
Aalto University
School of Science
Department of Mathematics and System Analysis

Testing Performance of Two Virtualization

Software

Bachelor’s thesis
31.10.2017

Jani Laine

The document can be stored and made available to the public on the open
internet pages of Aalto University.
All other rights are reserved.

	

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of bachelor's thesis
	

Author Jani Laine
Title of thesis Testing Performance of Two Virtualization Software
Degree programme Engineering Physics and Mathematics
Major Mathematics and System Analysis Code of major SCI3029
Supervisor Kai Virtanen
Thesis advisor(s) Jimmy Kjällman
Date 31.10.2017 Number of pages 29 Language English

Abstract
To match the growing needs of better data handling in todays' networked society various solutions
have been invented, many of which utilize remote servers called clouds for computing. For small
networks of devices it is often beneficial to perform computing relatively close to the data source.
This called edge computing, where the device controlling the components of the network is called
the edge device. On edge devices, different kinds of software are ran to create software-based com-
puters which are called virtual machines. Running those kinds of software is called virtualization
and it is highly useful for controlling the components of a small network since every component
can be assigned to a specific virtual machine on the edge device.

Different virtualization software have different attributes when it comes to performance, energy
efficiency and scalability. This thesis focuses on the performance side of those software and com-
pares two virtualization software, KVM (Kernel-based Virtual Machine) and Docker, to find out
which one is better to be used as an edge device in a small network of devices. Various perfor-
mance measures were used for comparing the two platforms. These measures involve evaluating
the speed of the processor, writing to and reading from hard disk, RAM speed and network band-
width. The result data is gathered with software specified for testing the capabilities of devices.
The data is then analyzed by calculating basic statistics from the data and by utilizing t-test.

The conclusions of the comparisons is that Docker is better for the virtualization purposes of edge
computing. Docker is clearly faster when it comes to CPU and network performance. For disk writ-
ing and reading and RAM performance, there is no clearly faster platform. However, the conclu-
sion drawn from the latter two testing areas is that the dd tool, which is a basic linux command
line tool, should probably not be used for perfomance testing since the results from those test were
often not very logical.

Keywords cloud, edge device, virtualization, KVM, Docker, performance
	

	

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Tekniikan kandidaatintyön tiivistelmä
	

Tekijä Jani Laine
Työn nimi Testing Performance of Two Virtualization Software
Koulutusohjelma Teknillinen fysiikka ja matematiikka
Pääaine Matematiikka ja systeemitieteet Pääaineen koodi SCI3029
Vastuuopettaja Kai Virtanen
Työn ohjaaja(t) Jimmy Kjällman
Päivämäärä 31.10.2017 Sivumäärä 29 Kieli Englanti

Tiivistelmä

Internetiin yhdistettyjen laitteiden määrä kasvaa kiihtyvällä vauhdilla verkottuneessa
yhteiskunnassa. Tämän ilmiön myötä syntyneisiin datan säilytys- ja käsittelyhaasteisiin on
kehitetty erilaisia ratkaisuja, joista useat käyttävät hyväkseen etäisiä palvelimia eli pilvipalveluita
datan käsittelyyn. Pienien muutamien laitteiden verkkojen datan käsittely suoritetaan yleensä
hyvin lähellä datan lähdettä eli verkon reunaa niin sanotulla reunalaitteella, jolla myös ohjataan
verkon laitteita. Laitteiden hallintaan reunalaitteella luodaan erilaisia teknologioita käyttäen
ohjelmallisesti toteutettuja tietokoneita eli virtuaalikoneita. Tätä kutsutaan virtualisoinniksi, ja se
mahdollistaa verkon laitteiden eristämisen toisistaan, koska jokaista laitetta voidaan tällöin hallita
eri virtuaalikoneella.

 Eri virtualisointiteknologioilla on vahvuuksia ja heikkouksia toisiinsa nähden muun muassa
suorituskyvyn, virrankäytön ja sovellusmahdollisuuksien suhteen. Tämä työ keskittyi kahden eri
teknologian suorituskyvyn mittaamiseen samalla reunalaitteella. Vertailtavat
virtualisointiohjelmat olivat KVM (Kernel-based Virtual Machine) ja Docker. Tavoitteena oli
selvittää, kumpi on parempi virtualisointiohjelmisto reunalaitteelle suhteellisen pienessä
laiteverkostossa. Ohjelmistojen suorituskykyä vertailtiin prosessorin nopeuden, kiintolevyn
kirjoitus- ja lukunopeuden, keskusmuistin nopeuden sekä verkkoliikenteen nopeuden suhteen.
Mittaukset tehtiin siihen suunnitelluilla ohjelmilla ja saatu mittausdata analysoitiin laskemalla
siitä tilastollisia tunnuslukuja sekä t-testillä. Tulokset olivat suurimmilta osin järkeviä ja niistä
voitiin päätellä, että Docker on parempi virtualisointiohjelmisto pienen laiteverkoston
reunalaitteelle.

