ∼ Ip,

3. D2(A) = 1 iff A ∼ 1pa
T for some p variate vector a, and
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Figure 4.1: The top row contains the original observations. The second row
contains the original observations mixed with a complex mixing matrix. The
last three rows contain the estimated principal and independent components
obtained from PCA, FOBI and AMUSE.
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Figure 4.2: The first row contains the two dimensions of a sample from a
bivariate complex normal distribution. The rest of the rows contain data
after PCA, FOBI and AMUSE transformations.
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4. the function c → D2 (Ip + c off (A)) is increasing in c ∈ [0, 1] for all
matrices A such that A2

ij ≤ 1, i 6= j.

Let X = [x1, . . . , xn] be a random sample from a distribution Fx, where
x follows the model defined in 2.6.1 with an unknown mixing matrix Ω. Let
Γ(F ) be a separation functional. Hereby, D2 (Γ (Fx) Ω) = 0. The unmixing
matrix estimate based on the functional Γ (Fx) is

Γ̂ = Γ̂ (X) = Γ (Fn) , (4.5)

where Fn is the empirical cumulative distribution function based on X.
The shortest distance between the identity matrix and the set of matrices{
CĜ : C ∈ C

}
equivalent to the gain matrix Ĝ = ĜΩ is given in the following

definition.

Definition 4.4.1 (Minimum Distance Index). The minimum distance index
for Γ̂ is

D̂ = D
(

Γ̂Ω
)

=
1√
p− 1

inf
C∈C

∣∣∣∣∣∣CΓ̂Ω− Ip
∣∣∣∣∣∣
F
.

It follows from Theorem 4.4.1 that 1 ≥ D̂ ≥ 0, and D̂ = 0 only if
Γ̂ ∼ Ω−1. Furthermore, D̂ = 1 is obtained when all the row vectors of Γ̂Ω
have the same direction. Hereby the value of the minimum distance index
is easy to interpret, values near 0 are associated with successful separation.
Note that D(Γ̂Ω) = D(CΓ̂Ω) for all C ∈ C. Additionally,

D
(
Γ
(
XAT

)
AΩ
)

= D (Γ(X)Ω) , (4.6)

due to affine equivariance of Γ. The minimum distance index is compared to
other performance estimators in Nordhausen et al. (2011c).

The minimization over all choices C ∈ C is done by two steps.

Lemma 4.4.1. Let P denote the set of all p× p permutation matrices. Let

Ĝ = Γ̂Ω and let G̃ij = ˆ|G|
2

ij/
∑p

k=1
ˆ|G|ik

2
. Now the minimum distance index

can be written as

D̂ = D(Ĝ) =
1

p− 1

(
p−max

P∈P

(
tr
(
PG̃
)))1/2

.

The maximization problem

max
P

(
tr(PG̃)

)
(4.7)
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over all permutation matrices P can be seen as a linear sum assignment
problem (LSPA). We solve the LSPA using the Hungarian method, see Pa-
padimitriou and Steiglitz (1982). The proof of Lemma 4.4.1 for complex
valued numbers is in Appendix B.2. Note that due to the absolute values,
G̃ is guaranteed to be a real number. Hereby, we can calculate the mini-
mum distance for both real and complex numbers using the formulation in
Lemma 4.4.1. The R-implementation for the minimum distance index that
can handle complex numbers is in Appendix C.3. The code is a modified
version of the minimum distance index function in the R-package JADE by
Nordhausen et al. (2011a).



Chapter 5

Simulation Study

To demonstrate the importance of choosing the right estimator for the right
setting, we conduct a small simulation study. Furthermore, we wanted to
asses the effect of choosing the parameter τ . We compare the estimates
of complex AMUSE with complex FOBI in two different settings using the
Minimum Distance (MD) index. The first setting contains observations from
a time series and the second from a non-time series data. We illustrate the
difference in performance in these two different settings (and with different
parameters τ). The performance of real valued AMUSE in different settings
is considered by Miettinen et al. (2012) and the performance of real FOBI is
considered in Ilmonen et al. (2010b).

We calculated the MD index 5000 times for three variate mixed signals.
The signals had 105 observations. The first setting contained three inde-
pendent stationary AR(2) processes with normally distributed innovations.
We made the time series complex valued such that the components of the
real part was simulated from the independent AR(2) processes. The imagi-
nary part was then formed as a linear combination of the corresponding real
component with an added normally distributed innovation. The real and
complex parts were made dependent on each other to illustrate the value of
complex valued unmixing compared to the real case. If there is no depen-
dency between the complex and real part in the p dimensional case, it is more
convenient to perform the unmixing using 2p dimensional real functionals.

The second setting contained observations from beta distribution, uni-
form distribution and Student’s t-distribution with degree of freedom 10 and
all of the components had normal innovations. Here the complex and real
part of the components were simulated independently from the correspond-
ing distribution. This setting was made to illustrate the better performance
of FOBI in the i.i.d. case.

In both settings, the sources were mixed with an identity matrix. Having
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a trivial mixing matrix does not affect the performance of the estimator since
we are using affine equivariant methods. The results for the first setting in
Figure 5.1 show that for a time series data the AMUSE has clearly better MD
index values compared to FOBI. The effect of the choice of the parameter
τ is also illustrated here. AMUSE performs better with small values of τ
and the MD index distribution starts to shift to 1 as τ grows. FOBI does
not perform well here since the components are not i.i.d. observations. It
is clear that AMUSE is the better choice here in the complex valued time
series setting.

In the i.i.d. setting in Figure 5.2 we see that FOBI performs better.
Now the observations are i.i.d. resulting in the good performance of FOBI.
Furthermore, since there is no autocovariance structure, the choice of the
parameter τ does not have an effect on the performance of AMUSE. Hereby,
in this i.i.d. setting FOBI is the better choice.
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Figure 5.1: MD index calculated for three independent complex valued AR(2)
processes with normally distributed innovations.
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Figure 5.2: MD index calculated for complex valued i.i.d. observations where
the first component is t-distributed, the second is beta distributed and the
third is uniformly distributed. All the components have normally distributed
innovations.



Chapter 6

Data Example

There are countless examples of real valued ICA in literature. Furthermore,
ICA has been mostly considered in the complex valued case involving a trans-
formation to the frequency domain. However, in this thesis we will be con-
sidering two example that involve naturally complex valued signals.

6.1 Image Source Separation

Separation of mixed and overlapping images is a common problem in image
processing. A real life example is the separation of overlapped fingerprints
obtained from a crime scene, where we observe a mixture of two or more
fingerprints, see Singh et al. (2006).

