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Tightened regulation requires banks to hold a certain amount of capital to cover

for possible losses resulting from their derivatives activities. Capital is provided

by the bank’s shareholders and thus has a cost. Therefore, incorporating the

cost of capital into over-the-counter (OTC) derivatives pricing is vital to conduct

sustainable and profitable business. The market price for holding regulatory

capital is referred to as capital valuation adjustment (KVA).

In this thesis, we show how a self-financing hedge portfolio for an OTC derivative

can be constructed by taking positions in market instruments and setting up bank

accounts to fund these positions, collateral and capital. This makes it possible to

write an expression for KVA. We focus on KVA for regulatory default risk charge,

which is a nested Monte Carlo problem. While this problem could in principle be

solved with brute force, we use the American Monte Carlo algorithm to improve

computational performance.

Illustrative examples are presented to demonstrate the computational efficiency

and accuracy of the model. The numerical examples also highlight the importance

of pricing regulatory capital in OTC derivatives.
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Tiukentuva regulaatio edellyttää pankeilta riittävästi pääomaa, joka suojaa niitä

OTC-johdannaisten (over-the-counter) riskeiltä. Pankit saavat pääoman osakkee-

nomistajilta, jotka vaativat sijoitukselleen tuottoa. Tämän pääomakustannuksen

huomioiminen OTC-johdannaissopimusten hinnoittelussa on tärkeää kestävän

ja kannattavan liiketoiminnan kannalta. Pääomakustannusten vaikutusta OTC-

johdannaisten hintaan kutsutaan KVA:ksi (capital valuation adjustment).

Tässä työssä näytetään, miten erilaisia markkinainstrumentteja ja pankkitilejä

käyttämällä voidaan rakentaa itsensä rahoittava replikointiportfolio. Pankkiti-

lit perustetaan, jotta sijoitukset markkinaistrumentteihin, OTC-johdannaisiin

liittyvät vakuudet ja sijoittajilta saatu pääoma voidaan rahoittaa. Repli-

kointiportfolion avulla voimme määritellä KVA:n. Keskitymme regulatoriseen

pääomavaateeseen, joka kattaa johdannaisvastapuolien maksukyvyttömyyden ris-

kin. Tästä seuraa kahden sisäkkäisen Monte Carlo -simulaation ongelma, joka voi-

taisiin periaatteessa ratkaista suoraan, mutta laskennallista tehokkuutta paran-

taaksemme ratkaisemme ongelman American Monte Carlo -algoritmia käyttäen.

KVA:n estimointimallin laskennallista tehokkuutta ja tarkkuutta tarkastel-

laan numeerisia esimerkkejä käyttäen. Esimerkit osoittavat, kuinka tärkeää

pääomavaateen huomioiminen on OTC-johdannaisten hinnoittelussa.

Asiasanat: johdannaisten hinnoittelu, regulatorinen pääoma, XVA, KVA

Kieli: Englanti
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Acronyms

ACVA Advanced CVA Risk Charge

BCBS Basel Committee on Banking Supervision

BIS Bank for International Settlements

CBOE Chicago Board Options Exchange

CCP Central Clearing Party

CDS Credit Default Swap

CE Current Exposure

CEM Current Exposure Method

CSA Credit Support Annex

CVA Credit Valuation Adjustment

DVA Debt Valuation Adjustment

EAD Exposure At Default

EE Expected Exposure

EEPE Effective Expected Positive Exposure

EL Expected Loss

EONIA Euro Overnight Index Average

EPE Expected Positive Exposure

EURIBOR Euro Interbank Offered Rate

FBA Funding Benefit Adjustment

FCA Funding Cost Adjustment
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FRA Forward Rate Agreement

FVA Funding Valuation Adjustment

FX Foreign Exchange

IMM Internal Model Method

IRS Interest Rate Swap

ISDA International Swaps and Derivatives Association

KVA Capital Valuation Adjustment

LGD Loss Given Default

LIBOR London Interbank Offered Rate

MV Market Value

MVA Margin Valuation Adjustment

NGR Net-to-Gross Ratio

NYSE New York Stock Exchange

OIS Overnight Index Rate

OTC Over-The-Counter

PD Probability of Default

PDE Partial Differential Equation

PFE Potential Future Exposure

RR Recovery Rate

RW Risk Weight

RWA Risk Weighted Assets

SCVA Standardized CVA Risk Charge

XVA Generic name for valuation adjustments
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Notations

a Mean reversion rate in the Hull-White model

A(t) Value of the money market account

α Regulatory scaling factor

αC Amount of the counterparty’s bonds in the hedge

portfolio

α1 Amount of the bank’s junior bonds in the hedge port-

folio

α2 Amount of the bank’s senior bonds in the hedge port-

folio

Addon(t) Risk weighted sum of notionals in a netting agreement

βS(t) Bank account that funds the position in S

βC(t) Bank account that funds the position in PC

C(ω; s, t, T ) Path of cash flows generated by the derivative

EADCEM(t) Exposure-At-Default calculated under the Current

Exposure Method

εh Size of the hedge error

εhK Capital-dependent part of the hedge error

F Sigma-algebra

F̃ Augmented filtration of F
F (ω; t) Conditional expectation of a derivative’s value
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F̂ (ω; t) Regression-based estimator of F (ω; t)

φ Usage if capital

G Inverse standard normal distribution

gB The post-default value for the derivative after the

bank’s default

gC The post-default value for the derivative after the

counterparty’s default

γS Dividend rate of S

γK Total cost of capital for the bank

H(S) Derivative’s payoff at maturity

J(t) Compound Poisson process

JB Default indicator for the bank

JC Default indicator for the counterparty

K(t) Regulatory capital requirement

M Number of simulated scenarios

Mpos Number of positive realizations in the simulations

µ Deterministic drift term

N Standard normal distribution

ω Element representing a sample simulation path

Ω The set of all possible realizations of the stochastic

environment during a given time interval

P (t, T ) Value of a zero-coupon bond maturing at T

PC(t) Value of the counterparty zero-coupon zero-recovery

bond

P1(t) Value of the bank’s own junior bond

P2(t) Value of the bank’s own senior bond

P−1 (t) Pre-default price for the bank’s junior bond

P−2 (t) Pre-default price for the bank’s senior bond
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P−C (t) Pre-default price for the counterparty’s bond

P Probaility measure on the elements of F
qS Financing rate to fund the position in S

qC Repo rate to fund the position in PC

Q Risk-neutral probaility measure

Ri, i ∈ {1, 2} Recovery rate for Pi

RB Proportion of the close-out of the total exposure

amount for the bank

RC Proportion of the close-out of the total exposure

amount for the counterparty

r(t) Risk-free rate

ri, i ∈ {1, 2} Coupon rate for bond i

rX Cost of collateral for the bank

S(t) Price of the market instrument

Sc(t) Continuous part of a jump diffusion process

δ(t) Amount of market instruments in the hedge portfolio

σ Deterministic volatility term

Σ(t) Value of the hedge portfolio

θ(t) Drift function in the Hull-White model

U+ max(U, 0)

U− min(U, 0)

Vi(t) Derivative’s market value

V (t) Portfolio’s market value

V̂i(t) Derivative’s economic value

W (t) Brownian motion

X(t) Collateral balance
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Chapter 1

Introduction

1.1 Over-the-counter derivatives pricing and

risks

Financial derivative contracts are financial instruments that derive their price

from that of the underlying financial entity. The underlyings can be interest

rates, exchange rates or stock prices, for example. When parties enter into a

derivative contract, they agree on specific conditions under which payments

and deliveries are made between the parties. Counterparty credit risk asso-

ciated with derivatives is the risk of a loss due to a counterparty’s inability

to hold its part of the agreement. For example, consider a European call

option on a stock, which gives the option buyer the right to buy the under-

lying stock at a specified price on a specified date. If the underlying stock is

quoted higher than the option’s strike price, the buyer chooses to exercise the

option. However, if the option writer cannot sell the stock, the option expires

worthless and the buyer experiences a loss. Counterparty credit risk can be

mitigated by using netting and collateral agreements or credit derivatives,

for example.
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CHAPTER 1. INTRODUCTION 13

From the option writer’s perspective, there is no counterparty credit risk

as long as the premium has been paid upfront. Nonetheless, the amount of

loss the writer can undergo depends on the price of the underlying stock. If

the stock price is significantly above the strike price of the option, the writer

has to sell the stock well below its market price. This kind of risk is called

market risk. A derivative contract often carries both counterparty credit risk

and market risk. Market risk can be hedged, for example, by entering into a

reverse contract with another counterparty.

Even though the painful repercussions of defaults have been well estab-

lished in history, market risk is built into the price of the derivative but

counterparty credit risk is not. While counterparty credit risk has been con-

ceptually understood for quite some time, only after the financial crisis in

2007 did market participants realize that large derivative counterparties were

actually not too big to fail and begin to incorporate the value of counterparty

credit risk in derivatives pricing. This began by traders adjusting the values

quoted on derivatives from counterparty to counterparty, which evolved into

modeling and calculation of valuation adjustments.

Credit valuation adjustment, commonly referred to as CVA, is the differ-

ence in value between a portfolio that has counterparty credit risk and one

which consists of the same instruments but is risk-free. CVA is thus the mar-

ket value of counterparty credit risk. Because CVA is an accounting item,

it directly affects the income statement and the balance sheet. During the

financial crisis, banks actually suffered severe losses not from counterparty

defaults but from their credit valuation adjustments on derivatives as their

earnings were negatively affected by credit market volatility.

If the option writer would not consider credit risk in the derivative’s

price, the price of the option would always be lower from the buyer’s point of

view. To the option writer, the option is a liability and is adjusted with debt
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valuation adjustment (DVA). As the flip side to CVA, DVA reflects the credit

risk of the entity that writes the contract and provides an equal view to the

derivative for both parties. While one can argue that the concept of DVA

is counter-intuitive, it is important to remember that DVA has always been

included when pricing bonds and can be viewed to extend to derivatives. The

combination of CVA and DVA is often referred to as bilateral CVA.

Recently, banks have started to incorporate ever more valuation ad-

justments to their derivative activities. The funding impact arising from

derivatives is taken into account by calculating funding valuation adjust-

ment (FVA), which is normally a cost (FCA) or a benefit (FBA). Collateral

posted to or received from a counterparty is considered in margin valuation

adjustment (MVA), if the trade is cleared through a central clearing house.

Recently, the incremental cost of holding regulatory capital is encapsulated in

capital valuation adjustment (KVA). The family of all valuation adjustments

is often referred to as XVA.

While banks were required to hold capital to cover their risks already

before the financial crisis, a large set of financial reforms was enacted after-

wards. The so-called Basel III, known as the Third Basel Accord, is a global

regulatory framework on bank capital adequacy, stress testing and market

liquidity. It was agreed upon by the members of Basel Committee on Banking

Supervision (BCBS) in 2010-2011. Capital adequacy related to derivatives is

fulfilled by having a capital buffer of 8% of the risk weighted assets (RWA).

