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Abstract 

Fatigue is a major human factor related cause of aviation accidents and currently 

subject to increased discussion by aviation authorities and professional pilots. 

Reducing fatigue and minimizing the risk of fatigue induced errors requires 

predicting the alertness state of crew members and identifying possible fatigue 

sources. Bio-mathematical models are a way to estimate fatigue levels of crew 

members based on work schedules. These models are currently utilized in 

commercial aviation to various degrees.  

 

In this thesis a prediction model for estimating fatigue is developed. It is based on 

theory of sleep and fatigue and previous research on bio-mathematical models. 

Fatigue data was gathered from pilots working on short-haul operations and it is 

used to estimate parameters and validate the model. Work schedules are used as 

input and an alertness score based on Karolinska Sleepiness Scale is estimated. 

The aim is to estimate fatigue in the work schedule planning phase, weeks in 

advance of actual date of operations. The sources for fatigue in the model are time 

of day, time worked and presence of consecutive early morning shifts. Time not in 

work is defined as recovery period, which decreases fatigue. Cumulative effects 

were not identified to have significant effect on fatigue with available data.  

 

The results indicate that it is possible to develop a model that estimates fatigue 

adequately, but the personal differences how people feel and experience fatigue 

make it difficult to create an applicable average model that fits well for everyone. 

Estimating parameters for every individual increases the accuracy and makes the 

model more feasible, but that is not practical for extensive use in flight operations 

due to data and time requirements. The developed model is, however, usable as a 

risk management tool in order to identify fatigue hazards, but it cannot be used as 

a sole basis for decision making due to limited accuracy. The greatest problem is 

the lack of sleep data as the amount of sleep has major impact on fatigue levels. 

Models used to estimate fatigue in advance need to either estimate the amount of 

sleep based on some probabilistic method or omit it from the model completely. 

In this thesis sleep was not included in the model.  
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Tiivistelmä 

Väsymys on merkittävä inhimillinen tekijä ilmailuonnettomuuksissa ja se on tällä 

hetkellä lisääntyneen tarkastelun alla viranomaisten ja lentäjien keskuudessa. 

Väsymyksen ja sen aiheuttamien riskien minimointi vaatii lentomiehistön 

väsymystilan ennustamista ja mahdollisten lähteiden löytämistä. Biomatemaattiset 

mallit ovat keino arvioida miehistön väsymystilaa perustuen työvuorolistoihin ja 

niitä käytetään tällä hetkellä kaupallisessa ilmailussa vaihtelevissa määrin. 

 

Tässä diplomityössä muodostetaan malli ennustamaan väsymystilaa. Malli 

perustuu uni- ja väsymysteorioihin ja se hyödyntää edeltävää tutkimusta bio-

matemaattisista malleista. Lyhyen kantaman lentojen lentäjiltä on kerätty dataa 

heidän väsymystiloistaan ja tätä dataa käytetään apuna mallin parametrien 

arvioinnissa. Malli käyttää syöttönä työvuorolistoja ja arvio väsymystilaa 

Karolinskan väsymysasteikolla. Tarkoitus on ennustaa väsymystä 

työvuorosuunnitteluvaiheessa viikkoja ennen todellista operointipäivää. Mallissa 

väsymystä aiheuttavina tekijöinä käytetään vuorokauden aikaa, työskentelyaikaa 

sekä aikaisia aamuherätyksiä. Työn ulkopuolisen ajan oletetaan olevan 

palautumisvaihetta, jolloin vireys kasvaa. Datan perusteella kumulatiivisten 

vaikutusten ei huomattu olleen merkittäviä. 

 

Tulosten perusteella on mahdollista muodostaa malli, joka ennustaa tyydyttävästi 

väsymystä. Henkilökohtaisten erojen takia on kuitenkin vaikea muodostaa koettua 

väsymystilaa kuvaava malli, joka sopii jokaisen eri ihmisen väsymystilan 

ennustamiseen. Parametrien määrittäminen erikseen kullekin henkilölle kasvattaa 

mallin tarkkuutta, mutta on samalla työlästä ja aikaa vievää, eikä siten sovellu 

laajaan käyttöön lento-operoinnissa. Kehitetty malli toimii kuitenkin työkaluna 

riskien hallintaan ja väsymyksestä johtuvien vaaratilanteiden ennustamiseen. Sitä 

ei voi käyttää ainoana päätöksentekovälineenä rajoittuneen tarkkuuden takia. 

Suurin ongelma mallin kohdalla on uneen liittyvän datan puute, koska unella on 

merkittävä vaikutus väsymystilaan. Käytettäessä mallia, joka ennustaa 

väsymystilaa pitkälle tulevaisuuteen, unen määrä täytyy estimoida jollain 

todennäköisyysfunktiolla tai jättää pois mallista. Tässä työssä unen määrä ja 

ajoittuminen on jätetty mallin ulkopuolelle. 

 

Avainsanat  Väsymys, Biomatemaattinen malli 
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1 Introduction 

1.1. Background 

Safety has been the number one priority in aviation throughout its history and the 

efforts are continuing to reduce and minimize the risk of incidents. Fatigue is a 

major human factors risk especially in commercial aviation, because of the shift 

work nature and the direct effects to pilots’ abilities to perform their job safely 

(Caldwell et al. 2009). Competition between airline companies is intense, and 

consequently crew members are often pushed to their limits. Changes in a larger 

scale can be achieved through good legislation and industry wide standards, 

because there will otherwise always be companies that cut corners in order to save 

costs.  

The technological advances over the 100 years of aviation history have been 

dramatic, while the human physiology has not changed at all. There are 

limitations to the ability of human body that cannot be overcome. The present 

need is for 24-hour operations, with around the world flights that cross multiple 

time zones, while having irregular and sometimes unpredictable work schedules. 

These factors lead to performance impairing fatigue, which poses a great risk to 
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safety. In a barometer assembled by the European Cockpit Association (ECA) 

from more than 6000 European pilots, alarming results were found. Over 50 % of 

surveyed pilots experienced fatigue, which impaired their ability to perform while 

on duty, and 4 out of 5 pilots felt that they have to cope with fatigue while in 

cockpit (ECA, 2012) 

Fatigue is currently managed with limitations to crew duty and rest times. These 

rules are used to protect crew members from hazardously low levels of awareness. 

Airline companies try to utilize crew to its maximum usability, which causes 

possible conflicts with cost and safety. Goode (2003) presents findings of 

increased probability of an accident the greater the hours of duty time for pilots. 

There have also been several accidents in the last 20 years with proof of fatigue 

relating to the incident. This has alerted industry leaders to the major safety risks 

caused by fatigue. Aviation as an industry becomes more mature from the 

mistakes that are made in order to avoid them in the future.  

Although the understanding of fatigue, sleep and physiology has advanced over 

the past decades, current regulations have not been able to incorporate the new 

knowledge (Caldwell et al. 2009). Scientists and flight crew in cooperation are 

creating bio-mathematical models in order to better understand and predict fatigue 

and alertness. Based on the first models developed in the 80’s (Borbely, 1982), 

these bio-mathematical models try to predict the probable fatigue of a crew 

member and are used in collaboration with risk analysis tools to identify possible 

problems in operations. Because the fatigue risks cannot be completely 

eliminated, they must be managed well to ensure adequate safety levels. Utilizing 

scientific knowledge to manage fatigue promotes crew alertness and performance 

in operations and increases safety, which is the ultimate goal of the aviation 

culture.  

1.2. Research Objectives 

The aim of this thesis is to study fatigue risk modeling in commercial aviation 

regarding pilot fatigue in everyday operations. The case company is a regional, 

short haul operator, with single type aircraft. The flight crew consists of two 
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pilots, a captain and a first officer, with no third pilot available to relieve them 

during flight. 

Study objectives are to: 

1. Create a model to predict fatigue based on flight crew work rosters. 

2. Validate the model through empirical data obtained from pilots. 

The model will be used to predict awareness level of pilots with inputs coming 

from work schedules and output being an alertness score. The model is validated 

with data gathered from pilots with self-assessment questionnaires. Extensive 

tests, such as brainwave measurements, are not practical in the scope of this 

thesis. The questionnaires are performed via iPad based forms to facilitate the 

collection of data without affecting everyday operations too much. A group of 

pilots is selected to work as a subject group in order to ensure adequate collection 

of information. Consistent data is required to validate the model in relevant 

situations and a test group that has been well briefed will allow the best results. 

The relevant inputs for the model are selected by researching literature and 

discussing the possible fatigue sources with experienced flight captains.  

This thesis is limited to the creation of a prediction model. In the case of risk 

analysis this model is just a part of it. A thorough risk assessment requires further 

work, which is not part of this thesis project. The model may, however, be used as 

a part of a future risk management tool. 

1.3. Structure 

The structure in this thesis is formed into 6 chapters. First chapter introduces the 

topic, the goals and setup of this thesis. Chapter 2 gives background information 

of aviation industry and fatigue risk management. Chapter 3 presents the theory 

behind fatigue modeling. Chapter 4 presents the created fatigue model and the 

empirical data used to validate it. In chapter 5 the results are introduced and 

analyzed. Final chapter 6 presents the conclusion of this thesis. 
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2 Aviation Industry 

2.1. Regulations 

2.1.1. ICAO 

Aviation is inherently highly international, which was recognized early from the 

start of the business. In 1944 the International Civil Aviation Organization 

(ICAO) was founded, operating as a specialized agency under the United Nations. 

The purpose of ICAO is to set the standards and recommended practices (SARPs) 

in international air traffic, which are presented in 19 Annexes to the Chicago 

Convention. Chicago Convention refers to the document signed by 52 signatory 

states in 1944, which established the ICAO and charged it with coordinating and 

regulating international air travel.  

In its core, aviation is based on international agreements. These can be between 

two individual states, called bilateral agreements, or between several parties, such 

as with ICAO. Recognized all over the world, it is one of the fundamental 

multilateral agreements, with 191 member states joining it. The standardization of 

aviation industry has enabled the creation of global air transport network that can 

operate close to 100 000 daily flights. As an example of standardization, each 
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member country should have an Aeronautical Information Publication (AIP) 

available, which contains information essential to air navigation. This AIP is 

updated every 28 days and provides airlines information about the airspace and 

aerodromes, allowing safe operations between and inside countries. (ICAO, 2014) 

2.1.2. Civil aviation authorities 

Each country in the world should have its own civil aviation authority (CAA). In 

Finland this position is governed by Trafi, Finnish Transport Safety Agency. This 

authority ensures that the aviation legislation follows the 19 Annexes of the 

Chicago Convention. In Europe the regulatory and executive task of civil aviation 

safety is governed by European Aviation Safety Agency (EASA). It collaborates 

with the national aviation authorities and is responsible for setting standards 

across EU. National authorities are required to implement EASA norms and 

regulations into their own regulations, which can be done by following SARPs or 

acquiring acceptance from EASA to national practice. Military and government 

aviation are however governed by national legislation. The CAAs oversee the 

aviation field in their own jurisdiction. They grant and supervise licenses and 

certificates, enforce regulations, safeguard passenger rights, maintain aviation 

registers, participate in national and international cooperation, deal with 

environmental issues related to aviation and provide advice and information. 

(Trafi [a], 2015) 

2.2. Operations 

Flight operations can be divided into four different categories depending on the 

duration or length of flights: short-, medium-, long- and ultra long-haul. There are 

no agreed definitions for these four categories, but they can be defined so that 

short-haul is flights with less than 3 hour travel, usually domestic flights, medium-

haul between 3 to 7 hours, long-haul over 7 hours and ultra long-haul is flights 

with over 16 hour travel time. Increasing flight times increases the number of 

crew needed. Short-haul operations are carried with two pilots and paired in 

conjunction to create a daily work schedule. Ultra long-haul might instead require 

up to 4 pilots per flight to satisfy fatigue regulations and pilots may only operate a 
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few given flights in a month in order not to exceed monthly work hour limitations. 