We showcase the separation properties of complex AMUSE and FOBI by
generating three images, seen in Figure 6.2a. We then mix the images with a
random complex valued mixing matrix, the mixed images are in Figure 6.2b.
After that we try to separate the original images from the mixtures using
complex AMUSE and FOBI. The separated images are in Figures 6.2d and
6.2c. The R code for running the whole data example is in Appendix C.2. To
our knowledge, complex valued AMUSE or FOBI has not been considered in
such setting before.

The images were made complex valued by transforming the RGB values
of each pixel to the complex plane using known topological transformations.
However, we only used the colors on the surface of the RGB cube that is
illustrated in Figure 6.1. By considering only the colors on the surface of the
cube, we could define bijective transformations between the complex plane
and the cube surface.

Hereby, our original data D is a h × w × c multidimensional real valued
array (tensor) containing linear mixtures of some figures, where h is the
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Figure 6.1: The RGB color cube generated using MATLAB.

height and w is the width of the original figure. Here the unit of measure is
number of pixels. Every (h,w) coordinate has a corresponding c value that
contains the R, B and G values for that pixel. Note that min(R,B,G) = 0
and max(R,B,G) = 255 and for the purposes of our transformations we scale
the RBG values to be between 0 and 1. The first step of our algorithm is
to ensure that all the pixels are colors that are on the surface of the RBG
cube. We projected every point from the inside to the surface of the cube
the following way:

1. µmax = max(RBG), µmin = min(RBG)

2. ∆ = 255 - µmax

3a. IF(∆ ≤ µmin): RBG(µmax) ← 255

3b. ELSE: RBG(µmin) ← 0,

where RBG = (R,B,G) ∈ R3. This preliminary step ensures that we only
have to deal with colors on the surface of the cube. We then transform the
cube surface into a sphere. After that, we can use the known stereographic
projection that projects a sphere onto a plane. The steps are done in reverse
order when we transform from the complex plane onto the RBG cube sur-
face. The formulas for the transformations and inverse transformations are
in Appendix A.3, A.4 and the corresponding R codes are in Appendix C.1.
We can use the R function to generate a data example for any set of three
figures in .jpeg format. However, high quality photographs do not generally
look good after all the colors are transformed to the surface of the RBG cube.

After the transformations, we have a h × w complex valued matrix for
every image. We then vectorize the matrices and combine the columns re-
sulting in a n × p complex valued matrix, where p is the number of images
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and n = h · w. We have considered an alternative vectorization, denoted
by vecs. In this alternative vectorization we vectorize matrices such that we
start from the first elements in odd rows and from the last elements in even
rows. Now the spatial dependencies of the image are highlighted more in the
vectorized matrix, since pixels that are close to each other in the original
image are also close to each other in the vectorized matrix. The purpose of
the alternative vectorization is to provide better estimates for the autoco-
variance matrix in the AMUSE algorithm. The choice of vectorization has
no effect on FOBI.

After the vectorization, we can perform the AMUSE and FOBI transfor-
mations for the mixed data. Both of the methods seem to work relatively
well here. When comparing Figures 6.2a, 6.2c and 6.2d, we see that the
shapes are retained but the colors seem to be different when comparing to
the original images. This is due to the fact that the transformations are
uniquely defined up to scale, sign and phase as we discussed in Section 4.1.
The choice of vectorization does not seem to affect the AMUSE transforma-
tion in this example. We can see in Figure 6.4 that we get almost identical
results with both vectorizations. Furthermore, the effect of τ is illustrated in
Figure 6.3. We see that the AMUSE estimates start to get worse as τ grows.
Furthermore, it is surprising that AMUSE and FOBI work in this example.
The vectorized data does not fulfill the stationarity conditions.
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(a) Original images.

(b) Mixed images.

(c) Unmixed images using complex FOBI.

(d) Unmixed images using complex AMUSE with τ=1 and vecs.

Figure 6.2: Estimates using FOBI and AMUSE.
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(a) τ=1

(b) τ=5

(c) τ=10

(d) τ=25

Figure 6.3: AMUSE estimates with different choices of τ using vecs.
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(a) τ=1 and vecs

(b) τ=1 and regular vectorization

(c) τ=25 and vecs

(d) τ=25 and regular vectorization

Figure 6.4: Comparison of AMUSE estimates with different vectorizations.
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6.2 Functional Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a prominent non-invasive neuroimag-
ing technique that is commonly used in clinical routine and advanced brain
research. In functional Magnetic Resonance Imaging (fMRI) we measure
changes in brain activity. In an activated area of the brain, the consumption
of oxygen increases. At the same time, the blood flow to the activated areas
increases. The magnetic properties of these activated areas differ from the
rest of the brain and hereby we can measure them using a MRI scanner. The
data produced is noisy, highly variating between subjects, massive in size and
highly correlated both spatially and temporally, see Lange (2003). Statistical
analysis is in a key role to make the datasets interpretable. The data sets
resulting from an fMRI experiment are usually enormous. We have a time
series of a p×p×p mm3 resolution images where the accuracy depends on the
experiment. Usually one of these images contains more than 105 elements.
Furthermore to capture the brain activity, these time between two images is
set to be very small and the experiments are usually long compared to the
collection rate.

Various preprocessing steps are required to correct the functional images.
The images are corrected to eliminate the effects of possible head movement
and for group studies the individual images are transformed to a common
referential. The measuring process has many parts and is very technical. We
end up with complex valued time series data due to the use of Fourier and
inverse Fourier transformations. It is stated in Adali and Calhoun (2007) that
most fMRI analysis techniques discard the phase of the data and consider
only the magnitudes. The paper above has examples, where some brain
activity is only detected when also the phase of the data is utilized.

Several methods have been proposed for the statistical analysis of the
preprocessed sets of functional data. The most common approach is to use
regression techniques, see Friston et al. (1994) and Bullmore et al. (1996).
A common alternative approach to the problem is based on independent
component analysis. The goal is to find the independent components that
are related to a specific activity, for example moving an arm or a leg. At the
same time, we separate the uninteresting noise components. The amount of
applications would be enormous, if we could separate the parts of the brain
that activate when the test subject wants to move a specific limb. This would
allow for example a completely new type of robotic limbs or remote control
of robots. The main problem of ICA is related to computational power and
accuracy, which is mainly due to the enormous data size. An interesting
approach to the problem could be a tensor valued complex ICA.
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Figure 6.5: Functional MRI images. The colors indicate activity in the spe-
cific part of the brain.

Since suitable real data examples related to medical data are difficult to
find, we decided to use a simulated example. Unfortunately, we did not find a
dataset with both the phase and magnitude of the data. Note that a package
exists in R for generating simulated fMRI data. The package neuRosim
(Welvaert et al. (2011)) allows us to generate fMRI data with a large variety
of activation models and noise structures. Unfortunately, the package does
not yet allow the generation of complex valued fMRI data consisting of both
magnitude and phase data. It is listed as future work in Welvaert et al.
(2011). We are planning to test our method for the complex valued data
when the package gets updated or when we find a suitable real dataset.