The three major components of RWA are counterparty credit risk, market

risk and operational risk. The counterparty credit risk RWA consists of two

blocks: the default risk charge and the CVA risk charge to cover losses both

due to actual defaults and uncertainty in credit market. Increased regula-

tory capital requirements have become costly, resulting in many banks seeing

low single digits return on capital for their OTC activities and led to them
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incorporate KVA in derivatives pricing.

While few papers address KVA, Green et al. [2014] demonstrate a semi-

replication method for calculating KVA under a standardized method for

both counterparty credit risk and market risk capital. Because many banks

are approved to use the internal model method (IMM) to calculate coun-

terparty credit risk and market risk capital through simulation-based ap-

proaches, an efficient way of calculating KVA under IMM is also required.

1.2 Research objectives

In this thesis, we extend the method presented by Green et al. [2014] for

modeling the costs related to holding regulatory capital in over-the-counter

(OTC) derivatives pricing, i.e., calculating the capital valuation adjustment

for a derivative portfolio that has a regulatory capital requirement calculated

under IMM. We address the problem from a financial institution’s point of

view. The main steps are to (i) construct a simulation model for calculating

counterparty default risk capital, (ii) derive KVA for a portfolio of deriva-

tives, (iii) formulate an American Monte Carlo approach for solving the KVA

expression and (iv) apply the KVA framework for the capital model. We will

assume a back-to-back setup, i.e., market risk is perfectly hedged for all the

derivative trades in the financial institution’s portfolio, thus no market risk

capital is required.

We start by introducing the subject in Chapter 1. Chapter 2 provides a

view on the theoretical background of OTC derivatives and the risks associ-

ated with them. In Chapter 3, we present the regulatory capital framework

and give an example of a simulation-based approach for calculating capital

requirements for counterparty default risk. Chapter 4 extends the semi-

replication approach to consider simulation-based counterparty default risk
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capital in KVA and solves for KVA efficiently using American Monte Carlo

techniques. After a detailed formulation of the model, we provide numerical

examples in Chapter 5. Chapter 6 concludes the thesis.



Chapter 2

Theoretical background

2.1 Over-the-counter derivatives

A financial derivative contract is an instrument that derives its price from

one or several underlyings. For example, an equity option depends on the

underlying stock’s price and volatility. In addition, contractual details such as

strike price and maturity date usually affect the derivative’s price. The most

common underlying assets include stocks, bonds, commodities, currencies,

interest rates and market indices. In theory, a derivative can be designed

to derive its price from any public piece of information such as inflation or

rainfall.

Derivatives have useful applications. Some derivatives are used for hedg-

ing and insuring against a risk on an asset. Most interest rate derivatives such

as swaps, caps and floors are commonly used to lock down a specific interest

rate level or interval paid on a loan. An interest rate swap is an agreement

to exchange cash flows calculated on the same notional but different interest

rates. Usually, one party agrees to pay a fixed rate on a notional amount in

exchange for a floating rate on the same notional amount. By agreeing on

17



CHAPTER 2. THEORETICAL BACKGROUND 18

paying a floating rate on a loan and then entering into an interest rate swap,

a corporation, for example, can effectively have a loan on a fixed interest

rate and thus manage its cash flows with less uncertainty. As the other party

receives a fixed rate and pays a floating rate, it is exposed to interest rate

risk. This other useful application of derivatives is called speculation, a bet

on the future development of the underlying.

Derivatives are traded both on formal exchanges, such as the New York

Stock Exchange (NYSE) or the Chicago Board Options Exchange (CBOE),

and also in the over-the-counter (OTC) market in which dealers act as mar-

ket makers and execute transactions directly amongst themselves. While

derivatives listed on an exchange have better liquidity and can possibly be

traded on the secondary market, they are usually very standardized. Most

listed options, for example, are traded in blocks of 100 contracts. According

to the Bank for International Settlements [2016a], the outstanding notional

of exchange-traded derivatives was 4,572 billion US dollars in 2015.

The OTC derivative market is made up mostly of investment banks and

hedge funds. As OTC derivatives are usually being traded directly between

the parties in the agreement, they can be tailored to fit the exact hedging or

speculation purposes. On the downside, OTC derivatives expose the parties

to greater counterparty credit risk. OTC derivatives are unfunded bilateral

contracts whose both parties can default, causing the non-defaulted party

to suffer credit losses. According to the Bank for International Settlements

[2016b] the outstanding notional of OTC derivatives was 492,911 billion US

dollars in 2015. Because this market is significantly larger than the exchange-

traded one, we focus only on the OTC derivatives in this thesis.
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2.2 Netting agreements, collateral and credit

support annex

Following the purchase of Bear Stearns by JP Morgan Chase for 2 dollars a

share, the failure of Lehman Brothers, and the rescue of Merill Lynch by Bank

of America in the 2007 financial crisis, it was clear that not even the Triple-A

rated entities, global investment banks or sovereigns could ever be regarded as

completely risk-free [Sorkin, 2009]. In consequence, counterparty credit risk

has become a term which is inextricably associated with financial markets and

pricing. Besides taking this into account in pricing, the agonizing impacts of

realized credit risk and tightened regulation have forced banks to focus on

mitigating counterparty credit risk through netting and collateral agreements

[Gregory, 2012].

If two parties have entered into multiple derivative contracts and one of

them defaults, the credit losses are determined by the individual market val-

ues of the derivatives, because the non-defaulted party suffers losses from

all contracts with positive market values, still having the obligation to re-

spect the contracts where it owes the defaulted party. The most common

way to mitigate counterparty credit risk is through a netting agreement.

While most banks offer their own netting agreements, the most common

standardized agreement is the International Swaps and Derivatives Associa-

tion (ISDA) master agreement. The ISDA master agreement has established

international contractual standards governing privately negotiated deriva-

tive transactions that reduce legal uncertainty and allow for the reduction of

credit risk through netting contractual obligations [International Swaps and

Derivatives Association, 2016]. The agreement reduces credit exposure from

gross to net exposure.

While netting agreements can significantly reduce counterparty credit
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risk, the remaining net market value can still be very large especially when

the contracts have large notionals. A way to mitigate the credit risk arising

from the net market value is to agree on exchanging collateral equal to the

amount of net market value. In case of a default, the collateral holder is

then able to cover the resulting credit losses with the obtained collateral. A

credit support annex (CSA) can be added to a netting agreement to cover

the terms of the collateral arrangement between the counterparties. The

CSA typically specifies whether shares, bonds or only cash, for instance, are

accepted as collateral. Also, any haircuts that are applied to instruments

that have uncertain prices, or to cash in foreign currency, are specified in the

CSA. While the collateral posting frequency must be specified and honored,

the daily posting of, for example, several units of cash would be operationally

inefficient. The thresholds for exchanging collateral are thus stated in the

CSA to avoid impracticalities while still ensuring proper risk mitigation [In-

ternational Swaps and Derivatives Association, 2011].

2.3 Central clearing parties

A mandatory central clearing was proposed already during the 2007 finan-

cial crisis when many policymakers identified counterparty credit risk in OTC

derivatives as a major source of risk to the financial system. When a bilat-

eral OTC derivative is cleared through a central clearing party (CCP), the

original counterparties’ contracts with one another are replaced with a pair

of contracts with the CCP. The CCP then becomes the buyer to the orig-

inal seller and the seller to the original buyer. If either one of the original

counterparties defaults, the CCP is contractually committed to pay all obli-

gations that are owed to the non-defaulting party. To meet its obligation,

the CCP has recourse to a variety of financial resources, including collateral
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posted by those who clear through it and financial commitments, such as de-

fault fund contributions, made by its members [Basel Committee on Banking

Supervision, 2012].

Because cleared derivatives are daily margined, i.e., the participants post

collateral daily to cover possible default losses, the CCP runs regularly with

matched books. In contrast, the default fund contributions made by the

CCP’s members are defined less frequently, typically based on stress testing.

The default fund is used as a resource only if the margins are insufficient for

covering default costs [Basel Committee on Banking Supervision, 2017].

A drawback of mitigating counterparty credit risk using CCPs is that

banks must sacrifice their resources into financial commitments, thus reduc-

ing the amount of resources available for profitable investments. This has,

however, become mandatory practice since the so-called Dodd-Frank Act was

signed into law (2010). The Dodd-Frank Act requires all sufficiently standard

derivatives traded by major market participants to be cleared in regulated

CCPs. While this act was only signed into U.S. federal law, the European

Commission (2010) has also taken similar steps [Duffie and Zhu, 2011].

2.4 Counterparty credit risk measures

Even though netting agreements and CSAs usually reduce risk, there is often

a need to measure and quantify the remaining risk. The most important

counterparty credit risk measures - current exposure, probability of default,

loss given default, exposure at default, and risk exposure amount - are intro-

duced in the next subsections. For a comprehensive presentation of counter-

party credit risk measures and models, see [Duffie and Singleton, 2003] and

[Engelmann and Rauhmeier, 2006].
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2.4.1 Current exposure

Let a portfolio of OTC derivatives between a bank and its client consist of

derivative contracts D = 1, . . . , n. Each contract i ⊂ D has a time-dependent

market value Vi(t). The aggregated portfolio-level market value V (t) is

V (t) =
n∑
i=1

Vi(t). (2.1)

However, assuming all derivatives are netted under a single netting agree-

ment, a more interesting measure is the net positive exposure. Current

exposure (CE) is the net positive market value of the derivative contracts

under the netting agreement. It measures the amount of credit loss that

would occur immediately if the counterparty were to default, i.e.,

V (t)+ = max (
n∑
i=1

Vi(t), 0). (2.2)

Current exposure is reduced by received collateral and can be increased by

paid excess collateral. Current exposure under a CSA is calculated as

Vcol(t)
+ = max (

n∑
i=1

Vi(t)−X(t), 0), (2.3)

where X(t) is the agreement’s collateral balance at t.

2.4.2 Probability of default

In addition to quantifying the amount that would be lost in default, it is

important to quantify the likelihood of such an event. The probability of

default (PD) is the likelihood of a default over a particular time horizon. It

is widely used for assessing credit risk associated with derivatives and loans.

Usually it is expressed as the probability of default during the next full year.
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The credit history of the borrower or counterparty and the nature of

the investment are the most important aspects in assessing a PD. External

agencies, such as Standard & Poor’s or Moody’s, can be consulted to get

an estimate of the PD of interest. However, banks can also use an internal

ratings based method, a sophisticated approach for assessing probabilities

of default in each rating grade. One example is the dynamic mechanism

developed by Iqbal and Ali [2012] in which implied probability of default is

generated through convoluting probability distributions for the total number

of defaults and the number of defaults in a specific rating grade.

The PD directly affects the price a bank charges for a mortgage loan

by increasing the interest rate paid on the loan amount, for example. In a

derivative contract, this can be reflected, for example, in the fixed rate paid

in exchange for a floating rate in an interest rate swap.