(ICAO, 2014) 

The nature of operations defines the need of supporting functions. EASA 

regulations define that every aircraft operated under operator’s certificate must be 

under continuous operational control, which means that an operations centre must 

be manned whenever there are operations on-going (EASA, 2012). Operators with 

only short-haul flights will not usually need 24-hour operational capability, as the 

production is not continuous over night. Long-haul operations, however, require 

constant presence in the operations centre, because there is usually always 

aircrafts in air throughout a day. Aircrafts on duty require flight monitoring and 

support regarding maintenance, crew rotation, flight planning and passenger flow. 

Without assistance operations cannot continue smoothly when problems are faced. 

Work schedules for flight crew members with different types of operations are 

also very different. Intercontinental flights result in crew layovers in different time 

zones other than home base, whereas short-haul flights keep the crew in 

practically the same time zone every day. Nowadays rotation of aircraft is done so 

that crew does not normally have to stay idle away from home for too long. 

Before the current expansion of air travelling flight crew might have staid several 

days in hotels waiting for aircrafts return trip, as the flight networks were smaller 

and daily flights fewer, especially in long-haul traffic. In short-haul the utilization 

of crew is more flexible, as the distances are smaller and aircraft rotations faster. 

2.3. Fatigue Management 

2.3.1. Fatigue risk management system 

Crew member fatigue can be defined as follows (ICAO, 2011): 

A physiological state of reduced mental or physical performance capability 

resulting from sleep loss or extended wakefulness, circadian phase, or workload 

(mental and/or physical activity) that can impair a crew member’s alertness and 

ability to safely operate an aircraft or perform safety related duties. 
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A Fatigue Risk Management System (FRMS) is defined as follows (ICAO, 2011): 

A data-driven means of continuously monitoring and managing fatigue-related 

safety risks, based upon scientific principles and knowledge as well as operational 

experience that aims to ensure relevant personnel are performing at adequate 

levels of alertness. 

The aim of the FRMS is to ensure that crew members are well rested and alert 

enough to safely operate aircraft without endangering passengers. It is a way to 

systematically manage the risks related to fatigue, balancing between 

productivity, costs, and safety. Principles and processes from Safety Management 

System (SMS) are applied to the FRMS to assure safety. In ICAO Annex 19 SMS 

is defined as a systematic approach to managing safety, including the necessary 

organizational structures, accountabilities, policies and procedures (ICAO, 2013). 

It is a formal risk management process that aims to identify, assess and mitigate 

risks. EASA regulations require operators to have both a safety risk management 

system (EASA, 2012), which is fulfilled by utilizing SMS principles, and a FRMS 

(EASA, 2014). 

Through an effective safety reporting culture, both SMS and FRMS rely on the 

operating personnel to report hazards when observed. In order for both SMS and 

FRMS to work correctly, an operator must clearly distinguish between deliberate 

errors and unintentional human errors. This promotes a reporting culture where 

the flight crew will report events and issues without fear of punishment. In order 

to promote good safety culture in aviation, unintentional human errors should not 

be punished but need to be seen as possible situations for improvement. The scope 

and quality of a utilized FRMS enables airline operators to deviate from existing 

limitations and bring more flexibility into operations. 

The ICAO requirements for FRMS processes are listed in Annex 6, part I, 

Appendix 8 (ICAO, 2010). They include the identification of hazards, risk 

assessment and risk mitigation, with the identification of hazards including 

predictive, proactive and reactive phases. Methods for predicting these hazards 

may include, but are not limited to, operational experience and data collected, 

evidence-based scheduling practices and bio-mathematical models. Notable here 
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is that the bio-mathematical models are not a requirement but an approved method 

for predicting possible hazards of fatigue. The current limitations of the models 

are acknowledged and they may not be used alone to justify scheduling decisions. 

In general, they are only a minor part of the whole FRMS implementation 

process. 

More important to the successful implementation of a FRMS is the collection of 

data and experience. The data required to apply a FRMS includes measuring 

fatigue levels of crew members and operational performance of the company. In 

addition to collecting data, this data must be analyzed to inform decisions made 

based on a FRMS. Through self-reporting, fatigue surveys, crew performance, 

scientific studies and analysis of planned versus actual time worked, proactive 

measures can be taken to identify and prepare for fatigue risks. All this requires 

collaboration from flight crew members and shared responsibility with managers 

and all involved personnel. 

After preparing for risks, it is important to also analyze and react to the outcome 

of operations. Analyzing reports and incidents provides valuable information to 

better understand how fatigue related issues develop and what could be done 

differently. Determining whether a person was in a fatigued state is difficult and 

persons responsible for this must rely on information based on recall of the people 

involved.  

2.3.2. Flight time limitations 

Traditionally the approach to manage crew fatigue has been through flight time 

limitations (FTL), which are defined in ICAO Annex 6 that standardizes aircraft 

operations, maintenance and general aviation. EASA legislation (EASA, 2014) 

sets rules for flight and duty time limitations that follow the Annex 6 

requirements. Air operators are required to follow these rules and to implement 

them in their crew work schedule planning. The purpose is to ensure that safety is 

not jeopardized by securing enough rest and limiting the amount of work of the 

flight crew. The FTL are simple rules that protect flight crew against fatigue.  

New EASA legislation is currently being implemented. It will bring new changes 

to the FTL, which are aimed to increase crew alertness by reducing workload and 
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restricting flight duty times. After the implementation, Europe will have one of 

the strictest FTL rules in the world (EASA, 2013). FTL rules, however, are only 

strict rules that do not consider fatigue on isolated operational level. They give 

requirements for minimum breaks and set maximum limits for daily, monthly, and 

yearly flight hours. For example, from EASA regulation 83/2014 (EASA, 2014) 

PART.ORO.FTL.210 

a) The total duty periods to which a crew member may be assigned shall not 

exceed:  

1)  60 duty hours in any 7 consecutive days;  

2)  110 duty hours in any 14 consecutive days; and 

3) 190 duty hours in any 28 consecutive days, spread as evenly as 

practicable throughout that period. 

b) The total flight time of the sectors on which an individual crew member is 

assigned as an operating crew member shall not exceed:  

1) 100 hours of flight time in any 28 consecutive days;  

2) 900 hours of flight time in any calendar year; and  

3) 1 000 hours of flight time in any 12 consecutive calendar months. 

A flight duty of 12:00 hours in some cases is allowed, but a duty of 12:01 hours is 

illegal. When estimating fatigue, the difference is insignificant. The rules are a 

bureaucratic way to protect crew against fatigue. They are same for all and do not 

consider major differences in operations, e.g. long haul versus short haul flights. 

They also consider linear relationship with working hours and fatigue (Steiner et 

al. 2012). The FRMS acknowledges all this and steers the focus to adequate 

alertness, which is more situational than the FTL rules consider. By considering 

fatigue more on the operational level and accounting for differences in flight 

routes, time of day and individual crew members, the operational flexibility can 

be increased while maintaining safety levels or even improving them.  

EASA regulations (EASA, 2014) require authorities to decide whether operators 

under their jurisdiction belong to “early type” or “late type” when regarding 

disruptive schedules. Considering start of duties, early type of disruptive schedule 

means duties starting between 5:00 and 5:59 in the time zone to which a crew 
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member is acclimatized. Late type means duties starting between 5:00 and 06:59. 

Finnish authority has decided to apply “early type” to all operators under its 

oversight (Trafi [b], 2015). 

Time zone changes cause crew members to be adjusted to different times than 

local time where duty period should start. Acclimatized means a state in which a 

crew member’s internal clock is synchronized to the local time zone. EASA 

regulation 83/2014 (EASA, 2014) considers crew members to be acclimatized to 

local time zone according to Table 1. 

Table 1. State of acclimatization of crew members in time zone changes. 

Time difference (h) 
between reference time 

and local time where 
the crew member starts 

the next duty 

Time elapsed since reporting at reference time 

  < 48 48–71:59 72–95:59 96–119:59 ≥ 120 

< 4 B D D D D 

≤ 6 B X D D D 

≤ 9 B X X D D 

≤ 12 B X X X D 

 

 “B” means acclimatized to the local time of the departure time zone,  

 “D” means acclimatized to the local time where the crew member starts 

his/her next duty, and  

 “X” means that a crew member is in an unknown state of acclimatization 

 Maximum daily flight duty period (FDP) without extensions for acclimatized 

crew members is according to Table 2.  
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Table 2. Maximum daily FDP - Acclimatized crew members. 

Start of FDP 
at reference 

time 

1–2 
Sectors 

3 
Sectors 

4 
Sectors 

5 
Sectors 

6 
Sectors 

7 
Sectors 

8 
Sectors 

9 
Sectors 

10 
Sectors 

0600–1329 13:00 12:30 12:00 11:30 11:00 10:30 10:00 9:30 9:00 

1330–1359 12:45 12:15 11:45 11:15 10:45 10:15 9:45 9:15 9:00 

1400–1429 12:30 12:00 11:30 11:00 10:30 10:00 9:30 9:00 9:00 

1430–1459 12:15 11:45 11:15 10:45 10:15 9:45 9:15 9:00 9:00 

1500–1529 12:00 11:30 11:00 10:30 10:00 9:30 9:00 9:00 9:00 

1530–1559 11:45 11:15 10:45 10:15 9:45 9:15 9:00 9:00 9:00 

1530–1559 11:45 11:15 10:45 10:15 9:45 9:15 9:00 9:00 9:00 

1600–1629 11:30 11:00 10:30 10:00 9:30 9:00 9:00 9:00 9:00 

1630–1659 11:15 10:45 10:15 9:45 9:15 9:00 9:00 9:00 9:00 

1700–0459 11:00 10:30 10:00 9:30 9:00 9:00 9:00 9:00 9:00 

0500–0514 12:00 11:30 11:00 10:30 10:00 9:30 9:00 9:00 9:00 

0515–0529 12:15 11:45 11:15 10:45 10:15 9:45 9:15 9:00 9:00 

0530–0544 12:30 12:00 11:30 11:00 10:30 10:00 9:30 9:00 9:00 

0545–0559 12:45 12:15 11:45 11:15 10:45 10:15 9:45 9:15 9:00 

 

As can be seen from Table 2, the regulations consider both the number of sectors 

and the starting time of duty when limiting the FDP lengths. In addition, if crew is 

considered to be in an unknown state of acclimatization, maximum daily FDP 

should be as in Table 3, while when company utilizes FRM, the maximum daily 

FDP is allowed to be as in Table 4. 

Table 3. Maximum daily FDP, crew members in an unknown state of acclimatization 

Maximum daily FDP according to sectors 

1–2 3 4 5 6 7 8 

11:00 10:30 10:00 9:30 9:00 9:00 9:00 

  

Table 4. Maximum daily FDP, crew members in unknown state of acclimatization under 

FRM. 

Maximum daily FDP according to sectors 

1–2 3 4 5 6 7 8 

12:00 11:30 11:00 10:30 10:00 9:30 9:00 

 

In addition, maximum daily FDP for acclimatized crew members with the use of 

extensions can be extended up to 1 hour, considering additional limitations. 
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The previous tables give example how EASA FTL rules consider flight duty 

structure when limiting maximum duty lengths. Depending on the supposed 

fatigue state of the crew member, different limits are used. These limits can be 

modified depending on the risk management processes of the company in 

question. 

Rest is well covered in the EASA regulations. For rest periods minimum rest at 

home is defined as being at least as long as preceding duty period, or 12 hours, 

whichever is greater. This number is reduced to 10 hours when away from home 

base. Reduced rest is allowed when subsequent duties are adjusted accordingly. 

