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Abstract

In operations research one often faces scenarios and phenomena exhibiting imprecision and un-
certainty. Stochastic aspects of these scenarios are often accounted for by means of probabilistic
models. In addition to these models, fuzzy augmentation to traditional decision analysis has been
advocated as a possible method that takes into account imprecision in quantities available to the
decision maker. Fuzzy methodology models these imprecise quantities as fuzzy numbers. Rules
exist for computation of such quantities allowing for augmenting existing decision-making models.

The objective of this thesis is to explore augmenting traditional decision trees with such fuzzy
methods. Relevant definitions in the literature are given and an example decision tree is used to
illustrate the augmentation process and further the results given by such fuzzy decision trees. Re-
sults given by the tree are then analyzed and compared to results given by traditional decision tree
analysis. The contributions of the process are also discussed and further study is recommended.

Keywords Fuzzy Set Theory, Fuzzy Arithmetics, Alpha Cuts, Fuzzy Ordering, Fuzzy Decision
Analysis, Decision Trees
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1 Introduction

The field of operations research frequently concerns itself with phenomena
exhibiting uncertainty and randomness. Often these stochastic phenomena
are accounted for by means of probabilistic models. Namely, randomness is
modeled using random variables following some possibly multivariate prob-
ability distribution. However, decision makers face situations where such
models do not adequately represent uncertainty. Fuzzy sets, and more par-
ticularly fuzzy numbers, have been proposed as a means to capture subjective
uncertainty a decision maker might face. In face of problems with weak data
Kaufmann [1986] advocated fuzzy sets as alternative representations of am-
biguous quantities. This approach is expected to yield more interpretable
and intelligible results for the decision maker. More recently Dubois [2011]
also provided a critical point of view on fuzzy decision analysis questioning
whether simply adding a fuzzy component to existing decision making models
constitutes a compelling contribution.

To explore the topic, this thesis concentrates on decision tree models, which
are often used to illustrate stochastic discrete-time scenarios, where the de-
cision maker specifies a conditional strategy maximizing her expected utility.
Traditional decision tree analysis requires the elicitation of exact quantities
of utilities and probability distributions associated with outcomes in the tree.
The objective of this thesis is to present and discuss a fuzzy augmentation
of traditional decision tree analysis in order to allow for ambiguity in model
parameters. Existing fuzzy methods presented in the literature are explored
and their use in decision tree analysis is evaluated.

The thesis is divided into two principal segments. First, required definitions
for fuzzy arithmetics and decision trees are given in Section 2. Decision
analysis using fuzzified decision trees is discussed in detail in Section 3. The
augmentation process is illustrated using an example decision tree model of
a gambling scenario. The model is first presented in Section 2.4 and later
augmented in Section 3. In conclusion the utilized fuzzy methods and their
results are investigated. Shortcomings of this approach are also considered
and further steps are suggested.



2 Definitions

2.1 Fuzzy Sets

Sets, as described by elementary set theory, are omnipresent in mathematics
and a foundation from which most theory is derived from. Still, classes
and sets we construct by observing real-world phenomena are often vague or
ambiguous, and set theory is limited in terms of describing set membership:
a set is described by a characteristic function mapping an object to {0,1}
indicating whether it belongs to said set. Rather, we might prefer to express
a degree of membership in those sets. Fuzzy set theory provides a theoretical
framework to reason about these kinds of sets. It extends the definition of
the characteristic function to account for imprecise knowledge. Hereafter we
refer to concepts introduced by elementary set theory as crisp in contrast to
their fuzzy counterparts.

The motivation for such theory rises from its ability to describe essentially
imprecise or ambiguous knowledge. In operations research and decision anal-
ysis we might argue most sets and quantities could be interpreted as fuzzy
objects, and forming a theory to approach such objects is clearly useful.

A fuzzy set as defined by Zadeh [1965] and Klir and Yuan [1995] is an ex-
tension of crisp sets as defined by elementary set theory. A fuzzy set A
associates a degree of membership for each object belonging to the universal
set X. Usually a fuzzy set is characterized by a membership function on a
crisp set. Often denoted with the same notation as the corresponding fuzzy
set, the membership function A maps each x € X to its degree of membership
in the fuzzy set A:

A: X —[0,1] (1)

Here membership of degree 0 is interpreted as x not belonging to A and
membership of degree 1 is interpreted as x fully belonging to A. Intermediate
values are interpreted as x having in turn intermediate membership in A.

Clearly from this definition it follows that crisp sets are a special case of fuzzy
sets, since a characteristic function can be interpreted as a special case of a
membership function with a range of {0,1}. Such a characteristic function
maps x as either belonging to A or not. In this case we can write in crisp
terms A C X.

