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This thesis studies the ranked nodes method (RNM) developed to construct conditional
probability tables (CPTs) to Bayesian networks (BNs) based on expert elicitation. RNM
is used with BNs consisting of discrete random variables called ranked nodes. The idea
of RNM is to generate a CPT based on parameters that are assessed by an expert and
whose number is smaller than the number of elements in the CPT. In this thesis, RNM is
explained more explicitly than in the existing literature and its properties are studied from
both modeling and computational aspects.

The study on the modeling aspect of RNM interprets the properties of the method. The
use of RNM is shown to approximate the use of a hierarchical Bayesian model of conti-
nuous random variables. While this finding helps to understand RNM, it is also utilized to
explain results of an experimental study concerning the modeling accuracy of the method.
Furthermore, exact interpretations are derived for the weight parameters used in RNM. In
addition, the use of these interpretations in the transparent and consistent elicitation of the
weights is introduced. The study also discusses the application of RNM when the random
variables have interval or ratio scales — a theme which has not been addressed earlier.

The examination of the computational aspect of RNM consists of two experimental stu-
dies. In the first study, the calculation times of CPTs are measured. The results imply that
CPTs of ordinary sizes are calculated within one second when using a standard desktop
computer. In the second study, the modeling accuracy of RNM is explored by approxima-
ting CPTs found in real-life benchmark BNs. Though providing accurate approximations
in some cases, the modeling accuracy is found to be generally poorer than that of anot-
her method examined in the literature. The result is considered to reflect the relative rarity
of the probabilistic relationships compatible with the assumptions of RNM in the applica-
tions of BNs. On the other hand, the poorer modeling accuracy of RNM is suspected to
be caused by the smaller amount of parameters. Overall, the results of the experimental
studies imply that RNM provides means to readily construct CPTs that represent the pro-
babilistic relationships of random variables in a coarse manner. These rough CPTs can then
be used as initial probability estimates in an iterative elicitation process based on, e.g., the
sensitivity analysis of a BN.
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Pääaine: Systeemi- ja operaatiotutkimus
Sivuaine: Laskennallinen tiede ja tekniikka
Valvoja: Prof. Raimo P. Hämäläinen
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Tässä työssä tarkastellaan järjestysperusteisten solmujen menetelmää (JSM), jolla muodos-
tetaan ehdollisten todennäköisyyksien taulukoita (ETT) Bayes-verkkoihin (BV) perustuen
asiantuntija-arvioihin. JSM soveltuu järjestysperusteisiksi solmuiksi kutsutuista diskree-
teistä satunnaismuuttujista koostuvien Bayes-verkkojen (BV) todennäköisyyksien arvioin-
tiin. JSM:ssä ETT:t perustuvat asiantuntijan arvioimiin parametreihin, joiden lukumäärä
on ETT:n alkioiden lukumäärää huomattavasti pienempi. Tässä työssä JSM:n toimintape-
riaate esitellään aiempaa kirjallisuutta täsmällisemmin ja sen ominaisuuksia tarkastellaan
yhtäältä mallinnuksellisesta ja toisaalta laskennallisesta näkökulmasta.

Mallinnusnäkökulmaan liittyvässä tarkastelussa selvennetään JSM:n toimintaperiaatetta.
Menetelmän käytön osoitetaan approksimoivan jatkuvista satunnaismuuttujista koostu-
van hierarkkisen Bayes-mallin käyttöä. Tämä havainto auttaa ymmärtämään menetelmän
toimintaperiaatetta ja sitä käytetään myös selittämään menetelmän mallinnustarkkuut-
ta käsittelevän kokeen tuloksia. Lisäksi työssä johdetaan JSM:ssä käytettäville paino-
parametreille tulkinnat ja esitellään niiden hyödyntäminen painojen läpinäkyvässä ja joh-
donmukaisessa arvioimisessa. Havainnollistavan esimerkin avulla tarkastellaan JSM:n so-
veltamista välimatka- tai suhdeasteikollisiin satunnaismuuttujiin. Tätä teemaa ei ole ole
käsitelty kirjallisuudessa aiemmin.

JSM:n tarkastelu laskennallisesta näkökulmasta koostuu kahdesta kokeesta. En-
simmäisessä mitataan erikokoisten ETT:iden laskenta-aikoja. Kokeen tulokset osoittavat,
että JSM:llä kyetään laskemaan tyypillisen kokoisia ETT:itä sekunnissa tavanomaisel-
la pöytätietokoneella. Toisessa kokeessa JSM:n mallinnustarkkuutta tutkitaan approksi-
moimalla BV-sovelluksista löytyviä ETT:ita. Vaikka JSM tuottaa tarkkoja approksimaa-
tioita joissain tapauksissa, sen mallinnustarkkuuden todetaan olevan yleisesti heikom-
pi kuin toisella kirjallisuudessa esitetyllä menetelmällä. Tulokset viittaavat siihen, että
JSM:n oletusten kanssa yhteensopivat satunnaismuuttujien riippuvuustyypit ovat harvi-
naisia BV:iden sovelluksissa. Toisaalta JSM:n heikompi mallinnustarkkuus johtuu siitä,
että siinä käytetään vähemmän parametreja. Työn laskennallisen osan tulokset osoittavat,
että JSM:llä kyetään muodostamaan nopeasti ETT:ita, jotka kuvaavat satunnaismuuttujien
välisiä riippuvuussuhteita karkeasti. Näitä ETT:ita voidaan tarkentaa perustuen esimer-
kiksi BV:n herkkyysanalyysiin.

Avainsanat: Bayes-verkot, Vaikutuskaaviot, Todennäköisyyksien arviointi,
Järjestysperusteiset solmut
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sor Raimo P. Hämäläinen, I wish to thank for the patience he has showed regard-
ing the completion of this thesis as well as for the valuable advice he provided at
the end of the long writing process.

Sharing an office with Heikki Puustinen and Eero Rantala has meant that I don’t
need to fetch help for various technical challenges from far. Moreover, it has been
a highly valued privilege for me to share an easy and relaxed spirit in the office
with these guys, even on the most hectic days. I also wish to thank Jouni Pousi
for his versatile help and support at various phases of a work project connected
to this thesis. I am grateful for all my collaborators at the Systems Analysis Lab-
oratory for creating a positive work environment.

During the writing of this thesis, my friends have a been a huge source of strength
and happiness for me. So, I sincerely thank all my mates on the path of budo and
on other routes of life for the good times and shared experiences.

To my parents and my brother I also owe a big praise. The diligence that was
needed in the writing of this thesis I feel to have acquired from home. On the
other hand, I thank my family for giving me the basis to lead a good life where
the success of a person is not determined by his or her work achievements.

Espoo, September 16, 2013

Pekka Laitila

iii



Contents

1 Introduction 1

1.1 Bayesian Network Representation . . . . . . . . . . . . . . . . . . . 1

1.2 Existing Approaches to Probability Elicitation for
Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Bayesian Networks 7

2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Probabilistic Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Ranked Nodes Method (RNM) 13

3.1 Origin and Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Ranked Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Functioning of RNM . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Mapping of States to State Intervals . . . . . . . . . . . . . . 16

3.3.2 Weight Expressions . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.3 Weights of Parent Nodes . . . . . . . . . . . . . . . . . . . . . 20

3.3.4 Variance Parameter . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.5 Computation of Conditional Probability Tables . . . . . . . . 21

3.4 Analogy to Linear Regression . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Extensions to RNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Non-Monotonic Interaction . . . . . . . . . . . . . . . . . . . 28

3.5.2 Partitioned Expressions . . . . . . . . . . . . . . . . . . . . . 29

3.6 Benefits of RNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Issues on RNM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 On Modeling Aspect of RNM 34

iv



4.1 Interpretation of Scale [0, 1] . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Interpretation of Weights . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 WMEAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 WMIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 WMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.4 MIXMINMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.5 Use of Interpretations in Elicitation of Weights . . . . . . . . 42

4.2.6 Conceptual Challenges . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Variables with Interval or Ratio Scales as Ranked Nodes: Illustra-
tive Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Discretization of Interval and Ratio Scales . . . . . . . . . . . 46

4.3.2 Revised Interpretation of Scale [0, 1] . . . . . . . . . . . . . . 49

4.3.3 Elicitation of Weights . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.4 Inconsistency in Elicitation . . . . . . . . . . . . . . . . . . . 53

4.4 Comparison to Other Canonical Models . . . . . . . . . . . . . . . . 57

5 On Computational Aspect of RNM 61

5.1 Experimental Study on Computational
Complexity of RNM . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Experimental Study on Modeling Accuracy of RNM . . . . . . . . . 71

5.2.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusion 101

Bibliography 104

Appendices 111

A Distributions of Nodes in Figure 2.1 111

B Proof of Equation 4.5 113

v



C Results of Experiment in Section 5.1 121

vi



Chapter 1

Introduction

This thesis studies the ranked nodes method (RNM, [25]) developed to construct
conditional probability tables (CPTs) to Bayesian networks (BNs, e.g., [41, 45])
based on expert elicitation. RNM is designed for BNs consisting of discrete ran-
dom variables called ranked nodes [25]. The thesis contains a more exact and
clearer presentation of RNM than is available in the earlier literature discussing
the method [25, 26, 29]. On the basis of this presentation, RNM is examined from
both modeling and computational aspects. The results enhance the understand-
ing of the properties of RNM as well as the comprehension of the possibilities
and limitations related to it. Moreover, the new results developed in the thesis
provide practical improvements to RNM in the construction of CPTs for BNs and
for the decision analytic extension of BNs — influence diagrams — as well.

1.1 Bayesian Network Representation

BNs, see, e.g., [41] and [45], are used in many areas to represent uncertain knowl-
edge and reasoning with it. These include, e.g., medical diagnosis [33, 42], hard-
ware troubleshooting and diagnosis [32], as well as military applications [21, 47].
As a subclass of influence diagrams [41], BNs provide both graphical and numer-
ical representation for the probabilistic relationship between random variables.
The difference between influence diagrams and BNs is that, whereas in the for-
mer the decisions and the values of the related outcomes are explicitly presented
as decision and value nodes, the latter consists of only chance nodes associated
with random variables. If the states of some chance nodes in the BN are known,
the probability distributions of the others can be updated accordingly. This kind
of probabilistic inference helps one to make conclusions and decisions about the
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system under consideration. In this sense, BNs act as a tool supporting decision
making, problem solving, and risk analysis, similarly as the influence diagrams.

A BN is a directed acyclic graph of random variables that are represented by
chance nodes. As chance nodes are the only type of nodes in BNs, they are re-
ferred to as only nodes from now on. The BN implies the interrelationships of
the nodes through three levels of specification displayed in Figure 1. The graph-
ical level presents the nodes and directed arcs between directly interdependent
nodes. The functional level of specification defines the conditional and joint prob-
ability distributions of the nodes in an algebraic fashion. The numerical level
specifies the actual numbers associated to the functional level.

(a) Relational level (b) Graphical level (c) Numerical level

Figure 1: Three levels of a BN.