For time zone changes rest periods are adjusted accordingly, with additional local 

nights of rest at home base increased with increasing effect of fatigue due to time 

zone crossing and rest periods away from home base.  

Extensions for flight duty periods can be granted by adjusting rest periods 

accordingly. With in-flight rest, the extensions can be granted in accordance with 

certification specifications applicable to the type of operation, considering sectors 

flown, in-flight rest facilities and augmentation of the basic flight crew. If 

unforeseen circumstances are met, commander’s discretion is followed, which 

makes it possible to react to situations that would cause problems to operations in 

a larger scale. 

The previous presentation of EASA FTL rules is given in order to emphasize the 

scope of rules and regulations used to calculate flight duty lengths and rest 

periods. In general the following methods and attributes have effect on the topic: 

starting time and place of current duty, starting time and place of next duty, time 

zone changes, number of sectors flown, length and location of previous and 

following rest periods, in-flight rest capabilities, augmentation crew available, 

break opportunities and FRMS. With all these issues affecting the duty and rest 

times the topic is complex to follow. Computerized schedule planning allows 

more complex rules to be created and monitored, which does bring flexibility to 

the operations, but it is difficult to understand if one is not specialized on the 

subject. 
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2.4. Planning of Crew Work Schedules 

2.4.1. Principle 

A crew work schedule is called a roster. It is built from work duties, which can 

vary from flight duties to different ground duties, for example simulator training 

or medical check. A roster is usually published a couple of weeks in advance. It 

can be planned for specific crew member, considering individual needs and 

requests, or a general roster can be planned that is then subjected to bidding 

system. There a crew member can bid for a specific roster according to a seniority 

list. Senior crew members get to choose first, while younger ones can choose last. 

In Europe the individual roster is favored over the bidding roster. (Barnhart et al. 

2009) 

A pairing is a duty that starts from a base of operations, usually an airport, and 

ends there. It can last several days, including nights away from home base. A 

flight leg, or a sector, is a flight from one airport to another. A pairing contains 

several flight legs that end the duty to the same base where it started from. 

Pairings form up a roster. 

Planning can be divided into long term planning and short term planning. Long 

term planning is managed by crew planners, who create rosters for weeks in 

advance, which are published to the crew. Changes can be made after this, but are 

generally avoided. Short term planning is controlled by an operations centre, 

where the staff is responsible for the continuation of operations. The purpose is to 

ensure that every flight has a crew in changing situations.  

2.4.2. Challenges 

People may become sick or are unable to work due to exceeded duty times, which 

cause shortages in flight crew complements. The operations centre ensures that 

new crew members are located to fill the gaps and with as few disruptions to the 

scheduled operations as possible. Both short term and long term planning must 

fulfill the same rules in FTL. The difference comes from the timing and cost. 

Long term planning can make changes more freely and the cost of changes to the 

flight crew rosters is usually small. Changes made by the operations centre often 
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incur overtime expense and may be hard to implement without disturbing 

operations and punctuality. Airline operators use stand-by systems in order to 

have reserve workers to call to work in case of sick leaves or other shortages of 

crew. As there are multiple rules to consider regarding duty and rest times, it may 

be difficult to find a flight crew member to fill in missing roles if the flight 

schedule is tight and work force fully utilized.  

When rosters are planned, there is time to prepare them so that crew fatigue is 

considered. Pairings that would be too hard for crew are discarded and new ones 

are created to ensure alertness of crew and safety of operations. When people are 

called to work from stand-by duties or free days, there may not be enough time or 

resources to find a crew member that is well rested and will stay well rested for 

future operations. FTL rules are followed and illegal duties are not created, but 

there is a danger of increased fatigue due to the requirement of finding 

replacement crew in short notice. 
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3 Theory of Fatigue Models 

3.1. General 

Fatigue is generally modeled with bio-mathematical models that attempt to 

calculate the alertness level of an individual by taking into account the work 

hours, rest hours and circadian timing to estimate the fatigue levels of workers. It 

is not practical to build the models for individual preferences, so the models 

represent the average fatigue score of a group of people used to calibrate them. 

Every person has his or hers own personal needs for rest and recovery and people 

do not experience fatigue in the same way. While one person may be extremely 

tired after 6 hours of sleep, another person could manage well with that amount. 

Therefore fatigue models only give estimates of average person, and cannot be 

viewed as a simple truth.  

The models in use today are used to compare rosters, evaluate new routes and 

evaluate changes in operational level. They can be used in accident investigations 

to better understand possible causes for incidents. What they are not supposed to 

be used for are firm go/no-go decisions, because of the nature of the models. They 

are only predictions and cannot calculate the true alertness of a person. In real life, 
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every person is an individual, so generalized model cannot be used to make strict 

decisions based on individual characteristics and single fatigue score. In the 

future, the aim is to include fatigue risk models to the roster optimization phase, in 

order to build work schedules that are also optimized in the fatigue level. The 

earlier in the planning phase fatigue is considered, the more cost efficient 

solutions will be achieved. As the actual date of operations comes closer, any 

modifications to rosters incur costs and disturb already optimized schedule. 

3.2. Anatomy of Sleep 

Most of the fatigue models in use in aviation industry are based on the model of 

sleep regulation by Borbely (Borbely, 1982). This model was intended to explain 

the timing and duration of sleep as an interaction between two processes, sleep 

(process S) and circadian clock (process C), and is referred to as the Two-Process 

Model. Åkerstedt et al. (1997, 2004) added a third component of sleep inertia 

(process W) to further refine the model, which is generally referred to as the 

Three-Process Model. 

3.2.1. Homeostatic pressure 

Process S, also called homeostatic pressure, is the rising and falling of slow wave 

sleep, or deep sleep. This kind of sleep is essential for brain to handle memories 

and is linked to learning capabilities. A sleep occurs when the S reaches a high 

threshold, and wake-up occurs when the S drops below some low threshold. 

During sleep the S decreases in exponential fashion, and the pressure for slow 

wave sleep builds up during waking period. The longer one stays awake, the 

longer the length of slow wave sleep that will be needed in the next sleeping 

period. Across a sleep period the time spent in slow wave sleep decreases. During 

Rapid Eye Movement sleep (REM sleep) the brain activity is similar as during 

waking, and dreams are experienced during this time. Whereas the purpose of 

deep wave sleep is restorative, the purpose of REM sleep is still unclear. The 

process S has been proposed to be either exponential (Åkerstedt et al. 1997), 

linear with circadian variation (Hursh et al. 2004) or Gaussian (Jewett et al. 1999). 

(ICAO, 2011) 
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3.2.2. Circadian clock 

Process C is a sinusoidal function that programs sleep to occur during night time 

and to stop during day time. The duration of this is approximately 24 hours and is 

called circadian rhythm, or circadian body clock. It is an internal period in human 

body, which is influenced by external factors, “zeitgebers”, also called time 

givers, such as the cycle of daylight in local environment. In aviation this process 

causes problems when crossing time zones. The internal clock of a crew member 

is the same as at home, but the local time might be 12 hours in advance, meaning 

that when it is night at home and the body requires sleep, the sun is shining in the 

current location. Circadian rhythm can be measured by monitoring the core body 

temperature, which fluctuates by about 1ºC across the day. The daily minimum 

core body temperature corresponds to the time when people generally feel most 

sleepy. (ICAO, 2011) 

 

Figure 1. The circadian body clock and sleep after night duty (ICAO, 2011). 

Figure 1 illustrates the circadian body clock throughout a 24-hour day. It 

summarizes the following features of sleep at night (ICAO, 2011): 

1. Sleep normally begins about 5 hours before the minimum in core body 

temperature.  

2. Wake-up normally occurs about 3 hours after the minimum in core body 

temperature.  
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3. REM sleep is entered fastest, and REM periods are longest and most 

intense, just after the minimum in core body temperature. This is 

sometimes described as the peak of the circadian rhythm in REM 

propensity (the dashed curve in Figure 1).  

4. A variety of laboratory protocols have demonstrated that people are 

extremely unlikely to fall asleep 6-8 hours before the minimum in core 

body temperature. This has become known as the evening wake 

maintenance zone.  

5. Laboratory studies also show that as body temperature begins to rise, 

there is an increasing pressure to wake up. This peaks about 6 hours after 

the circadian temperature minimum. This is sometimes referred to as an 

internal alarm clock, because it is very hard to fall asleep or stay asleep 

during this part of the circadian body clock cycle.  

3.2.3. Combined daily cycle 

The interaction between homeostatic process and circadian rhythm results in two 

times of peak sleepiness in 24 hours: 

1. Window of Circadian Low (WOCL), which is around 3:00-5:00 for most 

people. 

2. A peak in the early afternoon, around 15:00-17:00 for most people.  

Restricted or disturbed sleep makes it harder to stay awake during the next 

afternoon sleep window. The precise timing of these windows of sleepiness varies 

between people who are morning types and people who are evening types. The 

morning types have the preferred sleep times earlier than the evening types, which 

results in differences in fatigue feelings if a work shift should start at the same 

time. As people grow older they tend to shift towards morning type behavior, 

which has been documented in flight crew members as well (ICAO, 2011).  

The combined effects of homeostatic pressure and circadian biological clock 

result in windows when sleep is promoted (WOCL and afternoon peak) and 

windows when sleep is opposed (internal alarm clock in the morning and evening 

wake maintenance zone). Depending on the operations, these windows should be 

considered in rostering as they may affect flight crew rest possibilities. A morning 



21 

 

duty requires person to fall asleep during evening wake maintenance zone, which 

might not be easy for most crew members. This leads to inadequate sleep, which 

results in greater fatigue levels. 

3.2.4. Sleep inertia 

Process W, sleep inertia, means the temporary disorientation and performance 

impairment after waking up from deep sleep. The severity is highest immediately 

after waking up, and the effects gradually decrease as time goes by. It can last as 

long as two hours in worst cases. This process is important when considering in-

flight rests in long-haul operations, where the pilots are allowed to take short 

sleeps during flight duty. The rest opportunities increase overall alertness, but 

immediately after waking up alertness is low, which may increase operational 

risk, depending of the situation. During approach risk for incidents is on high 

level, whereas during cruise flight it is lower, therefore increased fatigue risk 

during cruise flight does not increase overall risk as much as during approach. In 

short-haul operations sleep inertia is not as influential as in long-haul, because in-

flight rests are usually not utilized or allowed. Time from waking up in home or 

hotel to the start of work in cockpit is usually so long, that the effects of sleep 

inertia have normally worn off. (ICAO, 2011) 

3.3. Structure of Bio-Mathematical Models 

3.3.1. Inputs 

Bio-mathematical models can be divided into two categories, one-step and two-

step models, based on the input variables (Kandelaars et al. 2005).  One-step 

models use actual timing of sleep and wake to predict fatigue. Two-step models 

use the work schedule as input and derive the sleep/wake pattern from that data. 

In the first step, the input work pattern is used to predict a probabilistic sleep 

pattern and a sleep/wake pattern is built. In the second step the estimated 

sleep/wake pattern is used to predict fatigue, as in the one-step model. Figure 2 

illustrates the difference between the models. 
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Figure 2. Comparison of one- and two-step models (Kandelaars et al. 2005). 

Considering the characteristics of the one- and two-step models, it can be noted 

that the one-step model can be used only to estimate fatigue from past events, 

because it requires knowledge of the actual sleep/wake pattern. It gives more 

accurate results, but it is more difficult to use as the sleep data is hard to obtain. 

The two-step models are less accurate, because they build a probable sleep/wake 

pattern, but easier to use, because they use work schedules as the only input. 