2.4.3 Loss given default

When a default occurs, a portion of the debt or exposure is usually paid by

the defaulted party to its creditors. Recovery rate (RR) is defined as the

proportion of the amount of debt than can be recovered. Loss given default

(LGD) is the fractional loss the creditors will suffer due to the default

LGD = 1−RR. (2.4)

In order to estimate LGD, banks need to consider common characteris-

tics of losses and recoveries identified by numerous academic and industry

studies. According to Schuermann [2004], most of the time recovery rate is

either very high or very low. Thus, the average recovery rate or LGD can

be misleading. However, some industry specific characteristics, such as the

amount of tangible assets, seem to matter and allow for the sophisticated

estimation of LGD.
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2.4.4 Exposure at default

Exposure-at-default (EAD) measures the expected amount of loss that would

occur if the counterparty defaults. It is rather easy to quantify the amount

of loss that would occur immediately if a counterparty were to default. The

main shortcoming of CE is that it does not account for possible losses that

may occur in the future. No bank can effectively manage its risks by only

preparing on what could happen in a one day’s time horizon. While it is

never possible to know in advance the losses a bank will suffer in a given

year, it is possible to forecast the average level of credit losses that it can

expect to suffer. This expected loss is generally viewed as one of the costs of

being in the derivatives business. It is, however, possible to experience peak

losses that exceed expected levels. One of the main functions of a bank’s

capital is to provide a buffer which protects the bank’s debt holders against

these peak losses that can potentially reach eminent levels. Losses above

expected levels are usually referred to as unexpected losses, and they can po-

tentially be as high as losing an entire credit portfolio. Because this is a very

unlikely scenario, it would be economically inefficient to hold capital against

it. Banks have an incentive to minimize the capital they hold, because it can

be directed to profitable investments. Therefore, banks and their supervi-

sors must carefully assess the amount of capital that is sufficient to keep the

business solvent and profitable [Basel Committee on Banking Supervision,

2005a].

While the approach to determine the amount of capital a bank must

hold has evolved along with regulations, the current approach focuses on

the frequency of bank insolvencies, defined as the failure to meet its senior

obligations. Stochastic credit portfolio models make it possible to estimate

the amount of loss which would lead to an insolvency. Thus, the size of

the capital buffer can be set so that the probability of reaching this amount
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of unexpected losses is very low [Basel Committee on Banking Supervision,

2005a].

Exposure-at-default is the estimated amount of loss that a bank can be

exposed to in case of a possible default. Together with PD and LGD, EAD

is used to calculate the regulatory capital requirement for banks to cover

their counterparty credit risk. Exposure at default can be calculated through

methods such as the standard current exposure method (CEM) and the more

sophisticated internal model method (IMM) which we discuss in Chapter 3.

2.4.5 Risk weighted assets

Because the credit quality of a counterparty varies, EAD is insufficient in

measuring counterparty credit risk. Thus, what determines the size of the

buffer that a bank needs to hold to fulfill its capital adequacy is the Risk

Weighted Assets (RWA). RWA is calculated by multiplying EAD with a

counterparty-specific risk weight (RW). The underlying assumption is that

the capital buffer needed against a certain exposure does not depend only on

the exposure amount but also on the probability of default and the portion

of the exposure that is lost if a default occurs. RWA is thus dependent on

the modeling of EAD, PD and LGD, i.e.,

RWA = EAD ·RW (PD,LGD). (2.5)

The Basel Committee on Banking Supervision (BCBS) has set out a pro-

posal for an internal ratings based approach (IRB) to assess capital require-

ments for counterparty credit risk. Building on the capability of assessing

credit risk by categorizing exposures into broad, qualitatively different layers

of risk, for each exposure class (e.g. corporate, retail, sovereign), the IRB

approach provides a single framework for translating a given set of risk com-

ponents into minimum capital requirements [Basel Committee on Banking
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Supervision, 2005a].

2.5 Market risk

When investors consider investment risks, they usually think about market

risk first. Market risk is the risk of loss due to fluctuations in market factors,

such as interest rates or equity prices. In fact, market risk can be divided

into specific primary sources: interest rate risk, equity price risk, foreign

exchange risk, and commodity risk as described in the following subsections.

See [Carol, 2009] for a comprehensive framework for modeling market risk.

2.5.1 Interest rate risk

Interest rate risk is the risk of experiencing losses due to fluctuating interest

rates. Interest rate risk covers basis risk, options risk, term structure risk

and repricing risk. In addition to derivatives, this risk is often recognized in

loan and bond portfolios.

2.5.2 Equity price risk

Equity price risk arises from the volatility of equity prices. Besides the pri-

mary sources, market risk is usually either unsystematic or systematic. A

good example of systematic risks in the equities market would be a general

decline in indices due to a global crisis. Unsystematic risk relates to a specific

factor. An example would be the bankruptcy of a particular company that

makes its stock worthless.
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2.5.3 Foreign exchange risk

Foreign exchange risk is a form of market risk that reflects the uncertainty in

foreign exchange rates. For example, a perfectly hedged interest rate swap

in a foreign currency is still exposed to market risk via possible losses due to

changes in the foreign currency’s exchange rate.

2.5.4 Commodity risk

Commodity risk refers to the market risk which arises from volatile commod-

ity prices. Consider for example a utilities sector company that provides oil

to its customers. A major source of that company’s market risk is related

to oil prices. If the company chooses to hedge its risks by entering into oil

swaps, futures or forwards, it can substantially mitigate its commodity risk

in exchange for paying a premium.

2.6 Valuation adjustments

Since the seminal paper by Black and Scholes [1973], derivatives pricing

has been based on the Black-Scholes framework. However, the simplify-

ing assumptions of credit risk-free counterparties and non-capital consuming

derivatives are clearly a problem. Thus, incorporating the risks related to own

and counterparty’s credit, funding and capital are of increasing importance

in the environment of tightening regulation. These are taken into considera-

tion by introducing valuation adjustments to the classic Black-Scholes price

of a derivative [Green, 2015].
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2.6.1 Credit valuation adjustment

As noted previously, derivatives often carry counterparty credit risk. While

netting and collateral agreements mitigate this risk, it is vital not only to

quantify this risk but also to account for it in pricing derivatives. A derivative

contract with a well-rated and stable counterparty is worth more than a

derivative with a risky counterparty, because the likelihood of getting the

agreed payments is greater. Credit valuation adjustment (CVA) is the market

price of the default risk for a derivative or portfolio of derivatives. In other

words, CVA is the price one would be willing to pay to hedge the derivative’s

or a portfolio of derivatives’ counterparty credit risk.

Many market participants have developed sufficient systems and models

to manage CVA, but they are still not standardized and may vary among

market participants. Typically, methodologies range from relatively simple to

highly complex techniques used by the largest investments banks with exten-

sive resources. The simplest approach is to adjust the discount rates that are

used in the discounted cash flow framework to account for the counterparty’s

credit spread and to compare that with the risk-free price. The difference

between the two represents the CVA amount. More advanced methodologies

involve simulation modeling of market risk factors in hundreds or thousands

of scenarios [Gregory, 2014].

2.6.2 Debt valuation adjustment

When two parties enter into a derivative contract, both parties will calculate

CVA based on the counterparty’s credit quality. To get an equal view on the

derivative’s price, both parties’ credit qualities must be taken into account.

Debt valuation adjustment (DVA) is the impact of company’s own credit

risk on the value of a derivative. While pricing a company’s own credit risk



CHAPTER 2. THEORETICAL BACKGROUND 29

into a derivative is arguably counter-intuitive, it has always been included in

bond prices. The issuer’s own credit risk is taken into account when pricing

bonds, because their fair value is less than that of a risk-free bond. DVA is

an analogous adjustment for derivatives.

It can be confusing that when a company’s own credit quality deteriorates,

this actually has a positive impact on the income statement, because of

increasing DVA. On the other hand, if the institution is looking to fund

its derivatives or other investments through a loan, the deteriorating credit

quality obliges it to pay a higher interest rate for the loan and thus offsets

the benefits gained from DVA [Gregory, 2014].

2.6.3 Funding valuation adjustment

When a financial institution operates in the derivatives business, it decides

to use its capital to cover the risks arising from dealing with derivatives. To

compensate for that, it requires profit in the form of margins or commis-

sions from its clients. Typically, a corporate or sovereign-type client seeks to

buy protection against fluctuating market factors and enters into a deriva-

tive agreement with a bank. Because the bank oftentimes does not want to

leave any market risk open, it enters into a reverse agreement with another

counterparty, usually from the interbank market. The bank then structures

a situation in which it fully serves its client and hedges the market risk while

charging a margin from the corporate.

While most corporate customers have insufficient resources or infrastruc-

ture to arrange daily margining of derivatives, interbanks usually operate

under CSAs [International Swaps and Derivatives Association, 2015]. The

resulting imbalance from hedging uncollateralized derivatives with collater-

alized ones creates a funding gap for banks. If the original derivative with

the corporate has positive market value, i.e., the bank is in the money, the
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hedge derivative is out of the money. In this case, the bank is required to

post collateral to the hedge counterparty while not receiving any funding

from the corporate. The CSA stipulates the rate of interest that is received

from posted collateral; this is typically the overnight index rate (OIS) such

as the Euro Overnight Index Average (EONIA). Because OIS is currently

considered to be the best proxy for a risk-free rate, it is unreasonable to as-

sume that any bank could borrow funding for the collateral at this low rate.

In this case, the spread between (i) the interest rate the bank has to pay

to fund any posted collateral and (ii) the OIS rate received from it creates

a funding cost. In the financial sector, the spread between the three month

London Interbank Offered Rate (Libor) and the three month OIS spread is

usually considered the indicator of short-term funding costs [Hull and White,

2012].

Taking the funding costs into consideration in derivatives pricing is essen-

tial for reflecting the differences between funded and unfunded positions. The

adjustment made to a derivative’s price is called funding valuation adjust-

ment (FVA), which can refer to funding cost or funding benefit, depending

on the setup and market movements. To revert back to the previous exam-

ple, an out of the money derivative with the corporate would yield a funding

benefit, because the collateral received from the hedge counterparty could

have been invested at Libor which exceeds the OIS rate paid for the collat-

eral. In addition to funding collateral positions, traders may need to seek

funding to arrange proper hedging or to pay cash for acquiring an in the

money derivative. The approaches for modeling FVA vary from deal spe-

cific to homogeneous cost-views and funding strategies using either in-house

treasuries or money market directly. A comprehensive framework for FVA

modeling is given by Pallavicini et al. [2011].
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2.6.4 Capital valuation adjustment

Given that holding capital is a legal requirement for financial institutions in

the derivatives business, it is striking that so few papers address the topic

of including cost of capital in derivatives pricing. In fact, the topic of quan-

tifying capital costs in derivatives pricing was presented as late as in 2014

by Green et al. [2014]. Because the tightening regulation requires banks to

hold ever more capital to cover their risks, it is essential to take into ac-

count the cost associated with holding capital when pricing derivatives. The

adjustment is called capital valuation adjustment (KVA).