Figure 1a displays a group of nodes consisting of a single ”child node” and its
”parent nodes”. Usually, the nodes have discrete states and a CPT is used to de-
fine the probabilistic relationship between the child node and the parent nodes.
A CPT contains the conditional distributions of the child node for every possible
combination of the states of the parent nodes. The structure of the CPTs contains
information needed to form mathematical clauses on the functional level of the
BN. On the other hand, the actual numbers contained in the CPTs form the basis
of the numerical level of the BN. In many practical settings, there is not enough
statistical data or other necessary probabilistic information to define the distribu-
tions in the CPTs. In this case, domain experts are the only source for obtaining
the probabilities. The process of acquiring subjective views of the probabilities
from experts is often referred to as expert or probability elicitation [25, 49]. The
method studied in this thesis, RNM, is developed to aid the elicitation of proba-
bilities from experts.
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1.2 Existing Approaches to Probability Elicitation for

Bayesian Networks

In practice, probability elicitation for a BN is a challenging task. Acquiring proba-
bilities from people is acknowledged to be problematic in general [49, 12]. People,
even experts of the subject matter at hand, often find it difficult to assess prob-
abilities and therefore are prone to use heuristics, which leads often to biased
and poorly calibrated assessments [49]. People tend to, e.g., assess the proba-
bility of an event by the ease with which instances or occurrences of it can be
brought to mind. To overcome, or at least suppress, the problems of bias and
poor calibration of the probability assessments, a number of probability elicita-
tion techniques, such as probability wheel and reference lottery, are used in the
fields of decision and risk analysis, see, e.g., [40] and [49] for a review. However,
these conventional techniques tend to be time consuming and obtaining a single
probability assessment can take up to 30 minutes [19]. The size of a CPT grows
exponentially with the number of parent nodes and the amount of probabilities
needed to assess for a BN may be up to hundreds or thousands. Thus, the use of
the conventional elicitation techniques may cause insuperable time problems and
they are generally acknowledged to be inadequate for the probability elicitation
of BNs [19, 49, 54]. Another issue related to elicitation of the CPTs is that some
of the combinations of states of the parent nodes may be hard to imagine by the
expert. In such cases, the expert may feel reluctant to give exact numbers having
a high level of accuracy due to feeling incapable of doing it [11].

To deal with the challenges related to the probability elicitation of BNs, the con-
cept of iterative probability elicitation is introduced in [11]. In [11], it is argued
that the elicitation of probabilities from experts can be supported to a large extent
with iterative sensitivity analysis starting with rough initial probability assess-
ments. The analysis gives insight into which probabilities require a high level
of accuracy and therefore should have the elicitation be focused more carefully.
With this kind of approach, one can ease up the burden of elicitation and also save
time as the expert does not need to ponder every single probability assessment
so carefully. An elicitation technique aimed at getting the rough initial assess-
ments is presented in [54]. The technique combines qualitative and quantitative
information and is reported to require little time from the experts in their assess-
ments. However, the technique does not reduce the amount of probabilities to be
elicited which is marked to be a drawback in some contexts [13]. For example,
the military experts operate under time constraints and may not be keen to assess
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a large set of probability distributions, no matter how little time and effort each
assessment requires.

In [19], it is suggested that the cognitive workload of an expert should primar-
ily be reduced by introducing methods that require less probability assessments
and by developing tools that support the quantification of the assessments. In
the context of BNs, the amount of probabilities needed to elicit from an expert
is reduced in two ways. One way is to alter and redesign the structure of the
network. This can be conducted, e.g., using the principle of divorcing parents
by introducing intermediate variables [42], and removing arcs representing weak
dependencies [55]. Another way to reduce the number of probabilities assessed is
to use so-called canonical models [45]. In canonical models, underlying assump-
tions are made concerning the probabilistic relationships. Using these assump-
tions, the CPT is generated algorithmically from parameters that are assessed
by an expert and whose amount grows only linearly with the number of parent
nodes. The parameters are usually conditional probabilities related to some par-
ticular combinations of states of the parent nodes. Distributions obtained with
the canonical models are sometimes also referred to as parametric probability
distributions [19]. Well-known examples of canonical models are noisy-OR [45]
for binary nodes and its generalization called noisy-MAX [17, 52]. A review of
the canonical models is found in [18].

The use of canonical models is limited by the underlying assumptions. In most
of the canonical models, parent nodes are considered as cause variables and the
child node as an effect variable. Most of such models are also based on the as-
sumption of independence of causal influence of the parent nodes [31, 30, 18].
This means that the parent nodes are independent of each other in their ability to
affect the child node and that there is no synergy between them. In addition, it
is often assumed that each variable has a distinguished state, usually attributed
to absence or false, and that at least some causes must be capable of producing
the presence of the effect although all the other causes are absent. Because of
such underlying assumptions, the use of canonical models is not always possi-
ble. Moreover, in [57], the parameters of some canonical models are judged to be
too hard to perceive to make their elicitation reasonable.

Despite their limitations, canonical models are found to be practical and suitable
for many applications. The main reason for their popularity is the relief given
to the cognitive workload of the expert in the form of reduced amount of pa-
rameters. The parameters of the canonical models are also often considered to
be more intuitive and easier to assess than direct entries of CPTs [18]. Moreover,
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there is little insight into whether or not a BN with separately specified probabil-
ity assessments is more trustworthy than a BN in which parametric probability
distributions are used [19, 58].

In [59], there is a report of a study in which a test group is allowed to experiment a
stochastic model obeying noisy-OR distributions. Each member in the test group
forms opinion about the underlying probabilities of the model and these subjec-
tive probabilities are then elicited from them directly in the form of CPTs as well
as noisy-OR parameters. It turns out that when measuring their Euclidean dis-
tance from the true distributions, the probability distributions generated with the
noisy-OR parameters are closer than those elicited directly. In any case, with the
canonical models less time is required for elicitation and the saved time can be
exploited for verifying and refining both the structure and the probability distri-
butions of the BN. Therefore, one can use the canonical models to produce the
rough initial probability estimates for the iterative elicitation process introduced
in [11].

1.3 Contribution

This thesis deals with a canonical model designed for so called ranked nodes in-
troduced in [25]. Ranked nodes are random variables with discrete ordinal scales
that can be considered as subjective abstractions of some underlying continuous
quantities. The canonical model presented in [25] is designed to generate a CPT
in the case where the parent nodes and the child node are all ranked nodes. In
[25], the canonical model is not referred to with any particular name, but in this
text, the term Ranked Nodes Method (RNM) is used. In RNM, the expert assigns
weights describing the relative strengths of influence of the parent nodes on the
child node. The discrete states of the nodes are identified with subintervals on the
normalized scale [0, 1], and the conditional probability distribution of the child
node is obtained by appropriately weighing the states of the parent nodes.

RNM has been implemented in AgenaRisk software [38] and the method has been
used in real-life applications [3, 7, 15, 23, 24, 46]. Nevertheless, the exact function-
ing of RNM has not been documented in the earlier literature. In [25] [26], and
[29], RNM is described with varying precision. However, the method has not
been presented in any of them thoroughly enough for implementing it in prac-
tice. Related to this, there is a lack of discussion concerning the properties of
RNM and hence, insufficient understanding of its possibilities and limitations.
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In this thesis, RNM is presented for the first time with a precision that provides
means for implementing it in practice. Based on this presentation, both model-
ing and computational aspects of RNM are studied. The study dealing with the
modeling aspect includes interpreting the use of the normalized scale [0, 1] and
showing that the use of RNM approximates the use of a hierarchical Bayesian
model of continuous random variables. Moreover, exact interpretations are de-
rived for the weights used in RNM and the use of these interpretations in the
elicitation of the weights is discussed. In addition, the thesis discusses through
an illustrative example how to apply RNM to ranked nodes which have ratio or
interval scales representing the underlying continuous quantities. The study of
RNM on the modeling aspect also includes discussing its relation to other canon-
ical models. The examination of RNM computationally consists of two experi-
mental studies. In the first one, the computational complexity of the method is
investigated by measuring the calculation times of CPTs with a self-made imple-
mentation of RNM. The aim of this study is to clarify the limits in which the use of
RNM is sensible from the point of view of calculations times of the CPTs. The sec-
ond experimental study examines the modeling accuracy of RNM and the effect
of various computational configurations on it. In this study, CPTs in existing real-
life benchmark BNs are approximated using RNM similarly to an experiment in
[58] concerning noisy-MAX. Investigating RNM gives insights to how common
the probabilistic relationships described by CPTs obtained with RNM actually are
and how accurate CPTs the method can be expected to generate.

1.4 Structure

The thesis is organized as follows. Chapter 2 gives a short introduction to BNs
and their properties. RNM is thoroughly presented in Chapter 3 along with dis-
cussion on its properties. In Chapter 4, RNM is studied and discussed from the
viewpoint of the modeling aspect. In turn, Chapter 5 contains two empirical stud-
ies related to the computational features of RNM. Finally, concluding remarks
and themes of further research are given in Chapter 6.

6



Chapter 2

Bayesian Networks

A Bayesian network (BN) is a mathematical model that represents the proba-
bilistic relationships of random variables both graphically and numerically. This
chapter contains basic theory related to BNs and lays the foundation for under-
standing the canonical model presented in Chapter 3 and discussed for the rest
of the thesis. Section 2.1 gives a formal definition of BNs. Section 2.2 presents
computational mechanisms for probabilistic inference enabling the use of BNs in
supporting decision making, problem solving, and risk analysis. Overviews of
BNs are found, e.g., from [41] and [45].

2.1 Definition

There are different but equivalent definitions for the BN. In [45], the definition of
the BN is based on the concepts of d-separation and I-map. In [41], the concept of
Markov condition is used in the definition of the BN. Because these theoretical con-
cepts are not in focus in the thesis, it is now preferred to give a more descriptive
definition of the BN. The definition below follows that in [51].

Definition 1. A Bayesian network is a directed graph in which each node is anno-
tated with quantitative probability information. The full specification is as fol-
lows:

1. A set of random variables makes up the nodes of the network. Variables
may have a finite number of discrete states. Alternatively, the variables
may have an infinite amount of states corresponding to the points of a con-
tinuous scale.
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2. A set of directed links or arcs connects pairs of nodes. If there is an arc from
node X to node Y , X is said to be a parent node of Y and Y is said to be a
child node of X .

3. If the node Xi does not have any parent nodes, a marginal probability dis-
tribution P (Xi) is associated with it. These types of nodes are called root
nodes. If Xi has parent nodes Pai, then a set of conditional distributions
P (Xi|Pai) is associated with it. When the nodes have discrete states, P (Xi|Pai)
is represented by a conditional probability table (CPT). The CPT specifies
the conditional probability distributions of the dependent node, known as
the child node, for each combination of states of the parent nodes.

4. The graph has no directed cycles.

The study in this thesis is concentrated to BNs consisting of discrete nodes. Hence,
the future presentation of BNs is written from the point of view of discrete nodes
using the corresponding mathematical notation.