Predicting fatigue on a future roster requires estimating the sleep/wake pattern, or 

using the work/non-work schedule, therefore models used to compare fatigue 

between future rosters have to be formulated as two-step models. (Roach et al. 

2004) 

A limitation in most of the current bio-mathematical models is that they predict 

fatigue for an average person. This does not correctly consider differences in 

individuals and their lifestyles. Any activities outside individual’s roster are not 

reflected by the calculated fatigue score as they are not used as inputs in the 

model. In addition any task related differences could also be considered as inputs 

(etc. number of sectors in a duty, workload, and scheduled breaks) as those also 

affect the actual fatigue perceived. The more inputs are used, the more accurate 

the model can become. However, it also becomes harder to implement, because 

not enough data may be available. 

3.3.2. Outputs 

Most of the bio-mathematical models provide a fatigue or an alertness prediction 

value over a given work period (Branford et al. 2014). The Karolinska Sleepiness 

Scale (KSS) is a scale ranging from 1 (“very alert”) to 9 (“very sleepy, great effort 
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to keep awake”). The Samn-Perelli (SP) fatigue scale is a 7-point scale with 

scores ranging from 1 (“fully alert, wide awake”) to 7 (“completely exhausted, 

unable to function effectively”) (Samn & Perelli, 1982). These both give 

subjective scores for sleepiness, but have been evaluated with objective 

measurements (Kaida et al. 2006) or used in studies (Powell et al. 2007).  

The advantages of the KSS and SP are the ease of use in operations and 

transparency to crew and planning. A subjective and well defined score is easy to 

collect from crew and they understand it well. However these two meters are not 

interchangeable, because the SP extreme refers to extreme fatigue while KSS 

extreme is a very low level of alertness. Another issue is related to risk. A specific 

score of fatigue cannot produce a specific level of risk for a task without 

considering the demand associated with the task (Branford et al. 2014).  

There has been research to develop metrics more relevant to the real world (Dean 

et al. 2007). Rangan et al. (2013) propose a method were the fatigue risk is 

proportional to the time spent below a fatigue threshold. Therefore a long time 

under a given fatigue score threshold increases the risk, independent of the 

specific task at hand. Cognitive effectiveness is proposed by Hursh et al. (2004) to 

measure effects of fatigue in operational activities. It is interpreted as an inverse 

of fatigue and ranges in score from 0 to 100. This metric is derived from 

Psychomotor Vigilance Task (PVT), a reaction time test used to measure 

neurobehavioral performance. Another approach is developed by Dawson and 

Fletcher (2001) where a fatigue score is calculated for a time window, on a scale 

from 0 to 140. Working Monday to Friday 09:00 to 17:00 is represented by a 

score of 40, set by validation studies. If a work schedule gives score below 80 it is 

considered to be acceptable, while a score of over 100 is considered to be 

unacceptable, requiring countermeasures against fatigue. Whatever the fatigue 

risk score is, it should consider more than just KSS or SP scores, which contain 

only little information regarding risk analysis.  
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3.4. Fatigue Models in Use 

In this section, several current models are briefly compared. The purpose and 

scope of these models vary largely, but all of them have been validated for use in 

aviation environment. BAM, CAS and FAID have been created for commercial 

use and have the highest variety of qualities and support. FRI, SAFE and SAFTE-

FAST have been originally commissioned by government authorities. SWP is the 

simplest of the models while FRI and SWP are free for download. 

Boeing Alertness Model (BAM)  

BAM is a bio-mathematical model built on the three-process model of alertness 

augmented with advanced sleep prediction. The output is based on KSS, which is 

converted to an alertness score on a scale from 0 to 10,000. Four large scale data 

collections have been undertaken to validate the model, and with data shared by 

airlines, close to 60,000 assessments from actual operations have been used in 

refining the model. It is possible to integrate BAM with crew planning software. It 

can also be used via mobile applications to gather data and monitor individual 

fatigue. (Jeppesen, 2009; Branford et al. 2014) 

Circadian Alertness Simulator (CAS) 

CAS estimates fatigue risk based on an individual’s sleep-wake-work pattern. It is 

built on the two-process model of alertness and can use actual sleep history as an 

input or simulate the sleep based on work patterns. The output is a Fatigue Risk 

Index between 0 and 100. Model has been validated in various transportation 

fields, including railroad, trucking and maritime, and optimized for aviation 

specific use. It is targeted for crew planning applications. (Moore et al. 2004) 

Fatigue Assessment Tool by Interdynamics (FAID) 

FAID uses working hours as an input while the output is a fatigue score on a scale 

from 0 to 140, indicating different levels of fatigue exposure for different working 

hours. A higher score means higher fatigue exposure and provides an indication of 

the likelihood of performance impairment associated with fatigue. Fatigue 

tolerance levels are used to limit the working hours based on predetermined 
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levels. Data from Australian train drivers was used to develop the model. 

(InterDynamics, 2014) 

Fatigue Risk Index (FRI) 

Used for comparing work schedules and identify the fatigue risk of a shift. The 

outputs are a fatigue index and a risk index. The fatigue index is based on KSS, 

multiplied by 100, which describes the average probability of value seven in the 

KSS. The risk index is an estimate of the relative risk of making an error that 

could contribute to an accident. The model was validated with data obtained from 

aircrew, train divers and industrial shift workers. (HSE, 2006) 

System for Aircrew Fatigue Evaluation (SAFE) 

Built especially for aircrew fatigue evaluation and based on the two-process 

alertness model. Gives a SP fatigue score generated for every 15 minute interval 

in a flight duty schedule and predicted likely sleep patterns. Data used to validate 

the model was collected from pilots working different schedules with different 

airlines. The model can be used in conjunction with crew scheduling optimizers. 

(CAAUK, 2007) 

SAFTE-FAST 

Acronym for sleep, activity, fatigue and task effectiveness (SAFTE) and fatigue 

avoidance scheduling tool (FAST). Model provides several performance metrics 

(e.g. percent change in cognitive speed, lapse likelihood, reaction time) and sleep-

wake metrics (e.g. sleep reservoir, circadian phase), with outputs measuring duty 

time and critical time below adjustable fatigue risk criterion line. Model has been 

validated with railroad and aviation workers and with people under laboratory 

settings. (Branford et al. 2014) 

Sleep/Wake Predictor (SWP) 

This is a bio-mathematical model based on the three-process model of alertness. 

Output is a predicted alertness curve, in a 1-21 point generic scale or KSS. Total 

time of work above critical limit is calculated and used to summarize the risk of a 

particular work schedule. Inputs consist of work patterns or sleep/wake patterns. 
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The SWP has been validated in a number of studies while the underlying three-

process model has been validated against EEG parameters and under laboratory 

performance tests. The model is suitable for assisting schedulers to evaluate 

fatigue, but not for large scale roster development. (Åkerstedt et al. 2004)  
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4 Model 

4.1. Empirical Data 

4.1.1. Data gathering 

A survey for a pilot test group was conducted to gather data for the evaluation and 

analysis of the fatigue model. The test group consisted of 12 pilots, including both 

captains and first officers. They were briefed on the goals of this project and the 

importance of good results. Emphasis was given to make sure that the test group 

understood that the results were only to be used in this thesis, with no information 

distributed to the company or follow-up conducted regarding the results of the 

fatigue survey. Best results are achieved when the test group understands that 

regardless of their answers, no measures are taken even if they make mistakes in 

their duties. This is also general principle in aviation industry, where goal is to 

improve operations and not punish those who report their actions. 

The survey was filled on an iPad application which is also used for reporting other 

issues and filling in forms necessary to the flight operations administrational 

functions. The main concern was to make the fatigue form quick and easy to use, 

so that the pilots would feel it was not taking too much time from them to fill it 
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out. The iPad application was suitable in this regard, because it was always 

available and familiar.  

The period for the survey was one month during summer. It is peak season, which 

is always hectic, and requires lots of effort from flight crew. Rosters are hard and 

vigilance may be compromised if the crew does not get enough rest. It is a good 

moment to measure fatigue as the results should show the effects more clearly. 

Due to summer vacations, the survey could not be published for every participant 

at the same time. The length of the survey period was one month for everyone, but 

the periods were placed throughout summer. 

The pilots were required to give a fatigue score before and after duty, with the 

possibility to give scores also during duty. As the operations were short-haul, the 

fatigue effects should be quite linear between the start and end of duty. Because 

the time zone changes are not as dramatic as in long-haul operations, crews 

internal clock is tuned to the crew base time zone and diurnal variations are 

minimal. In this regard, the fatigue scores estimated during duty are not used to 

assess fatigue in the developed model. In long-haul operations the length of flights 

and duties is much longer, time zone changes are more frequent and available day 

light can be minimal due to local time. The operations are very different and 

require different modeling parameters. 

4.1.2. Survey form 

The main structure of the fatigue survey form, and explanations why each 

attribute was chosen, is listed below. Figure 3 shows a screen capture of the 

survey, completed on an iPad. The form extends further by scrolling the screen. 
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Figure 3. Screen capture of the fatigue survey form. 

Time of reporting 

This question asks whether the fatigue score was given before, during or after 

duty. When comparing the before and after scores, a drop in the fatigue score can 

be calculated and used for analysis. This data also gives the time of reporting, 

whether it is early morning or late afternoon, which should have large effect on 

the fatigue score. 

Fatigue feeling 

This score is based on Karolinska Sleepiness Scale, which measures subjective 

fatigue of the crew member on a scale from 1 to 9. 
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Amount of sleep on previous night 

This question gives data on the amount of rest achieved before duty. Although this 

kind of data is not available for roster planners, because it is not known 

beforehand how long crew members sleep, it can be used to analyze results. 

Possible other than work related issues  

This is a yes or no question, which gives indication if pilot feels that there might 

be something causing lower than normal fatigue, but which is related to his 

personal life. This information can be used to analyze deviating results. 

Free text 

A text field is given to write down possible reasons that could have had effect on 

fatigue, such as weather conditions, difficult destinations, waiting time or large 

number of legs. 

Outside of the survey was left the structure of the roster. This information is 

gathered from the rostering system in order to keep the survey as short as 

possible.  

4.2. Model Formalization 

4.2.1. Sources of fatigue as inputs 

As the model in question is supposed to predict fatigue that is caused by the crew 

rosters, the only input available is the work schedule, meaning duty starting, 

duration and ending times. From the input it is possible to calculate duty length, 

cumulative duty time, rest time, cumulative rest time, time of day and number of 

sectors flown. These six attributes should have the most effect on the alertness 

state of crew members based on previous research and legislation. Figure 4 

presents an example of the input signal of the model, where    is 1 when person 

is working and 0 otherwise. 
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Figure 4. Example of an input signal of duty hours. 

Duty duration times have impact in the sense that the longer a person is working 

and concentrating hard, the more tired he or she will feel in the end. Cumulative 

duty time measures the cumulative amount of duty hours. In FTL this must be 

kept below safe levels in order to protect against fatigue. The effect is more 

hidden, as the impact will build up. After a long work day a person will feel tired 

regardless of the previous days. But if there are several long days following each 

other, a person will most likely feel tired sooner than if the previous days had 

been free days.  

Rest times have a direct impact on fatigue levels. If there is not enough rest 

allowed to the crew, they will feel exhausted soon. One short rest may be easy to 

handle if there is a longer rest period following, but if the cumulative rest times do 

not allow enough time to recover from work, then crew fatigue levels will begin 

to rise. 

Time of day is connected to the circadian rhythm, which affects how a person is 

able to sleep and how alert he or she feels. If a duty starts during WOCL, a person 

will most likely feel tired, even though there is an adequate sleep achieved. Same 

happens if a duty ends during WOCL, as then there is a risk for high levels of 

fatigue due to natural rhythm of body.  