Työn tulokset osoittavat muun muassa sen, että Dockerilla prosessorin käyttö sekä verkkoliikenne
ovat selkeästi nopeampia kuin KVM:llä. Kiintolevyn tai keskusmuistin käyttönopeuksille ei voitu
tulosten perusteella määrittää nopeampaa ohjelmistoa. Kahden viimeksi mainitun
käyttönopeuden mittauksissa kuitenkin havaittiin, että mittauksiin käytettyä linuxin
komentorivityökalua dd:tä ei pitäisi käyttää, koska sen tuottamat tulokset olivat useimmiten
epäloogisia.

Avainsanat pilvi, reunalaite, virtualisointi, KVM, Docker, suorituskyky
	

Contents

1 Introduction 2

2 Methodology 3

2.1 Virtualization setup . 3
2.2 Experimental Setup and Design 4
2.3 Performance measures . 5
2.4 Statistical analysis . 7

3 Results and Analysis 8

3.1 Processor . 8
3.2 Disk input and output . 10
3.3 RAM . 13
3.4 Network . 16
3.5 Summary . 22

4 Conclusions 24

5 References 25

6 Appendix 26

1

1 Introduction

In recent years, the increasing number of devices connected to the Internet
and the large amounts of data they produce have forced researchers to find
better and faster solutions for data storage, computation and other types
of data handling. The most successful solution has been performing all that
in a remote computing server called a cloud. Although cloud computing is
an effective way to increase computing power and convenience it has some
challenges it has to face, too.

For heavy computing, needs there is centralized infrastructure that is
cloud-based but for example a home entertainment center does not need that
much computing power. In that kind of situations the computing is usually
performed relatively close to the data source, in other words, at the edge of
the network and is therefore called edge computing [4]. One solution for edge
computing needs is to have a small single board computer (SBC) to be the
platform that controls the components of the network as the edge device.
This can be achieved by running virtual machines on the device which are
basically software-based computer instances. Virtual instances can be ran
with different virtualization software.

The Raspberry Pi models [10] and the ODroids [9] are examples of
possible edge devices. Virtualization software include the hypervisors Kernel-
based Virtual Machine (KVM) and Xen as well as Docker which uses con-
tainers to run instances. The Odroid C2 with KVM and Docker were used in
these tests.

The objective of the measurements conducted in this thesis is to
compare the performance of KVM to Docker and also to the native platform
which is the host operating system without any virtualization. The compar-
isons are conducted using specific performance measures. These measures
include testing of processor, writing to and reading from hard disk, RAM
and network performance. Measuring performance means measuring either
speed or execution times. After the measurements the data is analyzed using
statistical analysis. Various software were used as tools in the measurements
and analysis.

Performance testing and evaluation for virtualization software has
been done before but not that much for SBCs. Virtualization using SBCs
can be regarded as a rather new concept and not very much research has
been done in that area yet. However, Roberto Morabito in his paper [2]
evaluated the performance of different SBCs when running Docker on them.
On top of performance evaluation, also power consumption was evaluated in
that paper. For the actual testing he used among others the tools sysbench,
mbw and iperf. These tools are also used in this thesis. The conclusions of

2

Morabito’s paper included the fact that Odroid C2 outperformed all other
devices in most of the test. It is therefore logical to use Odroid C2 in these
experiments.

Another paper by Morabito [1] evaluates the overhead that Docker
produces when compared to a native platform. These test were done on
Raspberry Pi which is the most well-known SBC. The conclusion was that
the overhead produced by Docker is negligible. Ismail et al. [5] also evaluated
Docker for edge computing and came to a similar conlusions that Docker is
a good solution for edge computing. There is not a lot of experiments done
with KVM as virtualization software on an edge device but Christoffer Dall
and Jason Nieh confirmed in their paper [7] that KVM is applicable on an
SBC such as Odroid C2 and also has potential as virtualization software. It,
however, requires a little setting up in terms of enabling certain properties of
the device [6]. This could be one reason why KVM has not been tested that
much.

