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DNA microarrays measure transcriptional activity of genes in a biological sample,

resulting in massive amounts of information. As transcriptional regulation plays a

central role in all biological processes, such gene expression data has been studied

intensively. However, huge dimensionality and a limited number of samples make it

difficult to learn a well generalizable model for gene expression. While there exist

ad hoc methods for selecting relevant features based on data set at hand or prior

knowledge, this thesis exploits unlabeled background data from public databases to

perform robust feature selection.

Two variants of transfer learning are compared to two standard machine learning meth-

ods in two different microarray classification tasks, showing that transfer of learned

features can be advantageous. We also discuss in which situations transfer learning is

not beneficial.
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DNA-mikrosiruilla mitataan biologisen näytteen geenien transkription aktiivisuutta,

jolloin saadaan suuret määrät informaatiota. Tällaista geenien ilmentymistä kuvaavaa

aineistoa on tutkittu intensiivisesti, sillä transkription säätely on keskeisessä roolissa

kaikissa biologisissa prosesseissa. Aineiston suuri dimensio ja näytteiden rajallinen mää-

rä hankaloittavat geenien ilmentymistä kuvaavan, hyvin yleistettävän mallin luomista.

Dimensiota voidaan pienentää rajoittamalla tarkastelu aineiston merkityksellisiin omi-

naisuuksiin erilaisten ad hoc -menetelmien avulla. Nämä menetelmät perustuvat prio-

ritietoon ja käytettävään aineistoon. Tässä työssä hyödynnetään ad hoc -menetelmien

sijaan julkisesta tietokannasta saatavaa tausta-aineistoa robustissa ominaisuuksien va-

linnassa.

Työssä verrataan kahta siirto-oppimismenetelmää kahteen tavalliseen koneoppimisme-

netelmään mikrosiruaineiston luokittelutehtävissä ja osoitetaan, että siirto-oppimisesta

voidaan hyötyä. Myös siirto-oppimisen mahdollisia haittoja analysoidaan.

Avainsanat: siirto-oppiminen, pääkomponenttianalyysi, tukivektorikone, it-

seoppiminen, ominaisuuksien valinta, geeniekspressio, DNA mik-

rosiru
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1 Introduction

In the traditional machine learning setup, a set of data is acquired from an experiment,

and is then modelled to gain knowledge about a certain task. The performance of the

model is for example measured by its predictive power on test data. However, it has

been shown that it can be beneficial for a specific task to use data from other, related

tasks [20, 2]. This idea is known as transfer learning (also inductive transfer and life-long

learning).

In molecular systems biology one task of interest is to separate normal tissue samples

from tissue samples that have a specific cancer. For solving this task, it can be useful

to consider models and data sets of similar cancers, in addition to the data set at hand.

There does not exist a general rule on how to transfer the knowledge or whether it will

be beneficial. Thus, the performance of transfer learning models needs to be estimated

carefully.

In this thesis, the experiment of interest comes from gene expression analysis, where

features are related to genes. The feature space consists of around 13000 genes, which

makes it hard to interpret the data. Even though the experiment is comparatively large,

containing measurements for more than 300 samples, the number of samples is too small

relative to the massive number of features. Models built from such data have a tendency

to overfit, that is, they adapt too much to pecularities of the training set. This naturally

makes the model weaker, that is, less generalizable. Usually this type of problem has

been dealt with by selecting a smaller number of features according to prior knowledge or

some other criteria, such as the amount of variance in the data set of interest [18]. The

goal of this thesis is to find out whether transfer learning is beneficial in the context of

feature selection in microarray classification tasks.

The structure of the thesis is as follows. First, relevant background knowledge is intro-

duced in Section 2, both in the fields of biology and machine learning, including baselines

used in the experimental section. Then, in Section 3, the field of transfer learning is pre-

sented, and specifically the feature selection models transfer-PCA and self-taught learning

are introduced. In Section 4, classification of the molecular biological data is tested, com-

paring the transfer learning methods with the baselines. Finally in Section 5 the results

are discussed and conclusions stated.



2 Background

This chapter gives an introduction to the fields of molecular systems biology and ma-

chine learning. Two machine learning methods that are used in our transfer learning

approaches will be presented in detail: principal component analysis (PCA) and support

vector machine (SVM). PCA is used for dimensionality reduction purposes and SVM for

classification.