We have a simulated example in Figure 6.5. The example is generated
using R packages AnalyzeFMRI and fmri. The image shows a potential
independent component that we could find. The colors in the figure represent
brain activity. The parts that do not have a color have activity lower than a
threshold that we set.



Chapter 7

Further Research

The work of this Thesis will be continued in Lietzén et al. (2016). We will
provide asymptotic results for the AMUSE transformation in that paper.
Furthermore, in that paper the complex version of the minimum distance
index will be discussed with more examples. An interesting research question
would be to formulate the complex AMUSE transformation for settings that
require less strict stationarity assumptions. Furthermore, the formulation
and asymptotic properties of complex tensor valued ICA provides grounds
for future research.
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Appendix A

Formulas

A.1 Moments

A.1.1 Generalized Gamma Distribution

The generalized Gamma distribution contains many well known distribu-
tions. Let x follow the generalized Gamma distribution with a probability
density function fx,

fx =
ac (ax)bc−1 exp (− (ax)c)

Γ(b)
,

where a, b and c are real positive parameters. Furthermore, x can only
have values larger or equal to zero. The relation of the generalized Gamma
distribution to other distribution is in Table A.1. The first moment (expected

Table A.1: Generalized Gamma distribution with fixed parameters.

Distribution a b c

Generalized Gamma a b c
Gamma a b 1
χ2 1/2 n/2 1
Exponential 1/α 1 1

Folded Standard Normal 1/
√

2 1/2 2

Maxwell 1/
(
α
√

2
)

3/2 2

Rayleigh 1/
(
α
√

2
)

1 2
Weibull 1/α 1 η

51



APPENDIX A. FORMULAS 52

value) is∫ ∞
0

xfxdx =

∫ ∞
0

x
ac (ax)bc−1 exp (− (ax)c)

Γ(b)
dx

=
c

Γ(b)

∫ ∞
0

(ax)bc exp (− (ax)c) dx (u = ac)

=
cub

Γ(b)

∫ ∞
0

xbc exp (−uxc) dx =
cub

Γ(b)

1

c
u−

bc+1
c Γ

(
bc+ 1

c

)
=

Γ
(
b+ 1

c

)
aΓ (b)

= µ.

Since the generalized Gamma distribution is not symmetric, the odd central
moments can differ from zero. The second central moment (variance) is∫ ∞

0

(x− µ)2 fxdx =

∫ ∞
0

(x− µ)2
ac (ax)bc−1 exp (− (ax)c)

Γ(b)
dx

=
cabc

Γ(b)

∫ ∞
0

(x− µ)2 xbc−1 exp (− (ax)c) dx

(
C =

cabc

Γ(b)

)
= C

∫ ∞
0

(
xbc+1 − 2xbcµ+ xbc−1µ2

)
exp (− (ax)c) dx (u = ac)

= C

∫ ∞
0

xbc+1 exp (−uxc) dx− 2µ
cub

Γ(b)

∫ ∞
0

xbc exp (−uxc) dx

+ Cµ2

∫ ∞
0

xbc−1 exp (−uxc) dx

= C
u−b−

2
c + Γ

(
b+ 2

c

)
c

− 2µ2 + Cµ2Γ(b)

ubc

=
cabc

Γ(b)

a−(bc+2) + Γ
(
b+ 2

c

)
c

− 2

(
Γ
(
b+ 1

c

)
aΓ (b)

)2

+
cabc

Γ(b)

(
Γ
(
b+ 1

c

)
aΓ (b)

)2
Γ(b)

abcc

=
Γ
(
b+ 2

c

)
a2Γ(b)

−
(
Γ
(
b+ 1

c

))2
a2 (Γ(b))2

.



APPENDIX A. FORMULAS 53

The fourth central moment (kurtosis) is∫ ∞
0

(x− µ)4 fxdx =

∫ ∞
0

(x− µ)4
ac (ax)bc−1 exp (− (ax)c)

Γ(b)
dx

=
cabc

Γ(b)

∫ ∞
0

(x− µ)4 xbc−1 exp (− (ax)c) dx

=
cabc

Γ(b)

∫ ∞
0

(
xbc+3 − 4xbc+2µ+ 6xbc+1µ2 − 4xbcµ3 + xbc−1µ4

)
exp (− (ax)c) dx

=
1

a4

(
Γ
(
b+ 4

c

)
Γ(b)

− 4
Γ
(
b+ 1

c

)
Γ
(
b+ 3

c

)
(Γ(b))2

+ 6

(
Γ
(
b+ 1

c

))2
Γ
(
b+ 2

c

)
(Γ(b))3

−3

(
Γ
(
b+ 1

c

))4
(Γ(b))4

)
.

The terms of the sum are integrated the same way as in the second central
moment integral.

A.1.2 Laplace Distribution

The Laplace distribution is sometimes referred to as the double exponential
distribution. Let x follow the Laplace distribution with a probability density
function fx,

fx =
λ

2
exp (−λ |x− µ|) ,

where µ is a location parameter and λ is a real positive number. The first
moment (expected value) is∫ ∞

−∞
xfxdx =

∫ ∞
−∞

x
λ

2
exp (−λ |x− µ|) dx = µ.

Let n be a positive integer. The nth central moment is
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µn =

∫ ∞
−∞

(x− µ)n fxdx

=
λ

2

(∫ µ

−∞
(x− µ)n exp (−λ (µ− x)) dx+

∫ ∞
µ

(x− µ)n exp (−λ (x− µ)) dx

)
=
λ

2

(∫ 0

−∞

(y
λ

)n
exp (y)

dy

λ
+

∫ ∞
0

(y
λ

)n
exp (−y)

dy

λ

)
(y = λ (x− µ))

=
1

2λn

(∫ 0

−∞
yn exp (y) dy +

∫ ∞
0

yn exp (−y)
dy

λ

)
=

1

2λn
((−1)n Γ(n+ 1) + Γ(n+ 1)) = (−1)n

n!

2λn
+

n!

2λn
,

since Γ(n + 1) = n!, where Γ (·) is the Euler’s Gamma function. Since
Laplace distribution is symmetric, all the odd moments are zero. The nth
central moment is then

µn =

{
0 if n odd,
n!
λn

if n even.

The second (variance) and the fourth (kurtosis) central moments are

µ2 =
2

λ2
,

µ4 =
24

λ4
.