This thesis consists of six sections. The second section is "Methodol-
ogy" in which the experimental setup is explained as well as the performance
measures and statistical analysis used in the thesis. The third section "Re-
sults and Analysis" presents the results and provides the data analysis. The
fourth section "Conclusions" sums up the main conclusions of the thesis and
analyses the used methods and tools. It also presents some ideas for future
experiments on the research field. The fifth section "References" has all the
references and the sixth "Appendix" has the tables of the thesis.

2 Methodology

The methods used in the tests included the usage of different tools and se-
tups. All other test were performed using only the Odroid board itself except
network performance tests since they require a device that sends traffic to
and receives traffic from the Odroid. A Dell laptop, that was connected to
the same local are network (LAN) with the Odroid, was used for network
testing. Both of the devices were connected to the LAN via ethernet cables.

2.1 Virtualization setup

The virtualization software evaluated in this paper, KVM and Docker, have
different approaches towards virtualization: KVM is a hypervisor, which runs
complete virtual machines and requires hardware-level support for virtual-
ization whereas Docker uses containers. In computing, certain software are
designed to enable one computer, which in this case is called host computer,

3

to act like another computer. The other computer is called guest and the
process is called emulation. In these experiments QEMU (Quick Emulator)
was used as hardware emulator for KVM virtual machine.

The containers that Docker uses for virtualization are similar to vir-
tual machines, only more lightweight. Rather than running an operating sys-
tem on an emulated virtual hardware, Docker’s approach only modifies the
host operating system in a way that provides isolation for the specific pro-
cesses. This is achieved for example by restricting what operating system
resources a process can see and use as well as by assigning access control
checks to all calls that the process makes to the system.

The principles used for configuring the virtualized environment were
basically the same for both KVM and Docker as far as operating system is
concerned. The guest operating system in both cases was an Ubuntu 16.04
xenial cloud OS. Docker version 1.12.6 was used. Version 2.5.0 of QEMU
needed by KVM for managing guests was used in these tests.

In virtualization, it is possible to dedicate a particular physical CPU
to a single virtual instance. This is called vCPU pinning or processor affinity
and it affects the performance of the device. This way multiple different vCPU
configurations can be assigned for the test. In the test performed for this
thesis, however, a random setup was used in which no specific configuration
was assigned. This kind of a configuration allows CPU to be utilized better
than with a specific setup [3].

2.2 Experimental Setup and Design

Table 1: The Odroid C2’s hardware features.
Features # Device ! Odroid C2

Chipset Amlogic S905
CPU ARMv8 Cortex-A53 Quad Core 2GHz
GPU 3 x ARM Mali-450 MP2 700 MHz

Memory 2GB DDR3 912MHz
Flash Storage MIcroSD, eMMC5.0

Ethernet 10/100/1000 Mb/s
USB connectivity 4 x USB 2.0 Host, 1 x USB 2.0 OTG

OS Linux, Android

4

Figure 1: The Odroid C2 [8].

Figure 1 shows what an Odroid C2 looks like. It is a small single-board com-
puters published by the company Hardkernel. The model C2 is quite powerful
compared to other SBCs. It’s hardware features are shown in Table 1. The
Odroid was running Linux 3.14.79 at the time of the tests. An Intel Core
i5 PC was used in the network test for sending and receiving network traf-
fic. The PC was running Linux 4.4.0 and had an Intel Ethernet Connection
I219-LM network adapter.

The sysbench CPU tests are ran with four different configurations
on Docker and KVM: each with different number of CPUs enabled (1, 2, 3
and 4). Native platform is tested only with all four CPUs enabled. Integer
calculations are ran with all CPUs enabled for all of the platforms. Both
sysbench and dd disk I/O tests are ran with 1 GB and 2 GB of allocated
RAM for all three platforms. RAM performance measurements with dd tool
are done only with the full 2 GB of allocated memory for every platform.
Mbw RAM tests are ran first with 1 GB of allocated memory and then with
2 GB of memory. Mbw tests evaluate RAM performance on every platform
in three different areas: memcpy, dumb and mcblock.

Network testing, excluding web server tests, is done for every platform
without any special configurations. The web server related tests, though, are
done for every platform with varying number of connecting clients (50, 100
and 200 clients). Also, the total number of requests made by the clients ranges
from 5000 to 100000.

2.3 Performance measures

Processor

The tools that were used to test CPU performance were a diverse benchmark-
ing tool sysbench and a basic commandline command time. The number of
threads was set to 4 so the command will start 4 threads. The maximum

5

prime number was set to 9999. This way the command starts 4 threads and
verifies prime numbers until 9999 by doing standard division of the number
by all numbers between 2 and the square root of the number. This makes the
tool stress the cpu(s) and then print out statistics from which the execution
time was recorded in seconds.