As mentioned in the previous sections, most trades tend to be hedged with

either a reverse position with another counterparty or by having offsetting

positions in other market instruments. While this hedge is appropriate for

eliminating market risk, it usually creates two counterparty credit risky po-

sitions which increase the bank’s capital requirement. Because investors and

shareholders require adequate compensation for involvement in derivatives

business, the capital required to be set aside has a cost.

In a sense, KVA can be considered to be the oldest of all valuation ad-

justments. This is because banks have historically used capital hurdles and

risk-adjusted return measures to price derivatives. However, not until re-

cently has this been quantified as an absolute amount.

KVA can be seen as an upfront amount that would generate returns equal

to the cost of capital over the full lifetime of the derivative. Thus, calculating

KVA makes it necessary to model expected regulatory capital until a trade’s

maturity. This unfortunately creates an inconsistency across the banking

sector, because banks tend to use different models for calculating capital

requirements. In addition, changing regulation can cause uncertainties in

future capital requirements, which makes modeling even trickier.



Chapter 3

Regulatory capital charges

3.1 The Basel committee on banking super-

vision

The Basel Committee on Banking Supervision (BCBS) provides a forum

for regular cooperation on banking supervisory matters. Its objective is to

contribute to the understanding of key supervisory issues and to improve the

quality of banking supervision worldwide. Basel III, released in 2011, is a

comprehensive set of reform measures, developed by the BCBS, to strengthen

the regulation, supervision and risk management of the banking sector. The

objective of the document is to improve the banking sector’s ability to absorb

shocks arising from financial and economic stress, whatever the source, thus

reducing the effect of the financial sector’s realized risks on the real economy

[Bank for International Settlements, 2016c].

The reform package addresses the lessons of the 2007 financial crisis. One

of the main reasons for the crisis was that the banking sector had excessive

on- and off-balance sheet leverage accompanied with an insufficient quality of

capital. Therefore, the banking sector was not able to absorb losses resulting

32
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from systemic worsening of credit qualities, for instance.

According to the package, the framework aims to capture all material

risks. More specifically, the amount of capital required is determined by

quantifying counterparty credit risk, market risk and operational risk [Basel

Committee on Banking Supervision, 2006].

The capital consists of Tier 1, Tier 2 and common equity Tier 1. In addi-

tion to common shares issued by the bank, Tier 1 capital primarily consists

of stock surplus, retained earnings and cash reserves. According to Basel

Committee on Banking Supervision [2010], the minimum limits for capital

are for common equity, Tier 1 capital and total capital at 4.5%, 6.0% and

8.0% of risk weighted assets, respectively.

3.2 Counterparty credit risk charge

The counterparty credit risk capital charge depends on the amount of default

risk and CVA risk. Next, we introduce the two sources of counterparty credit

risk in detail and present a framework for the modeling of default risk capital

charge.

3.2.1 Default risk charge

The default risk charge is the most fundamental form of counterparty credit

risk capital charges. The capital reserved for default risk aims to cover any

risks arising from the possibility of counterparty defaults. Banks can (i)

calculate the amount of required capital using either a standardized current

exposure method (CEM) or (ii) apply for a more sophisticated internal model

method (IMM) approval. IMM based calculations tend to rely on more realis-

tic methods, such as volatility calibration and collateral algorithms, whereas

the standard CEM approach uses pre-determined ratios and is limited in



CHAPTER 3. REGULATORY CAPITAL CHARGES 34

considering risk-mitigating collateral. Most IMM models for default risk rely

on Monte Carlo-based approaches, because they tend to outperform other

methodologies in terms of mean-squared-error [Ghamami and Zhang, 2014].

3.2.1.1 Current exposure method

According to Basel Committee on Banking Supervision [2013a], the regula-

tory exposure at default (EAD) under the current exposure method (CEM) is

calculated by adding potential future exposure (PFE) to the uncollateralized

current exposure (CE) of a netting set

EADCEM(t) = CE(t) + PFE(t), (3.1)

where PFE is based on an agreement-specific addon, which is calculated

as the risk-weighted sum of the trade notionals under the netting set. The

weight each notional gets is mainly dependent on the trade type and its resid-

ual maturity. On top of that, banks are allowed to use regulatory matching

in these trades so that same products with same underlyings and maturities

are allowed to offset each other in terms of their addon. Finally, partial off-

setting of trades is considered by incorporating the net-to-gross ratio (NGR)

into the calculation, so that netting sets that have trades with both negative

and positive market values are considered less risky. Thus,

EADCEM(t) = V (t)+ + (0.4 + 0.6 ·NGR(t)) · addon(t), (3.2)

where V (t)+ is the net-positive market value of the portfolio, addon(t) is the

risk-weighted sum of notionals and NGR is formally defined as

NGR(t) =
[
∑n

i=1 Vi(t)]
+∑n

i=1[Vi(t)]+
. (3.3)
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3.2.1.2 Internal model method

Because the CEM methodology is rather simple and conservative, many

banks choose to allocate their resources to modeling counterparty credit

risk through simulation-based approaches. According to Basel Committee

on Banking Supervision [2010], banks applying the internal model method

(IMM) must have a collateral management unit that is responsible for calcu-

lating and making margin calls, managing margin call disputes and reporting

levels of independent amounts, initial margins and variation margins accu-

rately on a daily basis. This unit must control the integrity of the data used

to make margin calls, and ensure that it is consistent and reconciled regularly

with all relevant sources of data within the bank. This unit must also track

the extent of reuse of collateral and the rights that the bank gives away to

its respective counterparties for the collateral that it posts. Furthermore,

these internal reports must indicate the categories of collateral assets that

are reused, and the terms of such reuse including instrument, credit quality

and maturity. The unit must also track concentration to individual collat-

eral asset classes accepted by the banks. Senior management must allocate

sufficient resources to this unit for its systems to have an appropriate level

of operational performance, as measured by the timeliness and accuracy of

outgoing calls and response time to incoming calls. Senior management must

ensure that this unit is adequately staffed to process calls and disputes in a

timely manner even under severe market crisis, and to enable the bank to

limit its number of large disputes caused by trade volumes. These require-

ments for the (IMM) approval can be demanding for smaller banks, thus

making the CEM approach their best alternative.

Pykhtin and Zhu [2006] present a universal framework for modeling coun-

terparty credit risk through scenario-based simulation. This approach can

be used to obtain the entire exposure distribution and it makes it possible
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to calculate standard deviations and percentile statistics in addition to the

expected exposure profile. The main components of the model are:

• Scenario generation. Future development of the market factors are

simulated for a fixed set of simulation dates using stochastic evolution

models. A sample path is represented by element ω.

• Instrument valuation. The derivative portfolio is valued for each

simulation date and scenario.

• Portfolio aggregation For each simulation date and scenario, the ag-

gregated exposure is obtained by applying the portfolio level exposure

formula in (2.1).

In this thesis, we construct a simulation-based model for EAD calcula-

tion. We assume a finite, discrete and evenly spaced time interval [0, T ] with

K time steps and a complete probability space (Ω,F ,P), where Ω is the set

of all possible realizations of the stochastic environment between 0 and T ,

F is the sigma-algebra, i.e., a closed collection of subsets of distinguishable

events at time T and P is a probability measure on the elements of F . An

augmented filtration of F is an increasing and indexed family of sub-sigma-

algebras of F . It is generated by instrument price processes ωi. Let such an

augmented filtration be F̃ = {Ft; t ∈ [0, T ],FT = F}. We assume no arbi-

trage opportunities, i.e., a risk-neutral measure Q exists for the stochastic

environment. The risk-neutral measure is defined as a measure under which

each instrument has a price equal to the discounted expectation of its future

price. In contrast, the real probability measure is based on actual realiza-

tions of instrument price processes and can provide arbitrage opportunities

[Bingham, 2004].

The simulation process results in M realizations of agreement-level ex-

posure for each simulation date. While the aggregated market value of each
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netting set can be positive or negative, only positive realizations, i.e., the

ones where the bank is in the money, are interesting from a counterparty

credit risk perspective. Mpos is the number or positive realizations at tk. At

each time point tk, the positive realizations of V (ω, tk) compose a distribution

that can be used for obtaining the expected exposure (EE)

EE(tk) = EQ[V (tk)
+|Ftk ] =

1

Mpos

Mpos∑
i=1

V i(ω, tk)
+, (3.4)

where the expectation is taken under Q and conditional on the information

set Ftk . Because the process is computationally heavy, daily intervals of the

simulation points are rarely considered. Instead, a common approach is to

calculate the exposure distributions daily or weekly up to a month, then

monthly up to a year and yearly up to five years, and so on. The regulatory

default risk capital charge requires that the risk calculations are done over

the first year, or - if all the contracts within a certain agreement mature

before the end of the first year - up to the longest maturity of the agreement.

The expected positive exposure (EPE) is the time-weighted average of the

positive realizations, i.e.,

EPE(tk) =

∫ T

tk

EE(t)dt, (3.5)

where T is either tk + 1 or the longest maturity of the trades in the portfolio

if all of them mature within one year. The integral is usually evaluated using

numerical integration techniques [Pykhtin and Zhu, 2006].

In addition to being limited to positive exposures, the regulatory approach

for exposure modeling requires that the process is non-decreasing. The ef-

fective expected positive exposure (EEPE) is defined as the time-weighted

average of non-decreasing average positive exposures [Basel Committee on

Banking Supervision, 2005b]. By starting from the beginning and taking the

maximum of a given simulation date’s EE and the previous date’s EE, the
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EEPE is obtained recursively as

EEPE(tk) =

∫ T

tk

max (EE(tk), . . . , EE(t))dt. (3.6)

Exposure-at-default (EAD) is obtained by multiplying EEPE with a su-

pervisory multiplier α, which is by default equal to 1.4, unless modeled in-

ternally [Basel Committee on Banking Supervision, 2005b]. EAD can then

be expressed as

EAD(tk) = α · EEPE(tk). (3.7)

To obtain the EE profile, we start by modeling the underlying market

factors to generate the desired scenarios for our exposure calculations. Not

all banks necessarily have the full IMM approval for all product types. In

this thesis, we limit the model to consider only interest rate and foreign

exchange (FX) related instruments and formulate the IMM EAD model to

generate appropriate market scenarios for the valuation of these instruments.