We next introduce the notation necessary to further discuss fuzzy concepts
in the literature.



A fuzzy set A satisfying sup,.y A(z) = 1 is called normal.

Another often used description of fuzzy sets are alpha cuts or a-cuts denoted
in this thesis as *A and defined as

“A={z|A(x) > a}. (2)

As in Zadeh [1965], we also call a fuzzy set A : X — [0, 1] with X € R convez
if all of its alpha cuts are convex intervals.

When discussing fuzzy sets, we also find it useful to define extensions to
both intersections and unions on fuzzy sets. These operations are called the
standard intersection and standard union defined as

(AN B)(x) = min{A(x), B(x)} (3)
(AU B)(z) = max{A(z), B(x)} (4)

Also discussed later, we call cl{z € X|A(z) > 0} the support of A, where cl
is the topological closure operator.

In order to construct fuzzy sets using its alpha cuts we introduce the first
decomposition theorem. First define a special fuzzy set ,A(z) = a - A(z).

Theorem 1 (First Decomposition Theorem, Klir and Yuan [1995])
Given an arbitrary membership function A : X — [0,1] it follows that

A= | A (5)

a€l0,1]

Importantly, these results indicate that all fuzzy sets can fully and uniquely
be described by their alpha cuts.

2.2 Fuzzy Numbers

Fuzzy numbers as defined by Klir and Yuan [1995] are a special case of fuzzy
sets defined on R. Hence, these sets are defined by membership functions of
the form

A:R —0,1] (6)

Intuitively a fuzzy number could be interpreted as representing a quantity
involving a degree of uncertainty. The characterization by Zadeh [1978] is



that the value of the membership function describes the degree of possibility
that z is the “true” value of the variable. We could for example represent the
statement “a number close to two” using a fuzzy number A with a membership
function A for which A(2) =1 and A(x) decreases with = further away from
2. Figure 1 shows an example A(z) = max{0,1 — |2 — z|}.

1.2 1

08 1

0.4r 1

Figure 1: An example membership function representing a “number close to
two”

According to the formal definition by Klir and Yuan [1995], a fuzzy number
A needs to satisfy the following conditions

e A is normal, i.e. sup,.p A(z) =1
e Alpha cuts of A are closed intervals
e The support of A is bounded

The argument for setting these requirements lies in defining meaningful arith-
metic operations on fuzzy numbers. The example in Figure 1 satisfies these
additional requirements. Conversely, a fuzzy set B with B(x) = ﬁ does
not have a bounded support and thus does not qualify as a fuzzy number.

2.3 Fuzzy Arithmetics

To further discuss fuzzy calculations we define arithmetic operations on fuzzy
sets. Literature presents two equivalent approaches to defining fuzzy arith-



metic operations. Both approaches could be interpreted as extensions to
crisp sets. First we introduce the extension principle as an elegant means
to extend a crisp function f to a fuzzy range and domain. However, due
to its weighty computational burden we also introduce a more computation-
ally accommodating method employing alpha cuts and the decomposition
theorem.

2.3.1 Fuzzy arithmetics by employing the Extension Principle

First, as fuzzy sets could be considered to be an extension of crisp sets it is
reasonable to approach fuzzy operations and functions as extensions of their
crisp equivalents. In the literature, extending a function f : X — Y of the
crisp set X to Y to a mapping of membership functions is called fuzzification.
The principle of fuzzifying crisp functions is referred to as extension principle
by Klir and Yuan [1995] and fuzzification principle by Dubois and Prade
[1978]. In this thesis we refer to this approach as the extension principle.

Extension Principle For arbitrary membership functions A on X and B
on Y, any given f : X — Y induces fuzzy functions F' and F~! as

follows
[F(A)](y) = S A(z) (7)
[F~(B))(z) = B(f(x)) (8)

Using this principle we may develop fuzzy arithmetics. This method is dis-
cussed in detail by both Klir and Yuan [1995] as well as Dubois and Prade
|1978|.