A.1.3 Normal Distribution

Let x be normally distributed with a probability density function fx,

fx =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
,

where µ is a location parameter and σ is the standard deviation. For µ = 0
and σ = 1 we refer to this distribution as the standard normal distribution.
The first moment (expected value) is∫ ∞

−∞
xfxdx =

∫ ∞
−∞

x
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
dx = µ.
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Let n be a positive integer. The nth central moment is

µn =

∫ ∞
−∞

(x− µ)n fxdx

=

∫ ∞
−∞

1

σ
√

2π
(x− µ)n exp

(
−1

2

(
x− µ
σ

)2
)
dx (y = x− µ)

=

∫ ∞
−∞

1

σ
√

2π
yn exp

(
−1

2

(y
σ

)2)
dy (y = σu)

=

∫ ∞
−∞

σn

σ
√

2π
un exp

(
−u

2

2

)
σdu = σn

∫ ∞
−∞

un√
2π

exp

(
−u

2

2

)
du

Note that the integral is zero for odd n since the integral of an odd function
over the real line is zero. For an even n we can write the integral as

2σn
∫ ∞
0

un√
2π

exp

(
−u

2

2

)
du

(
u =
√

2w and n = 2n
)

= σ2n 2√
2π

∫ ∞
0

(2w)n exp (−w)
dw√
2w

=
2n√
π

∫ ∞
0

wn−
1
2 exp (−w) dw

= σ2n 2n√
π

Γ

(
n+

1

2

)
= σ2n (2n− 1)!!,

where Γ (·) is the Euler’s Gamma function and (·)!! is the double factorial.
For the Gamma function it holds that

Γ

(
n+

1

2

)
=

(2n− 1)!!

2n
√
π,

see Arfken et al. (2011) for the proof. We get the nth central moment when
we substitute n back to the place of 2n.

µn =

{
0 if n odd,

σn (n− 1)!! if n even.

The second (variance) and the fourth (kurtosis) central moments are then

µ2 = σ2,

µ4 = 3σ4.

A.1.4 Uniform Distribution

Let x be uniformly distributed between finite a and b with a probability
density function fx,

fx =

{
1
b−a if x ∈ [a, b] ,

0 otherwise.
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The first moment (expected value) is then

µ =

∫ ∞
−∞

xfxdx =

∫ b

a

xfxdx =

∫ b

a

x
1

b− a
dx =

[
x2

2(b− a)

]b
a

=
a+ b

2
.

Let n be a positive integer. The nth central moment is

µn =

∫ ∞
−∞

(x− µ)nfxdx =

∫ b

a

(x− µ)n
1

b− a
dx =

[
(x− µ)n+1

(n+ 1)(b− a)

]b
a

=
(b− µ)n+1 − (a− µ)n+1

(n+ 1)(b− a)
=

(
1
2

(b− a)
)n+1 −

(
1
2

(a− b)
)n+1

(n+ 1)(b− a)

=
(b− a)n + (a− b)n

2n+1(n+ 1)
=

{
0 if n odd,
(b−a)n
2n(n+1)

if n even.

Since the uniform distribution is symmetric, all the odd central moments are
0. The second central moment (variance) and the fourth central moment
(kurtosis) are then

µ2 =
(b− a)2

12
,

µ4 =
(b− a)4

80
.

A.2 Complex Cov4 (·) Scaling

The complex version of the Cov4 (·) scatter matrix functional is defined the
following way

Cov4(Fx) = S2(Fx) =

1

p+ 1
E
(
(x− E(x)) (x− E(x))∗ S1(Fx)

−1 (x− E(x)) (x− E(x))∗
)
,

where S1(Fx) is the covariance matrix. Let a random vector z with a cdf Fz
follow the complex normal distribution with parameters µ, Σ and C,

µ = E (z) = 0,

Σ = Cov (Fz) = E (zz∗) = Ip,

C = E
(
zzT
)

= 0p.
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The complex normal distribution with these parameters is referred to as the
standard complex normal distribution. We can present the standard complex
normal distribution as 2p real normal distribution. If z = x+ yi, then(

x
y

)
∼ N

(
02p,

1

2
I2p

)
.

Hereby, the second and fourth central moments of xj and yj are 1
2

and 3
4

respectively. The Cov4 (·) scatter matrix for the standard complex normal
distribution is then:

Cov4 (Fz) =
1

p+ 1
E (zz∗Ipzz

∗)

=
1

p+ 1
E


z1...
zp

(z̄1 . . . z̄p
)z1...

zp

(z1 . . . zp
)

=
1

p+ 1
E


|z1|

4 + |z1|2
∑p

j 6=1 |zj|2 . . . ·
...

. . .
...

· . . . |zp|4 + |zp|2
∑p

j 6=p |zj|2




=
1

p+ 1
E


x

4
1 + 2x21y

2
1 + y41 + (x21 + y21)

∑p
j 6=1

(
x2j + y2j

)
. . . ·

...
. . .

...
· . . . ·




=
1

p+ 1


3
4

+ 2
4

+ 3
4

+ (p− 1) . . . 0
...

. . .
...

0 . . . 3
4

+ 2
4

+ 3
4

+ (p− 1)

 = Ip,

where z̄i is the complex conjugate of zi. Hereby, 1
p+1

is the correct scaling

factor if we want to scale Cov4 (·) to be the identity matrix for the standard
complex normal distribution.

A.3 Cube to Sphere Mapping

Let

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

be the unit sphere and

C = {(x, y, z) ∈ R3 : x, y, z ∈ {1,−1}}
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be the unit cube surface. A mapping from the cube surface to the unit sphere

π : C → S

can be formulated as:

π (x, y, z) =


x
√

1− y2

2
− z2

2
+ y2z2

3
,

y
√

1− z2

2
− x2

2
+ z2x2

3
,

z
√

1− x2

2
− y2

2
+ x2y2

3

 = (X, Y, Z),

The inverse mapping from sphere to cube is not as convenient as the
cube to sphere mapping. Furthermore, the inverse transformation can not
be written in closed form. The R code for the mappings are in Appendix
C.1.

A.4 Stereographic Projection

Let

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

be the unit sphere and let n denote the north pole (0,0,1). The stereographic
projection map π,

π : S2 − n→ C,

can be formulated the following way:

π (x, y, z) =

(
x

1− z
,

y

1− z

)
= (X, Y ) .

The inverse map can be formulated as:

π−1 (X, Y ) =

(
2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
−1 +X2 + Y 2

1 +X2 + Y 2

)
= (x, y, z).

Note that π is not defined on n and is a bijective transformation on all the
other points of the set. Furthermore, stereographic projection is conformal,
meaning that it preserves the angels between curves. The R codes for the
mappings are in Appendix C.1.



Appendix B

Proofs of Theorems

B.1 Proof of Theorem 3.2.1

Let x be a p variate random vector with a cumulative distribution function Fx
and letX = [x1, ..., xn], where x1, ..., xn are observations from the distribution
Fx. Let S(Fx) be a scatter functional. Now

S−1/2 (Fx)A
−1 (S (FAx+b))

(
S−1/2 (Fx)A

−1)∗
= S−1/2 (Fx)A

−1AS (Fx)A
∗ (A∗)−1

(
S−1/2 (Fx)

)∗
= Ip.