The scenarios are usually generated via stochastic differential equations. For

foreign exchange rates, we use geometric Brownian motion given by

dS(t) = µS(t)dt+ σS(t)dW (t), (3.8)

where S(t) is the FX rate, µ is a deterministic drift term, σ is a deterministic

volatility term and W (t) is Brownian motion. Similarly to Wilmott [2001],

we solve this by applying Itô’s lemma to d(lnS(t)), i.e.,

d(lnS(t)) =
dS(t)

S(t)
− 1

2S(t)2
(dS(t))2. (3.9)

From (3.8), we solve

d(S(t))2 = σ2S(t)2dt, (3.10)

where dt2 = 0 and dW (t)2 = dt are used. Inserting this into (3.9) gives

d(lnS(t)) = (µ− σ2

2
)dt+ σdW (t). (3.11)
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Assuming an arbitrary intial solution S0 gives

ln
S(t)

S0

= (µ− σ2

2
)t+ σW (t). (3.12)

By taking the exponential of both sides, we can write a general realization

at t as

S(t) = S(0)e(µ−σ
2

2
)t+σdW (t). (3.13)

Depending on whether the FX rates are simulated using the risk-neutral

or the real probability measure, the drifts are calibrated either arbitrage-free

or to the historical movements, respectively. A risk-neutral drift for the FX

rates is simply given by the difference between domestic and foreign interest

rates. Volatilities are calibrated to option implied volatilities [Hull, 1988].

Interest rate models vary from one-factor short rate models, e.g., the Va-

sicek model presented by Vasicek [1977], the Hull-White model presented

by Hull and White [1990] and the Cox-Ingersoll-Ross model presented by

Cox et al. [1985] to more comprehensive modeling of the entire yield curve,

e.g., the Heath-Jarrow-Morton model presented by Heath et al. [1990] and

principal component analysis. Short rate models describe interest rate move-

ments as a result of changes in one source of market risk, whereas the Heath-

Jarrow-Morton model, for example, is a framework with multiple sources of

randomness.

In this thesis, we model the future development of short interest rates r

with the Hull-White model. The model is defined with a stochastic differen-

tial equation

dr(t) = (θ(t)− ar(t))dt+ σdW (t), (3.14)

where a is mean reversion rate, σ is volatility of the short rate, W (t) is

Brownian motion and θ(t) is a drift function. To solve the expressions for

the yield curve, we follow closely the approach presented by Hull and White

[1993]. In the case of a one-factor term structure, the risk-neutral price for
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a zero-coupon bond maturing at T has the dynamics

dP (t, T ) = r(t)P (t, T )dt+ v(t, T )P (t, T )dW (t), (3.15)

where v(t, T ) is volatility, W (t) is Brownian motion and r(t) is the short rate.

Because the bond has zero volatility at maturity, v(t, t) = 0. By using Itô’s

lemma, we can write the dynamics for any times T1 and T2, T1 < T2 as

d lnP (t, T1) =

[
r − v(t, T1)2

2

]
dt+ v(t, T1)dW (t), (3.16)

d lnP (t, T2) =

[
r − v(t, T2)2

2

]
dt+ v(t, T2)dW (t). (3.17)

We denote the forward rate from T1 to T2 as f(t, T1, T2)

f(t, T1, T2) = − lnP (t, T2)− lnP (t, T1)

T2 − T1

. (3.18)

By using the results from (3.16) and (3.17), we get

df(t, T1, T2) =

[
v(t, T2)2 − v(t, T1)2

2(T2 − T1)

]
dt−

[
v(t, T2)− v(t, T1)

T2 − T1

]
dW (t). (3.19)

We denote the instantaneous zero rate at t until T as R(t, T )

R(t, T ) = f(0, t, T ) +

∫ T

0

df(u, t, T ). (3.20)

Inserting the results from (3.14) gives

R(t, T ) =f(0, t, T ) +

∫ t

0

[
v(u, T )2 − v(u, t)2

2(T − t)

]
du−∫ t

0

[
v(u, T )− v(u, t)

T − t

]
dW (u).

(3.21)

When the time interval decreases and T approaches t, R(t, T ) approaches r(t)

and the future forward rate f(0, t, T ) becomes equal to the the instantaneous

forward rate F (0, t)

r(t) = F (0, t) +

∫ t

0

∂

∂t

v(u, t)2

2
du−

∫ t

0

∂

∂t
v(u, t)dW (u). (3.22)
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We differentiate with respect to t so that we can write the dynamics of r(t)

as

dr(t) =

[
∂F (0, t)

∂t
+

∫ t

0

(
v(u, t)

∂2v(u, t)

∂t2
+

(
∂v(u, t)

∂t

)2)
du−∫ t

0

∂2v(u, t)

∂t2
dW (u)

]
dt− ∂v(u, t)

∂t
|u=tdW (t).

(3.23)

In the Hull-White model, v(t, T ) = σ(1 − e−a(T−t))/a. Inserting this into

(3.22) gives

r(t) = F (0, t) +
σ2

a2
(1− e−at)− σ2

2a2
(1− e−2at)−

∫ t

0

σe−a(t−u)dW (u), (3.24)

or∫ t

0

σae−a(t−u)dW (u) = aF (0, t)+
σ2

a
(1−e−at)− σ

2

2a
(1−e−2at)−ar(t). (3.25)

Equation (3.23) gives

dr(t) =

[
∂F (0, t)

∂t
+
σ2

a
(e−at − e−2at) +

∫ t

0

σae−a(t−u)dW (u)

]
dt− σdW (t).

(3.26)

Inserting the result from (3.25) to (3.26) gives

dr(t) =

[
∂F (0, t)

∂t
+ aF (0, T ) +

σ2

2a
(1− e−2at)− ar(t)

]
dt− σdW (t). (3.27)

This expression is the Hull-White model

dr(t) = (θ(t)− ar(t))dt+ σdW (t), (3.28)

with

θ(t) =
∂F (0, t)

∂t
+ aF (0, T ) +

σ2

2a
(1− e−2at). (3.29)

By using (3.21), we can express the complete representation of the yield curve

as

R(t, T ) =f(0, t, T ) +
σ(e−aT − e−at)

a(T − t)

∫ t

0

eaudW (u)+

σ2[e−2a(T−t) − e−2aT − 1 + e−2at − 4e−a(T−t) + 4e−aT + 4− 4e−at]

4a3(T − t)
.

(3.30)
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By using the result from (3.24)

σ

∫ t

0

eaudW (u) = −r(t)eat+F (0, t)eat+
σ2

a2
(eat−1)− σ2

2a2
(eat−e−at), (3.31)

lnP (t, T ) = −R(t, T )(T − t), (3.32)

P (0, T )

P (0, t)
= e−f(0,t,T )(T−t), (3.33)

and denoting

β(t, T ) =
1

a
(e−a(T−t) − 1), (3.34)

α(t, T ) = −F (0, t)β(t, T ) + ln
P (0, T )

P (0, t)
+
σ2

4a
β2(t, T )(e−2at − 1), (3.35)

the yield curve can be expressed as

R(t, T ) =
1

T − t
α(t, T )− 1

T − t
β(t, T )r(t). (3.36)

After generating market scenarios for all simulation dates, the next step

is to value the instruments in the credit portfolio. Because the valuation for

a certain instrument needs to be done multiple times for multiple dates, com-

putationally demanding models are out of question and analytical approxi-

mations are preferred to ensure the efficient calculation of credit exposure.

When the instrument market values under each scenario have been ob-

tained, the aggregated exposure for a portfolio is calculated under each sce-

nario. The distribution composed by these valuations is then used to calcu-

late the EE for each simulation date. By constructing the non-decreasing EE

curve, one can use numerical integration techniques to get the EAD value for

the portfolio.

Under Basel III, banks must use the greater of the default risk charge

calculated with current market data and the default risk charge calculated

with stressed calibration. The comparison between these methods is done

at the portfolio-level, i.e., the market data used must be the same for all
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counterparties. The period used must coincide with increased credit spreads

and thus is usually either the 2008-09 or the 2011-12 period.

3.2.1.3 Regulatory risk weights

Because exposures towards different counterparties are not equally risky due

to different credit qualities, the capital a bank must hold is calculated as

a risk-weighted sum of EAD values towards different counterparties [Basel

Committee on Banking Supervision, 2005a]. Risk weight (RW) for each EAD

is calculated as

RW =12.5 · LGD · [N (
G(PD0) +

√
ρos · G(0.999)

√
1− ρos

)− PDo]

· 1 + (M − 2.5) · b
1− 1.5 · b

,

(3.37)

where LGD is the loss given default, N is the standard normal distribution,

G is the inverse standard normal distribution,

R = 0.12 · 1− e−50PD

1− e−50
+ 0.24 · (1− 1− e−50PD

1− e−50
), (3.38)

ρos = 1−R, M is the maturity and

b = (0.11852− 0.05478 · ln(PD))2 (3.39)

is the smoothed maturity adjustment. RWA is thus obtained by

RWA = EAD ·RW. (3.40)

We assume a general capital requirement for default risk charge as

K = RWA · 8% = EAD ·RW · 8%. (3.41)

3.2.2 Credit valuation adjustment risk charge

CVA risk charge is a capital reserve which accounts for the risk of losses

due to credit market volatility, i.e., increased CVA [Basel Committee on
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Banking Supervision, 2013b]. Similarly to the default risk charge, banks are

allowed to choose between a standard model and an advanced model. The

capital requirement under the standard method is called standardized CVA

risk charge (SCVA) and it is calculated by using EAD, effective maturities

and possibly, purchased CDS hedges.

The advanced approach relies on a similar approach compared to the

IMM EAD model described in Section 3.2.1.2. Advanced CVA risk charge

(ACVA) is calculated using the EE profile obtained from simulating market

scenarios. ACVA is calculated by combining a counterparty’s EE curve with

a full credit spread curve of the counterparty. Similarly to SCVA, purchased

CDS hedges may be taken into account to lower the capital requirement for

CVA risk.

3.3 Other capital charges

In addition to counterparty credit risk, banks are required to hold capital

to cover possible losses resulting from market risk, operational risk and vari-

ous additional requirements, generally referred to as Pillar II. In this thesis,

we focus on counterparty credit risk related capital charges and thus, will

not present the formulae for the calculation of other capital items [Basel

Committee on Banking Supervision, 2006].



Chapter 4

Quantifying valuation adjustments

In this chapter, we show how the valuation adjustments for uncertainty and

costs related to own and counterparty’s credit quality, funding and capital

can be derived by constructing a replicating portfolio to hedge a derivative

contract. After obtaining the expressions for each valuation adjustment,

we show how KVA for regulatory default risk capital can be solved using

American Monte Carlo techniques.

4.1 Semi-replication and pricing partial dif-

ferential equation with capital extension

Burgard and Kjaer [2013] present a semi-replication model which addresses

valuation adjustments for credit and funding and is simple enough to be

extended to include simulation-based capital costs. This method was ex-

tended to consider regulatory capital calculated under a simplified model by

Green et al. [2014]. We closely follow these methods by considering a deriva-

tive contract between a bank B and a counterparty C with an economic

value of V̂ that incorporates the risk of default of both counterparty and

45
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bank and any net funding and capital costs the bank may encounter. By

introducing four tradable instruments, it is possible to derive a general semi-

replication strategy which allows the bank to perfectly hedge out market risk

and counterparty default risk, but which may not be appropriate for provid-

ing a perfect hedge in the event of the bank’s own default. The instruments

in this strategy are (i) a counterparty zero-coupon zero-recovery bond PC ,

(ii) the bank’s own junior bond P1 with recovery rate R1 and yield r1, (iii)

the bank’s own senior bond P2 with recovery rate R2 and yield r2 and (iv) a

market instrument S that can be used to hedge the market factor underlying

the derivative contract. The following standard dynamics are assumed for

the instruments:

dS(t) = µS(t)dt+ σS(t)dW (t)

dPC = rCP
−
C (t)dt− P−C (t)dJC

dPi = riP
−
i (t)dt− (1−Ri)P

−
i (t)dJB,

(4.1)

where W (t) is Brownian motion, JB and JC are default indicators for the

bank and the counterparty and P−i and P−C are the pre-default bond prices.