Denote any of the four arithmetic operations by . For fuzzy numbers A and
B we write

(A% B)(z) = sup {AN B}. 9)

Z=x*y

By (3) it further follows that

(Ax B)(z) = sup min{A(x), B(y)}. (10)

Z=x*y



From this definition we have

(A+ B)(z) = sup min{A(x), B(y)}

(A= B)E) = sup minf{A(x), By)
(A B)() = sup min{A(x), B))

z=x-y

(A/B)(z) = sup min{A(z), B(y)}

z=x/y

for each arithmetic operation.
2.3.2 Fuzzy arithmetics by applying alpha cuts
Alternatively, in order to fuzzify crisp arithmetic operations, we define arith-

metic operations on closed intervals. Defining an arithmetic operation * on
closed intervals as

[a,0] « [d,e] = {fxgla< f<bd<g<e} (11)
yields
[a,b] + [d,e] = [a+d,b+ €] (12)
la,b] — [d,e] = [a—e,b—d] (13)
[a,b] - [d, e] = [min{ad, ae,bd, be}, max{ad, ae, bd, be}] (14)
[a,b/1d; e] = [a, 0] - [1/e, 1/d] (15)

Having defined arithmetic operations on crisp intervals we further discuss
arithmetic operations on fuzzy numbers. Defining a basic arithmetic opera-
tion on alpha cuts of two fuzzy numbers A and B as

“(Ax B)="Ax*DB (16)
we can apply the decomposition theorem given in (5):

AxB= |J (4% B) (17)

a€l0,1]

For the sake of illustration, consider two fuzzy numbers A and B describing
numbers “close to two” and “close to three”, respectively. As before, denote
their membership functions by A(z) = max{0,1 — |2 — z|} and B(z) =



max{0,1— |3 —z|}. In order to consider their respective alpha cuts we write
these functions in their piecewise linear forms

(v~ 1 when 1 <z <2
Alz) =< —x+3 when2<z<3
L0 otherwise

(2 —2 when 2 <z <3
B(x)=¢—2+4 when3<z<4

0 otherwise

\

From these forms we construct their respective alpha cuts
“A=[1+a,3—q
‘B=[2+a,4—q]
Applying (12)—(15) we find
C“(A-i—B) = [3+4 2a, 7 — 20

“(A—B) = [-3+2a,1 - 2q]
“(A-B)=[a®+3a+2,a*>—8a+ 12
a+1l 3—a

"(4/B) = [ 4—a’ a—i-Q}

The corresponding membership functions are

= when 3<x <5
A+B=<{Z=% when5<z<T7T

\0 otherwise

(”"’TJF?’ when —3 <z < -1
A—B= 1*7‘” when —1<z<1

0 otherwise

( 4’”;1_3 when 2 <2 <6
A-B=<{ =Vl ghen6< <12

\O otherwise
((4z—1 1 2
i when 7 < < 3
— 3—2z 2 3
A/B = 1 Wwhen $ <z <3
\0 otherwise

Fuzzy numbers yielded by these example calculations are shown in Figure 2.
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Figure 2: Arithmetic operations on triangular fuzzy numbers

2.4 Decision Trees

Often a decision maker (DM for short) faces a scenario, where she needs to
make a series of decisions during a period of time, and where these decisions
affect some final outcome. Outcomes and options for future choices might also
be affected by changes in the state of the world during this period. Clearly,
the decision maker should then adjust her strategy based on information
available at each time she makes a decision. Scenarios such as these could
be considered stochastic discrete-time dynamic optimization problems.

A natural representation for such a scenario is a tree with leaf nodes repre-
senting outcomes reached by a sequence of decisions and stochastic events.
Such trees are referred to as decision-flow-diagrams or decision trees by Raiffa
and Schlaifer [1961], Raiffa [1968] and others.

A decision tree is a simple, flowchart-like graph used to analyze decision
making as well as to determine optimal decision paths for a given scenario.
The tree represents a multi-step decision making process where a chain of
discrete decisions have discrete outcomes yielding some stochastic utility.



The graph usually contains three kinds of nodes to represent these properties:

Decision nodes Decision nodes that represent options available to the de-
cision maker at each point.

Chance nodes Chance nodes represent possible outcomes of a single deci-
sion.

Outcome nodes or leaves Final outcome nodes are leaves that represent
possible outcomes of the chain of decisions. Each outcome is associated
with some non-stochastic utility.

As an illustration, a simple decision tree describing a betting process is pre-
sented in Figure 3.

Refuse ﬂ

/ Lose |— u(l)
[]
AN P(Lose)
Accept
P(Win) Refuse [{u(w)
J/ Lose |4 u(w,1)
Win |[—[]

AN P(Lose|Win)
Accept

P(Win|Win)

Win J| u(w, w)

Figure 3: A simple decision tree

In order to discuss optimal decision rules for such a scenario we first introduce
the Principle of Optimality:

Principle of Optimality An optimal decision rule has the property that
regardless of previous state, the remaining decisions must constitute an
optimal decision rule in regard to the current state resulting from the
previous decisions. [Bellman, 1957, Chap. I11.3.]