This initiates a calculation of all integers from 0 until 9999999. The
command also prints out the time it took to calculate the integers and that
was recorded in seconds.

Disk input and output

Disk input and output was tested with sysbench and the "dd" tool. Sysbench
is used for stressing the board by writing or reading sequentially one 4 GB file
and printing out statistics. From the printed statistics the execution speed is
recorded in Mb/s. The dd tool is used for writing or reading 256000 16000
kB blocks which equal to 4.2 GB file. The tool also prints out results from
which the writing or reading speed is saved in Mb/s.

RAM

RAM performance was tested with the Memory BandWidth benchmark or
mbw and with the command "dd". The test with "dd" first creates a folder
and then mounts a temporary filesystem to the folder that was made. After
that the tool copies data to the temporary filesystem. It also prints out
statistics from which the writing or reading speed is recorded in Mb/s.

The mbw tool copies arrays of data in memory and determines avail-
able memory bandwidth that way. The array size was set to 300 MB. The
test consisted of ten loops of using three different methods of copying data:
memcpy, dumb and mcblock. Every method prints out the speed or band-
width of memory in the operation and also calculates and prints the average
of those results. The average of every method was recorded in Mb/s.

Network

Two different methods were used for testing network performance. The other
one was a quite basic test that tested TCP and UDP traffic both sending and
receiving. This test was performed using a laptop which was connected to the
same LAN as the board and a tool called Iperf which is a widely used tool
for network testing. The other test included hosting a certain web server on
the board and testing network performance when sending traffic to the web
server from the laptop. A tool called Apache benchmarking (ab) tool was
used for this test. The web servers used were Apache, Lighttpd and Nginx.

6

The Iperf TCP traffic testing was done via port 80 in the LAN. Test-
ing time was limited to 20 seconds. When the test was finished Iperf printed
out the bandwidth of the network traffic which was recorded in Mb/s. For
UDP traffic the test was quite similar. It was performed also with Iperf and
it had the same port. The difference between testing TCP and UDP traffic
was that with UDP the bandwidth had to be assigned first as a parameter to
Iperf and after the test it printed out the achieved bandwidth in Mb/s and
if there occurred any packet loss during the test. Those statistics were then
recorded.

Web servers

The web servers were hosted on the ODroid device on either native platform,
KVM or Docker and traffic was sent from the laptop to the server. The ab tool
allows one to send traffic to the web servers and then prints out statistics
from the test. For all of the web servers the test was the same where the
number of clients connecting to the server and the number of requests sent
were varied: number of clients were 50, 100 and 200 and the number of
requests were 5000, 10000, 20000, 30000, 40000, 50000, 70000 and 100000.
The recorded statistics were the execution time of the test and the number
of requests made per second. Failed requests were not allowed except in the
test for KVM with 200 clients. The test were performed until the statistics
didn’t show any failed requests.

2.4 Statistical analysis

The collected sets of data were analyzed by calculating basic statistics for ex-
ample means and by utilizing t-test. The t-test is used for testing if two sets of
data are significantly different from each other from a statistical perspective
by comparing the means of the data sets. The data sets being significantly
different basically means that the difference in the means does not come from
single or a few results that are far from the other results, thus changing the
mean. To be significantly different most of the values of a data set have to
be different from the other data set. There are various forms of t-tests for
different initial conditions. In these tests, however, all the t-tests were for
two samples and the variances of the tested sets of data were assumed to be
equal.

When conducting a t-test first a null hypothesis is assigned, that
is the original hypothesis before the actual testing. The null hypothesis in
these experiments were that there are no differences in KVM’s and Docker’s
performances. After that a significance level is determined. The significance

7

level indicates what percentage of certainty, that the two tested sets of data
have no significant differences, is accepted. In these tests, a commonly used
significance level of 5 % was used.

T-test mathematically represented

t =
x̄1 � x̄2q
S2
1

n1
+ S2

2
n2

, (1)

where x̄1 and x̄2 are the means, s1 and s2 the standard deviations and n1

and n2 the sizes of the first and second data sets, respectively.
The tools, that were used to analyze the collected data, were Mi-

crosoft Excel and LibreOffice Calc. The figures were created using both Excel
and LibreOffice Calc. Excel was used for analyzing the data which included
calculating statistics for data sets and t-testing.

3 Results and Analysis

3.1 Processor

Figure 2: Sysbench CPU performance for different amounts of CPUs.