Thus it follows that S−1/2(FAx+b) = OS−1/2(Fx)A
−1 for some orthogonal

O = O (Fx, A).

B.2 Proof of Lemma 4.4.1

Let A = (aij) = (vij + wiji) be a p × p matrix with at least one nonzero
element in each row. Let L denote the set of all nonsingular p× p diagonal
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matrices and let L = (lij) = (xij + yiji) ∈ L. Now

||LA− Ip||2F =

p∑
i=1

|aiilii − 1|2 +

p∑
i=1

p∑
j=1

i 6=j

|aijlij|2

=

p∑
i=1

|(vii + wiii) (xii + yiii)− 1|2 +

p∑
i=1

p∑
j=1

i 6=j

|(vij + wiji) (xij + yiji)|

=

p∑
i=1

(
(viixii − wiiyii − 1)2 + (viiyii + wiixii)

2)
+

p∑
i=1

p∑
j=1

i 6=j

(
(vijxij − wijyij)2 + (vijyij + wijxij)

2)

=

p∑
i=1

(
v2iix

2
ii + v2iiy

2
ii + w2

iix
2
ii + w2

iiy
2
ii − 2viixii + 2wiiyii + 1

)
+

p∑
i=1

p∑
j=1

i 6=j

(
v2ijx

2
ij + v2ijy

2
ij + w2

ijx
2
ij + w2

ijy
2
ij

)

=

p∑
i=1

p∑
j=1

(
x2ij
(
v2ij + w2

ij

)
+ y2ij

(
v2ij + w2

ij

))
− 2

p∑
i=1

(viixii − wiiyii) + p.

Then

∂

∂xii
||LA− Ip||2F = 2

(
p∑
j=1

(
xii
(
v2ij + w2

ij

))
− 2vii

)
and

∂

∂yii
||LA− Ip||2F = 2

(
p∑
j=1

(
yii
(
v2ij + w2

ij

))
+ 2wii

)
.

The derivatives are zero when

xii =
vii∑p

j=1

(
v2ij + w2

ij

) =
Re(aii)∑p
j=1 |aij|

2

and

yii = − wii∑p
j=1

(
v2ij + w2

ij

) =
−Im(aii)∑p
j=1 |aij|

2 .
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The value of ||LA− Ip||2F is then

p−
p∑
i=1

|aii|2∑p
j=1 |aij|

2

Let P denote the set of all p× p permutation matrices. Now denote Ĝ = Γ̂Ω

and G̃ij = ˆ|G|
2

ij/
∑p

k=1
ˆ|G|

2

ik, i, j = 1, . . . , p. We can then write the minimum
distance index as

D̂ = D(Ĝ) =
1√
p− 1

(
p−max

P∈P

(
tr
(
PG̃
)))1/2

.

Note that for the Frobenius norm has the following property

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 =
√

tr(AA∗),

where A∗ is the conjugate transpose of A.



Appendix C

R Codes

This Appendix contains the required R codes to reproduce the results of this
thesis.

C.1 Fun Col Sep.R

plot_jpeg = function(jpg, add=FALSE)

{

res = dim(jpg)[1:2] # get the resolution

if (!add) # initialize an empty plot area if add==FALSE

plot(0,0,xlim=c(0,res[1]),ylim=c(0,res[2]),asp=1,type=’n’,xaxs=’i’

,yaxs=’i’,xaxt=’n’,yaxt=’n’,xlab=’’,ylab=’’,bty=’n’)

rasterImage(jpg,0,0,res[1],res[2])

}

#Project the pixels to the surface of the RBG cube

cor_pix <- function(A){

d1 <- dim(A)[1]

d2 <- dim(A)[2]

d3 <- dim(A)[3]

for( i in 1:d1){

for( j in 1:d2){

tmp_max <- max(A[i,j,])

tmp_min <- min(A[i,j,])

diff1 <- 1 - tmp_max

if( diff1 <= tmp_min){

A[i,j,match(tmp_max,A[i,j,])] <- 1

}

else{

A[i,j,match(tmp_min,A[i,j,])] <- 0
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}

}

}

return(A)

}

cube_to_sphere <- function(A){

D <- A

n <- dim(A)[1]

p <- dim(A)[2]

for(i in 1:n){

for(j in 1:p){

x <- A[i,j,1]

y <- A[i,j,2]

z <- A[i,j,3]

D[i,j,1] <- x*sqrt(1- y^2/2- z^2/2 + (y^2*z^2)/3)

D[i,j,2] <- y*sqrt(1- z^2/2- x^2/2 + (x^2*z^2)/3)

D[i,j,3] <- z*sqrt(1- x^2/2- y^2/2 + (x^2*y^2)/3)

}

}

return(D)

}

sphere_to_cube <- function(A){

n <- dim(A)[1]

p <- dim(A)[2]

D <- array(dim = c(n,p,3))

for(i in 1:n){

for(j in 1:p){

x <- A[i,j,1]

y <- A[i,j,2]

z <- A[i,j,3]

fx = abs(x)

fy = abs(y)

fz = abs(z)

if (fy >= fx && fy >= fz) {

a2 = x * x * 2.0

b2 = z * z * 2.0

inner = -a2 + b2 -3

innersqrt = -sqrt((inner * inner) - 12.0 * a2)

if(x == 0.0 || x == -0.0) {

position.x = 0.0

}

else {

position.x = sqrt(innersqrt + a2 - b2 + 3.0) * 1/sqrt(2)
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}

if(z == 0.0 || z == -0.0) {

position.z = 0.0

}

else {

position.z = sqrt(innersqrt - a2 + b2 + 3.0) * 1/sqrt(2)

}

if(position.x > 1.0) position.x = 1.0

if(position.z > 1.0) position.z = 1.0

if(x < 0) position.x = -position.x

if(z < 0) position.z = -position.z

if (y > 0) {

#top face

position.y = 1.0;

}

else {

# bottom face

position.y = -1.0;

}

}else if (fx >= fy && fx >= fz) {

a2 = y * y * 2.0;

b2 = z * z * 2.0;

inner = -a2 + b2 -3;

innersqrt = -sqrt((inner * inner) - 12.0 * a2);

if(y == 0.0 || y == -0.0) {

position.y = 0.0;

}

else {

position.y = sqrt(innersqrt + a2 - b2 + 3.0) * 1/sqrt(2)

}

if(z == 0.0 || z == -0.0) {

position.z = 0.0;

}

else {

position.z = sqrt(innersqrt - a2 + b2 + 3.0) * 1/sqrt(2)