2.1 Molecular systems biology

2.1.1 Information flow in the cell

The cell is the functional unit of all living organisms, and the smallest unit classified as

living [1]. Bacteria consist of a single cell only, whereas humans have approximately 100

trillion of them. Furthermore, each cell of a living organism contains its DNA (deoxyri-

bonucleic acid), which stores the information used in its functional and developmental

processes.

A gene is a stretch of DNA that encodes a functional product, typically protein, less

frequently functional RNA (ribonucleic acid). The process of forming proteins, also called

gene expression, works as follows: DNA is transcribed into messenger RNA (mRNA),

and mRNA is translated into an amino acid sequence, which folds into an active protein.

Identical mRNA can result in different proteins, since some parts of the mRNA may be

removed before translation.

Every step of the gene expression process is regulated, but mRNA levels can be considered

as an approximation for the importance of a gene product in a certain biological process.

The next subsection will describe how to obtain and analyze such gene expression data.

2.1.2 Gene expression research

The most established way to measure gene expression is DNA microarray technology.

DNA microarrays have been widely applied in molecular biological studies for instance

in analyzing drug response in human leukemia cells and detecting new prostate cancer

subtypes [3, 10].

A microarray consists of a large array with fragments of DNA, called probes, that are

matched with mRNA in the cells. Cellular RNA samples are tagged with fluorescent

molecules and exposed to the array, allowing the amounts of mRNA be measured in a

high-throughput way, thousands of genes at once. The single probes are mapped into

probe sets, which are ultimately mapped into genes. This information is used during

2



data normalization and for handling missing values.

One of the challenges in analyzing gene expression data is their high dimensionality. A

data set may contain tens of thousands of gene probes, but at most a few hundred mea-

surements; this makes it hard to do any modelling. Usually the genes whose expression

values vary only a little between different cell samples are left out [18]. Thus the number

of relevant genes in a study may be several thousands. Almost never a single experiment

contains an adequate number of samples, resulting in the so called “small n, large p”

-problem, where n denotes the number of samples and p the number of features (genes).

For instance, it is not possible to reliably identify cancer genes if there are only a few

patients in the study.

2.2 Machine learning

2.2.1 Unsupervised learning

Unsupervised machine learning focuses on finding structure from unlabeled data, that

is, data where we do not have additional information about the nature of samples. The

focus lies on tasks such as clustering and dimensionality reduction.

The goals of the tasks can be briefly summarized as follows. In clustering, the data are

intended to be divided into groups such that the data points in the same group have similar

features and the data points in different groups have dissimilar features. In dimensionality

reduction, we would like to define a small number of features that describe the structure of

the data as faithfully as possible. The quality of the dimensionality reduction is evaluated

by two measures: precision and recall. Good precision means that points that are close

in the reduced space are also close in the original space. On the other hand, good recall

means that points that are close in the original space are close in the reduced space, too.

In general, it is impossible to maximize both at the same time, and trade-offs will have

to be made.

An extremely popular model for unsupervised dimensionality reduction is principal com-

ponent analysis (PCA) [14]. It is applied for centered data by simply rotating the coordi-

nate axes such that the first axis (principal direction) corresponds to the direction with the

largest variance, and each subsequent axis corresponds to the direction with the largest

variance in the orthogonal subspace. This can be seen in figure 1 for a two-dimensional

example.

Thus, the last principal components usually contain only a minimal part of the data

variance and can be left out, leading to dimensionality reduction. Since PCA just projects

the data linearly into its principal subspace, it has good recall. This is obvious because

removing dimensions can only bring the data points closer to each other. However, this
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Figure 1: Principal components of a data cloud. The first principal direction (pd1)

corresponds to 98% of sample variance.
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may apply also to distant points, resulting in bad precision.

Let us assume N data vectors x1, ..., xN ∈ R
M . For solving the principal directions

w1, ..., wN , the data set needs to be centered, after which the expectation value E[xi]

equals 0. First, we would like to find a linear projection that maximizes the variance of

the first principal components y = (y1, ..., yN), where yi = wT
1 xi.