The number of sectors flown is directly linked to the amount of work load. Most 

of the work is done during take-off and approach, while steady level flight is 

mostly monitoring. Considering a same duty period with different number of 

sectors flown, the one with fewer sectors is considered to be easier and less tiring. 
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Long haul crews face a different issue with long periods of constant monitoring 

which is very difficult for humans. With short haul, the number of sectors is more 

clearly linked to the intensity of workload and perceived fatigue. Table 2 in 

chapter 2 shows that the current FTL considers the impact of WOCL and number 

of sectors to the crew alertness by limiting the maximum flight duty period 

depending on the starting time and sectors flown. In that regard it is clear that a 

bio-mathematical model should possibly consider them as well. 

4.2.2. Output of the model 

Output of the model is defined as an alertness score,   , ranging from 10 to 90, 

90 meaning fully alert and 10 being completely exhausted. The KSS scale is fitted 

into this range by inverting the scale. This transformation is done in order to 

create a scale that is easier to interpret. In the alertness scale a fatigue score of 1 in 

KSS is equal to 90 and 9 in KSS is equal to 10 in alertness score. The 

transformation is defined as 

The alertness score is calculated as a sum of the homeostatic process S and 

circadian process C, as shown in Figure 5. Process S’ is the recovery phase from 

S, where the homeostatic pressure relieves and recovery occurs. All three 

processes give individual alertness scores that are summed to calculate the final 

alertness score, which is the output of the model. 

              (1)  
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Figure 5.The components of the three process model. (Åkerstedt et al. 2004) 

4.2.3. Modeling circadian rhythm 

Process C, the circadian rhythm, is modeled as a sinusoidal function, 

where   is the time of day,         ,     is the amplitude of the wave,   is 

the frequency and   is the phase. The minimum of the process C is set at 5:00 in 

the morning and with the frequency being 24 hours, constants are calculated to be 

  
 

  
 and   

   

  
. With the minimum being at 5 am, the maximum of the wave 

is at 17:00 in the afternoon. This fits well with the evening maintenance zone, 

where it might be difficult to fall asleep.  

The effects of waking up early are incorporated into the process C, because the 

alertness score of C is low in the morning and rises as the day goes further. In 

similar effect duties that end very late get low alertness score from the process C 

because the score starts to fall after late afternoon and shifts ending after midnight 

get similarly low scores as early morning shifts.  

Amplitude   defines the weight of the process C compared to process S. There 

must be a balance between these two processes, because both have impact on the 

alertness levels and are required to calculate the final score. The value of the 

constant is defined later. 

               , (2)  
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4.2.4. Modeling homeostatic process 

The homeostatic process S is formulated as a linear function. If a person is 

working, fatigue rises in a linear fashion. The recovery process S’ is formulated in 

an asymptotic fashion. When a person is not on duty his or hers alertness 

increases, but there is a limit to how alert a person can be. This is handled so that 

when fatigue lowers, the speed of recovery reduces. A fully alert person will not 

gain alertness through rest. If the model would have a component for actual sleep 

process, the recovery should be formulated in exponential fashion, as it has been 

studied that the recovery is faster during the early hours of sleep (Åkerstedt et al. 

2004). Both S and S’ depend on the length of the period but not on the circadian 

timing. Work place studies have shown that the longer the rest period, the more 

sleep people are able to collect, and the longer the duty period, the more they 

experience fatigue (Roach et al. 2004). In the homeostatic process S a cumulative 

component is added to include the effects of previous days. In recovery process S’ 

this effect is not included, but the recovery is assumed to be dependant of 

available rest time and current predicted fatigue level. 

Processes S and S’ are defined so that 

and the total homeostatic pressure at time   is defined as 

Coefficients   and   are formulated so that 

The notation is as follows:      is 1 if crew member is working at time   and 0 if 

not,       is the cumulative duty hours and       is the cumulative rest time in 

previous consecutive work days.   , G, and   are constants derived later. The 

coefficient       depends on the current fatigue score without process C, and    

              (3)  

                       (4)  

        
       (5)  

      
           

   (6)  

                                 (7)  

         
    

  
   

(8)  
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is the upper limit for the fatigue score. The cumulative duty hours are calculated 

from previous work days so that if rest time exceeds 24 hours, the       drops to 

zero. This assumes that one day of rest allows crew to recover themselves from 

cumulative effect. The cumulative rest hours are calculated in the same way, 

calculating the rest before duty and adding the values until a rest day is rostered. 

4.2.5. Total alertness score 

We can now define total alertness score at time  , with initial alertness score   , as 

The result is a function consisting of sinusoidal, linear and regressive functions. 

The sinusoidal part is same for every day, though it is argued that the circadian 

rhythm will move if people work continuously morning or night shifts. In this 

thesis we will assume it to be independent of work history. Function   is linear 

when considering individual duties, where variables       and       have fixed 

values depending on the work schedule. Function    is regressive as it depends of 

the previous fatigue score. Variable    is the input signal to the fatigue model, 

from which all other variables can be calculated.  

When a crew member is working, the function   decreases the alertness score in 

the function  . When the duty ends, the alertness score begins to increase 

according to function   . The sum of these functions over time is the effect of the 

homeostatic process. The circadian rhythm is independent of previous values; it 

depends only of the current time. Calculating the sum through time we get the 

current total alertness score. 

4.2.6. Limiting alertness score 

A few limits must be set to the alertness score function in order to keep it in the 

defined range. The score must be between the scale from 10 to 90, meaning that 

however long a crew member rests, he or she can not score above 90 or work so 

much that the score goes below 10. The asymptotic nature of recovery function 

                        (9)  

                                            (10)  

                            
 

   
 (11)  
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limits the alertness score to    but the function      must be refined further to 

include the lower limit   . We shall define  

We can now write the final equation with limitations as 

This formulation keeps the score from the homeostatic process inside a scale 

       . The sinusoidal function      increases or decreases the alertness score in 

a range        so the maximum and minimum for the alertness score is on a 

scale            . The lower limit is forced with the maximum operator in 

equation (12). Because the alertness score is assumed to reduce in linear fashion, 

there must be a lower limit which is not breached. 

The circadian process is kept separate from the homeostatic process due to the 

modeling of circadian rhythm. In a situation where a person has had several rest 

days and is calculated to be recovered by homeostatic process, an early check in 

should not result in very high alertness score. The circadian process takes into 

account the early wake-ups and late check-outs, because even a fully rested person 

feels the effects of one’s biological clock. As in Figure 5, the process C gets 

negative values, so that even when fully rested by the recovery process S’, the 

total alertness score will not be 90 if duty starts very early.  

4.3. Analysis of Data 

4.3.1. Key figures 

The data collected contains information from 12 pilots. There is data from 147 

different flight duties, which include 133 fatigue scores from before duty, 116 

fatigue scores from after duty, and 104 calculated differences between before and 

after duty fatigue scores. The missing fatigue scores from either before or after 

duty prevent calculating rest of the difference scores. The mean length of duty 

was approximately 8 hours, with the average before duty fatigue score being 3.8 

and the after duty score 5.1 in KSS. The average check-in time was at 10:00 and 

                        
                 (12)  

                             (13)  



37 

 

check-out time at 18:00. The average number of legs was 3.3 per duty. Reported 

sleep was on average 2.5, which is quite high, meaning that pilots sleep less than 7 

hours on average. The impact of personal life to sleep was on average 0.2, which 

is low, meaning that 2 out of 10 reports had some issues in personal life that they 

felt had an effect on fatigue. 

The biggest challenge was to get consistent answers because the pilots tend to 

forget to fill in either before or after duty fatigue scores or both completely. Also 

some persons are more likely to give answers than others, so a greater share of 

data may come from some individuals. This becomes large problem if the 

acquired data is not good, meaning situations where an individual who is keen on 

answering does not fully understand the differences of the answer options. 

However, everyone experiences fatigue differently, so the problem of generating 

average model that suits everyone is in itself difficult. 

4.3.2. Feedback from flight crew 

The fatigue questionnaire for the flight crew also included a text field for 

commenting on reasons that might explain their current fatigue score, or for 

giving feedback on the subject. Several factors affecting fatigue were given, here 

are listed the most important ones: 

1) The single most listed reason for increased fatigue was the change from 

evening shift to morning shift. A duty ending late in the evening followed 

by a morning duty contains also short rest between these duties. The short 

rest accompanied with early check-in results in higher than normal fatigue 

scores with flight crew.  

2) Early morning shifts in general, possible increased effect if there are 

several in conjunction or previous day has been long. Early wake-ups 

require pilots to go to sleep earlier in the evening. However, falling asleep 

may not be easy then. 

3) Long duties ending late in the evening. 

4) Difficult rotation with shifts. Example given of a shift where the next duty 

starts on the next day at the same time as the previous ended, followed by 
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another similar cycle. This creates a 24-hour rest between duties, which is 

not easy to switch to. 

Other reasons listed were long duties, too short sleep period, bad flight weather 

and general problems in operations that require extra effort to handle. 

Because the purpose of the model is to predict fatigue based on crew rosters, some 

of these fatigue sources cannot be included in it. Sleep quality and amount is 

possible to model, but it requires information which is only available after each 

night or rest period. External factors, such as weather, could be included in the 

model, because weather forecasts are available and quite accurate. Predicting the 

fatigue for same day with up-to-date weather information is possible and could 

give more accuracy to the model. In the same regard, utilizing up-to-date sleep 

information from crew members could be used to calculate more accurate fatigue 

predictions for upcoming days. The purpose of this work is, however, to predict 

fatigue further into the future and help roster planning, which is carried out weeks 

before the actual date of duty. Therefore external, real time effects are left out of 

the model. 

4.3.3. Effects of sleep 

Figure 6 shows the effect that the amount of sleep on previous night has on the 

perceived fatigue score before duty on the next day. As the amount of sleep 

reduces, the fatigue score increases. The immediate effect of short or bad sleep is 

easily recognized from this figure. The problem for planners is that it cannot be 

defined beforehand how well the crew members use their rest time.  

 

Figure 6. Distribution of before duty fatigue scores with different amounts of sleep. 
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Figure 7 presents the differences with different sleep amounts when comparing 

the fatigue score to the check-in time of the pilots. With more than 9h of sleep the 

fatigue score stays low, but as the sleep amount reduces so does the fatigue score 

increase with early check-ins. From the data it is not possible to say is the early 

check-in time reason for high fatigue and short sleep, or is the short sleep the main 

factor. It is clear that with early check-in times the fatigue scores are higher than 

with later starts of duty. With normal average amount of sleep between 7 to 9 

hours, the fatigue score before duty is mainly concentrated in the score between 2 

to 4, but there are few very early check-in times in that data group. Most of the 

early check-in times are present in the data group with sleep from 5 to 7 hours and 

the fatigue scores are higher in there. In Figure 8 the effect on fatigue score at the 

end of duty is similar. When the amount of sleep is reduced, the fatigue scores 

increase and higher scores are reported with earlier check-out times than with 

longer sleep times. It is clear that with reduced rest pilots feel more tired earlier 

than with adequate rest. 

 

Figure 7. Effect of sleep amounts on check-in time fatigue score. 
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Figure 8. Effect of sleep amounts on check-out time fatigue score. Time 25 means 01:00 

in the night. 