Let P1 be the price of the junior bond and P2 the price of the senior bond,

i.e., R1 < R2 and r1 > r2. Let us also assume that the basis between bonds

of different seniorities is zero such that

ri − r = (1−Ri)λB, (4.2)

where r is the risk-free rate and λB is the spread of a zero-coupon zero-

recovery bond of the bank.

We assume that if either the bank or the counterparty defaults, the sur-

viving party pays the defaulting party in full if owing money. Also, the

defaulting party pays the surviving party as much as it can if owing money.

The received amount is assumed to be a fixed recovery rate times the market

value.
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Figure 4.1: The setup consists of the bank, the counterparty, four tradable

instruments and the collateral account.

Let V (t, S(t), JB, JC) be the classic risk-free value of a derivative to the

bank. V̂ (t, S(t), JB, JC) is the economic value of the derivative that takes

into account possibilities of defaults and both funding and capital costs. If

the bank defaults (JB = 1) and the derivative’s market value is higher than

the collateral balance X(t), the economic value is V (t). However, if the

collateralized market value is negative, the economic value is also negative

but takes into account the recovery rate of the bank. The proportion of

exposure lost due to a default is called a close-out amount, which is equal

to 1 − RR times the exposure. The dynamics are similar in the case of

the counterparty’s default. Using the notations U+ = max(U, 0) and U− =

min(U, 0), the value of the derivative has boundary conditions

V̂ (t, S(t), 1, 0) = (V (t)−X(t))+ +RB(V (t)−X(t))− +X(t)

V̂ (t, S(t), 0, 1) = (V (t)−X(t))− +RC(V (t)−X(t))+ +X(t),
(4.3)

where V (t) is the classic risk-free value of the derivative that does not consider

funding and capital costs either, and RB and RC are the proportions of close-

out amounts of the total exposure for B and C, respectively.

The semi-replication strategy is set up by constructing a hedge portfolio Π



CHAPTER 4. QUANTIFYING VALUATION ADJUSTMENTS 48

from the instruments PC , P1, P2 and S. Let the amounts of each instrument

in the portfolio be αC , α1, α2 and σ, respectively. In addition to these

instruments, one collateral and two cash accounts for funding positions in S

and PC are set up. The hedge portfolio is

Π(t) =δ(t)S(t) + α1(t)P1(t) + α2(t)P2(t) + αC(t)PC(t)+

βS(t) + βC(t)−X(t),
(4.4)

where βS funds position in S and βC funds position in PC , i.e., σ(t)S(t) +

βS(t) = 0, αCPC(t) + βC(t) = 0 and X(t) is the collateral balance. In order

to present the expressions in a more readable format, we leave out the time

dynamics from now on. The dynamics of the hedge portfolio are then

dΠ = δdS + α1dP1 + α2dP2 + αCdPC + dβS + dβC − dX, (4.5)

where changes in the collateral balance, dX do not include re-balancing.

To hedge all the cash flows, except for possibly the ones resulting from

the bank’s own default, this strategy must satisfy

V̂ + Π = 0. (4.6)

We assume that the hedge position βSS is collateralized with financing rate

qS and hedge position βCPC is repo-ed costing a repo rate qC . Repo refers

to repurchase agreement, which is an agreement to borrow an instrument for

a period of time in exchange for a repo rate. If the dividend rate associated

with S is γS, the cash accounts βS and βC are paying net rates of qS − γS
and qC , respectively. Here, a positive collateral balance, i.e., X > 0 indicates

received collateral from the bank’s point of view and costs rate rX . The

growth in the cash accounts (prior to rebalancing, see Burgard and Kjaer
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[2010]) then follow the dynamics

dβS = σ(γS − qS)Sdt

dβC = −αCqCPCdt

dX = rXXdt.

(4.7)

In addition, we have to account for the use of the capital offsetting funding

requirements. The amount of capital associated with the derivative depends

on counterparty rating C, derivative value V , its sensitivities, i.e., market

risk and balance on the collateral account X. The capital associated with the

replicating portfolio depends on the positions in the stock δ and counterparty

bond αC . Thus, the amount of capital is a function

K = K(t, V, “market risk”, X, C, δ, αC). (4.8)

The change in the cash account βK which reflects changes in the capital

requirement can be treated as a borrowing action such that capital is bor-

rowed from stakeholders who then receive rate equal to the cost of capital

as a compensation for supporting derivatives activities. If the cost of capital

including possible dividend yield is λk, we can formulate the dynamics of the

account as

dβK = −γKKdt. (4.9)

Inserting the dynamics in (4.7) and (4.9), and using the instrument stan-

dard dynamics in (4.5) gives

dΠ =(r1α1P1 + r2α2P2 + (rC − qC)αCPC + (γS − qS)δS − rXX − γKK)dt+

(α1R1P1 − α1P1 + α2R2P2 − α2P2)dJB − αCPCdJC + δdS.

(4.10)
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Figure 4.2: The bank funds the hedge portfolio and its capital requirement

with cash accounts βS, βC and βK .

If the use of capital is φK and the positions in the bank’s own bonds are

used to fund any additional cash that is not funded with the collateral, we

can state the following funding constraint

V̂ −X + α1P1 + α2P2 − φK = 0. (4.11)

For the evolution dV̂ of the derivative’s value, we consider Itô formula for

jump diffusions [Cont and Tankov, 2004] and apply it to geometric Brownian

processes with known jump sizes. A jump diffusion process

S = Sc + J (4.12)

consists of a continuous part Sc and a compound Poisson process J

J =
N∑
i=1

∆Vi. (4.13)
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Let S be a geometric Brownian motion and V̂ = f(S) where f is a twice

continuously differentiable function. Ti, i = 1 . . . NT are the jump times of S.

Between Ti and Ti+1, S evolves according to

dS = dSc = µSdt+ σSdW. (4.14)

By applying the Itô’s formula to the dynamics of S we obtain

V̂Ti+1
− V̂Ti =

∫ Ti+1

Ti

σ2

2
S2f ′′(S)dt+

∫ Ti+1

Ti

f ′(S)dS

=

∫ Ti+1

Ti

(
σ2

2
S2f ′′(S)dt+ f ′(S)dSc).

(4.15)

Because we are between two jump times, S has the same properties as its

continuous part, i.e., dS = dSc. If a jump of size ∆S occurs, it results in a

change of f(S+∆S)−f(S) in V̂ . Combining this with (4.15) gives the total

change in V̂ as

f(S)− f(S0) =

∫ t

0

σ2

2
S2f ′′(S)ds+

∫ t

0

f ′(S)dXc+∑
0≤s≤t,∆S 6=0

[f(S + ∆S)− f(S)−∆Xf ′(S)].
(4.16)

Expressing this in differential notation and replacing changes in f due to a

jump with known changes resulting from defaults gives

dV̂ =
∂V̂

∂t
dt+

∂V̂

∂S
dS +

σ2

2

∂2f

∂S2
S2 + ∆V̂BdJB + ∆V̂CdJC , (4.17)

where ∆V̂B = V̂ (t, S, 1, 0)−V̂ (t, S, 0, 0) and ∆V̂C = V̂ (t, S, 0, 1)−V̂ (t, S, 0, 0)

are the changes in V̂ due to bank’s and counterparty’s default, respectively.

Combining the derivative’s evolution in (4.17) with the evolution of the

replicating portfolio in (4.10) gives the total evolution of the hedged deriva-
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tive

dV̂ + dΠ =(
∂V̂

∂t
+
σ2

2

∂2V̂

∂S2
S2 + r1α1P1 + r2α2P2+

(rc − qc)αCPC + (γ − q)δS − rxX − γKK)dt+

(α1R1P1 − α1P1 + α2R2P2 − α2P2 + ∆V̂B)dJB+

(−αCPC + ∆V̂C)dJC+

(δ +
∂V̂

∂S
)dS.

(4.18)

The risks associated with underlying instrument price and counterparty de-

fault can be eliminated by choosing

αCPC = ∆V̂C , (4.19)

δ = −∂V̂
∂S

. (4.20)

By (i) using the results from (4.19) and (4.20), (ii) denoting the pre-default

bank bond position α1P1+α2P2 with P and the post-default position α1R1P1+

α2R2P2 with PD and (iii) using the funding constraint in (4.11), we can for-

mulate (4.18) as

dV̂ + dΠ =(
∂V̂

∂t
+AV̂ − rXX + r1α1P1 + r2α2P2 + λC∆V̂C − γKK)dt+

(∆V̂B + V + PD −X)dJB,

(4.21)

where A = σ2

2
∂2

∂S2S
2 + (qS − γS)S ∂

∂S
and λC = rC − qC .

The zero basis relation in (4.2) and the funding constraint in (4.11) allows

us to write (4.21) as

dV̂ + dΠ =(
∂V̂

∂t
+AV̂ − sXX − (r + λB + λC)V̂+

λCgC + λBgB − εhλB)dt+ εhdJB,

(4.22)
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where gB = V̂ + ∆V̂B and gC = V̂ + ∆V̂C are the post-default values for the

derivative after bank’s and counterparty’s default, respectively, and sX =

rX − r. From the jump term, we can see that in case of the bank’s own

default there is a hedge error of

εh =gB + PD −X − φK

=εh0 + εhK ,
(4.23)

where εhK is the capital-dependent part of the error. On the other hand,

unless the bank defaults, it will gain a corresponding incremental cost/gain

of εhλbdt. As long as the bank is alive the combination of the derivative and

hedge portfolio is risk-free.

Let us now assume that, while alive, the bank wants the strategy to

be self-financing and perfectly replicate the derivative value. The direct

implication of this feature is that the drift term in (4.22) must be zero, i.e.,

∂V̂

∂t
+AV̂ − (r + λB + λC)V̂ = sXX − λCgC − λBgB + εhλB + (γK − rφ)K,

(4.24)

with a final condition V̂ (T, S) = H(S), where H(S) is the payoff at maturity.

Recall that V was used for the classic Black-Scholes price of the derivative

whereas V̂ is the value taking into account valuation adjustments. If the

combined valuation adjustment is U , we can write

V̂ = V + U. (4.25)

Because V satisfies the Black-Scholes partial differential equation (PDE)

∂V

∂t
+AV − rV = 0, (4.26)

with the final condition V (T, S) = H(S), we can write the following PDE

for the valuation adjustment

∂U

∂t
+AU − (r + λB + λC)U =

V λC − gCλC + V λB − gBλB + εHλB + sXX + γKK − rφK,
(4.27)
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with the final condition U(T, S) = 0.