}

if(position.y > 1.0) position.y = 1.0;

if(position.z > 1.0) position.z = 1.0;

if(y < 0) position.y = -position.y;

if(z < 0) position.z = -position.z;
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if (x > 0) {

# right face

position.x = 1.0;

}

else {

# left face

position.x = -1.0;

}

}else {

a2 = x * x * 2.0;

b2 = y * y * 2.0;

inner = -a2 + b2 -3;

innersqrt = -sqrt((inner * inner) - 12.0 * a2);

if(x == 0.0 || x == -0.0) {

position.x = 0.0;

}

else {

position.x = sqrt(innersqrt + a2 - b2 + 3.0) * 1/sqrt(2)

}

if(y == 0.0 || y == -0.0) {

position.y = 0.0;

}

else {

position.y = sqrt(innersqrt - a2 + b2 + 3.0) * 1/sqrt(2)

}

if(position.x > 1.0) position.x = 1.0;

if(position.y > 1.0) position.y = 1.0;

if(x < 0) position.x = -position.x;

if(y < 0) position.y = -position.y;

if (z > 0) {

# front face

position.z = 1.0;

}

else {

# back face

position.z = -1.0;

}

}

D[i,j,1] <- position.x

D[i,j,2] <- position.y

D[i,j,3] <- position.z

}

}
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D.scaled <- 1/2*(1+D)

return(D.scaled)

}

comptopix <- function(A,he,wi){

height <- he

width <- wi

TM <- array(dim=c(he,wi,3))

for(i in 1:height){

for(j in 1:width){

a <- Re(A[i,j])

b <- Im(A[i,j])

TM[i,j,1] <- (2*a)/(a^2+b^2+1)

TM[i,j,2] <- (2*b)/(a^2+b^2+1)

TM[i,j,3] <- (a^2+b^2-1)/(a^2+b^2+1)

}

}

return(TM)

}

pixtocomp <- function(D){

#Scale and shift the location to fit the transformation

A <- D*2 -1

height <- dim(A)[1]

width <- dim(A)[2]

TM <- matrix(NA,nrow=height,ncol=width)

for(i in 1:height){

for(j in 1:width){

repart <- A[i,j,1]/(1-A[i,j,3])

impart <- A[i,j,2]/(1-A[i,j,3])

TM[i,j] <- complex(re=repart,im=impart)

}

}

return(TM)

}

iseven <- function(a){a\%\%2==0}

snakevector <- function(A){

height <- dim(A)[1]

width <- dim(A)[2]

vec <- c(rep(NA,height*width))

for(i in 1:width){

for(j in 1:height){
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if(!iseven(i)){

vec[(i-1)*height + j] <- A[j,i]

}

if(iseven(i)){

vec[(i-1)*height + j] <- A[(height+1-j),i]

}

}

}

return(vec)

}

reversesnake <- function(vec,he,wi){

height <- he

width <- wi

M <- matrix(NA,ncol=width,nrow=height)

for(i in 1:width){

for(j in 1:height){

if(!iseven(i)){

M[j,i] <- vec[(i-1)*height + j]

}

if(iseven(i)){

M[(height+1-j),i] <- vec[(i-1)*height + j]

}

}

}

return(M)

}

C.2 ImageSourceSeparation.R

library(clue)

library(forecast)

library(mvtnorm)

library(pixmap)

library(jpeg)

# Make sure you have the all the .R files in the same folder

source("Fun_Col_Sep.R")

source("Reqfun.R")

#Run Fractals.R to generate the following figures.

fig1 <- readJPEG("pic1.jpg")

fig2 <- readJPEG("pic2.jpg")

fig3 <- readJPEG("pic3.jpg")

#The function is designed for a 3 figure setting.

#parameters = figure 1, figure 2, figure 3,

#regular vectorization = TRUE, set of taus,
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#name for the figures

ImageSep <- function(F1,F2,F3,Vec,taus,name){

he <- min(dim(F1)[1],dim(F2)[1],dim(F3)[1])

wi <- min(dim(F1)[2],dim(F2)[2],dim(F3)[2])

F1.scale <- F1[1:he,26:(wi+25),]

F2.scale <- F2[1:he,1:wi,]

F3.scale <- F3[1:he,1:wi,]

# Project the colors to the surface of the RBG cube

F1.corrected <- cor_pix(F1.scale)

F2.corrected <- cor_pix(F2.scale)

F3.corrected <- cor_pix(F3.scale)

nameoriginal <- paste("original",name,".png",sep="")

# Plot the corrected figures

png(nameoriginal,width=480,height=150)

par(mfrow = c(1,3),mar = c(0.1,0.1,0.1,0.1))

plot_jpeg(F1.corrected)

plot_jpeg(F2.corrected)

plot_jpeg(F3.corrected)

dev.off()

# Transform the cube surface to sphere surface and

# stereohraphic transformation from the sphere to the complex plane

F1.complex <- pixtocomp(cube_to_sphere(F1.corrected))

F2.complex <- pixtocomp(cube_to_sphere(F2.corrected))

F3.complex <- pixtocomp(cube_to_sphere(F3.corrected))

# Choose the vectorization

if(Vec ==TRUE){

Z <- cbind(as.vector(F1.complex),as.vector(F2.complex),

as.vector(F3.complex))

}

else{

Z <- cbind(snakevector(F1.complex),snakevector(F2.complex),

snakevector(F3.complex))

}

#Choose the mixing matrix

a <- complex(re=0.1, im =0.04)

b <- complex(re=0.3, im =0.051)

c <- complex(re=0.38, im =0.01)

d <- complex(re=0.12, im =0.078)

e <- complex(re=0.51, im =0.34)

f <- complex(re=0.34, im =0.47)

g <- complex(re=0.01, im =0.032)

h <- complex(re=0.08, im =0.012)
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i <- complex(re=0.2, im =0.21)

OMEGA <- matrix(c(a,b,c,d,e,f,g,h,i),3,3)

MIXED <- Z \%\*\% t(OMEGA)

M1 <- matrix(MIXED[,1],he,wi)

M2 <- matrix(MIXED[,2],he,wi)

M3 <- matrix(MIXED[,3],he,wi)

#Transform from complex plane to sphere and from

#sphere to cube surface

if(Vec ==TRUE){

M1.RBG <- sphere_to_cube(comptopix(M1,he,wi))

M2.RBG <- sphere_to_cube(comptopix(M2,he,wi))

M3.RBG <- sphere_to_cube(comptopix(M3,he,wi))

}

else{

#Note that for Vec=FALSE the mixed images do not print correctly

M1.RBG <- sphere_to_cube(comptopix(M1,he,wi))

M2.RBG <- sphere_to_cube(comptopix(M2,he,wi))

M3.RBG <- sphere_to_cube(comptopix(M3,he,wi))