4.3.4. Check-in and check-out time 

The effect of check-in time is clear in Figure 9, where it is plotted average fatigue 

score versus check-in times in two hour time windows throughout a day. Early 

duties suffer from a higher fatigue score, but after 7:00 the average score flattens 

and is fairly constant for the rest of the day. For flight duties starting before 7:00 

the mean fatigue score is close to 5, which means “neither alert nor sleepy”, 

whereas for the rest of the day the average is closer to 3, which is “alert – normal 

level”. This is in line with the assumption that regardless of work history, an early 

start raises the fatigue score. Another increase in fatigue is seen in duties starting 

after 17:00. In the same figure the average fatigue score for check-out times is 

also plotted. The results are more random and no clear result can be seen on the 

graph. The average score is more scattered throughout the day, and no conclusion 

can be made from this. 

 

Figure 9. Average fatigue score versus check-in and check-out times. 
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4.3.5. Effects of duty length and previous rest 

The effect of duty length should be straightforward, the longer a duty is the more 

crew alertness drops during it. In Figure 10 is plotted the difference between 

check-in and check-out time fatigue. A simple linear trend is dropping, but for 

many instances the difference in the fatigue scores between before and after duty 

is zero or even positive. Pilots often feel that in the end of a duty they have a 

similar level of alertness as in the beginning. The positive values can be explained 

due to the early check-in times. Early in the morning pilots feel very tired, but as 

the day progresses their alertness rises. With linear fitting it can be calculated that 

on average a one hour increase in duty length increases the fatigue score by 0.2 in 

Karolinska Sleepiness Scale.  

 

Figure 10. Effect of duty length to fatigue levels. 

First graphs in Figure 11 and Figure 12 present the average fatigue difference 

between duty length and previous rest times. The other graphs are the check-out 

time fatigue versus duty length and the check-in time fatigue versus previous rest 

time. These pictures show that increasing duty length increases fatigue and the 

longer the duty the higher the drop in alertness. The effect of previous rest time is 

not clear, because the average check-in time fatigue is fairly constant regardless of 

the amount of previous rest. The fatigue difference plot shows some increasing 

trend, which would mean that increasing rest time reduces the drop of alertness 

during next duty.  
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Figure 11. Average difference in fatigue score between check-in and check-out times 

versus duty length, and average check-out time fatigue versus duty length. 

 

Figure 12. Average difference in fatigue score between check-in and check-out times 

versus previous rest time, and average check-in time fatigue versus previous rest time. 

The effect of sleep on fatigue was clear from the data, but the amount of sleep is 

regulated by crew members themselves. Effect of rest times is not as clear, but 

roster planners can only plan the check-in and check-out times and rest times, and 

in the end it is up to the flight crew to get enough rest.  

4.3.6. Cumulative effects 

Cumulative duty hours and cumulative rest times are calculated from the shifts 

before current work shift. A consecutive work day adds to the cumulative scores 

and a rest day sets the scores to zero. Both variables are therefore calculated 

backwards until previous rest day. Figure 13 shows an example of a work 

schedule, where    marks a duty and    marks a rest. On the work day    the 



43 

 

cumulative duty hours would be       and the cumulative rest times similarly 

     . On the work day    the cumulative values are zero. 

 

Figure 13. Roster example for calculating cumulative values. 

Figure 14 shows the effect of cumulative duty hours and Figure 15 the effect of 

cumulative rest times against before and after duty fatigue levels. From these 

figures it is not possible to see any clear trend that the increase of cumulative 

work hours would increase fatigue or that the increase of cumulative rest time 

would decrease fatigue.  With cumulative duty hours in both before and after duty 

graphs the fatigue scores do not shift notably to top right with increasing duty 

hours, as is expected. Same issue is with cumulative rest times, as the increase of 

rest times does not reduce fatigue. The scores do not move bottom right in either 

graph with increasing rest times. Due to this, no assumptions can be made from 

these graphs, other than that there is possibly no cumulative effect present in the 

data. 

 

Figure 14. Effect of cumulative duty hours in consecutive work days to fatigue score, 

before and after duty. 
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Figure 15. Effect of cumulative rest time in consecutive work days to fatigue score, before 

and after duty. 

Comparing the average difference between before and after duty fatigue scores 

versus the cumulative duty hours and cumulative rest time should reveal the effect 

of cumulative factors. The first graph of Figure 16 presents the effect of 

increasing cumulative duty hours. The more work crew member has done, the 

lower the difference. This seems odd, because the increase of cumulative duty 

hours should increase the fatigue build up. In the second picture the effect of 

increasing cumulative rest time is more as expected, as there is some trend 

towards reduced difference with increasing rest times. Both the graphs are not 

very clear in results, but it is possible to make some interpretations. One possible 

explanation is that as the cumulative duty increases, the difference does not 

increase, because the crew gets used to working. Fatigue is felt stronger in the 

beginning of consecutive duty days than at the end, which results in lower 

difference values, but the overall alertness is lower. 
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Figure 16. Effect of cumulative duty hours and cumulative rest time in consecutive 

working days to fatigue score difference. 

Because of the randomness of the results, a variable      is created, which is the 

ratio of cumulative duty hours per cumulative rest time for current duty, which are 

calculated as in example in Figure 13. Both before and after duty fatigue levels 

have therefore same      value. This variable is defined in order to better 

understand the cumulative effect in fatigue levels. Figure 17 presents the      

value versus average fatigue difference. The results are better than with separate 

cumulative variables, because increasing ratio increases the fatigue difference 

between check-in and check-out times.  

The ratio describes the amount of work versus rest, so with high values the person 

in question has long duty hours with little rest. A value close to one means that for 

every 8 hour duty, only 8 hours of rest is available, in general. For example, a 12 

hour duty can be followed by a 12 hour rest according to FTL rules, but in long 

term it is not a good work schedule in terms of human factors. 
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Figure 17. Average fatigue score difference versus ratio between cumulative duty hours 

and cumulative rest time. 

4.3.7. Effect of the number of legs 

Figure 18 presents the number of daily legs versus average after duty fatigue. The 

effect should be that increasing the number of legs should increase the fatigue 

levels, because it increases work load. In the graph it is seen that this is indeed the 

case. However, the number of legs correlates greatly with the length of work day. 

Increasing the number of legs increases duty length, which increases fatigue. Also 

even though flight duty is long, it may include few short legs and lots of idle time, 

or couple of very longs legs with few landings and take offs. More legs correlate 

with amount of work, however, the length of duty may have stronger impact on 

the fatigue score. 

 

Figure 18. Impact of number of legs to the average after duty fatigue score. 
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4.3.8. Early consecutive mornings 

The effect of consecutive check-in times early in the morning was listed as an 

important reason for fatigue by the pilots. Due to only 23 data points not equal to 

zero available for this variable, and most of them equal to 1, it is not possible to 

conduct meaningful graphical analysis on the effect. From the data available it is 

possible to calculate that for duties starting at 7:00, or earlier, for mornings with 

no previous consecutive early starts the mean fatigue score is 3.9 in KSS and with 

any number of consecutive early mornings 4.8 in KSS. The same figures for 

check-out are 5.1 and 6.1. So it is clear that consecutive early starts increase 

fatigue for following days. It is not possible to analyze possible increasing effect 

due to scarce data, but even one consecutive early start seems to have effect. 

Based on the data, the disruptive schedule in this case is “late type”, as the effect 

is clear with duties starting before 7:00. 

4.4. Regression Analysis of Model Attributes 

4.4.1. Regression model and assumptions 

In this section we create a general regression model of the attributes selected for 

the model: time of day, time spent on duty, cumulative duty, previous rest, 

cumulative rest and legs flown. This is in order to analyze the attributes and their 

correlations and the applicability of a regression model. This regression model 

follows the notation of section 4.2., with addition of      the time worked on 

current duty at time  ,    the previous rest time,       the number of legs flown on 

current duty and    the constant of the model. The model is a multiple linear 

regression model.  

Linear regression requires several assumptions (Hoffmann, 2010): 

- Linear relationship 

- Multivariate normality 

- Little multicollinearity 

                                                    (14)  
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- No auto-correlation 

- Homoscedasticity 

From the figures in section 4.3. it is evident that the data does not fit very well 

into the assumption of linear relationship between independent and dependent 

variables. There is some linearity present, but the data is mostly scattered around, 

which makes it difficult to fit into regression model. What can be seen is that the 

relationship is not non-linear, as that would require transformations of the 

attributes in order to fulfill the linearity assumption. If the relationships are not 

transformed to linear, information is lost in the regression model. 

Testing for normality with Anderson-Darling normality test shows that none of 

the attributes are from normal distribution. Figure 19 gives histogram plots for the 

model attributes. The Anderson-Darling test tests for null hypothesis that the data 

is not from normal distribution and is considered to be an accurate method (Razali 

et al. 2011). Considering significance tests it is important that the variables are 

from normal distributions. If this is not the case, the predictions and tests may not 

be very accurate. 

 

Figure 19. Normality plots for regression model attributes. 

Correlation between variables is presented in Table 5. As can be seen, the length 

of duty,    , and number of legs,      , have high correlation. This means that 

they probably contain same information and one of them might be redundant in 

the model. Same is with    and      , but they do contain same information, so it 
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is expected. Other high correlations are between    and    , and also    and      . 

These are due to the fact that the further a day progresses, the more likely it is that 

the number of legs and the length of duty increase. 

Table 5. Correlation of variables. 

                             

   1.0000 0.7258 0.4096 0.6896 -0.1516 0.1133 

    0.7258 1.0000 0.4045 0.9472 -0.0376 -0.0191 

      0.4096 0.4045 1.0000 0.3811 -0.5726 0.8354 

      0.6896 0.9472 0.3811 1.0000 -0.0167 -0.0120 

      -0.1516 -0.0376 -0.5726 -0.0167 1.0000 -0.5659 

   0.1133 -0.0191 0.8354 -0.0120 -0.5659 1.0000 

 

The variables are not from normal distributions and examining the scatter plots 

reveal that linear relationships between independent and dependent variables are 

not clear. These do not however mean that the regression model would not be 

applicable.  

4.4.2. Regression model results 

Table 6 presents the results for the multiple linear regression model for all 

attributes presented in section 4.4.1. 

Table 6. Regression model for all attributes. 

Estimated Coefficients:     
  Estimate SE tStat pValue 

   6.0837 0.86686 7.0181 6.2507e-11 

   -0.084152 0.034378 -2.4478 0.015466 

    0.30606 0.1135 2.6966 0.0077639 

      -0.099839 0.035379 -2.822 0.0053862 

      0.16244 0.26044 0.62372 0.53371 

   -0.066229 0.050095 -1.3221 0.18805 

      0.033843 0.014811 2.285 0.023644 

Root Mean Squared Error: 1.75 
R-Squared: 0.256,  Adjusted R-Squared 0.228 
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Most of the signs of the coefficients are consistent with expectations. The time of 

day attribute,   , decreases fatigue more as the day goes by, meaning that during 

morning it has the most effect towards a higher fatigue score. Length of duty 

increases fatigue as the duty increases. The number of legs has an increasing 

effect on fatigue and previous rest has a decreasing effect. Both are in line with 

assumptions that increasing work load increases fatigue while increasing rest time 

decreases it. Cumulative duty and cumulative rest contradict expectations, as the 

coefficients are backwards as one would expect. The increase of cumulative work 

time should have increasing effect on fatigue, and increasing cumulative rest 

should decrease fatigue, but according to the regression model this is not the case.  

The R-squared value describes how well the data fits the model on a scale from 0 

to 1, with full correlation at value 1. Because increasing variables increases R-

squared value, we use adjusted R-squared to determine the goodness of the 

regression model. Adjusted R-squared is adjusted to the number of variables in a 

model; it increases only if the new variable improves the model. In this case the 

value for adjusted R-squared is low, only 0.228, so the model does not predict 

very well the fatigue score presented by the data. Root mean square error (RSME) 

is calculated to be 1.75, which means that on average the estimated value is 

almost 2 units different on KSS scale. 