For a BN consisting of nodes X = {Xi}ni=1, the joint probability P (X = x) is ob-
tained with the formula [45, 51, 41]

P (X = x) =
n∏
i=1

P (Xi = xi|Pai = pai). (2.1)

Equation 2.1 implies that the joint probability distribution of the whole BN can be
represented by using the marginal distributions of the root nodes and the CPTs
of the other nodes. Thus, the BNs provide a dexterous way to store and represent
the joint probability distribution of random variables [51].

Figure 2.1: Example Bayesian network modeling the productivity of an employee
at a workplace.

Figure 2.1 presents an example BN that models the work productivity of a single
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employee. There are three parent nodes: Skills, Spryness, and Disturbance Level.
Skills presents the professional skills of the employee. Spryness describes how
brisk or tired the employee is. Disturbance Level illustrates the level of disrup-
tion affecting the employee. Productivity is the child node of the previous three
and describes the work productivity of the employee. All the nodes have states
{High, Medium, Low}. The probability distributions associated with the nodes
are presented in Tables A-1–A-4 of Appendix A.

According to [16], the BN implies the interrelationships of the nodes through
three levels of specification. The graphical level presents all the nodes and the
arcs between directly interdependent nodes. It is the graphical level of the ex-
ample BN that is displayed in Figure 2.1. The functional level of specification
defines the states of the nodes and thus implies the probability distributions
associated with the nodes algebraically. On the functional level, one can form
mathematical clauses about the probabilistic relationships the BN implies. For
example, by applying Equation 2.1, the clause for a particular joint probability
P (X1 = Medium,X2 = Low,X3 = Low,X4 = High) in the example BN is given
by

P (X1 = Medium,X2 = Low,X3 = Low,X4 = High) =

P (X1 = Medium,X2 = Low,X3 = Low)∗
P (X4 = High|X1 = Medium,X2 = Low,X3 = Low) =

P (X1 = Medium)P (X2 = Low)P (X3 = Low)∗
P (X4 = High|X1 = Medium,X2 = Low,X3 = Low), (2.2)

where the joint distribution P (X1 = Medium,X2 = Low,X3 = Low) is equal
to the product P (X1 = Medium)P (X2 = Low)P (X3 = Low) because the parent
nodes X1, X2, and X3 are independent of each other.

The third level, i.e., the numerical level, specifies the numbers in the probability
distributions associated with the nodes. Through the numerical level, the clauses
on the functional level get real values associated with them. For example, using
the numbers in Tables A-1–A-4 of Appendix A, Equation 2.2 gives
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P (X1 = Medium,X2 = Low,X3 = Low,X4 = High) =

P (X1 = Medium)P (X2 = Low)P (X3 = Low)∗
P (X4 = High|X1 = Medium,X2 = Low,X3 = Low) =

0.60 ∗ 0.25 ∗ 0.167 ∗ 0.142 = 0.0036.

The direction of the arc between two directly interdependent nodes can be freely
decided. In practice, the direction of the arc can depend on different factors. If
the parent node and the child node describe a causal dependence, it may feel
natural that the arc goes from the cause to the effect. Sometimes the probabilis-
tic information available may define the direction of the arc. For example, there
might be data on the probability of the presence of a certain disease given certain
symptoms but no data on the probabilities of the occurrence of different symp-
toms when a certain disease is present. In the absence of data, the direction of
the arc may be decided based on which way it is easier to assess the conditional
probabilities.

2.2 Probabilistic Inference

As a BN represents the probabilistic relationships between its variables, it is used
to answer probabilistic queries about them. The queries may concern the joint
distribution of the whole network as well as marginal and conditional distribu-
tions of specific nodes.

The joint probability distribution of the whole BN is obtained by applying Equa-
tion 2.1. The marginal distribution of a single node is obtained by repeatedly
summing conditional probabilities over the state combinations of the parent nodes.
The terms to be summed are weighted with the probability of the state combina-
tion of the parent nodes. Calculating the marginal distribution is called marginal-
ization. For example, in the example network, the probability for Productivity (X4)
to be in state High is
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P (X4 = High) =
∑
pa4

P (X4 = High|Pa4 = pa4)P (Pa4 = pa4) =∑
x1

∑
x2

∑
x3

P (X4 = High|X1 = x1, X2 = x2, X3 = x3)P (X1 = x1, X2 = x2, X3 = x3) =∑
x1

∑
x2

∑
x3

[P (X4 = High|X1 = x1, X2 = x2, X3 = x3)] ∗

P (X1 = x1)P (X2 = x2)P (X3 = x3) = 0.20, (2.3)

where
∑

xi
refers that the sum is taken over all the states of the node Xi.

If some nodes in the BN are fixed to be in certain states, the marginal distribu-
tions of other nodes can be updated based on this set evidence. Calculation of
the updated marginal distributions is called belief updating [45] or probabilistic
inference [41]. For example, if Skills (X1) is known to be in state Low, the posterior
probability for Productivity (X4) to be in state High is obtained by marginalizing
over the states of Spryness (X2) and Disturbance Level (X3) as follows:

P (X4 = High|X1 = Low) =∑
x2

∑
x3

P (X4 = High|X1 = Low,X2 = x2, X3 = x3)P (X2 = x2, X3 = x3|X1 = Low) =∑
x2

∑
x3

[P (X4 = High|X1 = Low,X2 = x2, X3 = x3)]∗

P (X2 = x2)P (X3 = x3) = 0.01. (2.4)

Here, the probability values in Appendix A are applied again. In addition, the
independence of the parent nodes X1, X2, and X3 is also utilized.

The directions of the arcs in BNs define the forms of the CPTs in the sense that the
conditional distributions of the child node are displayed. However, probabilistic
queries can be conducted against the directions of the arcs. For example, if it is
known that Productivity (X4) is in state High, the posterior probability for Skills
(X1) to be in state Low is calculated by applying Bayes’ rule [51]

P (A|B) =
P (B|A)P (A)

P (B)
, (2.5)

which yields
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P (X1 = Low|X4 = High) =
P (X4 = High|X1 = Low)P (X1 = Low)

P (X4 = High)

=
0.01 ∗ 0.15

0.20
= 0.008, (2.6)

where P (X4 = Low) is calculated according to Equation 2.3 and P (X4 = High|X1 =

Low) according to Equation 2.4. P (X1 = Low) is from Table A-1 in Appendix A.

In real-life applications, probabilistic inference is computerized using various in-
ference algorithms [41, 51]. Some of the inference algorithms are exact in the
sense that no stochastic sampling is involved with them. Inference algorithms
based on stochastic sampling are referred to as approximate. A challenge is the
computational complexity. In the worst case, inference algorithms are NP-hard
referring to the complexity of the task in terms of nondeterministic polynomial
time [8]. However, there are several exact inference algorithms that allow prob-
abilistic inference in BNs consisting of tens or hundreds of nodes to be tractable,
see, e.g., [36] and [44]. In most of the applications, the BNs are not bigger than
this and thus, the computerized Bayesian updating is rapid, taking between a
fraction of a second and a few seconds. There are several software that enable the
construction and manipulation of BNs through a graphical user interface. Exam-
ples are commercial Hugin [2] and Netica [9], as well as GeNIe [14] which is free
to download from the internet.

BNs and the related software provide a useful way to model complex systems
of random variables and investigate their dependencies in an illustrative way.
The possibility to build the network by oneself is often helpful in perceiving the
structural nature of the system under consideration. This feature is discussed,
e.g., in [5], [11], and [35]. The analysis of the probabilistic dependencies between
the variables is relieved by the ability of the software to carry out probabilistic
inference and present the updated marginal distributions. For this reason, BNs
have been exploited in various practical problems, see, e.g., [21], [23], [47], and
[54].
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Chapter 3

Ranked Nodes Method (RNM)

The ranked nodes method (RNM, [25]) is a canonical model designed to aid in the
construction of CPTs for a type of random variables called ranked nodes whose
parent nodes are also ranked nodes. This chapter presents RNM in detail and mo-
tivates the study of its properties in Chapters 4 and 5. The presentation of RNM
provided in this chapter is the first time when the method is explained meticu-
lously enough for its implementation in practice. The chapter begins with Section
3.1 presenting the origin and the basic idea of RNM. The concept of ranked nodes
is explained more properly in Section 3.2. Section 3.3 presents a detailed descrip-
tion of RNM and Section 3.4 discusses its analogy to linear regression. Section 3.5
presents means that diversify the use of RNM. The benefits of RNM are discussed
in Section 3.6 whereas Section 3.7 presents issues on RNM that motivate the more
elaborative studies of the method in Chapters 4 and 5.

3.1 Origin and Basic Idea

RNM evolved over a number of years from the process of engaging with domain
experts in various practical applications of BNs [25]. In many of the BNs, there
have been nodes with states measurable only on a subjective scale like Very Low,
Low, Medium, High, Very High and only limited statistical data, if any, has been
available to inform the probabilistic relationship between the nodes. Yet, there
has been significant expert subjective judgement to utilize. While assessing the
CPTs, rather than considering numerical probabilities, the experts have usually
found it easier to understand and express the interaction of the nodes with asser-
tions about the ”central tendency” of the child node [25]. Here, the term central
tendency refers to a qualitative description of how the unimodal probability dis-
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tribution is clustered over the states of the child node. An example of the form
of statements given is ”When parent node X1 is in the state Very Low and parent
nodeX2 is in the state Very High, child node Y is centred below the state Medium”.
Often, the experts see the central tendency of the child node on its ordinal scale
forming as some kind of a weighted combination of the relative states of the par-
ent nodes on their ordinal scales [25]. Based on this mental weighting scheme,
they can give a series of assertions describing the central tendency of the child
node for a given combination of states of the parent nodes.

RNM was developed to model quantitatively the mental weighting scheme of
the experts. The basis of RNM is to map the states of the nodes into a numerical
scale. By using the numerical scale and weights assigned to the parent nodes, the
central tendency of the child node is calculated for a given combination of states
of the parent nodes. The less precise the central tendency of the child node is
considered, the vaguer distribution it will receive.

3.2 Ranked Nodes

In [25] that introduces the concept of ranked nodes, they are said to represent
qualitative variables that are abstractions of some underlying continuous quanti-
ties. More specifically, ranked nodes are defined in [25] as discrete random vari-
ables whose states are expressed on an ordinal scale that can be mapped onto a
bounded continuous scale. The continuous scale used in [25] is the unit interval
[0, 1] and the states of a ranked node correspond to subintervals of equal width
on [0, 1]. In [26], ranked nodes are explained to represent real-world variables
that are typically measured on a discrete subjective scale. Usually, either 3, 5 or 7
point scales are used for the ranked nodes. In the 3 point scale, the states could
be {High, Medium, Low}. On the 5 and 7 point scales, the ranges could be from
V ery High to V ery Low and from Highest to Lowest, respectively.