8

Figure 2 shows the processing time in seconds for different platforms and
CPU amounts. As far as CPU performance goes Docker always outper-
formed KVM. Four measurements were performed with varying amount of
CPUs used (1-4 CPUs). Native performance was measured with 4 CPUs only.
Though the differences were relatively small, on average Docker was faster
than KVM in every scenario. For cases with 3 and 4 CPUs enabled the p-
values are smaller than the threshold (0.0031 and 0.000038) and over it for
the rest. The p-values therefore confirm that Docker was faster in this area,
at least when multiple CPUs were enabled. The graph shows that Docker
was even faster than native with 4 CPUs enabled. P-value for that is 0.035
so it is under the threshold. However, the result is still questionable since it
should not be possible for native platform to be slower than Docker.

Figure 3: Integer calculation times for different platforms.

In Figure 3 there is presented the execution times for integer calcu-
lation for every platform. The integer calculation was performed in the way
described in Methods.

These results are contrary to the results from the sysbench CPU
results. In Figure 3 it seems like Docker would be considerably faster than
either of the two other platforms. KVM still showed the slowest performance
which was expected. However, the result that on Docker it would be much

9

faster to calculate integers than on native, makes these results unreliable.
That is because Docker is ultimately ran on the native platform and it has
to produce some overhead even though it could be negligibly small.

3.2 Disk input and output

Figure 4: Sysbench disk writing speed for different amount of allocated RAM.

Figure 4 shows the disk writing speed in megabytes per second for differ-
ent platforms and amounts of memory allocated. The different amounts of
memory were 1 GB and 2 GB. The graph shows that the platforms native
and Docker performed clearly better than KVM but differences between the
two were pretty small. Native had slightly better performance with 1GB of
memory and Docker with 2 GB of memory. The p-values for those two cases
are 0.62 and 0.12 respectively. They both are way over the threshold, thus
making the result, that either one would be clearly faster, unreliable. Every
platform’s performance increased as more memory was allocated.

10

Figure 5: Sysbench disk reading speed for different amounts of allocated
RAM.

Figure 5 shows the disk reading speed in megabytes per second for
different platforms and amounts of memory allocated. The graph shows that
native had the best performance overall. Native and Docker increased their
performances when 2GB of memory was allocated instead of 1GB. On the
other hand KVM’s performance decreased, for some reason, when memory
allocation was increased (32.6 to 26.4 Mb/s). The graph shows that would
have performed better with 1 GB of memory than Docker but the p-value
for that case is 0.90. Therefore it is clear that the result is not reliable and
that KVM is not faster than Docker in that case.

11

Figure 6: Disk reading speed for different amounts of allocated RAM mea-
sured with the dd tool.

Figure 7: Disk reading speed for different amounts of allocated RAM mea-
sured with the dd tool.

12

Figures 6 and 7 present the results from disk writing and reading
performance testing, respectively, with the dd tool. The results are in con-
flict with the conclusion from the other disk I/O test that were done with
sysbench. In fact, the results show that KVM would be quite clearly faster
than the other platforms, both native and Docker. This does not make any
sense since KVM should produce at least some overhead. These kind of re-
sults could be some fluctuation in the measurements but because the results
shown in the figures are averages it cannot be random error. Also, the p-
values for the comparisons of native and KVM with 1 GB and 2 GB memory
allocations are 4.60576 ⇤ 10�24 ⇡ 0.000 and 4.98974 ⇤ 10�14 ⇡ 0.000. The
p-values are clearly under the threshold thus it can be concluded that the
data sets are significantly different. However, KVM cannot be faster than
native platform because of the fact that KVM is ultimately ran on native
and must therefore produce at least some overhead.

3.3 RAM

Figure 8: The average RAM writing speeds for different platforms measured
with the dd tool.

13

Figure 9: The average RAM reading speeds for different platforms measured
with the dd tool.

Figures 8 and 9 present the results from RAM writing and reading perfor-
mance testing, respectively, with the dd tool. It can be seen from the results
that all of the platforms’ reading and writing speeds are very similar. It
seems, though, that KVM would be the fastest platform at RAM writing
speed. Comparing native platform to KVM in that case gives a p-value of
0,0399. The data sets can therefore be considered to be significantly different.
As mentioned before, KVM cannot be faster than native. Consequently, the
results from RAM writing speed are unreliable.

On the other hand, the results from RAM reading tests seem logical.
The graph shows that native platform would be the fastest, then docker and
then KVM. However, the p-values for every three comparisons are over the
threshold. Thus, no real conclusions can be drawn from the results gotten
with dd.

14

Figure 10: Memcpy, dumb and mcblock speeds in megabytes per second for
1 GB of memory allocated.

Figure 11: Memcpy, dumb and mcblock speeds in megabytes per second for
2 GB of memory allocated.