The p-value for each coefficient tests whether a null hypothesis that the 

coefficient is zero is true. With significance level of 5%, variables       and    

are not considered to be statistically significant to the model. Especially the 

variable       seems to be insignificant to the model, as it has quite high p-value 

of 0.53. 

4.4.3. Validity of the regression model 

The validity of the model is checked with model residuals, which are the error 

terms in the model and describe random disturbance in the data. Figure 20 shows 

the residuals in case order plot. It is important that the residuals are uniformly 

scattered around zero-line, which means that the random error is uniformly 

distributed across variables and there is no heteroscedasticity. From the figure it 
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can be seen that the residuals seem to be homoscedastic, but there are empty areas 

on the figure which would indicate heteroscedasticity.  

 

Figure 20. Residuals of the regression model. 

Testing for normal distribution with Anderson-Darling test reveals that the 

residuals are from normal distribution but using Durbinson-Watson test for 

autocorrelation reveals that the residuals are autocorrelated. Autocorrelation 

describes time series relationship of data points in a data series, meaning that with 

autocorrelated data residuals are not independent of each other. A previous value 

may have effect on some of the following values, as in for example stock markets, 

where prices are not independent of previous prices. 

The low R-squared value implies that the regression model does not predict very 

well the fatigue score. Analysis of the residuals reveals that a linear regression 

model may not be suitable for this case, as there is autocorrelation in the model. 

Another method than regression model should be created to better analyze the 

fatigue scores with the data collected from pilots. 

4.5. Selecting Attributes 

4.5.1. Variables with direct effect 

Because the regression model created in section 4.4. is not very good at predicting 

the fatigue score, another method should be used. In section 4.2. is presented a 
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model to calculate fatigue on a discrete scale, starting from predetermined value 

and simulating the schedule forward. In this section the coefficient values for that 

model are estimated based on the data. 

Coefficients     and   must be determined for the model. Using the data gained 

from the pilots we can calculate the average values for these. Figure 10 and Figure 

11 show the effect of duty length to the fatigue score development. We assume in 

the fatigue model that fatigue increase is linear. Fitting a linear line to the data in 

Figure 10, and comparing this to the data in Figure 10, we can calculate the hourly 

drop to be approximately 0.2 units. In 10 hour duty this means a drop of 2 units in 

KSS. This estimate includes the effect of circadian process, so the coefficient   

must be calculated so that on an average duty, the total difference will be 0.2 

units/h. Assuming that a workday from 8 to 16 is normal in regard to fatigue, we 

can calculate the coefficient   so that a workday from 8 to 16 results in increase 

of 0.2 units/h during work, resulting in difference of 1.6 units in KSS. Recovery is 

adjusted accordingly, so that on the second day at 8, the fatigue score is on the 

same level as on the previous day at 8. Due to the regressive nature of recovery 

process, the starting level of fatigue must be set. We define here that the initial 

level of fatigue is 70 units, which corresponds to the normal level in KSS. After 

several rest days crew members are supposed to be rested, so the assumption is 

valid. The effects of time of day are included in the circadian process. 

 The value of    is calculated as follows 

where      is the assumed drop in fatigue,      the discrete time increment and   

the chosen time window, in this case duty length.  

The value of   comes from equations (3)-(8). During recovery process      so 

the fatigue score at time   can be presented as 

which can be presented as the series 

                              (15)  

      
    

  
         (16)  
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where  

with the notation that    is the fatigue score which must be achieved with the 

recovery process and    is the fatigue score from which the recovery process 

starts. The value of   cannot be calculated analytically, so it must be solved 

numerically.  

To include the effect of consecutive early mornings, a penalty is added, so that 

where           is a binary variable based on the presence of consecutive 

morning shifts starting before or at 7:00,    is the fatigue score which is supposed 

to be reached in normal 8 to 16 roster and      is the penalty from consecutive 

morning shifts. The variable    is one if current duty and previous duty have 

early check-in times and zero otherwise.  

Table 7 presents the values of   and   when varying the value of circadian 

coefficient   and alertness scores with the corresponding figures are shown in 

Figure 21 for standard work day from 8 to 16, with the initial fatigue score of 70. 

Table 7. Values for the coefficients D and E by varying A. 

Circadian process Homeostatic process 

A D E 

0 1.00 1.64 

5 1.52 2.52 

10 2.05 3.55 

15 2.57 5.03 

 

The increase of   results in relatively larger increase of coefficient   when 

compared to coefficient  . This is due to the asymptotic nature of recovery 
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function   , because it limits the recovery at higher levels of alertness and 

increases it at lower levels. 

 

Figure 21. Differences in alertness score by varying A, D and E as in table 7. 

As can be seen from Figure 21, the increase of   increases the effect of circadian 

component. With high values of   this effect is strong when compared to the 

power of the homeostatic process, as can be seen in the figure when the graphs 

show more curvature. With the value of 5, the graph in the figure looks realistic, 

because the    increases through the recovery period, but the effect of circadian 

component is still visible. However, the value of   cannot be too low, as the 

circadian component is important to the fatigue feeling experienced by pilots, 

according to the data. 

Keeping the starting level of the alertness score same, the changing of coefficient 

  moves the alertness score to a lower level for the whole simulation. If we do not 

calculate the coefficients   and   for each  , the increase of   increases the effect 

of circadian process too much when compared to the homeostatic process. Too 

high   results in    changing too rapidly depending on the time of day, which 

diminishes the effect of work and rest periods and puts too much emphasis on the 

time of day. There must be a balance between circadian and homeostatic 

processes. Figure 22 presents the alertness scores with varying   but static D and 

E. The results become too random with increasing values of   for predicting 

fatigue. 
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Figure 22. Alertness score with static D and E coefficients but variable A. 

 

4.5.2. Variables with cumulative effect 

The cumulative effects of duty and rest times are included in the homeostatic 

process in equation (7). Increasing the ratio of cumulative duty per cumulative 

rest increases the coefficient   which results in increased rate of fatigue build up. 

This is a simple way to measure the work and rest ratio, which should correlate 

well to the perceived fatigue. If the rest times are very low compared to the duty 

times, a person will not recover well for the next duty. This is ensured by 

increasing the rate of fatigue build up, which results in lower alertness scores than 

without the cumulative factor. According to data in Figure 17, doubling the ratio 

from 0.3 to 0.6 increases the difference by 1 unit in average. For an average flight 

duty of 8 hours we can calculate the increase to be         units in an hour.. 

Assuming that normal ratio is 8 hours of work for 16 hours of rest, this gives 

        . Deviations from this will result in increased or decreased cumulative 

effect to fatigue. We can now define the coefficient   as 

where     , because it can be estimated further. 

This considers the effect of overall cumulative workload to fatigue, but the effect 

of cumulative duty hours as independent variable is not included. The legislation 

of duty time periods and rest times uses the cumulative duty hours in a given 

   
     

     
               (20)  
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timeframe, such as week or month, as the basis of limiting duty hours. Because 

the data does not point to the importance of cumulative duty hours in itself, it is 

left out of the developed model. 

The model now developed takes into account the duty lengths, the length of rest 

periods, the time of day, the ratio of cumulative duty versus cumulative rest and 

the presence of consecutive early morning shifts. The cumulative effect is set to 

zero after every rest day between duties. This is done in order to ensure that the 

     measures the ratio between work and rest during consecutive work days. A 

rest day throws the ratio well over to the rested side, which is not taken into 

account when calculating the recovery period. The alertness score for the next 

duty might be too good, so the cumulative factor is reset.  

Constants that are estimated from data include the circadian amplitude  , the 

consecutive early mornings penalty    and the cumulative ratio coefficient   . 

As these are only estimates, they can be optimized to increase the accuracy of the 

model. The estimated fatigue drop of 0.2 units/hour in KSS is considered to be 

accurate for this model based on the data. The starting level of alertness score is 

considered to be 70. This initial level is difficult to estimate, if no information is 

available of the fatigue state of the crew members. The circadian process 

considers the diurnal variation in check-in times, so further adjustment to the 

initial value should not be required. 

  



57 

 

 

 

 

 

 

 

 

5 Analysis 

5.1. General 

5.1.1. Model goodness 

In order to optimize the parameters in the developed model, only a part of the data 

is used. Fatigue scores that are only from individual days, which are not part of a 

series of consecutive work days, are discarded. Series with multiple fatigue scores 

from work schedule with no rest days between are used. This is done in order to 

increase the accuracy of the model, because the fatigue scores from separate days 

may not be accurate, and the model requires initial value for the fatigue level 

every time simulation is started. Every single fatigue result is therefore subject to 

error from initial value, so series of fatigue scores are basis for better estimations. 

After a two day rest a new calculation must be done, because the model does not 

include accurately the effect of multiple rest days. With these criteria, 22 series of 

work shifts are chosen. Shortest ones are two days long and longest ones six days 

long.  

Table 8 presents the results for parameters and MSE for the model with all the 22 

shifts in the estimation. The optimization is done via brute force method, iterating 
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to one decimal accuracy. Figure 23 presents the MSE for each selected work shift 

with parameter values from Table 8 and MSE with parameters optimized 

independently for each work shift, presented in Table 9.  

Table 8. Estimated parameter values for the prediction model. 

Parameter         MSE 

Value 3.6 12.4 0.0 229.4 

 

 

Figure 23. MSE with global and local estimates for parameter optimums. 

For some work schedules the difference with local estimate versus the global 

estimate is very small, whereas some perform much better with local estimates. 

This is understandable, as the global estimate needs to consider the differences in 

answers due to personal differences regarding fatigue feelings. Notable is that for 

several shifts it is possible to achieve very good results, such as for shifts number 

6 and 7, and for some, such as shifts 1 and 16, the results are considerably worse 

even with local estimates. For global estimates the route mean square error, which 

describes the standard deviation, is                . This means that on 

average the prediction model estimates almost 1.5 units wrong when transferred to 

KSS scale. 

Table 9 presents the local parameter values and corresponding MSE figures and 

Figure 24, Figure 25 and Figure 26 show graphical presentations of the parameter 
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estimations with 3D plots. In the 3D plots it is visible that the estimated global 

parameters are clearly the optimal values in the defined ranges. The MSE value 

drops smoothly to the minimum value in each plot and there are no local 

optimums in the figures, only one optimum in each. 

Table 9. Parameter estimations and mean square errors for chosen work shifts. 

 Parameter Mean Square Error 

Work shift                            

1 16.0 16.0 0.6 377.5 452.0 

2 0.0 0.0 16.3 0.2 201.7 

3 13.0 0.0 0.0 86.5 204.8 

4 9.0 9.0 1.5 19.0 65.0 

5 12.0 0.0 0.0 126.7 201.6 

6 3.0 0.0 0.4 6.1 52.9 

7 0.0 0.0 0.0 13.0 134.9 

8 6.0 30.0 0.0 411.3 459.0 

9 3.0 0.0 0.0 267.4 267.8 

10 0.0 0.0 0.0 119.3 315.6 

11 9.0 14.0 0.8 8.2 75.9 

12 3.0 0.0 0.0 87.6 88.7 

13 4.0 0.0 0.0 193.8 193.7 

14 4.0 0.0 0.0 38.4 38.9 

15 4.0 0.0 6.0 120.2 156.1 

16 18.0 0.0 0.0 266.8 342.1 

17 8.0 0.0 0.0 182.0 229.9 

18 8.0 0.0 0.0 229.9 270.8 

19 0.0 0.0 0.0 160.3 256.3 

20 12.0 0.0 6.8 24.3 122.5 

21 14.0 0.0 0.0 147.9 268.2 

22 0.0 0.0 0.0 6.3 130.6 
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Figure 24. MSE with varying circadian coefficient A and consecutive morning starts 

coefficient   . 