The nodes in the example BN in Figure 2.1 are examples of ranked nodes. For
each of these nodes, the states of the 3 point scale {High, Medium, Low} are
subjective in nature and can be considered to represent the discretization of a
continuous quantity. For example, one might say that there are different kinds of
degrees of spryness that all can be summoned under the state Low of the node
Spryness. Considering the unit interval [0, 1], the states of a given node in the ex-
ample BN could be mapped onto subintervals [0, 1/3), [1/3, 2/3), and [2/3, 1] or
[2/3, 1], [1/3, 2/3), [0, 1/3), respectively. Whether the first subinterval is starting
from 0 or ending to 1 depends on the context. Now, a logical mapping is the one
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depicted in Figure 3.1. That is, (Low, Medium, High) are mapped onto ([0, 1/3),
[1/3, 2/3), [2/3, 1]) for Skills, Spryness, and Productivity, whereas for Disturbance
Level the same states would be mapped onto ([2/3, 1], [1/3, 2/3), [0, 1/3)), respec-
tively. With this mapping, the subinterval ending to 1 corresponds to the best
state for all the nodes. This kind of consistency in the mapping is required when
using RNM. In the rest of the thesis, the unit interval [0, 1] is referred to as the
normalized scale. In addition, a subinterval of [0, 1] corresponding to a certain state
of a ranked node is referred to as a state interval.

Figure 3.1: Example network of Figure 2.1 with the state intervals corresponding
to the states of each variable.

3.3 Functioning of RNM

In its basic form, the generation of a CPT for a child node using RNM consists of
five major steps:

1. Mapping states of the nodes to state intervals

2. Selecting a weight expression

3. Assigning weights to the parent nodes

4. Assigning value to a variance parameter

5. Computation of the CPT using the above settings

The first four steps require involvement of the expert whereas the fifth step is car-
ried out automatically. Figure 3.2 presents RNM in a conceptual diagram when
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a child node has n parent nodes. In Figure 3.2, steps 1–4 are displayed as grey
boxes whereas the parts related to step 5 are white boxes. The five main steps
of RNM are next thoroughly explained in separate sections. The example BN in
Figure 2.1 is used to demonstrate the execution of the steps in practice.

Figure 3.2: Conceptual diagram of RNM when a child node has n parent nodes.
The grey boxes require involvement of the expert. The dashed lines indicate that
either the weights (w1, ..., wn) or (wMIN , wMAX) are used.

3.3.1 Mapping of States to State Intervals

The first step in RNM is to decide how the states of the ranked nodes are mapped
into the state intervals. As explained in Section 3.2, the ordered states of the
ranked node are always identified with consecutive subintervals of same width
on [0, 1]. However, the direction of this mapping has to be defined. That is, one
must decide whether, e.g., the states Low, Medium, High are identified to the
state intervals [0, 1/3), [1/3, 2/3), and [2/3, 1] or [1, 2/3], (2/3, 1/3], and (1/3, 0], re-
spectively. The directions of the mappings for different nodes should be sensible
with respect to each other from the point of view of the probabilistic relationship
between the parent nodes and the child node. The way the states of the nodes
of the example BN are mapped into state intervals in Figure 3.1 demonstrates a
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sensible mapping scheme.

3.3.2 Weight Expressions

After defining how the states of the ranked nodes are mapped to the normalized
scale, one needs to select a weight expression that best describes the probabilistic
relationship between the parent nodes and the child node. In practice, the weight
expressions are functions that determine the central tendency of the child node
for a given combination of states of the parent nodes. The weight expressions
aggregate weighted points from the normalized scales of the parent nodes to a
point on the normalized scale of the child node. The mathematical forms of the
weight expressions are presented in Section 3.3.5 where the calculations carried
out in RNM are explained in detail. In this section, the weight expressions are
described so that one can understand the differences between them and select
the most suitable one without the need to see or understand their mathematical
nature. The term weight expression is not actually used in [25]. However, the term
is found in AgenaRisk software [38] containing the implementation of RNM and
is therefore adapted in this thesis.

There are four different weight expressions presented in [25]:

1. Weighted mean (WMEAN)

2. Weighted minimum (WMIN)

3. Weighted maximum (WMAX)

4. Mixture of minimum and maximum (MIXMINMAX)

The characteristics of the weight expressions are described using the example BN
and by referring to Figure 3.3. In Figures 3.3a–3.3d, the probability distribution of
Productivity is shown for the different weight expressions when it is conditioned
to an extreme combination of the states of the parent nodes Skills, Spryness, and
Disturbance Level. Recall now, that for Skills, Spryness, and Productivity, the order
of the states with decreasing preference is (High, Medium, Low), but for Disturbance
Level it is the opposite.

In WMEAN, the expected value of the child node on [0, 1] corresponds to the
weighted mean of the states of the parent nodes on [0, 1]. Comparing the WMEAN
scenarios in Figures 3.3b–3.3d to the WMEAN scenario in Figure 3.3a reveals that
dropping one parent node from the best state to the worst one shifts the central
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.3: Distributions of Spryness obtained with the alternative weight expres-
sions.

tendency of Productivity from High towards the worse states. The shift is largest
when Skills is in the weakest state and smallest when Spryness is in the weakest
state. Thus, Skills has the strongest effect on Productivity and Spryness the weak-
est, respectively. When comparing the WMEAN scenarios in Figures 3.3f–3.3h to
that in Figure 3.3e, one observes that as one of the parent nodes changes from the
worst state to the best one, also the distribution of Productivity shifts towards the
best state. The magnitude of the shift caused by a given parent node is the same
as in Figures 3.3b–3.3d. This type of behaviour of Productivity indicates that its
central tendency can be depicted as a weighted average of the states of the parent
nodes.

In WMIN, the child node tends to follow that parent node whose state is the low-
est on the normalized scale [0, 1]. How strong this tendency is, depends on the
relative strengths of influence of the parent nodes on the child node. The com-
parison of the WMIN scenarios in Figures 3.3b–3.3d and Figure 3.3a exemplifies
the nature of WMIN: a change in any parent node from the best state to the worst
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one strongly shifts the distribution of Productivity away from state High. As with
WMEAN, the shift is largest when the state of Skills is changed, and smallest
when the state of Spryness is changed. Therefore, the parent nodes now have the
same order with respect to the strengths of influence as with WMEAN. However,
WMIN is more pessimistic than WMEAN — if any of the parent nodes is in the
worst state, then that alone makes it highly improbable for Productivity to be in
the best state. The stronger the influence of the parent node is, the more it can
”pull” the central tendency of the child node towards the worst state. On the
other side, the parent nodes with a strong influence can better ”lift” the central
tendency of the child node away from the worst state. This is seen when compar-
ing the WMIN scenarios in Figures 3.3e–3.3h. The degree of the shift of Productiv-
ity towards the best state varies with the parent node rising from the worst to the
best state. The largest shift is achieved when Skills rises, and the smallest when
Spryness rises.

The nature of WMAX is the same as of WMIN but to opposite direction. That is, in
WMAX the child node tends to follow the parent node whose state is the highest
on the normalized scale. Therefore, in the WMAX scenarios in Figures 3.3a–3.3d,
the change of any parent node from the best to the worst state does not shift the
distribution of Productivity substantially. On the other side, the WMAX scenarios
in Figures 3.3e–3.3h point out that the change of any parent node from the worst
state to the best one can strongly shift the distribution of the child node towards
the best state. Again, the parent nodes have varying strengths of influence on
Productivity. The order of the strengths in the WMAX scenarios is the same as
with WMEAN and WMIN.

In MIXMINMAX, the central tendency of the child node is determined by a weighted
mean of the highest and lowest states on the normalized scale found from the
combination of states of the parent nodes. Thus, the MIXMINMAX scenarios are
all identical in Figures 3.3b–3.3d. The difference to the distribution of Productivity
is the same independent of which parent node changes its state from the best to
the worst. Similarly, the change of any parent node from the worst state to the
best one, as displayed in Figures 3.3e–3.3h, always results to the same change in
the distribution of the child node. In all of the Figures 3.3b–3.3d and 3.3f–3.3h,
the best and worst states found from the parent nodes are the same, i.e., they cor-
respond to the lowest and highest third on the normalized scale [0, 1]. One might
wonder, why there is then any difference between the MIXMINMAX scenarios
in Figures 3.3b–3.3d and 3.3f–3.3h. This is because in Figures 3.3b–3.3d there is
always only one parent node in the worst state whereas in Figures 3.3f–3.3h there
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are always two. This difference causes the computational routine in MIXMIN-
MAX to produce different results. The routine is thoroughly presented in Section
3.3.5.

In the case study reported in [25], the selection of the weight expression was
based on taking combinations of extreme states of the parent nodes, such as Very
High, Very Low, etc., and asking the experts to estimate the most probable re-
sponse of the child node conditioned on these states. As an aid, a ”truth table”
similar to the one presented in Table 3.1 would be used. Examination of the filled
truth table then reveals which weight expression one should select. However, in
[25], no exact scheme is presented for how to deduce the most appropriate weight
expression from the filled truth table. Presumably in most of the cases it is evi-
dent due to the distinct nature of each of the weight expressions. This idea is
supported by the note in [25] that once the experts became familiar with the ap-
proach, they often identified the appropriate weight expression without the use
of the truth table.

Table 3.1: Example of a ”truth” table for determining the most suitable weight
expression in RNM.

Parent Node 1 Parent Node 2 Child Node
Very High Very High Very High
Very High Very Low Very Low
Very Low Very High Low
Very Low Very Low High

Suppose that in the example BN, the probability distribution of Productivity tends
to incline towards Low if any of the parent nodes is in the worst state. In addition,
suppose that this effect is considered to be stronger when Skills is in the worst
state compared to either Spryness or Disturbance Level being in the worst state. In
this case, the most suitable weight expression is WMIN.

3.3.3 Weights of Parent Nodes

The third step in RNM is to assign the weights related to the selected weight ex-
pression. The weights depict the relative strengths by which the parent nodes
affect the central tendency of the child node. If the selected weight expression
is WMEAN, WMIN, or WMAX, a weight wi needs to be assigned to each parent
node. If the weight expression MIXMINMAX is used, the central tendency of
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the child node is determined only by the best and worst state in the state com-
bination of the parent nodes. Hence, only two weights, denoted by wMIN and
wMAX , need to be assigned in this case. For all the weight expressions it applies,
that the larger the weight is, the stronger is the influence of the corresponding
parent node. RNM is implemented in AgenaRisk software [38] developed by the
innovators of RNM. In AgenaRisk, the default range of the weights used with all
weight expressions is [1, 5].

For the example BN, let the weights of the parent nodes to be used with WMIN be
(w1, w2, w3) = (5, 3, 3). This choice of weights reflects the idea that Skills is consid-
ered to be the most important factor determining Productivity, whereas Spryness
and Disturbance Level are thought to be less important factors in an equal manner.

3.3.4 Variance Parameter

Assessing the variance parameter σ2 is the fourth step in RNM. This parameter
represents how much fluctuation one considers to be in the central tendency of
the child node for a given combination of states of the parent nodes. The smaller
σ2 is, the less vague the conditional probability distribution of the child node will
be. In practice, σ2 is the variance of a normal distribution that is integrated over
the state intervals of the child node to generate the conditional probability distri-
bution. This procedure is explained in detail in the next section. In AgenaRisk
software [38], the default scale for σ2 is [5 ∗ 10−4, 0.5].