Var[y] = Var[wT
1 xi] (1)

= E[(wT
1 xi)

2]−E[wT
1 xi]

2 (2)

= E[(wT
1 xi)(x

T
i w1)]− (wT

1 E[xi])
2 (3)

= wT
1 E[xix

T
i ]w1 (4)

The last equation follows because E[xi] equals zero. In order to obtain sensible results,

the norm of w1 is set to one, i.e. wT
1 w1=1. Thus, we can form the following Lagrange

function:

wT
1 E[xxT ]w1 − λ(wT

1 w1 − 1), (5)

where λ is the Lagrange constant. Setting the gradient to zero, we get:
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∂

∂w1
[wT

1 E[xxT ]w1 − λ(wT
1 w1 − 1)] = 0 (6)

2E[xxT ]w1 − λ(2w1) = 0 (7)

E[xxT ]w1 = λw1 (8)

We can see that equation (8) is the eigenvalue equation for matrix E[xxT ]. Knowing that

there are N pairs of eigenvalues and -vectors, we still need to decide which one of them

to choose. After multiplying equation (8) by wT
1 we get

wT
1 E[xxT ]w1 = wT

1 λw1 = λ, (9)

since wT
1 w1=1. The largest eigenvalue should be chosen since Var[y] = wT

1 E[xxT ]w1 = λ.

Thus the largest eigenvalue tells the variance captured by the first principal direction w1,

that is the eigenvector corresponding to the largest eigenvalue. For the next principal

component we capture the maximum variance in an orthogonal direction, represented by

the next largest eigenvalue and its corresponding eigenvector. Consequently PCA can

be solved with the help of eigenvalues of Cx = E[xxT ]. Furthermore we get the new

features (principal components) Y = W TX , where W = (w1, ..., wP ) is a M × P matrix

formed by the P first principal directions and X = (x1, ..., xN) is a M ×N matrix. The

dimensionality is reduced in a way that preserves as much variance as possible.

2.2.2 Supervised learning

Supervised learning is a machine learning setup where we have label information for the

data. The most basic task is to divide the feature space in two parts: class 1 (C1) and class

2 (C2). A very popular choice for this kind of classification algorithm are support vector

machines (SVM) [6]. A linear SVM simply finds two parallel hyperplanes that separate

the two groups (samples with different labels) with a maximum margin between them.

The hyperplanes are learned from training data, after which test data will be classified

according to which side of the hyperplanes they lie on. Given that the classes actually

are linearly separable, we can formulate the problem as follows:

wTx(i) + w0 ≥ 1,when x(i) ∈ C1 (10)

wTx(i) + w0 ≤ −1,when x(i) ∈ C2, (11)

where w is the normal vector of the hyperplanes H1 and H2:
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H1 : w
Tx(i) + w0 = 1 (12)

H2 : w
Tx(i) + w0 = −1 (13)

and w0−1
||w||

and w0+1
||w||

determine the offsets of the hyperplanes from the origin along the

normal vector w.

The concept of SVM can be easily seen in figure 2. To deal with cases where the classes are

not linearly separable, the optimization problem is slightly changed. The exact derivations

are not relevant since most mathematical programs contain an SVM-implementation.

Figure 2: Two classes separated with an optimal margin.

optimal margin

In all models in this thesis, we use linear SVM for classification. Thus, the models differ

only regarding feature selection.
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3 Transfer learning

In this chapter, we introduce the concept of transfer learning in detail and divide it in

different categories. Two models are presented to be used for feature selection.

3.1 Preliminaries

We are interested in a task and have one specific dataset at hand; it shall be called target.

For some reason, for example due to a small amount of samples, target data may not

allow us to form a good enough model, in which case transfer learning should be applied.

Some knowledge is intended to be transferred from the source, which is somehow related

to the target. The relation can vary from clear similarity to a scenario where the source

might seem irrelevant to target data: for example, we might repeat a biological study with

just different patients; on the other hand, in the concept of image recognition transfer

learning has even been applied using totally random images as source data [16]. In the

latter case labeling accuracy improved since even the random images share something to

the target, for example the edges of patterns can be modelled better if there is previous

knowledge of them.

Target and source data both can still be divided in two parts: domain and task [13]. A

domain D is defined:

D = {X , P (X)}, (14)

where X is feature space and P (X) a marginal probability distribution forX = {x1, ..., xn}

∈ X . Here X is the actual data, consisting of n samples. Marginal probability distribu-

tion P (X) can be estimated from the data. Two domains are obviously different if their

X or P (X) differ. As a simple example we might have data from a set of patients, feature

space containing height and weight, and P (X) their marginal probabilities.