 

Figure 25. MSE with varying circadian coefficient A and cumulative ratio coefficient   . 

 

Figure 26. MSE with varying cumulative ratio coefficient    and consecutive morning 

starts coefficient   . 
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Plotting the residuals in Figure 27 and testing with Anderson-Darling test it is 

found out that they are from normal distribution. With normally distributed 

residuals the error terms are uniformly distributed, meaning that there is no 

formulating error in the model, where some information would be lost. Some 

heteroscedasticity can be seen in the figure, in the form of sinusoidal wave at the 

center of the picture. The usage of global estimates for all pilots results in some 

shifts having the error terms on the same side of zero level, because the model 

calculates uniformly too low or too high fatigue scores for that pilot’s preferences. 

In this regard identifying heteroskedasticity from the figures is questionable.  

 

Figure 27. Residuals for the prediction model. 

The mean square errors, homoskedasticity and normality of residuals point that 

the model is applicable to the problem at hand. Though the accuracy is lacking 

with global estimates, the formulation is correct when regarding available data.  

5.1.2. Parameters 

The estimated parameters give insight to the data. On the global estimate the 

circadian coefficient   is not too low or high, meaning that the circadian process 

is in balance with the homeostatic process. With the local estimates the value 

varies considerably, describing the differences in data. For some shifts the 

circadian effect is more important than the homeostatic, hence the high values. In 

those shifts the length of duty has less effect and the time of day is more important 

to the fatigue levels. Several reports had same fatigue levels for before and after 
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duty, which is possible to model if the circadian process has considerably large 

effect when compared to the homeostatic process. Otherwise fatigue increases as 

duty time increases and the estimate will fit the data poorly.  

The coefficient    related to early morning starts has high values with both 

global and local estimates for rosters with relevant duties. This means that for 

schedules with early morning starts the effect is quite strong. In global estimate 

the value of         corresponds to approximately 1.2 units of difference in 

KSS. With multiple early mornings this seems a reasonable drop in fatigue levels. 

For shifts with no early mornings this variable is not applicable, so it is mostly 

zero on local estimates. 

The estimate for cumulative ratio    is zero for global case and for most local 

cases. In FTL rules the cumulative effect of work and rest times is considered 

significant and one can rationalize the importance of it. Estimating from the data 

the effect is however not clear, because most cases have the variable estimated to 

be zero. This may be due to the data itself not containing information pointing to 

the importance of the cumulative effects, or that the proposed meter is not 

formulated correctly. As the collected fatigue data is mostly from couple of 

consecutive work days and not from long consecutive duties, the cumulative 

effect may not be identifiable or present in the available information. In some 

cases, the impact of cumulative factors is identifiable, because the estimate is non-

zero, but that is not enough for global case. 
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Figure 28. Prediction results for example rosters. 

Figure 28 presents results for made-up rosters. The first graph presents short to 

normal length duties and the second graph maximum length duties for one week 

roster. The model estimates that the alertness score in normal duties does not drop 

far below 50 units, and the difference in alertness level at check-in time does not 

change though duty lengths change. With consecutive early morning check-ins the 

drop increases and the cumulative effect is clear as week goes by. In the second 

example of long duties and minimum rest, the alertness level drops after a couple 

of days close to 20 units at the end of duty, with normal check-ins. With 

consecutive early morning check-ins the drop is dramatic, and the 3
rd

 day is 

started with alertness score of 25, which is very low. A rest day reduces the 

fatigue so that the alertness score returns to normal levels.  

Results appear rational and the model seems to capture the problems of early 

morning starts and long duties, but may over estimate the fatigue effect. Duties 

appear to be predicted well, because the alertness score does not increase too 
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much with short daily duties, but stays on normal levels. A series of long duties 

reduces alertness score to low levels and minimum amount of rest is not enough 

for recovery back to normal levels. Overall the results appear logical, with the 

effects of duty lengths and time of day showing clearly on the alertness score 

levels. 

5.2. Case examples 

In this section the results for some of the shifts used to estimate the parameters are 

presented. In Figure 29 the first graph is the best case scenario with global 

estimates, which fits quite well the data points. The second graph is one of the 

best cases in local estimates, with global and local estimates plotted to the same 

picture.  

 

Figure 29. Predicted alertness scores versus data. 

As can be seen, the model is able to predict the fatigue especially when local 

estimates for parameters are used. With global estimates the difference to the local 
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estimates may be high, because the local estimates can identify individual 

preferences in the data. In the second graph above, the pilot does not feel that the 

consecutive early morning starts have effect on his fatigue score. The global 

estimate has the    variable estimated as non-zero, so the predicted alertness is 

much worse than with local estimates.  

The differences in pilot answers make it difficult to predict fatigue scores with 

same parameters for every pilot. Figure 30 presents couple of difficult fatigue 

scores to model. On the first graph the problem with the data is that between the 

end of first duty and start of second, there is almost 24 hour rest period, and the 

next duty starts at 16:30. The created model assumes that this time window is 

used completely for recovering and the circadian process gives also high alertness 

for that time. This is quite close to what the pilot has experienced. The second 

duty lasts only 5 hours, so the model calculates normal levels for alertness score at 

the time of check-out, which is inconsistent with the data from pilot, as he gives 

estimate of very low levels of fatigue. The model cannot identify the low level of 

alertness the pilot is feeling, as the duty is short and circadian timing is favorable 

as well, but the pilot has reported high levels of fatigue.  

In the second graph, the pilot has reported fatigue levels that are mostly same 

during duties throughout the work week. The prediction model has difficulties 

calculating the fatigue, because it is assumed that alertness drops during duties as 

pilots keep working. Problems are also faced with the first alertness scores in both 

cases, as those are already low even though the pilots have had free days before 

these shifts. The initial fatigue value should describe the fatigue in normal 

situation, when the pilot has had adequate rest before duty. As there is no data 

available concerning the possible initial value, assumptions must be made. In here 

the assumption is that at the start of work week pilots have normal levels of 

fatigue. Sleep data confirms that throughout the shifts the pilot in the second case 

has reported low amounts of sleep on every other day other than the 3
rd

 day, 

which according to the data has the highest alertness level. The prediction model 

has no information on the sleep amounts as they cannot be known in advance, so 

they are not modeled. Sleep however has the highest impact on fatigue levels. 
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Without the information of actual sleep amounts, the fatigue levels in the second 

graph are impossible to predict.  

 

Figure 30. Predicted alertness scores versus data. 

The created model is able to find good local estimates for parameters, but not on 

all cases. The global estimates give satisfying results, but subjective opinions 

about fatigue make it inaccurate. The results are rational, but when the model is 

applied to pilot experiences the accuracy is lacking. It is, however, difficult for 

any model to predict subjective fatigue scores accurately, because the differences 

in how people perceive fatigue may be high. When comparing to the simple 

multiple linear regression model, the discrete simulation model gives better results 

regarding the sensibility of the fatigue scores, because the regression model 

results may be outside the scale. The RMSE for both regression model and 

simulation model are on the same scale, so by measuring goodness of fit both are 

equally good.  
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6 Conclusions 

6.1. Summary 

In this thesis, a discrete bio-mathematical model for predicting pilot fatigue in 

commercial airline operations is developed. The model uses planned work 

schedules as input and calculates estimates of fatigue levels in discrete time 

interval. A person is assumed to be either working or resting as indicated by the 

input and actual sleep is not modeled. Parameters are estimated based on data 

collected from pilots working on short-haul operations during one month time 

window in peak season in flight traffic.   

Sources for fatigue in the model are time of day, worked duty hours, available rest 

and presence of consecutive morning shifts. The data used in this thesis does not 

indicate cumulative work time or cumulative rest time as having significant effect 

on fatigue, so they do not affect the predicted score; though sleep theory, other 

models, and aviation regulations assume that the cumulative aspect is important. 

The effect of work load is also left out off the model, because it is found to be 

included in the duty length. 
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The results indicate that it is possible to predict fatigue based on discrete 

simulation. The model gives rational and feasible results, and when compared to 

the available fatigue information from pilots, it is able to predict fatigue 

satisfactorily. The biggest problem in estimating fatigue based on the work 

schedules is the absence of information regarding the amount of sleep. The actual 

sleep achieved during previous night is arguably the most important aspect in the 

following days fatigue levels, but this information is not available in advance. 

Another issue is that the lengths of rest periods and starting times of duties vary, 

which requires that the recovery function should either identify when a person is 

sleeping, or limit the process to prevent excess recovery and alertness levels. In 

the developed model, time outside of work is defined as recovery period and the 

parameters are calibrated accordingly. This has the advantage of removing the 

need of estimating sleep periods out of the model, but raises problems with 

variable rest times. For increasing rest times the model may over predict alertness 

levels. 

6.2. Model Characteristics 

The developed model has several parameters that must be adjusted. The circadian 

coefficient   defines the effect of the time of day to fatigue. Increasing   

increases the effect. Coefficient   defines the rate of fatigue build up and 

coefficient   the rate of recovery. The coefficients    and   are dependant on 

each other, and of the coefficient  , and must be defined together. Coefficient    

defines the penalty for consecutive early mornings and    is the cumulative effect. 

Increasing any of these coefficients other than   will increase fatigue levels. 

Depending on the disruptive schedule type used, the limit for early morning starts 

should be set to either 7:00 or 6:00, if following EASA legislation concerning 

fatigue risk management. Using the limit of 7:00 may include more duties in the 

disruptive schedule, which results in lower alertness levels due to possible 

increased number of defined early morning starts.  

Utilizing fatigue models requires training to both pilots and the users of the 

model. Both have to understand how the model works and what it requires from 

them.  
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For pilots, the main issue is the adequate amount of sleep. Flight crew should 

understand that in order for the model predictions to fit, they have to ensure that 

they acquire enough rest. If they do no utilize rest times well, the real alertness 

scores will be lower than those predicted by the model. It is important to teach 

them sleep theory in order to ensure that they understand how sleep and fatigue 

affect them and how to mitigate the effects. Understanding how to get enough 

sleep while doing shift work in aviation environment is important for model 

accuracy. 

Users of the model have to understand the limitations and what the results mean. 

Because the model estimates are only predictions, they must be used with care. 

The model may be calibrated to fit different types of people or operations, 

depending on the need. Understanding the parameters, their effect and the 

interpretation of the results requires training of the users in order to avoid 

misinterpretations and errors. 

6.3. Model Usability 

Because the developed model fits only adequately the data, the usability of the 

results must be questioned. The model may well be used to aid in risk 

management, but only to certain length. It can be used to identify potential 

difficult rosters that are then placed under further analysis. In this regard the 

model fares well, because it aids in decision making, but it cannot be the tool, 

which the decisions are based on. Further analysis must be done to better 

rationalize rostering decisions when considering fatigue. It is difficult to justify 

the usage of the model estimates as a sole basis of decisions, because the results 

do not reflect the individual fatigue levels.  

The differences in how people feel fatigue make it difficult to create an applicable 

average model that is accurate for everyone. By locally estimating parameters it is 

possible to achieve much better results, but this requires plenty of data and time. 

Estimating individual parameters for every pilot is also not practical for an 

optimization tool aimed for wide spread use in commercial airline operations. 

There model, however, can be utilized as an average model, because the current 
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FTL rules are also general rules that do not consider well the individual fatigue 

perceptions. 

For future research, the formulation of the recovery function should be studied 

further, because the pilot work schedules include changing rest periods, which are 

difficult to model. Adding a circadian component to the recovery process might 

improve the accuracy of the recovery modeling. Without prior knowledge of sleep 

times and amounts, the recovery function has to either rely on probabilistic sleep 

schedule, assume that time outside of work is used completely for recovery, or 

find another way to model the recovery process. 
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