Suppose that in the example BN, the conditional probability distribution of the
child node is known to concentrate strongly on some specific state for a given
combination of states of the parent nodes. To reflect this lack of vagueness in the
probability distributions, the value of the variance parameter is set to σ2 = 0.01

which is considered small in [25].

3.3.5 Computation of Conditional Probability Tables

Once the first four steps displayed in Figure 3.2 are performed, the CPT of the
child node can be generated automatically. This corresponds to the fifth step in
Figure 3.2 and is next presented and illustrated using the example BN.

In the fifth step of RNM, the probability distributions in the CPT are generated
by repeating the same routine of calculations for each combination of states of the
parent nodes. This loop of routines proceeds as follows. Let (x1, ..., xn) be a given
combination of states of the parent nodes and let (z1, ..., zn) denote the state inter-
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vals identified with them, respectively. Determining the state intervals (z1, ..., zn)

corresponding to the given (x1, ..., xn) is step 5a in Figure 3.2. For example, the
combination of states (x1, x2, x3)=(Low,High, Low) of the parent nodes Skills (X1),
Spryness (X2), and Disturbance Level (X3) in the example BN is identified with the
combination (z1, z2, z3) = ([0, 1/3), [2/3, 1], [2/3, 1]) of the state intervals, see Fig-
ure 3.1.

After determining the state intervals (z1, ..., zn), s equidistant sample points {zi,j}sj=1

are taken from each of them. This is performed so that the first sample point is
the lower bound of the given state interval and the last one is the upper bound.
Thus, the sample points are determined deterministically. From the n ∗ s sam-
ple points taken, sn combinations of sample points {(z1,k, ..., zn,k)}snk=1 are formed
so that in each combination there is one sample point from each parent node.
Taking the sample points and forming combinations of them is step 5b in Fig-
ure 3.2. For example, using s = 5, the sample points taken from z1 determined
above are {z1,j}5

j=1 = {0, 0.0833, 0.1667, 0.25, 0.333}. For z2 and z3, the sample
points are {z2,j}5

j=1 = {z3,j}5
j=1 = {0.6667, 0.75, 0.8333, 0.9167, 1}. From these sam-

ple points, 53 = 125 combinations {(z1,p, z2,r, z3,q)}5
p,r,q=1 are then formed. These

include combinations such as (z1,1, z2,1, z3,1) = (0, 0.6667, 0.6667) and (z1,3, z2,1,

z3,5) = (0.1667, 0.6667, 1).

When the combinations of sample points {(z1,k, ..., zn,k)}snk=1 are formed, the se-
lected weight expression is used to calculate the corresponding mean values {µk}snk=1

for all of them. This is step 5c in Figure 3.2. The functional forms of the weight
expressions are given below with examples presenting their properties.

With WMEAN, µk is calculated by

µk = WMEAN(z1,k, ..., zn,k, w1, ..., wn) =

∑n
i=1wi ∗ zi,k∑n

i=1wi
, (3.1)

where zi,k is the sample point of the ith parent node in the kth combination
of the sample points and wi is the weight of the ith parent node. WMEAN is
the weighted average of the sample points. Figure 3.4a illustrates µk given by
WMEAN, when there are two parent nodes with weights w1 = 5, w2 = 2 and
sample points z1,k = 0.20, z2,k = 0.80. The weighted mean of the sample points,
0.37, is now clearly closer to the sample point z1,k = 0.20 coming from the parent
node with the larger weight.
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When WMIN is used, µk is

µk = WMIN(z1,k, ..., zn,k, w1, ..., wn) = min
i=1,...,n

{
wi ∗ zi,k +

∑n
j 6=i zj,k

wi + n− 1

}
. (3.2)

If all the weights wi are large, WMIN is close to taking the minimum of the set
{zi,k}ni=1. On the other hand, when all the weights {wi} are equal to 1, then
WMIN gives the arithmetic mean of the set {zi,k}ni=1. With weights of different
magnitudes, WMIN results in a value between the minimum and the arithmetic
mean. Figure 3.4b displays µk obtained when applying WMIN to the sample
points z1,k = 0.20, z2,k = 0.80. The resulting value, 0.30, is smaller than the value
calculated using WMEAN, 0.37, implying the tendency of WMIN to let µk fol-
low more strongly the small values in the combination of the sample points than
WMEAN would.

(a)

(b)

(c)

Figure 3.4: Resulting µk when using the sample points of two parent nodes and
the weight expression (a) WMEAN, (b) WMIN, and (c) WMAX.

Using WMAX, µk is calculated by

µk = WMAX(z1,k, ..., zn,k, w1, ..., wn) = max
i=1,...,n

{
wi ∗ zi,k +

∑n
j 6=i zj,k

wi + n− 1

}
. (3.3)

Now, µk is the maximum of the set from which WMIN selects the minimum.
Thus, the value given by WMAX is between the maximum and the arithmetic
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mean of the set {zi,k}ni=1. Figure 3.4c presents µk resulting from the use of WMAX.
The value obtained, 0.60, is larger than the value 0.37 from WMEAN. This depicts
how WMAX inclines µk towards the large values in the combination of the sample
points more strongly than WMEAN.

Figure 3.5 presents µk for (a) WMEAN (b) WMIN, and (c) WMAX, when the sam-
ple points of the parent nodes in Figure 3.4 are switched. As the parent node
with weight 5 has a large point value, 0.8, and the parent node with weight 2
has a small point value, 0.2, the weighted average of them in Figure 3.5a, 0.63,
is quite large as well. The value of the outcome of WMIN in Figure 3.5b, 0.40, is
rather small again, but not as small as in Figure 3.4b. In WMIN, a parent node
with a small weight cannot make the mean of the child node go as low as a parent
node with a greater weight. From another perspective, a parent node with a large
weight can prevent the mean of the child node from dropping too low.

The behavior of WMAX reveals the same features as WMIN but in the opposite
manner. The value in Figure 3.5c, 0.70, resulting from the use of WMAX is larger
than the value 0.60 produced by WMAX in Figure 3.4c. Thus, a parent node with
a large weight can lift the mean of the child node higher than a parent node with
a smaller weight. On the other hand, the small value of a parent node with a large
weight can prevent the mean of the child node from rising too high.

(a)

(b)

(c)

Figure 3.5: Resulting µk when the sample points of the parent nodes presented in
Figure 3.4 are switched and (a) WMEAN, (b) WMIN, and (c) WMAX is used.
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When the selected weight expression is MIXMINMAX, µk is determined by

µk = MIXMINMAX(z1,k, ..., zn,k, wMIN , wMAX) =

wMIN ∗mini=1,...,n{zi,k}+ wMAX ∗maxi=1,...,n{zi,k}
wMIN + wMAX

. (3.4)

As MIXMINMAX is the weighted average of the minimum and maximum values
of the set {zi,k}ni=1, no weights are assigned to the parent nodes. Thus, all the par-
ent nodes have the same contribution to the child node when using this weight
expression. Figure 3.6 illustrates the generation of µk based on the combination
of sample points of three parent nodes with wMIN = 5 and wMAX = 2. One ob-
tains the same µk = 0.37 as with WMEAN in Figure 3.4. This stems from that the
sample point z3,k does not have any effect on µk in Equation 3.4.

Figure 3.6: Resulting µk when MIXMINMAX is used as the weight expression
with wMIN = 5 and wMAX = 2.

The calculation of µk is now illustrated with the example BN. The weight ex-
pression is WMIN and the weights are (w1, w2, w3) = (5, 3, 3). The state combi-
nation under consideration is (x1, x2, x3)=(Low, High, Low) which corresponds
to the combination (z1, z2, z3) = ([0, 1/3), [2/3, 1], [2/3, 1]) of the state intervals.
Now, with s = 5, the sample points are {z1,j}5

j=1 = {0, 0.0833, 0.1667, 0.25, 0.333}
and {z2,j}5

j=1 = {z3,j}5
j=1 = {0.6667, 0.75, 0.8333, 0.9167, 1}. For the combination

(z1,1, z2,1, z3,1) = (0, 0.6667, 0.6667) of the sample points, µ1 is calculated as

µ1 = WMIN(0, 0.6667, 0.6667, 5, 3, 3) =

min

{
5 ∗ 0 + 0.6667 + 0.6667

5 + 2
,
3 ∗ 0.6667 + 0 + 0.6667

3 + 2
,
3 ∗ 0.6667 + 0 + 0.6667

3 + 2

}
=

min{0.1905, 0.5334, 0.5334} = 0.1905. (3.5)

After calculating the mean values {µk}snk=1 associated with all the combinations of
the sample points, each µk is used as the mean of a normal distribution N(µk, σ

2)

truncated to the normalized scale [0, 1]. That is, the probability density function
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of this doubly truncated normal distribution TNormal(µk, σ2, 0, 1) is given by

TNormpdf(x, µk, σ
2, 0, 1) =

Normpdf(x, µk, σ
2)

Normcdf(1, µk, σ2)−Normcdf(0, µk, σ2)
, (3.6)

where Normpdf(x, µk, σ
2) is the probability density function of N(µk, σ

2), i.e.,

Normpdf(x, µk, σ
2) =

1√
2πσ

e−
(x−µk)

2

2σ2 , (3.7)

and Normcdf(x, µk, σ
2) is the corresponding cumulative distribution function.

For each µk, a value P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn;µk) is determined by the
equation

P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn;µk) =

∫ bn+1

an+1

TNormpdf(x, µk, σ
2, 0, 1)dx,

(3.8)
where [an+1, bn+1] = zn+1 is the state interval corresponding to the state xn+1 of the
child nodeXn+1. This is step 5d in Figure 3.2. To illustrate this step with the exam-
ple BN, the value of P (X4 = Low|X1 = Low,X2 = High,X3 = Low;µ1) is calcu-
lated. Now, state Low of Productivity (X4) corresponds to the state interval [0, 1/3)

and thus TNormal(µ1, σ
2, 0, 1) is integrated over that interval. Technically, the

integration is carried out by integrating the normal distribution N(µ1, σ
2) with

mean µ1 = 0.1905 and variance σ2 = 0.01 over [0, 1/3), and dividing the result
with the integral of N(µ1, σ

2) over [0, 1]. This yields

P (X4 = Low|X1 = Low,X2 = High,X3 = Low;µ1) =∫ 1/3

0
Normpdf(x, µ1, σ

2)dx∫ 1

0
Normpdf(x, µ1, σ2)dx

=∫ 1/3

0
Normpdf(x, 0.1905, 0.01)dx∫ 1

0
Normpdf(x, 0.1905, 0.01)dx

= 0.9212. (3.9)

When P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn;µk) is calculated for each µk, the prob-
ability P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn) in the CPT of Xn+1 is constructed as
their arithmetic mean, i.e.,

P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn) =

1

sn

sn∑
k=1

P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn;µk). (3.10)

To obtain P (X4 = Low|X1 = Low,X2 = High,X3 = Low) in the example, the
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calculation presented in Equation 3.9 would be carried out with each member
of {µk}125

k=1. Then, P (X4 = Low|X1 = Low,X2 = High,X3 = Low) would
be obtained as the arithmetic mean of the set {P (X4 = Low|X1 = Low,X2 =

High,X3 = Low;µk)}125
k=1.