Given a specific domain D, a task is:

T = {Y , f(·)} (15)

where Y is label space and f(·) an objective predictive function, i.e. a function for

predicting labels from the features X . The objective predictive function is not observed,

but it can be learned from the training data, given labels Y ∈ Y . In the simple example

labels could be binary, telling if the patient is male or female. Given the training data,

we can learn to predict whether a patient is male or female, given his/her height and

weight.
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3.2 Transfer learning categories

Transfer learning can be divided into different fields using the data division to domain and

task. We are interested in the target experiment, and will transfer knowledge from the

source. If both source and target domains, and source and target tasks are the same, i.e.

there is an earlier experiment just like ours, transfer can be done in traditional machine

learning setup, where the source data is simply added to our model, resulting in a single

study. On the other hand, if there are differences in domains or tasks, it will be important

to find out what to transfer. Some knowledge may be source-specific and some common

with the target, which requires transfer learning methods. Complete classification of the

approaches can be found in table 1:

Table 1: Different learning settings, divided using similarities in domain and task space

(taken from [13]).

Learning Settings Source and Target Domains Source and Target Tasks

Traditional Machine Learning the same the same

Inductive Transfer Learning / the same different but related

Unsupervised Transfer Learning different but related different but related

Transductive Transfer Learning different but related the same

In the inductive transfer learning setting, the target task is different from the source

task, whereas the domains may be the same or not. Some labeled data in the target

domain are required to induce an objective predictive model fT (·). A special case of

inductive transfer learning is multitask learning, where source and target tasks are learnt

simultaneously, taking into account that they are different [2]. It has been one of the most

popular approaches in transfer learning. Typical application examples include regression

and classification [15].

In the transductive transfer learning setting, the source and target tasks are the same,

while the domains are different. No labeled data in the target domain are available

whereas a lot of labeled data are available in the source domain. A popular example of

this type of setting is domain adaptation, where the aim is to transfer knowledge from

source feature space to target feature space [8].

Finally, in the unsupervised transfer learning setting, similar to inductive transfer learn-

ing, the target task is different from but related to the source task. However, there are

no labeled data available in both source and target domains. Thus, labels cannot be

estimated, but the applications may contain for example clustering and dimensionality

reduction [7, 21].
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3.3 Transfer learning for feature selection

3.3.1 Transfer-PCA

Dimensionality of the target features can be easily reduced by calculating their principal

components, as presented in Section 2.2.1. However, one needs to pay attention that an

insufficient sample size will not result in a robust principal subspace: with ten samples,

100 percent of the sample variance will be captured with at most nine principal directions

- no matter how large the actual dimensionality is. Thus, it would be very beneficial to

have the sample size at least close to the number of dimensions.

Our approach is to estimate a more robust principal subspace from source data, which

is naturally achieved via a greater sample size. Importantly the feature marginal dis-

tributions have to have something in common in order for knowledge to be transferred,

which may allow us to learn a higher level representation of the target data. Technically

this requires only projecting the target data into the principal subspace of the source

and choosing the desired number of components. This feature selection approach shall

be called transfer-PCA.

3.3.2 Self-taught learning

Self-taught learning is classified as an inductive transfer learning model. More specifically,

it is used in situations where the feature spaces X are identical in source and target and

marginal distribution P (X) is different but related. Goal is to classify target data based

on some labeled data and the source data, which contains no labels. It is assumed that

the target consists only of rather few samples, making it hard to obtain a good classifier.

Thus, source data should be used for help, even though it is assumed that the source

samples may not be classified according to target labels at all. However, since source and

target domains are related, some knowledge can be transferred. Raina et al. used the

classification of images of elephants and rhinos as an example. Acquiring more images

with the correct label information is considered expensive, and not necessarily plausible

in many real applications. Thus, random images were used as the source, and out of

them possibly none contained elephants or rhinos. Still there is something shared, since

most pictures contain basic forms such as edges. This type of high-level information

was transferred successfully, resulting in a better classification accuracy than without the

seemingly irrelevant source data.