}

namemixed <- paste("mixed",name,".png",sep="")

png(namemixed,width=480,height=150)

par(mfrow = c(1,3),mar = c(0.1,0.1,0.1,0.1))

plot_jpeg(M1.RBG)

plot_jpeg(M2.RBG)

plot_jpeg(M3.RBG)

dev.off()

FOBI.EST <- gammaFOBI(MIXED)

FOBI.GAMMA <- gammaFOBI2(MIXED)

tmp.FOBI <- MD_fun(FOBI.GAMMA,OMEGA)

print(tmp.FOBI)

if(Vec ==TRUE){

EST1.FOBI <- matrix(FOBI.EST[,1],he,wi)

EST2.FOBI <- matrix(FOBI.EST[,2],he,wi)

EST3.FOBI <- matrix(FOBI.EST[,3],he,wi)

}

else{

EST1.FOBI <- reversesnake(matrix(FOBI.EST[,1],he,wi),he,wi)

EST2.FOBI <- reversesnake(matrix(FOBI.EST[,2],he,wi),he,wi)

EST3.FOBI <- reversesnake(matrix(FOBI.EST[,3],he,wi),he,wi)

}
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EST1.FOBI.RBG <- sphere_to_cube(comptopix(EST1.FOBI,he,wi))

EST2.FOBI.RBG <- sphere_to_cube(comptopix(EST2.FOBI,he,wi))

EST3.FOBI.RBG <- sphere_to_cube(comptopix(EST3.FOBI,he,wi))

namefobi <- paste("fobiunmixed",name,".png",sep="")

png(namefobi,width=480,height=150)

par(mfrow = c(1,3),mar = c(0.1,0.1,0.1,0.1))

plot_jpeg(EST1.FOBI.RBG)

plot_jpeg(EST2.FOBI.RBG)

plot_jpeg(EST3.FOBI.RBG)

dev.off()

n <- length(taus)

for(i in 1:1){

AMUSE.EST <- gammaAMUSE(MIXED,taus[i])

EST.AMUSE.MAT <- gammaAMUSE2(MIXED,taus[i])

tmp.AMUSE <- MD_fun(EST.AMUSE.MAT,t(OMEGA))

print(i)

print(tmp.AMUSE)

if(Vec == TRUE){

EST1.AMUSE <- matrix(AMUSE.EST[,1],he,wi)

EST2.AMUSE <- matrix(AMUSE.EST[,2],he,wi)

EST3.AMUSE <- matrix(AMUSE.EST[,3],he,wi)

}

else{

EST1.AMUSE <- reversesnake(matrix(AMUSE.EST[,1],he,wi),he,wi)

EST2.AMUSE <- reversesnake(matrix(AMUSE.EST[,2],he,wi),he,wi)

EST3.AMUSE <- reversesnake(matrix(AMUSE.EST[,3],he,wi),he,wi)

}

EST1.AMUSE.RBG <- sphere_to_cube(comptopix(EST1.AMUSE,he,wi))

EST2.AMUSE.RBG <- sphere_to_cube(comptopix(EST2.AMUSE,he,wi))

EST3.AMUSE.RBG <- sphere_to_cube(comptopix(EST3.AMUSE,he,wi))

picname <- paste("amuseunmixed_tau",taus[i],name,".png",sep="")

png(picname,width=480,height=150)

par(mfrow = c(1,3),mar = c(0.1,0.1,0.1,0.1))

plot_jpeg(EST1.AMUSE.RBG)

plot_jpeg(EST2.AMUSE.RBG)

plot_jpeg(EST3.AMUSE.RBG)

dev.off()

}

}

ImageSep(fig1,fig2,fig3,TRUE,c(1,5,10,25),"vec_30_1_2016")

ImageSep(fig1,fig2,fig3,FALSE,c(1,5,10,25),"vecs_30_1_2016")
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C.3 MDI.R

library(clue)

library(forecast)

library(mvtnorm)

source("Reqfun.R")

pMatrix.min <- function(A){

cost <- t(apply(A^2, 1, sum) - 2 * A + 1)

vec <- c(solve_LSAP(cost))

list(A=A[vec,], pvec=vec)

}

MD_fun <- function(W.hat,A)

{

G <- W.hat \%\*\% A

RowNorms <- sqrt(rowSums(abs(G)^2))

G.0 <- sweep(abs(G),1,RowNorms, "/")

G.tilde <- G.0^2

p <- nrow(A)

Pmin <- pMatrix.min(G.tilde)

G.tilde.p <- Pmin$A

md <- sqrt(p - sum(diag(G.tilde.p)))/sqrt(p-1)

return(md)

}

C.4 Reqfun.R

msqrt <- function(X){ #matrix squareroot

#Eigendecomposition

eigen(X)$vectors \%\*\% (diag(eigen(X)$values)^(1/2) \%\*\%

Conj(t(eigen(X)$vectors)))

}

msqrt2 <- function(A){

tmp <- svd(A)

result <- tmp$u \%\*\% diag((tmp$d)^(1/2)) \%\*\% Conj(t(tmp$v))

return(result)

}

cov1 <- function(X){ #covariance matrix
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ave <- apply(X,2,mean)

cent <- sweep(X,2,ave,"-")

return(1/(dim(X)[1]-1) * t(Conj(cent)) \%\*\% cent)

}

#Named cov2 since package JADE has a cov4() function

cov2 <- function(X){ #cov4 matrix

p <- dim(X)[2]

n <- dim(X)[1]

ave <- apply(X,2,mean)

cent <- sweep(X,2,ave,"-")

S1 <- cov1(X)

SQ1 <- solve(msqrt(S1))

Z=matrix(data=NA, nrow=n, ncol=p)

for(k in 1:n){

Z[k,] <- SQ1 \%\*\% cent[k,]

}

K = matrix(0,nrow=p,ncol=p)

for(k in 1:n){

a <- Z[k,] \%\*\% t(Conj(Z[k,])) \%\*\% Z[k,]

\%\*\% t(Conj(Z[k,]))

K <- K + a

}

msqrt(S1) \%\*\% K \%\*\% msqrt(S1) /(n*(p+2))

}

acov <- function(X,tau){ #autocovariance matrix

n <- dim(X)[1]

ave <- apply(X,2,mean)

Z <- sweep(X,2,ave,’-’)

tmp1 <- Conj(t( Z[1:(n-tau),] )) \%\*\% Z[(1+tau):n,]

tmp2 <- Conj(t( Z[(1+tau):n,] )) \%\*\% Z[1:(n-tau),]

AC <- 1/(2*(n-tau)) * (tmp1 + tmp2)

return(AC)

}

gammaAMUSE2 <- function(D,t)

{#return the gamma-matrix estimate

n <- dim(D)[1]

p <- dim(D)[2]