The discussion above referring to Figure 3.2 deals with the generation of a sin-
gle conditional probability P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn). In order to
determine the complete conditional probability distribution of the child node
P (Xn+1|X1 = x1, ..., Xn = xn), step 5d is repeated for all the state intervals of
the child node. This is indicated in Figure 3.2 with the smaller loop. The whole
CPT of the child node is obtained by repeating step 5 for all the state combinations
of the parent nodes. This is depicted in Figure 3.2 with the larger loop.

3.4 Analogy to Linear Regression

As discussed in Section 3.1, the basic idea in RNM is based on the desire to de-
scribe the central tendency of the child node as some kind of a weighted average
of the states of the parent nodes. More specifically, the use of scale [0, 1] and dou-
bly truncated normal distributions in RNM is explained in [25] by referring to
an analogy with linear regression. Given a data set {yi, xi,1, ..., xi,n}ri=1, the linear
regression assumes the relationship

yi = βT ∗ (x1,i, ..., xn,i) + εi, (3.11)

where β is a vector of regression coefficients and εi is an error term modeling all
factors other than (x1,i, ..., xn,i) that influence the dependent observation yi. Of-
ten, εi is assumed to follow a normal distribution with zero mean and a constant
variance θ2, i.e, , εi ∼ N(0, θ2). The larger θ2 is, the less exactly can the indepen-
dent variables (x1,i, ..., xn,i) explain the value of the dependent variable yi. In the
regression model, the expected value E(yi) = βT ∗ (x1,i, ..., xn,i) is a weighted sum
of the independent observations (x1,i, ..., xn,i).

In RNM, µk, the mean value of the child node in [0, 1] is obtained by substituting
the sample points (z1,k, ..., zn,k) to the formula of the selected weight expression.
Thus, the role of sample points in RNM corresponds to that of the independent
variables (x1,i, ..., xn,i) in the linear regression model. Similarly, the variance pa-
rameter σ2 is used in RNM as measure of uncertainty, analogically to θ2 in the
linear regression model.

The weight expression WMEAN used in RNM is directly analogical to linear re-

27



gression. That is, (w1, ..., wn), (zi,k, ..., zn,k), and σ2 are used in RNM exactly in the
same way as β, (x1,i, ..., xn,i), and θ2 in linear regression model, respectively. The
use of other weight expressions is motivated in [25] by noting that WMEAN is
not the only natural function to measure the central tendency of the child node
but interactions described by WMIN, WMAX, or MIXMINMAX exist as well. It
is stated in [25] that for most applications, the four weight expressions presented
are found to be sufficient.

3.5 Extensions to RNM

The use of RNM can be diversified through different means to represent types
of probabilistic relationships that do not correspond purely to any of the weight
expressions presented in Section 3.3.3. Two ways are described in [25] and they
are discussed below.

3.5.1 Non-Monotonic Interaction

Substituting n = 1 to any of Equations 3.1–3.4 gives out µk = zi,k. Thus, a given
sample point zi,k of a parent node always promotes that same value to be the
mean of the child node on [0, 1]. Therefore, RNM can describe only monotonic
interaction between the parent node and the child node. That is, lifting the state
of the parent node on the ordinal scale promotes the central tendency of the child
node to move to one direction only. For taking non-monotonic interactions into
account, the use of auxiliary variables is suggested in [25]. Let their use be illus-
trated with an example. Figure 3.7 presents a BN modeling the concentration of
a worker and factors affecting it. Each of the nodes has three states which are dis-
played in Figure 3.7 along with state intervals that seem appropriate to be used
in RNM.

Now, suppose that the states Overload and Underload of Workload (W ) actually
have a similar effect on Concentration (C), i.e.,

P (C|W = Underload) = P (C|W = Overload). (3.12)

This condition cannot be treated with the state intervals presented in Figure 3.7.
To overcome the issue, an auxiliary variable Z is introduced, see Figure 3.8. Z
is conditioned to Workload according to Table 3.2. That is, the states Underload
and Overload of Workload are associated with the state Abnormal of Z. Now, the

28



Figure 3.7: Example BN related to the discussion about the non-monotonic influ-
ence of a parent node on the child node.

states of Z are identified to state intervals according to Figure 3.8 to properly
represent the condition posed by Equation 3.12. In this way, the auxiliary variable
Z provides means to express the non-monotonic interaction between Workload
and Concentration in RNM.

Figure 3.8: Using the auxiliary variable Z to represent the non-monotonic influ-
ence of Workload on Concentration.

3.5.2 Partitioned Expressions

The use of RNM can also be diversified by varying the weight expressions and
the related variables in different parts of the CPT. This extension is presented in
the documentation of AgenaRisk software [38] in which RNM is implemented.
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Table 3.2: CPT of the variable Z in Figure 3.8.

Workload Underload Normal Overload

Z
Abnormal 1 0 1

Normal 0 1 0

For example, in the network of Figure 3.8, one could apply WMIN as the weight
expression when Z is in the state Abnormal and WMEAN when Z is in the state
Normal. This selection would reflect the effect of the abnormal workload gener-
ally making high concentration harder to achieve compared to situations when
the workload is normal.

Another way to partition the ranked nodes is to vary the weight expression or the
parameters according to the states of various exterior variables that do not need
to be ranked nodes. For example, in the network of Figure 3.8, one could give to
Concentration a new parent node Employee with states {Jack, Jill} describing which
employee, Jack or Jill, is under consideration. For the two states of Employee,
different sets of parameters of RNM could then be used to generate the CPT of
Concentration. The other set would reflect the behaviour of Jack while the other
would correspond to that of Jill.

In [29], RNM is used with partitioned expressions related to a BN describing a
software process. Still, in most of the applications of RNM [24, 23, 28, 56, 15], the
extensions of RNM now described have not been needed. In any case, the exten-
sions diversify the use of RNM and by doing so, improve its modeling accuracy.

3.6 Benefits of RNM

There are several good features in RNM that encourage its use. The rough nature
of the weight expressions and their use can be explained to a domain expert with-
out a strong mathematical background. One can use verbal descriptions similar
to those in Section 3.3.2 and also show illustrative pictures like the ones in Figure
3.3. The role of the weights and the variance parameter can be effectively demon-
strated by letting the expert see how the probability distribution of the child node
varies when the values of the parameters are altered. This kind of qualitative and
visual description of the method helps the expert to understand its general idea
which eases up the elicitation of the parameters.
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The number of parameters required to assess in RNM is small. To illustrate this,
consider a case where there are n parent nodes so that the ith one has mi states
and the child node has mn+1 states. In this case, the CPT of the child node con-
sists of mn+1

∏n
i=1mi elements. For example, if n = 5 and mi = 5, i = 1, ..., 6,

then there are 5 ∗ 55 = 15625 elements in the CPT of the child node. Assessing
each of these directly is unreasonably laborious in practice. As opposed to as-
sessing mn+1

∏n
i=1mi probabilities, using RNM, one can construct the CPT based

on n + 1 binary decisions concerning the mappings of the states, a single selec-
tion concerning the weight expression, and n + 1 assessments — or three, if the
weight expression is MIXMINMAX — concerning the weights and the variance
parameter. Thus, in the example case, the CPT could be constructed based on six
binary selections, a single pick out of four options, and six or three numerical as-
sessments. Hence, the total number of any kinds of assessments required would
be only 10 or 13 which is drastically less than the number of elements in the CPT.
Unlike in most of the existing canonical models, see, e.g., [18] for a review, the
amount of elicited parameters in RNM does not grow with the number of states
of the parent nodes or the child node. Moreover, in the basic form of RNM, the
introduction of a new parent node requires one to assess at most two new param-
eters — selecting how the states of the parent node are mapped to state intervals
and possibly assigning a weight to it. Usually the amount of assessed parameters
in canonical models grows only linearly with the number of parent nodes [18].
However, typically more than two new parameters need to be assigned when a
new parent node is introduced.

In practice, one may wish to use different weight expressions or change the weights
and the variance parameter σ2 in different parts of the CPT. This increases the
number of the parameters in RNM. However, the increase is only linear with the
number of partitions of the CPT. Each change of the weights expression requires
the assessment of new values for the related weights of the parent nodes and the
variance parameter σ2.

In [25], it is reported that experts see weighting the parent nodes as an intuitive
procedure, along with assigning the variance parameter σ2 as a measure of uncer-
tainty. Also in [13], it is reported that experts find it instinctive to assign relative
weights to the parent nodes when quantifying the relative strengths of their in-
fluences on the child node. On the other hand, in [49], it is noted that experts
dislike the direct estimation of probabilities as they do not think they can provide
estimates accurate enough. The relief RNM gives to the workload of the con-
struction process of the CPT can thus be considerable. It requires a small amount
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of parameters and the experts can also feel more comfortable in providing them
instead of assessing probabilities directly.

As the experts can usually provide only a limited amount of time for the elic-
itation process, factors defining the speed of the process are crucial. In many
practical circumstances, it can be the sheer vastness of the elicitation burden that
hinders and limits the use of BNs. RNM can be a tremendous aid in resolving
issues on this matter. In [11], it is argued that the elicitation of probabilities from
experts can be supported to a large extent with an iterative elicitation process
based on sensitivity analysis and starting with rough initial probability assess-
ments. The sensitivity analysis provides insight into which probabilities require
a high level of accuracy and more careful assessment. Due to the small effort re-
quired by the expert while using RNM, it seems as a good method for quickly
constructing initial CPTs to be used as the starting point of the sensitivity analy-
sis.

3.7 Issues on RNM

In this chapter, RNM was presented thoroughly enough for implementing it. The
discussion of the good features of RNM above notes several benefits that en-
courage its use as an aid while constructing and quantifying BNs. Despite the
apparent usefulness of RNM, there are issues concerning it that have not been
addressed earlier. Some of these issues are related to the modeling aspect and
others to the computational aspect of RNM.

To begin with, there is a lack of discussion concerning the interpretation of the
mapping of the states of the ranked nodes to the state intervals on [0, 1]. For exam-
ple, what do the points on a state interval represent with respect to the associated
labelled state? Another theme not addressed earlier concerns the exact interpre-
tation of the weights and how one should try to assess them. Related to both of
these themes, there has not been any discussion concerning the use of RNM when
the underlying continuous quantities of the ranked nodes are actually defined as
ratio or interval scales instead of them being just abstract entities. For example,
one might say that the ranked node Skills with statesHigh, Medium, and Low has
related to it an underlying continuous quantity that defines the skills of a worker.
Yet, there might not be a single physical quantity that depicts the skills exhaus-
tively. As opposed to this, for the ranked node Salary with states High, Medium,
and Low, a plausible underlying continuous quantity could be the salary in euro.
In some applications [15, 20, 46] of RNM, the states of ranked nodes have been
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defined like this, i.e., by discretizing ratio or interval scales measuring a physical
quantity. However, there is a lack of discussion concerning the properties and
implications of using RNM in this way in general.