To solve the PDE, we consider Feynman-Kac theorem [Kac, 1951] applied

to the Black-Scholes PDE by Janson and Tysk [2006]. The Feynman-Kac

theorem provides a link between parabolic second order PDEs and stochastic

processes and can be used to solve PDEs by simulating random paths of

a stochastic process. While the approach is used for solving the price of

European call options, it can be extended to solve (4.27) which, for simplicity,

can be written in a more general form

∂U

∂t
+AU − κU = ω, (4.28)

with the final condition U(T, S) = 0. According to the Feynman-Kac theo-

rem, the solution for (4.28) can be expressed as the expectation

U = −Et[
∫ T

t

e−
∫ u
t κ(Ss,s)dsω(Su, u)du], (4.29)

which allows us to write the solution for (4.27) as

U = −
∫ T

t

e−
∫ u
t (r(s)+λB(s)+λC(s))dsEt[λC(u)V (u)−

λC(u)gC(V (u), u) + λB(u)V (u)− λB(u)gB(V (u), u)+

λB(u)εh0(u) + sXX(u) + (γK(u)− r(u)φ)K(u) + λBεhK ]du.

(4.30)

By grouping the equation so that we have terms dependent on counterparty’s

credit quality, bank’s credit quality, funding and capital, we can write

U = CV A+DV A+ FV A+KV A, (4.31)
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where

CV A =−
∫ T

t

e−
∫ u
t r̃(s)dsλC(u)Et[V (u)− gC(V (u), X(u)]du

DV A =−
∫ T

t

e−
∫ u
t r̃(s)dsλB(u)Et[V (u)− gB(V (u), X(u)]du

FV A =−
∫ T

t

e−
∫ u
t r̃(s)ds(λB(u)Et[εh(u)]− r(u)φEt[K(u)]+

sX(u)Et[X(u)])du

KV A =−
∫ T

t

e−
∫ u
t r̃(s)dsγK(u)Et[K(u)]du,

(4.32)

and r̃(s) = r(s) + λB(s) + λC(s).
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4.2 American Monte Carlo algorithm

While most XVAs can be easily approximated via simple numerical integra-

tion techniques, KVA is more complicated due to the capital term K(t) in

the integrand which is usually computed via simulation based techniques. A

simple brute force solution could be applied to solve the nested Monte Carlo

problem, but to enhance computational performance, we consider Ameri-

can Monte Carlo techniques presented by Longstaff and Schwartz [2001].

The method was originally developed for the valuation of American options,

hence the name. American options differ from European options in that the

options can be exercised before maturity. The decision whether or not to

exercise the option must be determined at all times when the option is ex-

ercisable to come up with the optimal exercise strategy and thus a price for

the instrument. The exercise decision at t is done by comparison of the value

from immediate exercise and continuation. The key concept of American

Monte Carlo techniques is to estimate the conditional expectation of pay-

off from continuation by cross-sectional information in the simulation using

least-squares regression, thus removing the need for nested simulations. This

means that, instead of starting a new simulation from each time point in each

path (ω, tk), we estimate the conditional expectation of the option’s value at

(ω, tk) with the information that is provided by all paths ω and available

at tk−1. Valuing American options and calculating KVA are similar in that

both require calculations of conditional expectations at each time step. To

allow for efficient use, we have chosen American Monte Carlo approach for

the calculation of KVA. To formulate the American Monte Carlo algorithm,

we follow the Longstaff and Schwartz [2001] approach closely but apply a few

changes to make it more applicable to our problem.

As in Chapter 3, we assume a finite, discrete and evenly spaced time in-
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terval [0, T ] with K time steps and a complete probability space (Ω,F ,P),

where Ω is the set of all possible realizations of the stochastic environment

between 0 and T , F is the sigma-algebra, i.e., a closed collection of subsets of

distinguishable events at time T and P is a probability measure on the ele-

ments of F . An augmented filtration of F is an increasing and indexed family

of sub-sigma-algebras of F . It is generated by the instrument price processes

ωi. Let such an augmented filtration be F : F = {Ft; t ∈ [0, T ],FT = F}. We

assume no arbitrage opportunities, i.e., a risk-neutral measure Q exists for

the stochastic environment. In the original approach, C(ω, s; t, T ) is defined

as the path of cash flows generated by the option given that the option is alive

at t and the optionholder uses optimal exercise strategy for all s, t < s ≤ T .

In other words, C(ω, s; t, T ) represents the payoff received from exercising

the option at some t. The assumption of N discrete time points when the

option is exercisable allows us to write the value of continuation at tk as the

expectation of the discounted cash flows C(ω, s; tk, T )

F (ω; tk) = EQ[
N∑

j=k+1

e−
∫ tj
tk
r(ω,s)dsC(ω, tj; tk, T )|Ftk ], (4.33)

where r(ω, s) is the riskless discount rate and the risk-neutral expectation is

taken under Q and conditional on the information set Ftk . Prior to maturity,

the optionholder chooses to exercise the option if the value given by (4.33)

is less than the value from immediate exercise. We will use the notation

C(ω, s; t, T ) for a path of cash flows generated by a generic derivative product,

given that the derivative is alive and if it carries possibilities of exercise,

optimal exercise strategy is used. The value of a derivative without exercise

possibilities is then simply the value of continuation given by (4.33). We also

assume that the generic derivative can be decomposed into sub-components

that generate only one cash flow. For example, interest rate swaps can be

decomposed into a series of consecutive forward rate agreements (FRA), caps
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into series of caplets, etc.

The conditional expectation F (ω; tk) is an element of a space of square-

integrable functions, i.e., the integral of the square of the absolute value is

finite. Because the space has a countable orthonormal basis, F (ω; tk) can

be presented as a linear combination of a finite set of Ftk-measurable basis

functions. The implication of this assumption is that in the case of valuation

of American options, we can write the value of the option as a function of

the underlying market factors and then approximate the value by regression.

For example, the value of the asset S underlying the option can be used as

the explanatory variable.

After decomposing the derivative contracts into single FRAs, caplets, etc.,

we assume that each future cash flow is dependent on one underlying market

factor. Let the explanatory variable be X(t). We construct the set of basis

functions as simple polynomials of increasing powers of X(t) and write the

linear combination in the general form as

F (ω; tk) =
∞∑
j=0

ajX(tk−1)j, (4.34)

where the aj coefficients are constants. The basis functions can be easily ex-

panded to take into account multiple underlying market factors by replacing

ajX(tk−1)j with ajX(tk−1)j + bjY (tk−1)j, for example.

Illustrative figures of 1-year interest rates and market values for a re-

ceive floating, pay fixed interest rate swap are shown in Figures 4.3 and 4.4.

The Hull-White model is calibrated with a = 0.2 and σ = 0.015. 1-year

interest rate starts from 3.50%. In the case of a linear derivative product,

such as an interest rate swap, the paths for the underlying interest rate and

the derivative are similar. Figure 4.5 illustrates a simple linear regression

F (ω; tk) = a0 + a1X(tk−1) for the four scenarios when simulated swap values

at tk are regressed onto the basis function at tk−1. First order regression is
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likely insufficient for options and other products which have more complex

payoff functions.

Let us denote the approximation with the first m <∞ terms as Fm(ω, tk).

Once the basis functions where aj 6= 0 are specified, we start backwards from

maturity tK by estimating Fm(ω, tK−1) with F̂m(ω, tK−1) by regressing the

values of cash flows C(ω; s, tK , T ) onto the basis functions for all simulation

paths. By doing this, we construct pairs of derivative values and underlying

market factors (XtK−1
, V (XtK )) and estimate the regression parameters aj

from these pairs by minimizing least squares

min
aj

(F (ω; tk)− F̂m(ω, tk))
2. (4.35)

Based on the regression coefficients, we can estimate the conditional ex-

pectation of the derivative’s value when we know the underlying market

factor in each scenario. It can be shown that the fitted regression value

F̂m(ω, tk) converges in probability and in mean square as the number of

simulation paths approaches infinity [White, 1984]. Also, Theorem 1.2.1 of

Amemiya [1985] implies that the estimate is the best linear mean-squared

metric based unbiased estimator of Fm(ω, tk). The fitted regression value

F̂m(ω, tK−1) represents the expected value of the derivative at tK−1 for path

ω. We then continue stepwise by estimating Fm(ω, tK−i), i = 2, . . . by regress-

ing the values of C(ω; s, tK−1, T ) onto the basis functions at tK−2, values of

C(ω; s, tK−2, T ) onto the basis functions at tK−3 and so on. By averaging

over all paths, we obtain an expected exposure (EE) profile for the deriva-

tive. Providing a general convergence rule for the algorithm may be difficult

as the number of time points, basis functions and paths go to infinity unless

certain limits are set.
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Figure 4.3: Interest rate swap market value development in four randomly

chosen scenarios. The Hull-White short rate model is calibrated with a =

0.2 and σ = 0.015. Time points in the x-axis represent days.

Figure 4.4: 1-year interest rate development in four illustrative scenarios.

The 1-year interest rate is 3.50% at t = 0 and the Hull-White short rate

model is calibrated with a = 0.2 and σ = 0.015. Time points in the x-axis

represent days.



CHAPTER 4. QUANTIFYING VALUATION ADJUSTMENTS 61

Figure 4.5: Linear regression of swap values at t onto the basis function at

t− 1

4.3 Capital valuation adjustment for regula-

tory default risk charge

After the general representation of the algorithm, we now consider the default

risk capital requirement K(tk) for a portfolio of derivatives shown in (3.41)

and substitute EAD to EE using (3.7) and (3.6)

K(tk) = RW · 8% · α ·
∫ T

t=tk

max (EE(tk), . . . , EE(t))dt, (4.36)

where the risk weight RW is assumed to be constant, T is either the one-year

point or the maturity of the longest dated contract if all the contracts mature

within a year.

For the modeling of the EE profile, we re-consider the pseudo-algorithm

in Chapter 3.2.1.2. We start by generating M market scenario paths for all
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underlying market factors Xi. Specifically, interest rates are generated with

the Hull-White model presented by Hull and White [1990]

dr(t) = (θ(t)− ar(t))dt+ σdW (t), (4.37)

and FX rates with geometric Brownian motion

dS(t) = µS(t)dt+ σS(t)dW (t). (4.38)

We decompose all derivatives into sub-components that generate only one

cash flow. After obtaining the cash flows C(ω; s, tK , T ) generated by each

derivative at maturity tK , we use the basis functions and least-squares re-

gression to obtain conditional expectations F̂m(ω, tK−1) for each derivative’s

value at tK−1 conditional on the information set at tK−1. As each deriva-

tive’s value is now dependent only on one discounted cash flow, the relevant

explanatory variables are trivial. For example, in the case of an interest rate

product, such as a floating for fixed FRA, the underlying floating interest rate

is the only explanatory variable. In this case, we use the underlying interest

rate at tK−1 as an explanatory variable and construct pairs of those and the

FRA’s values at tK for each simulation path. By considering all simulation

paths, we can then find the optimal regression parameters and estimate the

conditional expectation of the FRA’s price using only the underlying inter-

est rate at tK−1. By starting from maturity and continuing backwards until

the current time point, this makes it possible to approximate an individual

trade’s expected exposure for each time point.