Self-taught learning algorithm begins with learning a higher-level representation of the

source. Source data consists of unlabeled data {x
(1)
u , ..., x

(k)
u } with each x

(i)
u ∈ R

n. This is

posed as the following optimization problem:

9



min
b,a

∑

i

||x(i)
u −

∑

j

a
(i)
j bj ||

2
2 + β||a(i)||1 (16)

s.t. ||bj ||2 ≤ 1, ∀j ∈ 1, ..., s

The optimization variables in this problem are the basis vectors b = {b1, ..., bs} with each

bi ∈ R
n, and the activations a = {a(1), ..., a(k)} with each a(i) ∈ R

s. Basis vectors b are

used to capture the high-level representations, such as common forms or clusters. a
(i)
j is

the activation of basis bj for input x
(i)
u . The optimization has two terms: (i) The first

quadratic term encourages each input x
(i)
u to be reconstructed well as a weighted linear

combination of the bases bj . (ii) The activations a should be sparse i.e. most elements of

a(i) should be zero.

The optimization problem (16) can be solved iteratively over variables a and b by alter-

natingly holding one of them fixed and optimizing over the other one [11]. This stage

of finding representations of unlabeled data is known as sparse coding, for which Lee et

al. presented algorithms in their publication. In this thesis, problem (16) is solved using

feature-sign search algorithm.1

After learning the basis vectors from source data the target data {x
(1)
l , ..., x

(m)
l } with each

x
(i)
l ∈ R

n are represented using them. This results in the following optimization problem:

â(x
(i)
l ) = argmin

a(i)
||x

(i)
l −

∑

j

a
(i)
j bj ||

2
2 + β||a(i)||1, (17)

where the labeled target samples are assigned individually into basis bj optimally, such

that their reconstruction error is low and the activations are sparse. Later the activation

vector a(i) will be used as a representation of sample x
(i)
l . As the final stage a classifier

C will be learned by applying a supervised learning algorithm (e.g. SVM) to the labeled

training set containing activations and the sample labels. Unconstrained minimization

problem (17) can be solved using MATLAB’s built-in minimizer, which can use more

efficient methods if both gradient and Hessian matrix are provided. The cost function’s

matrix formulation is:

C(a(i)) = ||x
(i)
l − Ba(i)||22 + β||a(i)||1, (18)

where the bases bj are the columns of matrix B and a(i) is a column vector containing

the a
(i)
j s. The gradient can be computed in the following way:

1http://ai.stanford.edu/~hllee/softwares/nips06-sparsecoding.htm
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∂

∂a(i)
C(a(i)) (19)

=
∂

∂a(i)
[||x

(i)
l −Ba(i)||22 + β||a(i)||1] (20)

=2
∂

∂a(i)
||x

(i)
l −Ba(i)||2 × ||x

(i)
l − Ba(i)||2 + βsign(a(i)) (21)

=2
∂

∂a(i)
[Ba(i)]×−

x−Ba(i)

||x
(i)
l − Ba(i)||2

× ||x
(i)
l − Ba(i)||2 + βsign(a(i)) (22)

=− 2BT (x−Ba(i)) + βsign(a(i)) (23)

Furthermore, the corresponding Hessian is:

∂2

∂a(i)∂a(i)
T
C(a(i)) =

∂

∂a(i)
T
[−2BT (x− Ba(i)) + βsign(a(i))] = 2BTB (24)

Using the gradient (23) and Hessian matrix (24) fminunc calculates the local minimum

of (17) for all the target samples independently. The algorithm used is a subspace trust-

region method and is based on the interior-reflective Newton method described in [4] and

[5].

As a conclusion, knowledge transfer in self-taught learning is done by extracting high-level

information from the source task in the form of a basis b, which is used to represent the

target data. If the amount of data in the source is large, the learned basis will be robust,

unlike for the potentially few samples in target. Transfer-PCA is based on the same idea,

limiting to a linear projection instead of the freely optimized basis.
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4 Experiments

The experimental section consists of two different classification tasks: in Section 4.2,

the classes are hepatitis C and normal, whereas in Section 4.3 we classify blood versus

non-blood. Both tasks were performed using data repository presented in Section 4.1.