In addition to the issues related to the modeling aspect of RNM, there are also
computational matters that should be investigated. There has not been studies
concerning the computational complexity of RNM and the possible limitations
set by it to the use of the method. Moreover, the effect of the sample point size
as well as the scales of the weights and the variance parameter on the modeling
accuracy of RNM has not been studied earlier. The modeling accuracy of RNM
is itself something to be explored. This concerns how well CPTs constructed with
RNM can actually represent probabilistic relationships associated with different
systems and phenomena.

Exploring the above topics is essential to obtain a more profound understanding
of the possibilities and limitations related to the use of RNM. This is the main
motivation of the study in the thesis at hand. In the next two chapters, RNM is
explored from two aspects. Chapter 4 concerns the modeling aspects of RNM
and Chapter 5 discusses it from the computational point of view.
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Chapter 4

On Modeling Aspect of RNM

This chapter explores RNM from the modeling point of view. Different features
of RNM are interpreted and discussed to deepen the existing understanding of its
potential and limitations as a method for providing CPTs representing the prob-
abilistic relationships in BNs. Section 4.1 presents and discusses how to interpret
the mapping of the states of ranked nodes to state intervals. Section 4.2 provides a
novel interpretation for the weights wi assigned to the parent nodes in the weight
expressions. In addition, the utilization of these interpretations in the elicitation
of the weights and the conceptual challenges are discussed. Section 4.3 studies
through a tentative example how to use RNM when the underlying continuous
quantities of the ranked nodes are defined on ratio or interval scales. The chapter
ends to Section 4.4 where RNM is compared to other canonical models from the
modeling point of view.

4.1 Interpretation of Scale [0, 1]

In Chapter 3, ranked nodes are defined as nodes having discrete ordinal states
that can be considered to be abstractions of some kind of underlying continuous
quantity. For example, one can think that spryness of a person is a continuous
quantity and the states {High, Medium, Low} of the corresponding ranked node
Spryness are discretizations of the quantity. In RNM, the states of the ranked
nodes are identified with intervals of equal width on [0, 1], i.e., the state intervals.
Though the mapping may seem intuitive, no exact discussion on its interpretation
is provided in [25] that originally presents RNM. The discussion in [29] suggests
that identifying the discrete states of ranked nodes with the state intervals is de-
sirable as it reflects the subjectiveness and uncertainty related to the meaning of
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a given ranked node being in a certain state. However, the meaning of the scale
[0, 1] is not addressed there in more detail either. In [26], it is stated that the whole
range of possible values of a ranked node is internally defined as the normalized
scale [0, 1]. Nonetheless, a more detailed discussion of, e.g., the interpretation of
the state intervals is lacking there as well. This is set out to do next.

Basically, the use of the normalized scale [0, 1] in RNM stems from the idea to
model mathematically the practice of the expert to see the central tendency of
the child node forming as some kind of an aggregate of the ordinal states of the
parent nodes. If there was no normalized scale, such aggregation could not be
performed sensibly. Identifying the discrete states of the ranked nodes with state
intervals, rather than with discrete points, on the normalized scale reflects the
continuous nature of the underlying quantities of the ranked nodes. In turn, each
discrete state of a ranked node can be understood to represent some portion of
the underlying continuous quantity. On the other hand, the fact that the discrete
states of a ranked node are always identified with state intervals of equal width
indicates that each discrete state represents an equal sized portion of the under-
lying continuous scale. This is visualized in Figure 4.1 for the node Skills of the
example BN. The interpretation is natural as it implies that if the state of the node
is unknown on the underlying continuous scale, then also the discretized states
will be under a discrete uniform distribution. This results from integrating the
continuous uniform distribution U(0, 1), portraying the ignorance of the state on
the underlying continuous scale, over the state intervals on [0, 1].

Figure 4.1: Interpreting [0, 1] as the normalized presentation of the underlying
continuous scale of Skills.

The above interpretation of the normalized scale [0, 1] explains also why the sam-
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ple points zi,k are taken in RNM. Stating, e.g., that Skills is in the state Low means
that the skills of the worker are known to be in the lowest third of the skills con-
tinuum. However, as the level of skills is not specified more exactly, any point
on [0, 1/3] can correspond to the exact state on the underlying continuous scale.
Due to this lack of precision related to the fixed state of the ranked node, equidis-
tant sample points are taken from the state interval in RNM. Any combination
of sample points in the set {z1,k, ..., zn,k}snk=1 has an equal chance of portraying the
exact states of the parent nodes on the normalized scale. Thus, the conditional
probability distribution P (Xn+1|X1 = x1, ..., Xn = xn) is calculated by taking the
average of the distributions P (Xn+1|X1 = x1, ..., Xn = xn;µk) obtained with dif-
ferent combinations of sample points, see Equation 3.10.

Formally, the use of the sample points zi,k in RNM corresponds to an approxima-
tion of the following hierarchical Bayesian model [27] as means for constructing
the CPT of the child node. Let zi = [ai, bi] denote the state interval on [0, 1] re-
lated to state xi of parent node Xi. Moreover, let there be a random variable χi
identified with parent node Xi so that

Xi = xi ⇔ χi ∼ U(ai, bi). (4.1)

Now, χi represents the exact state of the parent node Xi on [0, 1] when it is known
to be in state xi. As the exact state can be anywhere on the corresponding state
interval zi = [ai, bi], a uniform distribution is used for χi. Let the mean parameter
µ be defined by

µ = f(χ1, ..., χn,w), (4.2)

where f is the weight expression used, i.e., f ∈ {WMEAN, WMIN, WMAX,
MIXMINMAX}, and w is a vector containing the weights. Because all χi are
random variables, also µ is a random variable. Let another random variable γ be
defined by

γ =

∫ bn+1

an+1

TNormpdf(u, µ, σ2, 0, 1)du, (4.3)

where [an+1, bn+1] is the state interval identified with state xn+1 of child node
Xn+1 and TNormpdf(u, µ, σ2, 0, 1) is the probability density function of the dou-
bly truncated normal distribution TNormal(µ, σ2, 0, 1), see Equations 3.3.5 and
3.7 for clarification. Finally, let the conditional probability P (Xn+1 = xn+1|X1 =

x1, ..., Xn = xn) be calculated as

P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn) = E(γ), (4.4)
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where E(γ) is the expected value of γ.

The hierarchical Bayesian model represented by Equations 4.1–4.4 joins the way
how the conditional probability distribution of the child node is calculated in
RNM, see Equation 3.10, so that

1

sn

sn∑
k=1

P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn;µk)
s→∞−−−→ E(γ). (4.5)

That is, as the sample size s used in RNM increases, the value obtained for P (Xn+1 =

xn+1|X1 = x1, ..., Xn = xn) converges to the certain value of E(γ). The proof of
Equation 4.5 is presented in Appendix B.

As the discussion above indicates, the functioning of RNM is rationalized by in-
terpreting the discrete states and the state intervals of the ranked nodes to repre-
sent equally sized portions of their underlying continuous quantities. Especially,
the discussion above shows the interpretation to be justified when the underly-
ing continuous quantities are abstract in nature, i.e., there is not a scale measur-
ing them exhaustively. This is the case, e.g., for all the nodes in the example
BN, see Figure 3.1. In Section 4.3, it is discovered that another type of interpre-
tation of the normalized scale [0, 1] is required when applying RNM to ranked
nodes whose underlying continuous quantities are measurable on a ratio or in-
terval scale. However, the results presented next are valid independent of the
interpretation used.

4.2 Interpretation of Weights

In RNM, the expert needs to assign weights that describe the strengths of influ-
ence of the parent nodes on the child node. For the weight expressions WMEAN,
WMIN, WMAX, each parent node gets a separate weight. In MIXMINMAX, the
weights are associated with to the smallest and largest values in the combination
of the sample points {z1,k, ..., zn,k}. While it is easy to understand that a larger
weight corresponds to a stronger influence, the exact meaning and effect of the
weights has not been addressed in the existing literature. In Sections 4.2.1–4.2.4,
explicit interpretations of the weights are derived for each of the weight expres-
sions of RNM. The benefits and use of these interpretations in the elicitation of
weights is then discussed in Section 4.2.5. Whereas a combination of sample
points related to n parent nodes has been marked by {zi,k}ni=1 this far, the notation
{xi}ni=1 is used in this section for brevity.
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4.2.1 WMEAN

Let xa = (x1, ...xk, ..., xn) and xb = (x1, x2, ..., , xk + ∆xk, ..., xn) be two combina-
tions of sample points from n parent nodes. Now, using Equation 3.1, one obtains

∆µ := WMEAN(xb, w1, ..., wn)−WMEAN(xa, w1, ..., wn)

=

∑n
i=1wixi + wk∆xk∑n

i=1wi
−
∑n

i=1 wixi∑n
i=1wi

=
wk∆xk∑n
i=1wi

⇔

∆µ

∆xk
=

wk∑n
i=1wi

=: wNk . (4.6)

Thus, when WMEAN is used, the weight of the kth parent node relative to the
sum of the weights, wNk , equals the ratio between the change in the mean param-
eter of the child node and the change in the state of the parent node measured
on the normalized scale [0, 1]. It is enough to have the result only for the relative
weights as only they matter in Equation 3.1.

4.2.2 WMIN

Because Equation 3.2 is not linear with respect to the sample points zi,k, studying
WMIN with xa = (x1, x2, ..., xk, ..., xn) and xb = (x1, x2, ..., xk + ∆xk, ..., xn) does
not produce as clear results as for WMEAN above. For WMIN, the difference ∆µ

depends on the values of the sample points and the weights of the other parent
nodes in addition the kth one. However, a clear interpretation for the weights
is achieved by considering the sample point combinations xa = (c)ni=1 and xb =

((c)k−1
i=1 , c+ ∆xk, (c)

n
i=k+1) where c > 0 and −c ≤ ∆xk < 0.

Substituting xa to Equation 3.2 gives

µa := WMIN(xa, w1, ..., wn) = min
i=1,...,n

{
wic+

∑n
j 6=i c

wi + n− 1

}
= c. (4.7)
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For xb, the corresponding calculation goes as follows:

µb := WMIN(xb, w1, ...wn)

= min

{
wk(c+ ∆xk) +

∑
i 6=k c

wk + n− 1
,min
i 6=k

{
wic+

∑
j 6=i c+ ∆xk

wi + n− 1

}}
= min

{
wk(c+ ∆xk) + (n− 1)c

wk + n− 1
,min
i 6=k

{
wic+ (n− 1)c+ ∆xk

wi + n− 1

}}
= min

{
wk(c+ ∆xk) + (n− 1)c

wk + n− 1
,
wsc+ (n− 1)c+ ∆xk

ws + n− 1

}
, ws ≤ wi ∀i 6= k.