Most often decision making over choices in the tree is directed to maximiz-
ing expected utility. Interpreting the scenario as a dynamic optimization
problem, a natural approach to solving an optimal strategy is by dynamic
programming. Following Bellman’s Principle of Optimality we analyze the
tree from leaf to root so that each decision is associated with expected utility
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from future nodes. FExpected utility for earlier decisions is then calculated
assuming that later decisions are made optimally. It should be noted, that
in a stochastic scenario this approach yields an optimal strategy for each de-
cision node. In comparison to deterministic scenarios, once initial decisions
are made and events take place, the optimal strategy for remaining nodes
may change. Therefore, the optimal decision rule at time ¢ is dependent on
outcomes of previous stochastic events, and thus the decision maker needs
to re-evaluate her strategy at each decision node.

As represented by the tree shown in Figure 3. The decision maker is presented
with a scenario in which she needs to decide whether to accept a simple
gamble, and in case of a win, whether to accept a second gamble. In order
to maximize expected utility, the DM first evaluates the second gamble by
comparing expected utilities of her choices in that subproblem. Once the
optimal decision for the subproblem for the second gamble is known, the DM
is able to compare expected utility for the first gamble. Denoting the first
and second decisions as d; and ds respectively the DM first calculates

dy = argmax [Eu(dy)]

da€{Accept,Refuse}

and having found the optimal decision d; for the second gamble she calculates

di = argmax Elu(dy)|ds =d;].

d1€{Accept,Refuse}

3 Fuzzy Decision Trees

Decision Tree models as discussed above require for the decision maker to
specify precise quantities for each parameter in the tree. This approach
might result in loss of information for parameters that are only known ap-
proximately or which reflect subjective knowledge of the decision maker. As
proposed by Watson et al. [1979] especially changes in multiple parameters
might alter the recommended decision, while sensitivity analysis on individ-
ual parameters might not indicate variation.

One approach suggested by Watson et al. [1979] to address this imprecision
in decision making processes is to extend known quantitative decision making
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models to a fuzzy domain and analyze these models using fuzzy arithmetics
as discussed before.

In this thesis we limit our approach to fuzzy extensions to decision trees and
study possible models resulting from applying fuzzy methodology to simple
decision trees. Such fuzzification methods were discussed by Janikow [1998|
and Olaru and Wehenkel [2003] in a machine learning context, where such
an extension has proved useful in reducing model sensitivity to imprecise
knowledge. In this thesis we again limit ourselves to discuss a model based
on the extension principle as described by Watson et al. [1979|. This approach
applies the extension principle in fuzzifying expected value computation for
fuzzy probabilities and utilities.

3.1 Fuzzy expectation

For a simple case of a discrete random variable X with possible outcomes
X1, %9, ..., T, and with respective utilities u; € R Vi and probabilities p; €
[0,1] Vi so that >, p; = 1, we have according to well-known probabilistic
rules the expected value

E[X] = Zpiui- (18)

For such a discrete random variable a crisp expected value is then a mapping
of

E[]:R" x [0,1]" — R. (19)

For a fuzzy technique we need to extend this definition into a fuzzy domain
and range. We now consider a discrete random variable X whose possi-
ble outcomes yield fuzzy utilities corresponding to membership functions U;
and take place according to fuzzy probabilities corresponding to membership
functions P;. Namely fuzzy numbers are used to compute the expectation
E [X], which due to U; and P; being fuzzy is also fuzzy. We denote this
expectation as E [X] (u), with u € R. According to the extension principle
and (3) we now have

EX](u)= sup {UNnPN..NU,NP,} (20)

U=y i Pit

= sup min{Ui(w), Pi(p1), ..., Un(tn), Pu(pn)}- (21)

UZZ?Zl DPi;
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Note that we may also decompose U; and P; into their respective alpha cuts
and employ (5) in order to arrive at the same outcome with regards to E [X].

When fuzzifying probabilities, the issue of normalization needs to be ad-
dressed. For a discrete probability distribution we require . p; = 1. How-
ever, in a fuzzy context verifying this identity is not straightforward. Pavlacka
[2014] discussed several approaches to fuzzy normalization. In this instance
we adopt an approach based on the extension principle. We only require
fuzzy probabilites to satisfy the following property

(ZR(}%)) (p) > 0= Zpi =1 (22)

In essence, we only consider normalized probability distributions to be pos-
sible. From this it follows, that projecting (3. Pi(p:)) (p) onto the axis p;
yields P;(p;).

Consider for example triangular fuzzy numbers A; defined by triplets (a;, b;, ¢;)
so that

. Wwhen a; <z <b;
Ai(z) =55 when b <z <¢ . (23)
0 otherwise

Modeling two possible outcomes with such fuzzy numbers we then require

a1+02:1
Cl—|—a2:1
by +b=1

in order to satisfy (22). Such a case is visualized in Figure 4. From this
representation the aspect of projection is clear: projecting >, P onto any of
its respective components yields P;.