4.1 Data repository

Margus Lukk et al. collected a repository containing 5372 human gene expression mea-

surements [12]. They combined a total of 206 studies with variable goals, from searching

a molecular explanation for different hepatitis C treatment results, to finding connections

among diseases, genetic perturbation and drug action [19, 9]. All measurements were

performed using Affymetrix microarray U133A, resulting in identical feature spaces X ,

consisting of expression values for more than 22000 probe sets. However, since differ-

ent phenomena are studied, marginal distributions P (X) and thus the domains between

different studies differ. There are thorough annotations for each sample, describing the

tissue of origin, its disease state etc. Readily preprocessed data is acquired from the Gene

expression atlas.2 It shall be called original data from now on.

In their article, the authors presented “a global map of human gene expression”, which

was a visualization of the two first principal components of the data, with sample coloring

according to different classes. However, this kind of huge data repository is a natural setup

for applying transfer learning. Although all the samples in the repository are thoroughly

labeled, we will discard the label information in source data. Naturally a better model

could be built using all the information available, but in this thesis the interest lies

in testing feature transfer from unlabeled source data. This is a more realistic setting

because consistent annotation of large data repositories is tedious.

4.2 Predicting hepatitis C

As an example classification task, we used the second largest experiment in the repository

of Lukk et al., which contains 308 samples from human blood cells - 192 of which are

associated with hepatitis C and 116 of which are healthy [19]. The original data samples

are divided randomly into two sets for training and testing. A linear SVM model is formed

for the training set as described in Section 2.2.2 and the classes of test data (hepatitis C

versus normal) are predicted according to the model. For transfer learning purposes all

the other experiments in the data repository are used as source data.

Prediction accuracies are compared in four different settings, using:

2http://www.ebi.ac.uk/gxa/experiment/E-MTAB-62
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Baseline

{

Original data

Principal components of the raw data (PCA)

Transfer learning

{

Transfer-PCA

Self-taught learning

The two first settings are traditional machine learning ones. Additionally in the second

one calculation time is lower since SVM will be applied to a data set with approximately 40

percent less features (yet storing at least 96 percent of sample variance). As a downside,

the estimated principal subspace and components will not be robust due to the small

sample size. The third setting implements a simple knowledge transfer: the principal

subspace estimated from the source will be more reliable since the sample size is over ten

times larger, thus aiding in the“small n, large p” -problem. In the last setting, activations

of the self-taught learning model will be used as features. The goal is to benefit more from

the source data by acquiring high-level structural information through sparse coding.

Comparisons were made for different sizes of training sets and the results can be found

in table 2.

Table 2: Predicting hepatitis C versus normal blood cell. Means and standard deviations

of prediction accuracies for 200 different divisions to training and test sets. Tested with

variable training set size k.

Original PCA Transfer-PCA Self-taught learning

k=20 69.4% (4.7%) 66.8%(5.4%) 69.4% (5.0%) 53.7%(4.4%)

k=50 76.8%(3.6%) 74.1%(4.1%) 79.4% (3.0%) 57.9%(3.5%)

k=100 83.4%(2.8%) 82.3%(3.2%) 88.2% (3.0%) 62.5%(3.7%)

k=250 93.0%(3.4%) 94.7%(2.7%) 96.2% (2.6%) 66.2%(6.0%)

In table 2 the first column provides the baseline, where the original data are not modified.

If no dimensionality reduction were done in the second case, results would be exactly

the same, since both PCA and SVM are linear models. However, dimensionality was

reduced such that at least 96 percent of sample variance was captured, thus discarding

the directions with marginal variance. This produced worse prediction accuracies with

all the training set sizes except 250.

Transfer learning was applied in the other two setups. Transfer-PCA resulted in the

best prediction accuracies with all training set sizes. The much more complex self-taught

learning model produced the worst prediction accuracies of all.

Furthermore, a pairwise comparison between the two settings with the best performance

- original data and transfer-PCA - is visualized in figure 3. This allows us to compare
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the best baseline against the best transfer learning method.

Figure 3: SVM prediction accuracies compared with the original data and transfer-PCA.

Two training set sizes were used, and with the bigger one points are overlapping due to

clearly discrete prediction accuracies.
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A simple overview on the data can be obtained by visualizing them using the first two

principal components of the source data. This is done in figure 4, showing that the

different groups cannot be at least trivially separated.