Mbw test results are shown in the Figures 10 for 1 GB of allocated
memory and 11 for 2 GB of allocated memory. The results show the speed

15

of the different methods in megabytes per second which were memcpy, dumb
and mcblock.

It is shown in the graph that when 1GB of memory was allocated na-
tive platform had the best performance in all areas. Docker performed slightly
better than KVM at memcpy and dumb and KVM had better performance
in mcblock.

On the other hand, when 2GB of memory was allocated all the results
were very close and the platform with the fastest speeds varied. Thus, none
of the platforms was clearly the fastest.

3.4 Network

TCP

Figure 12: Network bandwidth on different platforms when sending traffic.

16

Figure 13: Network bandwidth on different platforms when receiving traffic.

Figures 12 and 13 show the network bandwidth in megabytes per second for
both sending traffic from the board and receiving traffic to the board. The
bandwidths shown in the figure are averages.

Both of the graphs show clearly that the network performance of
KVM fell far behind native and Docker. The p-values also confirm this con-
clusion. For sending traffic KVM had an average of 192 Mb/s whereas native
and Docker had the same average of 940 Mb/s. For receiving traffic KVM
had an average of 195 Mb/s, native had 939 Mb/s and Docker had 933 Mb/s.

UDP

The data gathered from the UDP tests is shown in Tables 2 and 3, which are
found in Appendix. Docker managed to experience 0% loss on sent packets up
to the speed of 50 Mb/s and even at 100 Mb/s there was a negligible loss of 1
packet out of 84672. The maximum bandwidth for Docker was 386 Mb/s and
that came with a packet loss of 0.22%. The results for KVM are very similar
to the results for Docker. No loss up to 50 Mb/s and very little, though more
than Docker, loss at 100 Mb/s (0.079%). The maximum bandwidth for KVM
was at 310 Mb/s and the packet loss at that speed was 0.14%.

17

Docker managed to receive all sent packets with 0% loss up to 100
Mb/s speed. The next measurement was done with the option 999 Mb/s
which resulted to 132 Mb/s and 84% loss. KVM managed to receive all
packets with 0% loss up to a speed of 50 Mb/s. At 100 Mb/s there was
some loss (0.042%) which is quite small but noticeable. It also more than the
loss that happened with Docker (0%). The last measurement was done with
the option 999 Mb/s which resulted to 156 Mb/s and a loss of 80%. KVM
managed to receive packets with higher bandwidth than docker and with less
packets lost. However, KVM also experienced packet loss at lower bandwidth
than Docker.

Web servers

The Apache web server was able to receive 100% of the sent packets on every
configuration when it was running on either native platform or Docker. With
KVM the test had no loss only when the number of clients was 50. When
there were 100 clients only one measurement with 10000 sent requests was
completed without any loss and when there were 200 clients there also some
loss on every measurement.

Figure 14: Number of requests per second in the test on the Apache web
server.

Figure 14 shows the number of requests per second for different num-
bers of total requests and platforms. The graph only shows one complete line
for KVM because KVM was not able to finish enough measurements without
packet loss.

18

For the native platform it seems that neither the total number of
requests or the number of clients have any significant effect on the number
of requests per second. For Docker there is pretty subtle but clear drop in
performance when the number of clients is increased but nothing when the
total number of requests is increased. For KVM there is not enough data
to draw any conclusions since packet loss occurred as the number of clients
was increased. Allowing the loss of packets of course led to an increase in
"performance".

Figure 15: The execution time of the test on the Apache web server.

In Figure 15 there is shown the execution time of the test in seconds
for different numbers of total requests and platforms. The results in execution
time are very similar to the results in the number of requests per second as
one could expect.

Native platform had the best performance and basically no effect
when either the number of clients or the total number of requests were in-
creased. For Docker there was again a little drop in performance when the
number of clients was increased. For KVM there is no reliable data available
because of the loss of packets.

19

Figure 16: Number of requests per second in the test on the Lighttpd web
server.

Figure 17: The execution time of the test on the Lighttpd web server.

20

Figure 16 shows the number of requests made per second on the
Lighttpd web server with a different number of total requests made in the
test. Figure 17 shows the execution time of the performed test on the Lighttpd
web server in seconds. Both of the graphs show some scattering but also that
native platform is on average faster than Docker. Not one measurement was
able to be completed on KVM so no data of KVM is displayed on the graphs.

The graphs also show clearly that when 50 clients were connecting
to the server native platform is far faster. When there were more clients
connecting to the server there was also more scattering and the results are
not that clear. It seems though that also when 100 clients were connecting
to the server the native platform was faster. The data with 200 clients is too
scattered to have any conclusions drawn from.