For the sake of an example, let us consider a scenario as presented in Fig-
ure 5. Here two fuzzy utilities Uy (uy) and Us(uz) as well as fuzzy probabilities
Pi(p1) and Py(py) satisfying (22) correspond to a random variable X whose
expectation we compute using the rule presented above.
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Figure 4: Fuzzy probabilities P; and P, satisfying equation (22)

Notably this procedure allows us to sequentially compute expected utilities
for trees such as in Figure 3.

3.2 Fuzzy preference

In addition to a method for computing fuzzy expectations, one still needs a
method to solve preferable alternatives based on fuzzy quantities available.
In essence, the preference relation < needs to be defined for membership
functions.

More generally we consider this problem as one of ordering. For fuzzy quanti-
ties such a problem has no unambiguous approach and several ranking meth-
ods have been proposed. Such methods can be divided into those reducing
fuzzy quantities in question to crisp numbers allowing for straightforward
comparison as presented in Wang and Kerre [2001a], and allowing for fuzzy
relations expressing the degree of belief in the statement “The fuzzy quantity
A is larger than the fuzzy quantity B.”, as respectively presented in Wang
and Kerre [2001b].

Both papers introduced a set of reasonable properties for ordering fuzzy quan-
tities and test their rationality. Brunelli and Mezei [2013] also conducted a
numerical study comparing such rankings in order to find similarities among
a set of ordering methods. Watson et al. [1979] also used a method later
developed by Dubois and Prade [1983] and discussed by Wang and Kerre
[2001b] for deriving the belief for a binary statement on preference order.
The method satisfies Wang and Kerres’ reasonable properties with the ex-
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Figure 5: Fuzzy expected utility E[X](u) corresponding to the fuzzy utilities
Ui (uy), Us(ug) and the fuzzy probability P;(p;)

ception of Ay and Ag. In essence the ranking is dependent on the set being
ranked, namely, that with arbitrary sets of fuzzy numbers S and S’ and fuzzy
quantities A, B € SNS" A < Bon S does not imply A < B on S’. In addition
for fuzzy quantities A, B,A+C,B+C € S,C #0,A<B= A+C < B+C
does not hold. Note that A < B= A+ C <X B+ C in turn does hold.

Following Watson et al. [1979] we define S; and S, as fuzzy statements re-
ferring to fuzzy relationships between two fuzzy expectations E[X](u,) and
E[Y](u,) corresponding to membership functions p (uy, u,) and ps(u,, u,) so
that uy describes the intersection of membership functions E[X] and E[Y]
and o describes the preference of E[X] over E[Y].
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We also define the fuzzy implication as

N(Sl — SQ) = min max{l - /Jll(ul“u uy)a N2(u$7 uy)} (24)

Uy :Uy

and strict fuzzy preference relation as

1, up > uy,

E[X] <E[Y]: px(ug, u,) = { (25)

0 otherwise

Hence we may construct the strict fuzzy preference implication X > Y as

p(X >=Y) = min max{1 — p; (uy, uy), pro(tz, uy)}

Uz Uy

= min max{1 — min{E[X|(u,), E[Y](uy)}, p<(ts, uy) }

Uz, Uy

— min {1 — min{E[X](u,), E[Y](u,)}}

Uz Uy

=1 — max{min{E[X](u.), E[Y](uy)}} (26)

Uy <ty

Note that (X <Y) # 1 — u(X > Y) but rather

WX <Y) = Y = X)
= min max{1l — min{E[X](u,), E[Y](u,)}, p<(uy, us)}

Uz, Uy

=1 — max{min{E[X](us), E[Y](uy)}} (27)

In Figure 6 two fuzzy utilities are shown along with a horizontal line corre-
sponding to max,, <y, {min{E[X](u,), E[Y](u,)}}. Following (26) and (27)
we then have (X > Y)=0and pu(X <Y)=0.25.

A more straightforward approach to ordering fuzzy quantities is to reduce
them to crisp quantities using one of several available approaches. A simple
method for such a computation is the center of gravity as defined by Lee
[1990]. In a continuous case we calculate the center of gravity M for a fuzzy
number A as

A(x)xdx
A(x)

fsupp(A)

M(4) = (28)

fsum)(A)
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Figure 6: Finding the level of indication for the statements “X is strictly
preferred to Y and “Y is strictly preferred to X”.

In numeric computation we use a naive discretization of this. With n evenly
distributed points x; in the support of A we compute

Zsupp(A) A(‘TL):E@
Zsupp(A) A(xl) .