Figure 4: The two first principal components of the target data, projected in the source’s

principal subspace. Normal and hepatitis C infected samples are marked differently.
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4.3 Predicting cell type

In order to test further whether the performance of different SVM setups prevails in

different data sets, another experiment was made. Here, the target task was chosen such

that it contains samples from both blood and non blood cells. There were 25 blood

samples and 299 non-blood. Due to the unbalanced classes, only random 50 of the non-

blood samples were chosen for the experiment. All the other experiments were again

left as source data. This time all the samples could actually be classified, but label

information was discarded again. Four different feature spaces were tested with SVM,

and the results can be found in table 3. Again, the prediction accuracies were tested with

different training set sizes, leaving all the other target data into test set.

Table 3: Predicting non-blood versus blood cells. Means and standard deviations of

prediction accuracies for 200 different divisions to training and test sets. Tested with

variable training set size k.

1 2 3 4

k=5 96.9%(5.2%) 97.4% (5.7%) 97.3%(6.6%) 78.4%(13.9%)

k=10 97.8%(3.4%) 97.2%(5.3%) 98.3% (2.4%) 82.3%(11.1%)

k=20 98.5%(0.8%) 98.5%(1.5%) 98.6% (1.7%) 83.6%(10.0%)

k=30 98.7% (1.1%) 98.6%(1.1%) 98.7% (1.1%) 84.5%(8.6%)

This time the classification task was much easier, resulting in close to 100 percent accu-

racies. The performance of different feature selection methods persisted, for most parts.

Normal PCA resulted in relatively better accuracies, whereas transfer-PCA had a clear

lead only with training sets containing 10 samples. Activations of self-taught learning

were clearly outperformed by the other features.
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5 Conclusions

The goal of this thesis was to compare the performance of transfer learning models to

standard machine learning ones in classification tasks based on gene expression data.

This was done using two different divisions of the data repository: one with target labels

hepatitis C and normal and the other one with blood and non-blood. Labels of the

source task were discarded, resulting in a more generally applicable learning problem.

Classification was done using SVM with variable training set sizes.

Two standard machine learning setups used the original features and their principal com-

ponents. Since the principal components resulted in slightly worse prediction accuracies,

it seems that the discarded directions were helping in the division between normal and

hepatitis C infected cells. Results for classifying blood versus non-blood cells in table 3

were practically the same, except for regular PCA performing slightly better.

In the transfer-PCA setup, transfer of knowledge was intended to be achieved with the

help of large source data. Seemingly, a larger number of samples is advantageous for

estimating a more robust principal subspace, and positive transfer of knowledge was

achieved.

Self-taught learning, however, resulted in poor prediction accuracies. This could be due

to several reasons. One mentioned in the original paper is that good performance is not

achieved unless the activations aj are sparse [16]. Optimization algorithms presented in

section 3.3.2 resulted at maximum 81 percent of activations being below 0.001. Sparsities

in the paper were greater and could not be achieved in this experiment no matter how the

parameter were tweaked. In equation (17), the constant β was adjusted even 30 times as

high as in the first optimization problem (16). Once set high enough a sensible optimum

could not be found. Sparsity was even forced by rounding small activations to zero,

resulting in problems with SVM. With only few non-zero activations many features were

the same for most samples, thus not aiding at all in finding the classification boundary.

Other tweaks used in the original study were tried too. First we tried combining original

features with the activations, which in this experiment performed still worse than the

plain original features. They did perform better than the plain activations though, but

the results acquired using plain activations were displayed, since combining them with

original data for better results seems a bit ad hoc. More experiments on self-taught

learning are needed to find out its performance in different data sets. As for the data

used in this thesis, some crucial modifications would be needed in order to guarantee even

an adequate performance.

Implementing transfer-PCA when possible is recommended, due to its improved predic-

tion performance. Only requirement is a set of source data with the same feature space
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and at least for some parts similar marginal distribution. At least with SVM the results

of this thesis should be generalizable to different types of data sets. Further research is

required to see how well transfer-PCA performs with other classification models.

The experiments showed that transfer can be advantageous, but differed from expecta-

tions. For one transfer-PCA performed pretty equal to the baselines with a very small

amount of samples, but better otherwise. Expected behavior would have been the other

way, and there is no apparent explanation for this phenomenon. Additionally the predic-

tion performance of self-taught learning was surprisingly bad, providing an example of

negative transfer [17].
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