We use F̂ i
m(ω, tk) to denote the estimate for derivative i’s market value at

tk in path ω obtained by recursively generating the conditional expectations

via fitted regression. An estimate for portfolio level EE profile at tk is then

obtained by averaging over the estimated positive portfolio-level realizations

EE(tk) ≈
1

Mpos

∑
ω

[
n∑
i=1

F̂ i
m(ω, tk)]

+, (4.39)
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where Mpos is the number of positive portfolio-level realizations at tk. EEPE

is calculated by using the trapezoidal rule for numerical integration of the

non-decreasing EE curve

EEPE(tk) =
J∑
j=1

E(tk, j − 1) + E(tk, j)

2
(tk+j − tk), (4.40)

where E(tk, j) = max (EE(tk), . . . , EE(tk + j)) is the non-decreasing EE

curve and tk+J = T .

The expected capital requirement Et[K(tk)] needed to solve KVA in (4.32)

is approximated with K̃(tk)

K̃(tk) = RW · 8% · α · EEPE(tk). (4.41)

By using this, we can solve KVA at tk from

KV A =−
∫ T

tk

e−
∫ u
t r̃(s)dsγK(u)Et[K(tk)]du. (4.42)

by using the trapezoidal rule and the approximation Et[K(tk)] ≈ K̃(tk)

KV A(tk) =
J∑
j=1

K(tk, j − 1) +K(tk, j)

2
(tk+j − tk)γK(tk+j+1), (4.43)

where r̃tk+j is the discount rate from tk to tk+j and K(tk, j) = e−r̃tk+j K̃(tk+j)

is the discounted capital charge at tk+j.



Chapter 5

Numerical examples

We demonstrate the model for estimating KVA with an interest rate swap

between a bank and a counterparty.

5.1 Setting and assumptions

We assume a situation between a bank and a counterparty which (i) is an

investment grade company with a risk weight of 0.3 and (ii) does not have a

credit support annex (CSA). The parties have entered into an interest rate

swap. The bank has an annual total capital cost of γK = 10% and uses

the regulatory scaling factor α = 1.4 for EAD. We use Actual/365 date

convention and linear regression to obtain interest rates between two tenors

in the yield curve. The Hull-White interest rate model

dr(t) = (θ(t)− ar(t))dt+ σdW (t) (5.1)

is calibrated with mean reversion rate a = 0.24 and volatility parameter

σ = 0.015. See Gurrieri et al. [2009] for a comprehensive framework of

calibrating the Hull-White model parameters. The yield curve at t = 0 is

shown in Figure 5.1. Each simulation is run with 1000 scenarios and one

64
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Figure 5.1: Yield curve at base date

time step represents one day. We determine the capital costs the bank needs

to incorporate in the valuation of the interest rate swap.

5.2 Capital valuation adjustment for an at-

the-money interest rate swap

The counterparty has agreed on paying floating rate to the bank in exchange

for fixed 3.95 % on a notional of 10000 units in the domestic currency for 10

years. Details are shown in Table 5.1.

The evolution of 1-year interest rates is shown in Figure 5.2. The evolu-

tion of the full yield curve for a randomly chosen scenario is in Figure 5.3.
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Figure 5.2: 1-year interest rates evolution in 1000 scenarios for each simula-

tion time point during the 10 years lifetime of the trade. 1-year interest rate

is 3.50% at t = 0 and the Hull-White short rate model is calibrated with a

= 0.2 and σ = 0.015.

Figure 5.3: Full yield curve evolution in a randomly chosen scenario. 1-

year interest rate is 3.50% at t = 0 and the Hull-White short rate model is

calibrated with a = 0.2 and σ = 0.015.
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Table 5.1: Details of the at-the-money interest rate swap

Swap Notional Tenor (years) Pay leg rate Receive leg rate

1 10000 10 Fixed 3.95% Floating

Figure 5.4: Simulated FRA market values in a randomly chosen scenario.

The Hull-White short rate model is calibrated with a = 0.2 and σ = 0.015.

Figure 5.4 illustrates how the swap is decomposed into single FRAs which

mature every time the swap is fixed. Figure 5.5 shows the simulated market

values for the interest rate swap.

For each simulation date, the instantaneous forward rate until the matu-

rity of the FRA is used an an explanatory variable for the regression. The

regressed market values for the swap are in Figure 5.6. We use linear regres-

sion

F (ω; tk) = a0 + a1X(tk−1), (5.2)

where X(t) is the instantaneous forward rate until the maturity of the FRA

and a0, a1 are constants. Parameters are estimated by the least-squares

approach. The regressed values for each simulation date and scenario are
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Figure 5.5: Simulated swap market values from t = 0 to t = 10(years) in

1000 scenarios.

Figure 5.6: Estimated swap market values from t = 0 to t = 10(years) in

1000 scenarios. Simulated market values are explained with Y = a+ bx,
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shown against the simulated values in Figure 5.7. The EE profile for the

swap is shown in Figure 5.8.

The spot capital charge for all simulation dates is shown in 5.9. The

numerical integration techniques discussed Chapter 4 give KV A ≈ −17 units

or -17bp of the swap’s notional. This means that in order to cover the

capital costs resulting from entering into the swap, the bank must offer the

counterparty such a fixed rate, that right after inception the market value

is +17 - and this is only for the default risk capital charge. The result is of

similar magnitude to the results in Green et al. [2014]. The 10-year credit

default swap (CDS) spreads for sovereigns from January 2006 to September

2008 were between 19.70bp and 73.20bp [European Central Bank, 2010].

Typical CDS spreads for investment grade companies in August 2017 ranged

from 80.01bp (industrials) to 211.15bp (high volatility) [Markit, 2017]. By

comparing the magnitude of KVA to the typical credit-based premia, is it

clear that the impact having to hold regulatory capital should be considered

in OTC derivatives pricing.

According to empirical experiments, the results are sensitive to the se-

lection of the volatility parameter σ in the Hull-White model. For example,

using σ = 0.15 gives KV A ≈ −143. However, the realizations for even the

shortest rate reached levels above 20%, which does not seem reasonable given

the development of Libor rates during the past 30 years [Macrotrends, 2017].

The spot capital profile with σ = 0.15 is shown in Figure 5.10.

Due to the selection of the American Monte Carlo algorithm, the com-

putation time for the selected settings was approximately 5 seconds with a

normal PC, which makes it very likely that the computational performance

of the model is sufficient for pricing purposes.
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Figure 5.7: Fitted regression of swap market values

Figure 5.8: Expected exposure for the 10 year lifetime of the trade
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Figure 5.9: Spot capital charge profile when the Hull-White short rate model

is calibrated with a = 0.2 and σ = 0.015.

Figure 5.10: Spot capital charge profile when the Hull-White short rate model

is calibrated with a = 0.2 and σ = 0.15.
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5.3 Capital valuation adjustment for an in-

the-money interest rate swap

Next, we show how the KVA could look like after the inception of a derivative,

if the contract is in-the-money, i.e., the market value from the bank’s point

of view is positive. We assume similar conditions to Chapter 5.2, except that

the interest rates have increased. The yield curve at base date is shown in

Figure 5.11. Intuitively, the expected exposure profile in Figure 5.12 starts

above zero, thus increasing EAD. The spot capital charge is show in Figure

5.13.

Table 5.2: Details of the in-the-money interest rate swap

Swap Notional Tenor (years) Pay leg rate Receive leg rate

1 10000 10 Fixed 3.95% Floating

This setting results in KV A ≈ −20, i.e., approximately an increase on

18% compared to the at-the-money swap. This shows that regular estimation

of KVA for existing derivatives allows banks to understand their capital costs

better and re-consider their pricing policy.
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Figure 5.11: Yield curve at base date
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Figure 5.12: Expected exposure profile for the in-the-money swap when the

Hull-White short rate model is calibrated with a = 0.2 and σ = 0.015.

Figure 5.13: Spot capital charge profile for the in-the-money swap when the

Hull-White short rate model is calibrated with a = 0.2 and σ = 0.15.
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Conclusions

The purpose of this study was to develop a method which can be used by

a bank to incorporate cost of having to hold regulatory capital into over-

the-counter (OTC) derivatives pricing. This capital valuation adjustment

is known as KVA. We assumed that the bank has an approval for inter-

nal model method (IMM), and limited this study to regulatory default risk

capital charge, which is calculated using simulation-based techniques.

First, we introduced the risks related to OTC derivatives and what miti-

gating actions banks may take to reduce them. Next, we introduced the key

counterparty credit risk measures, i.e., current exposure (CE), probability

of default (PD), loss given default (LGD), exposure at default (EAD), risk

weight (RW) and risk weighted assets (RWA) and how they are translated

into a regulatory capital requirement. Finally, we summarized the most com-

mon and important valuation adjustments to account for both parties’ credit

qualities, funding and capital in OTC derivatives pricing. We concluded that

the classic Black-Scholes price for a derivative is problematic. This makes

it increasingly important to incorporate credit valuation adjustment (CVA),

debt valuation adjustment (DVA), funding valuation adjustment (FVA) and

capital valuation adjustment (KVA) into OTC derivatives pricing in the en-
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vironment of tightening regulation.

Then, we formulated a model that uses stochastic scenario generation to

produce expected exposure (EE) curve for a portfolio of OTC derivatives and

makes it possible to calculate exposure-at-default (EAD) for the portfolio.

Together with regulatory risk weights and capital ratios, this gives the capital

charge for default risk. Also, we briefly discussed other capital charges banks

have to consider.

By extending the methods of Burgard and Kjaer [2013] and Green et al.

[2014], we constructed a replicating portfolio for an OTC derivative which

made it possible to derive an expression for KVA under the IMM methodology

for regulatory default risk capital charge. While the problem could have

been solved with brute force, to improve computational performance, we

used American Monte Carlo techniques to calculate KVA. The selection of

this method was critical in preserving the possibility to use the KVA model

for pricing purposes.

Finally, we determined KVA for illustrative interest rate swaps. The

results show that neglecting the cost of capital - even for only default risk -

can lead to mispricing. In addition, a bank which considers other valuation

adjustments, such as CVA, DVA, FVA and KVA for other capital charges,

as well as operative costs, may have to charge a significant premium for

a counterparty to make an OTC derivative profitable. Due to the careful

selection of the simulation algorithm, the model’s computational performance

was sufficient for pricing.

Topics for further research include the modeling of KVA for other capital

charges, primarily market risk charge and CVA risk charge. Also, the optimal

choice of basis functions in the regression is left for further study. Possible

basis functions for non-linear products include Hermite, Laguerre and Jacobi

polynomials.
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