Figure 7 shows two expectations corresponding to random variables X and
Y with their respective centers of gravity. The clear implication is that
taking into account the distributions of both expectations X < Y. The
interpretation for such a defuzzification technique is intuitive and useful.

M(A) = (29)

3.3 Fuzzy decision making

We finally consider again the example decision tree in Figure 3. We assign
example fuzzy quantities to utilities and probabilities in the tree and evaluate
optimal decisions using both fuzzy implication methods discussed above. For
simplicity we consider triangular fuzzy probabilities in Figure 8 and utilities
in Figure 9 corresponding to quantities in the tree. We also treat refusal to
take part in the first gamble to yield a certain, crisp benchmark utility of 0.

Utilities calculated using (5) for the second gamble are presented in Figure 10.
We also display centers of gravity for both utilities.
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Figure 7: Ordering fuzzy expectations by calculating their respective centers
of gravity.
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Figure 8: Fuzzy probabilities for the decision tree in Figure 3.



18

Utilities
1 1
08} 08}
So06 Sos}
= [}
z 3
S04t So4f
0.2 02}
0 - 0
5 0 5 5 0 5
u u
1 1
08} 08}
B E)
=06 <06}
= 2
=l [0]
S04 0.4
=1 =1
0.2 0.2
0 0
5 0 5 5 0 5
u u

Figure 9: Fuzzy utilities
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Figure 10: Fuzzy probabilities for the decision tree in Figure 3.
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Figure 11: Fuzzy utilities for the decision tree in Figure 3.

Using the center of gravity ordering refusing the second bet and receiving
U(win) would be preferable to taking the second gamble corresponding to the
utility E[U (accept)]. Knowing the DM would refuse the second gamble, she
would then evaluate the first gamble with the assumption that upon winning
it she would receive the utility U(win). Using this knowledge she evaluates
the expected utilities for the first gamble. The expectations are presented
in Figure 11. Again comparing the center of gravity of E[U (accept)] to the
certain utility of 0 she would find accepting the first bet preferable. This
elicitation process then yields (accept,refuse) as the optimal strategy for
such a scenario.

Using the fuzzy implication method in (24) and (25) yields a degree of belief
of approximately 0.2 for the statement “Refusing the second bet is preferable
to accepting it.” and conversely 0 for the statement “Accepting the second
bet is preferable to refusing it.”. Observing this difference in belief and specif-
ically the nonexistent support for the second statement it would be plausible
for the DM to refuse the second bet also under the fuzzy implication ap-
proach. However, comparing the numerical approximation for the first bet
in Figure 11 to a crisp value of zero, the support for the fuzzy implication
“Accepting the first bet is preferable to refusing it.” is effectively zero. In
this sense the method provides a clear opinion for the second bet, but fails
to provide meaningful implication for the first bet.
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4 Conclusion

Methods presented and discussed in the literature allow for fuzzification of
crisp arithmetics and ordering methods and thus allow for their application in
a decision making context where optimality is determined by maximization
of expected utility. The computation of crisp expected value was fuzzified
by fuzzifying the underlying arithmetic operations. In a case of decision
trees this is adequate since the probability distribution for each event in
the scenario is discrete and finite. Thus this approach cannot be applied to
computing the expected value of a continuously distributed random variable.
What is more, there exists no consensus as to how fuzzy quantities should be
ordered, leaving it up to the decision maker to decide how to discern order
between utilities.

Along the more elegant extension principle, the approach to fuzzy arithmetics
using alpha cuts proved to be a simple means to compute operations on
fuzzy numbers. The approach also enabled straightforward discretization of
fuzzy numbers and thus simplified numeric computation of fuzzy operations.
Compared to computation using the extension principle, computations using
discretized set of alpha cuts were fast to execute as well as straight-forward
to implement.

Fuzzification of a simple decision tree was used as an example of adding
a fuzzy component to traditional decision making processes. The method
was found to yield interpretable results with some additional insight to the
degree of belief in optimality of given strategies. However, concerns raised by
Dubois [2011] are not positively addressed, since in total not much evidence
is provided in support of using fuzzy decision trees over traditional models
in order to validate their rationale and improved usefulness. To this end,
more evidence needs to be gathered of traditional decision tree methods’
susceptibility to errors in parameter estimation and the improvement of the
fuzzy augmentation in this regard.
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A Summary in Finnish