T1 <- apply(D,2,mean)

cent <- sweep(D,2,T1,’-’)

S1 <- cov1(D)

#Cov is affine equivariant, lose less precision

# when calculated from original

Z <- cent \%\*\% solve(msqrt(S1)) #whitening

S2 <- acov(Z,t)

U2 <- eigen(S2)$vectors

G <-t( Conj(t(U2)) \%\*\% t(solve(msqrt(S1))) )

#Gamma transpose

return(G)
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}

gammaAMUSE <- function(D,t)

{#returns the transformed data

n <- dim(D)[1]

p <- dim(D)[2]

T1 <- apply(D,2,mean)

cent <- sweep(D,2,T1,’-’)

S1 <- cov1(D)

#Cov is affine equivariant, lose less precision

# when calculated from original

Z <- cent \%\*\% solve(msqrt(S1))

S2 <- acov(Z,t)

U2 <- eigen(S2)$vectors

DT <- Z \%\*\% U2

return(DT)

}

gammaFOBI2 <- function(D){

#return the gamma matrix estimate

n <- dim(D)[1]

p <- dim(D)[2]

T1 <- apply(D,2,mean)

cent <- sweep(D,2,T1,’-’)

S1 <- cov1(D)

#Cov is affine equivariant, lose less precision

# when calculated from original

Z <- cent \%\*\% solve(msqrt(S1)) #whitening

S2 <- cov2(Z)

U2 <- eigen(S2)$vectors

G <-t( Conj(t(U2)) \%*\% t(solve(msqrt(S1))) )

#Gamma transpose

return(G)

}

gammaFOBI <- function(D){

#returns the transformed data

n <- dim(D)[1]

p <- dim(D)[2]

T1 <- apply(D,2,mean)

cent <- sweep(D,2,T1,’-’)

S1 <- cov1(D)

#Cov is affine equivariant, lose less precision

#when calculated from original

Z <- cent \%\*\% solve(msqrt(S1))

S2 <- cov2(Z)

U2 <- eigen(S2)$vectors

DT <- Z \%\*\% U2

return(DT) #Gamma transpose

}



Bibliography

Adali, T. and V. D. Calhoun (2007), Complex ICA of Brain Imaging Data.
IEEE Signal Processing Magazine, September, 136–139.

Adali, T., P. J. Schreier, and L. L. Scharf (2011), Complex-Valued Signal
Processing: The Proper Way to Deal With Impropriety. IEEE Transac-
tions on signal processing, 59, 5101–5125.

Anemüller, J., T. J. Sejnowski, and S. Makeig (2003), Complex independent
component analysis of frequency-domain electroencephalographic data.
Neural Networks, 16, 1311–1323.

Arfken, G. B., H. J. Weber, and F. E. Harris (2011), Mathematical methods
for physicists: A comprehensive guide. Academic press.

Bar-Ness, Y., J. W. Carlin, and M. L. Steinberger (1982), Bootstrapping
adaptive interference cancelers-some practical limitations. In Globecom’82-
Global Telecommunications Conference, volume 1, 1251–1255.

Brockwell, P. J. and R. A. Davis (2013), Time series: theory and methods.
Springer Science & Business Media.

Bullmore, E., M. Brammer, S. C. Williams, S. Rabe-Hesketh, N. Janot,
A. David, J. Mellers, R. Howard, and P. Sham (1996), Statistical methods
of estimation and inference for functional MR image analysis. Magnetic
Resonance in Medicine, 35, 261–277.

Cardoso, J.-F. (1989), Source separation using higher order moments. In
Acoustics, Speech, and Signal Processing, 1989. ICASSP-89., 1989 Inter-
national Conference on, 2109–2112, IEEE.

Chen, A. and P. J. Bickel (2006), Efficient independent component analysis.
The Annals of Statistics, 34, 2825–2855.

Comon, P. (1994), Independent component analysis, a new concept? Signal
processing, 36, 287–314.

74



BIBLIOGRAPHY 75

Comon, P. and C. Jutten (2010), Handbook of Blind Source Separation: In-
dependent component analysis and applications. Academic press.

Davies, P. L. (1987), Asymptotic behavior of S-estimates of multivariate
location parameters and dispersion matrices. The Annals of Statistics, 15,
1269–1292.

Friston, K. J., A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, and R. S.
Frackowiak (1994), Statistical parametric maps in functional imaging: a
general linear approach. Human brain mapping, 2, 189–210.

Hogg, R. V., J. W. McKean, and A. T. Craig (2005), Introduction to Math-
ematical Statistics. Prentice Hall.

Horn, R. A. and C. R. Johnson (1985), Matrix Analysis. Cambridge Univer-
sity Press, New York.

Hwang, S. and S. E. Satchell (1999), Modelling emerging market risk premia
using higher moments. Return Distributions in Finance, 75.

Hyvärinen, A., J. Karhunen, and E. Oja (2001), Independent Component
Analysis. John Wiley & Sons, New York.

Ilmonen, P. (2013), On asymptotic properties of the scatter matrix based
estimates for complex valued independent component analysis. Statistics
& Probability Letters, 83, 1219–1226.

Ilmonen, P., J. Nevalainen, and H. Oja (2010a), Characteristics of multivari-
ate distributions and the invariant coordinate system. Statistics & proba-
bility letters, 80, 1844–1853.

Ilmonen, P., K. Nordhausen, H. Oja, and E. Ollila (2010b), A new perfor-
mance index for ICA: properties, computation and asymptotic analysis. In
Latent Variable Analysis and Signal Separation, 229–236, Springer.

Ilmonen, P., K. Nordhausen, H. Oja, and E. Ollila (2012a), On asymp-
totics of ICA estimators and their performance indices. arXiv preprint
arXiv:1212.3953.

Ilmonen, P., H. Oja, and R. Serfling (2012b), On invariant coordinate system
(ICS) functionals. International Statistical Review, 80, 93–110.

Ilmonen, P., D. Paindaveine, et al. (2011), Semiparametrically efficient infer-
ence based on signed ranks in symmetric independent component models.
the Annals of Statistics, 39, 2448–2476.



BIBLIOGRAPHY 76

Kent, J. T., D. E. Tyler, et al. (1996), Constrained M-estimation for multi-
variate location and scatter. The Annals of Statistics, 24, 1346–1370.

Kiviluoto, K. and E. Oja (1998), Independent Component Analysis for Par-
allel Financial Time Series. In ICONIP, volume 2, 895–898.

Lange, N. (2003), What can modern statistics offer imaging neuroscience?
Statistical methods in medical research, 12, 447–469.

Lietzén, N., P. Ilmonen, and K. Nordhausen (2016), Complex valued AMUSE
– performance and asymptotic analysis. Unpublished Manuscript.
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