Figure 18: Number of requests per second in the test on the Nginx web server.

21

Figure 19: The execution time of the test on the Nginx web server.

Figure 18 presents the number of requests made per second on the
Nginx web server with a different number of total requests made in the test.
Figure 19 presents the execution time of the performed test on the Nginx
web server in seconds.

The results from testing the web server Nginx were pretty logical but
had also some scattering. Native and Docker were able to complete all the
measurements but KVM only finished 2 of them both of which were with 50
clients. The results also follow the same pattern as the results from other web
server tests: native is the fastest then Docker and then KVM. KVM doesn’t
really have enough data to draw solid conclusions but the results from the
two finished tests show so much slower performance that it is safe to say that
KVM is the slowest platform when it comes to this test.

When comparing the results from with the same platform but differ-
ent number of clients connecting they show no clear significant variation. As
in all of the web server test results the execution time rises fairly steadily
when the total number of requests is increased.

3.5 Summary

As far as CPU performance is concerned Docker outperformed KVM. The
results indicated that docker would have been even faster than native plat-
form but due to the negligible difference they are considered almost equally

22

fast. This results points out the fact that Docker does not produce hardly any
overhead when it comes to CPU stress. On the other hand KVM had system-
atically slower processing time thus it is safe to say that CPU performance
on Docker is better than on KVM.

No real conclusions can be drawn from disk I/O testing. The results
were either not possible or not clear enough. The results from testing with dd
tool showed that KVM would be considerably faster than Docker and even
native platform. KVM being faster than Docker could of course be possible
but KVM being faster than native is not possible due to the fact that KVM
has to produce some overhead. Therefore, the results from testing with dd are
unreliable and cannot be used for drawing conclusions. Sysbench produced
more logical results but the calculated p-values showed that the data sets
are not likely to be significantly different from each other. Consequently, no
clear conclusions can be drawn from those results either.

The results for RAM performance have very few statistically signif-
icant differences between the platforms, if any. The fastest platform cannot
be determined with enough clarity. Also, there is again illogical results from
testing with dd tool. The RAM writing speed seems to be the fastest on
KVM but that cannot be the case. The conclusion for RAM performance is
that all the platforms utilize RAM equally well.

For network performance the results are the clearest. The results
from TCP traffic testing show significantly better performance on Docker
compared to KVM. Also native platform showed expected performance since
it was the fastest platform. UDP traffic shows almost equally good perfor-
mance for both of the platforms as far achieved bandwidth and the loss of
packets go.

The results from web server testing show the server performing a lot
better when running on Docker rather than on KVM, thus supporting the
TCP test results. All web servers running on Docker were able to complete
all the test without any packet loss whereas on KVM only the Apache web
server was able to complete one full test with 50 clients. Also the speed at
which the 50 client test was completed differed significantly when comparing
docker to KVM further proving that Docker has better network performance.
The p-values are shown in Table 4.

23

4 Conclusions

The purpose of this thesis was to determine which one the two virtualization
software is better to be used on an edge device of a small network. In this
experiment, the comparison of the software was based only on performance.
Different areas of performance were evaluated with specific performance mea-
sures that tested CPU, disk I/O, RAM and network performance. These
performance measures consisted of programs that are designed to stress and
test different parts of computers. The data gotten from the measurements
was then analyzed using statistical analysis for example t-test. The analysis
provided the necessary information for determining which platform is better
for virtualization in the given conditions.

The performance measures used in the experiment produced, in most
cases, rational results. The tools were selected according to earlier usage in
performance testing. The only tool that produced unreliable results was dd.
Thus, dd should probably not be used for performance testing in the future
experiments. The goal was that two different tools would be used to test
each area except for network testing. That goal was only reached for CPU
testing since the results from dd were not rational and dd was used for
testing disk and RAM. More accurate results could be achieved by using
more performance measures and taking more measurements.

The most of the data analysis is based on t-testing. T-test is an easy
way to compare two data sets. It compares the means of the data sets and
determines whether or not the differences in the data sets are statistically
significant. For this experiment’s purposes, t-test provides good enough in-
formation about the significance of the differences of the data sets. T-test
was not necessary in the analysis of network performance because the test
that were ran on KVM did not produce enough data.