Piaatoksentekoanalyysissa kasitelladn tyypillisesti malleja, joissa paatoksente-
kiji arvioi jonkin asetelman yksittdisistd padatoksistd muodostuvia strategioi-
ta. Yleensd ndiden strategioiden tarkoitus on maksimoida jokin padtoksen-
tekijin odotettu subjektiivinen hyoty. Téllaisia malleja laadittaessa ja hyo-
dynnettiessi vaaditaan paatoksentekijiltd tarkat arviot sekd lopputulemien
hyodyista ettd hyotyihin vaikuttavien tapahtumien todennékoisyysjakaumis-
ta. Monessa reaalimaailman tilanteessa tarkka estimointi voi kuitenkin ol-
la mahdotonta ja padtoksentekijin kisityksen pelkistdminen numeerisiin lu-
kuarvoihin voi vihentda mallin kdytossa olevan informaation méaria ja joh-
taa padtoksentekoprosessin vadristymiin. Perinteisestd joukko-opista yleiste-
tyn sumean joukko-opin menetelmid on esitetty informaation epétarkkuu-
den huomioimiseksi. Oleellisesti tdmé yleistetty teoria laajentaa perinteisen
kuuluvuuskéasitteen sisdltdmédn osittaisen kuulumisen joukkoon. Menettely
mahdollistaa epdtarkkojen lukuarvojen matemaattisen kisittelyn ja sovel-
tamisen padtoksentekoanalyysiin. Tydssa tarkasteltiin sumean joukko-opin
menetelmien soveltamista perinteiseen paatdspuuanalyysiin sekd muodostet-
tujen sumeiden padtospuiden antamia strategiasuosituksia.

Klassisessa joukko-opissa joukko voidaan méaéritelld taysin sen karakteristi-
sella funktiolla eli funktiolla, joka kuvaa kaikki késiteltdvan universumin al-
kiot ykkoseksi mikéli alkio kuuluu joukkoon, tai nollaksi, mikéli alkio ei kuulu
joukkoon. Sumeassa joukko-opissa karakteristinen funktio laajennetaan kuu-
luvuusfunktioksi, jonka arvojoukko on yksikkdintervalli. Toisin sanoen jou-
kolle sallitaan osittainen kuuluvuus. Sumea joukko-oppi kisitetddnkin kir-
jallisuudessa klassisen joukko-opin laajennuksena, ja siten kaikille klassisil-
le kisitteille ja operaatioille on méariteltivd sumea vastine, joka redusoituu
odotetulla lailla klassiseen muotoon. Sumea luku on sumean joukon reaali-
luvuille méaritelty erityistapaus, joka tulkitaan yleensd epadméaraiseksi tai
epatarkaksi lukuarvoksi. Kirjallisuudessa késitellaan paidtoksentekoanalyysin
kontekstissa my0s lingvistisida muuttujia, mutta tyossi rajoituttiin kisittele-
méin vain sumeita lukuja.

Padtosanalyysia varten sumeille luvuille kisiteltiin kirjallisuudessa esitettyja
aritmeettisten laskutoimitusten laajennuksia. Yleisesti reaaliluvuille maari-
tellyt funktiot voidaan niin sanotusti sumeuttaa eli laajentaa kisittdmaan
my6s sumeat lukuarvot. Tyo0ssé tarkasteltiin kahta eri lahestymistapaa funk-
tioiden ja laskuoperaatioiden sumeuttamiselle: laajennusperiaatetta ja a-
leikkauksia. Naistéd varsinaisessa padtosanalyysissa sovellettiin a-leikkausme-
netelmdd sen soveltuessa paremmin numeeriseen laskentaan. Menetelmassa
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joukko ilmaistaan klassisten joukkojen, a-leikkausten, unionina. Mielivaltai-
nen klassisten joukkojen kuvaus voidaan sumeuttaa laskemalla joukon a-
leikkausten kuvausten unioni. Sumeiden lukujen a-leikkaukset ovat interval-
leja, joille méaariteltyjen aritmeettisten laskutoimitusten koneellinen laskenta
osoittautui yksinkertaiseksi. Laskenta toteutettiin kdytdnnossd poimimalla
yksikkointervallista pienen intervallin vilein a:t, joiden leikkauksille lasku-
toimitus tehtiin. Lopuksi toimituksen tulos saatiin muodostamalla néisté in-
tervalleista unioni.

Sumean aritmetiikan sovellukset paatosanalyysissd ovat laaja-alaiset. Téassa
tyossd kuitenkin rajoitetaan kisittely yksinkertaisten padtospuiden sumei-
den laajennusten analyysiin. Paatospuilla kuvataan stokastisia diskreettiai-
kaisia padtosprosesseja, joissa paatoksentekiji méarittelee ehdollisen strate-
gian oman hy6tynsi maksimoimiseksi. Esimerkiksi monivaiheisessa investoin-
tiprojektissa organisaation johto pa#attad myohempien vaiheiden investoinnis-
ta edellisen vaiheen tuloksien perusteella. Mikili projektille kriittinen ensim-
maéinen vaihe ei onnistu tavoitteiden mukaisesti, ei sitd kannata vilttamatta
jatkaa. Mallin tapahtumien todennékdéisyysjakaumat ja lopputulosten hyodyt
on madriteltivi tarkkoina lukuarvoina, mikd esimerkin kontekstissa jattad
huomiotta péaitoksentekoon liittyvin epavarmuuden: projektin eri vaiheiden
epaonnistumisten todennikoisyys ei ole valttamatta tarkasti arvioitavissa.