The overall conclusion drawn from the results is that Docker is better
for virtualization when comparing it to KVM. CPU and network performance
are clearly better when using Docker. Though the difference between the two
platforms was not large when it comes to CPU performance, it was system-
atically consistent and thus very clear. On the other hand, the difference in
network performance was shown in multiple ways. Docker was significantly
faster and finished all of the tests whereas KVM could not finish a single test
with 100 or 200 connecting clients. Neither disk I/O nor RAM tests declared
clearly which is the faster platform. In both sets of tests, dd tool was used
and it produced unreliable results that could not be used for drawing any
conclusions. Sysbench’s results from disk I/O showed no significant differ-
ences in performance between the platforms. Same applies for mbw’s results
from RAM testing.

24

The next step in testing the differences of Docker and KVM could be
to measure the power consumption of these two technologies. Especially when
using virtualization on SBCs the power consumption should be minimized.
That is because they would mainly be used in small networks of devices for
example home entertainment systems which are not supposed to consume
power heavily.

5 References

[1] Roberto Morabito, "A Performance Evaluation of Container Technologies
on Internet of Things Devices.", 2016 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2016

[2] R. Morabito, "Virtualization on Internet of Things Edge Devices with
Container Technologies: a Performance Evaluation.", IEEE Access, 2017

[3] C. Xu, Z. Zhao, H. Wang, R. Shea, J. Liu, "Energy Efficiency of Cloud
Virtual Machines: From Traffic Pattern and CPU Affinity Perspectives",
IEEE Systems Journal, 2015

[4] H. Chang, A. Hari, S. Mukherjee, T. V. Lakshman, "Bringing the Cloud
to the Edge", 2014 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2014

[5] B. Ismail, E. Goortani, M. Ab Karim, W. Tat, S. Setapa, J. Luke, O. Hoe,
"Evaluation of Docker as Edge Computing Platform", IEEE Conference
on Open Systems (ICOS), 2015

[6] G. Deka, P. Das, "Design and Use of Virtualization Technology in Cloud
Computing", IGI Global, 2017

[7] C. Dall, J. Nieh, "KVM/ARM: the Design and Implementation of the
linux ARM Hypervisor", Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems ASPLOS’14, 2014

[8] Odroid C2, Available: http://www.hardkernel.com/main/products/prdt_
info.php?g_code=G145457216438

[9] Odroid models, Available: http://www.hardkernel.com/main/products/pr
dt_info.php

[10] Raspberry Pi models, Available: https://www.raspberrypi.org/products/

25

6 Appendix

Table 2: The achieved bandwidth in Mb/s and the packet loss percentage
when sending traffic to the hosted web server for each assigned bandwidth
for both platforms (bandwidth/percentage).
Platform # Bandwidth (Mb/s) ! 10 20 50 100 999

KVM 9.98/0 20/0 49.8/0 98.5/0.079 311/0.14
Docker 9.98/0 19.9/0 50/0 99.5/0.0012 386/0.22

Table 3: The achieved bandwidth in Mb/s and the packet loss percentage
when receiving traffic to the hosted web server for each assigned bandwidth
for both platforms (bandwidth/percentage).
Platform # Bandwidth (Mb/s) ! 10 20 50 100 999

KVM 10/0 20/0 50.1/0 100/0.042 156/80
Docker 10/0 20/0 50/0 101/0 132/84

26

Table 4: The p-values of all of the conducted t-tests. Values below 0,05 are
bolded.

Test # Platforms ! Docker-KVM Native-Docker Native-KVM
Sysbench (1 CPU) 0,256 - -
Sysbench (2 CPU) 0,443 - -
Sysbench (3 CPU) 0,000 - -
Sysbench (4 CPU) 0,000 0,035 0,012

Time (CPU) 0,000 0,000 0,591
Sysbench Read 1GB (Disk) 0,895 0,257 0,000

Sysbench Write 1GB (Disk) 0,000 0,617 0,000

Sysbench Read 2GB (Disk) 0,000 0,304 0,000

Sysbench Write 2GB (Disk) 0,000 0,119 0,000

dd Read 1GB (Disk) 0,000 0,000 0,000

dd Write 1GB (Disk) 0,000 0,000 0,000

dd Read 2GB (Disk) 0,000 0,001 0,000

dd Write 2GB (Disk) 0,000 0,505 0,000

dd Read (RAM) 0,442 0,579 0,121
dd Write (RAM) 0,042 0,828 0,040

mbw memcpy 1GB (RAM) 0,852 0,073 0,376
mbw dumb 1GB (RAM) 0,480 0,103 0,264

mbw mcblock 1GB (RAM) 0,000 0,000 0,000

mbw memcpy 2GB (RAM) 0,031 0,302 0,103
mbw dumb 2GB (RAM) 0,001 0,560 0,046

mbw mcblock 2GB (RAM) 0,431 0,483 0,183
Network receive 0,000 1 0,000

Network send 0,000 0,016 0,000

27