Péatosprosessin numeerinen analyysi pohjattiin tyossa kirjallisuuden sumean
aritmetiikan menetelmiin. Padtosanalyysissa sumeille lukuarvoille on méari-
teltdvid myos odotusarvon ja suuruusjirjestyksen kisitteet. Kirjallisuudessa
on esitetty sumeille todennikdisyysjakaumille ja jarjestysrelaatioille lukuisia
osittain ristiriitaisia méaaritelmia, joita tyossa verrattiin. Todennékoisyysja-
kauman normalisointia varten valittiin kiytettaviksi kirjallisuudessa esitet-
ty yksinkertainen malli. Jérjestysrelaatiolle verrattiin kirjallisuudessa méaari-
teltyjd vaihtoehtoja ja sovellettiin niistd kahta. N&istd toinen asettaa luvut
suuruusjarjestykseen vertaamalla niiden geometrisia painopisteité, ja toinen
muodostaa sumean suuruusjirjestyksen ilmaisemalla luottamuksen vaitta-
main “luku A on suurempi kuin luku B” vililla nollasta yhteen.

N&itd maaritelmid hyodyntden voitiin tyossi muodostaa padtospuille sumea
laajennos, jolla pyrittiin huomioimaan kuvitteellisen paitoksentekijin esti-
maattien epitarkkuus vedonlyontiprosessissa. Skenaariossa hin padttaa ensin
osallistumisestaan vedonlyontiin, jossa hén joko voittaa tai hdvida. Voittaes-
saan han padttad vield osallistumisestaan toiseen vastaavaan vetoon. Nain
hén joko jattda osallistumatta kumpaankaan vedonlyontiin, hévida ensim-
méisen, voittaa ensimméisen ja lopettaa, voittaa ensimmaiisen ja héivida toi-
sen tai voittaa kummatkin vedonlyonnit. Sumeassa mallissa sallitaan seké
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prosessin eri lopputulosten hy6tyjen ettd vedonlyontien tulosten todennakoi-
syyksien epdmadraisyys. Jokaiselle skenaarion valinnalle laskettiin hyodyn
odotusarvo ja niitd verrattiin kummallakin jarjestysrelaatiolla. Niin jokaisel-
le padtokselle saatiin yksiselitteinen suositus optimista seki sumea luottamus
sen optimaalisuudelle.

Saadut esimerkkipuun strategiat osoittautuivat helposti tulkittaviksi. Erityi-
sesti sumea luottamus vaihtoehtojen paremmuusjirjestyksestd tuotti perin-
teiseen analyysiin ndhden lisdinformaatiota, jonka perusteella padatoksenteki-
ja pystyy mahdollisesti arvioimaan valintojaan paremmin tilanteissa, joissa
skenaarion parametrit eiviat ole tarkalleen tiedossa tai niihin liittyy muuta
epaselvyyttd. Kirjallisuudessa on kuitenkin esitetty kritiikkid sumeille me-
netelmille, joissa olemassa olevaan paatosmalliin lisdtddn sumea ulottuvuus
ilman, ettd tdmé&n menettelyn uskotaan huomattavasti parantavan mallin
suorituskykya. Sumean laajennoksen pitdisi ottaa paremmin huomioon péa-
toksentekijin kiytossidan oleva informaatio ja silla pitéisi olla jérjellinen pe-
rusta.

Tyossi oletettiin sumean mallinnusprosessin ottavan paremmin huomioon
padtoksentekijin kokema epdvarmuus, mutta prosessin paremmasta suoritus-
kyvysta perinteiseen paatospuuanalyysin nahden ei esitetty vahvaa néyttoa.
Jatkossa olisikin hyodyllistd verrata sumean mallin suorituskykyé todellisis-
sa skenaarioissa, jossa paatoksentekiji arvioi laajennetun mallin tuottaman
informaation hyodyllisyyttd. Sumeaa aritmetiikkaa voidaan soveltaa myos
muissa malleissa, joissa menettely voi olla tydssi esitettyéd yksinkertaista ta-
pausta hedelmallisempéaa.
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