(4.8)

The last line above results from the fact that the function

f(x) =
cx+ (n− 1)c+ ∆xk

x+ n− 1
,

is strictly increasing when ∆xk < 0. Let us next explore when the first argument
of the minimum operator in Equation 4.8 is smaller than or equal to the second:

wk(c+ ∆xk) + (n− 1)c

wk + n− 1
≤ wsc+ (n− 1)c+ ∆xk

ws + n− 1
⇔

(wk + n− 1)c+ wk∆xk
wk + n− 1

≤ (ws + n− 1)c+ ∆xk
ws + n− 1

⇔

c+
wk∆xk

wk + n− 1
≤ c+

∆xk
ws + n− 1

⇔
wk

wk + n− 1
≥ 1

ws + n− 1
⇔

wk(ws + n− 1) ≥ wk + n− 1 ⇔

wk ≥
n− 1

n− 1 + ws − 1︸ ︷︷ ︸
≥0

≤ 1.

If it is assumed that wi ≥ 1 ∀i = 1, ..., n — this assumption is discussed below —,
the result above implies the first argument of the minimum operator in Equation
4.8 is never larger than the second one. Thus, the result of Equation 4.8 is

µb =
(wk + n− 1)c+ wk∆xk

wk + n− 1

= c+
wk∆xk

wk + n− 1
. (4.9)
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Using the values of µa and µb in Equations 4.7 and 4.9, one obtains

∆µ := µb − µa = c+
wk∆xk

wk + n− 1
− c

=
wk∆xk

wk + n− 1
⇔

wk =
(n− 1)∆µ

∆xk −∆µ
. (4.10)

Now, Equation 4.10 defines the weight of the kth parent node when using WMIN
in terms of ∆xk and ∆µ. Thus, it is in this sense analogical to Equation 4.6. How-
ever, as opposed to 4.6, Equation 4.10 provides the interpretation for the absolute
size of weight wk. This is because in WMIN, it is not enough to know the sizes of
the weights relative to each other — their absolute sizes must be known as well.

Above, it is assumed that wi ≥ 1 ∀i = 1, ..., n. Yet, in [25], the lower bound for
the weights is marked to be 0. However, in [25] and [26], it is noted that WMIN
and WMAX correspond to taking the arithmetic mean of the states of the par-
ent nodes when all the weights are equal to 1. In both [25] and [26], this remark
is presented alongside the note describing the behaviour of WMIN and WMAX
when all the weights grow arbitrary large. In this case, WMIN and WMAX cor-
respond to taking the minimum and the maximum of the states of the parent
nodes, respectively. This kind of description concerning extreme situations with
the weights indicates that 1 is the more appropriate lower bound for the weights
than 0. In addition, AgenaRisk software [38] designed by the developers of RNM
provides [1, 5] as the default scale for the weights.

4.2.3 WMAX

Being similar to WMIN, the interpretation of the weights for WMAX is derived
in the same fashion as above. Let xa = (c)ni=1 and xb = ((c)k−1

i=1 , c + ∆xk, (c)
n
i=k+1)

where c < 1 and 0 < ∆xk ≤ 1− c. Substituting xa to Equation 3.3, one obtains

µa := WMAX(xa, w1, ..., wn) = max
i=1,...,n

{
wic+

∑n
j 6=i c

wi + n− 1

}
= c. (4.11)
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Repeating the same calculation with xb proceeds as follows:

µb := WMAX(xb, w1, ...wn)

= max

{
wk(c+ ∆xk) +

∑
i 6=k c

wk + n− 1
,max
i 6=k

{
wic+

∑
j 6=i c+ ∆xk

wi + n− 1

}}
= max

{
wk(c+ ∆xk) + (n− 1)c

wk + n− 1
,max
i 6=k

{
wic+ (n− 1)c+ ∆xk

wi + n− 1

}}
= max

{
wk(c+ ∆xk) + (n− 1)c

wk + n− 1
,
wsc+ (n− 1)c+ ∆xk

ws + n− 1

}
, ws ≤ wi ∀i 6= k.

(4.12)

Above, the last line results from the fact that the function

f(x) =
cx+ (n− 1)c+ ∆xk

x+ n− 1
,

is strictly decreasing when ∆xk > 0. Let us then investigate the condition when
the first argument of the maximum operator in Equation 4.12 is larger than or
equal to the second:

wk(c+ ∆xk) + (n− 1)c

wk + n− 1
≥ wsc+ (n− 1)c+ ∆xk

ws + n− 1
⇔

(wk + n− 1)c+ wk∆xk
wk + n− 1

≥ (ws + n− 1)c+ ∆xk
ws + n− 1

⇔

c+
wk∆xk

wk + n− 1
≥ c+

∆xk
ws + n− 1

⇔
wk

wk + n− 1
≥ 1

ws + n− 1
⇔

wk(ws + n− 1) ≥ wk + n− 1 ⇔

wk ≥
n− 1

n− 1 + ws − 1︸ ︷︷ ︸
≥0

≤ 1.

Again, if it is assumed that wi ≥ 1 ∀i — see the discussion above —, the result
above implies that the first argument of the maximum operator in Equation 4.12
is always larger than or equal to the second argument. Thus, it now applies that

µb =
(wk + n− 1)c+ wk∆xk

wk + n− 1

= c+
wk∆xk

wk + n− 1
. (4.13)
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Using the values of µa and µb in Equations 4.11 and 4.13, one now obtains

∆µ := µb − µa = c+
wk∆xk

wk + n− 1
− c

=
wk∆xk

wk + n− 1
⇔

wk =
(n− 1)∆µ

∆xk −∆µ
. (4.14)

Equation 4.13 concerning WMAX turns out to be the same as Equation 4.9 related
to WMIN. This describes the symmetry of WMIN and WMAX as weight expres-
sions. It also indicates that similarly to WMIN, the absolute sizes of the weights
must be known in WMAX as well.

4.2.4 MIXMINMAX

In MIXMINMAX, the assigned weights wMIN and wMAX are used to calculate
the weighted average of the minimum and maximum values of a sample point
combination (xi)

n
i=1, see Equation 3.4. As with WMEAN, also for MIXMINMAX

it is enough to know only the relative weights to apply the weight expression.
Reorganizing Equation 3.4 with the substitutions


xMIN = mini=1,...,n{xi}
xMAX = maxi=1,...,n{xi}
wNMIN = wMIN

wMIN+wMAX

wNMAX = wMAX

wMIN+wMAX

, (4.15)

one obtains  wNMIN = µ−xMAX

xMIN−xMAX

wNMAX = 1− wNMIN

, (4.16)

which defines the relative weights related to MIXMINMAX.

4.2.5 Use of Interpretations in Elicitation of Weights

Equations 4.6, 4.10, 4.14, and 4.16 give exact interpretations for the weights re-
lated to the weight expressions of RNM. The motivation for the derivation of
the equations has been the desire to gain a better understanding of the exact
meaning of the weights. In principle, these interpretations can be used to sup-
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port the elicitation of the weights when using RNM. Instead of assessing the
weights directly, their values can be solved from Equations 4.6, 4.10, 4.14, and 4.16
based on assertions about the mode of the child node in different scenarios. Note
that while µ is the mean parameter of the doubly truncated normal distribution
TNormal(µ, σ2, 0, 1), it is not necessarily the expected value of the distribution.
For example, the expected value of TNormal(0, σ2, 0, 1) is greater than zero even
though the mean parameter µ = 0. However, the mode of TNormal(µ, σ2, 0, 1) is
always µ.

For WMEAN and WMAX, the weights of the parent nodes could be elicited by,
e.g., asking the expert to specify to which point µb does the mode of the child node
rise when xa = (0)ni=1 changes into xb = (0, ..., 0, xk = 1, 0, ..0). Now, Equation
4.6 implies that the specified value of µb is the relative weight of the kth parent
node, wNk , when using WMEAN. In the case of WMAX, the weight wk would be
obtained by substituting the answer to Equation 4.14.

When using WMIN, the expert could be asked to which value µb the mode of
the child node drops from µa = 1, when initially all the parent nodes have been
in the extreme states xa = (1)ni=1 and then, the kth parent node has shifted to
the extreme state corresponding to xk = 0, i.e., xb = (1, ..., 1, xk = 0, 1, ..1). The
weight wk would now be obtained from Equation 4.10. Naturally, the same form
of question could be used with WMEAN as well. In this case, Equation 4.6 implies
that wNk = 1− µb.

For MIXMINMAX, the weights could be elicited by asking the expert to consider
a case where max{xi}ni = 1 and min{xi}ni = 0 and then asking her opinion of
the mode µ of the child node on [0, 1]. Substituting these values to Equation 4.16
gives  wNMIN = 1− µ

wNMAX = µ
. (4.17)

The forms of questions presented above are all only examples of how one can
use Equations 4.6, 4.10, 4.14, and 4.16 while eliciting the weights in RNM. The
derivation of the equations reveals that it is not necessary to consider only sce-
narios where the sample points of the parent nodes are always on either of the
extreme values 0 and 1. The possibility to modify the forms of the elicitation
questions may be used as means to further ease up the elicitation process. For
example, the questions can be formed to depict situations that are considered the
most easiest to answer.

43



4.2.6 Conceptual Challenges

As noted above, Equations 4.6, 4.10, 4.14, and 4.16 provide means to elicit the
values of the weights indirectly in a consistent way. However, the abstract na-
ture of the ranked nodes may cause some conceptual challenges when using this
approach in the elicitation. When answering the elicitation questions concerning
the mode of the child node on [0, 1], one might find it hard to specify the nec-
essary value due to the difficulty in conceiving its meaning with respect to the
qualitative ordinal scale. For example, consider eliciting the weight of Skills in
the example BN. Suppose the weight expression is WMIN and the form of ques-
tion presented in the above section is used. Then, the question to be answered
is:

”Think that initially Skills, Spryness, and Disturbance Level are all at the best possi-
ble level corresponding to value 1 on the normalized scale [0, 1]. This implies that
Productivity is most probably at the best possible level corresponding to value 1
on [0, 1]. Consider then that Skills drops to the worst possible level correspond-
ing to value 0 while the two other parent nodes remain on the best possible levels.
What is now µb, the most probable level of Productivity on the normalized scale
[0, 1]?”

Even though one would understand that the qualitative states {High, Medium,
Low} correspond to the subintervals of [0, 1] according to Figure 3.1, it might still
feel hard to assess a precise value to µb. Even defining some proper interval for
the value of µb might turn out to be difficult. This is because the challenge now is
not about knowing the correct value for µb, but rather, understanding the mean-
ing of any value of µb with respect to the qualitative ordinal scale. When there
is no exact scale representing the underlying continuous quantity of the ranked
node, it is impossible to have exact meaning to the points on the normalized scale
[0, 1]. For example, there is not a proper quantity that could be said to measure
the skills or productivity of a worker exhaustively. Thus, the horizontal axes in
Figure 4.1 are abstract in nature and the mappings in the graphs have only con-
ceptual meaning.

As the mapping from the underlying continuous quantity to the normalized scale
is ill-defined in the exact sense, one might think whether this jeopardizes the
whole idea of RNM. When considering this question, it is good to remember that
RNM is developed to quantify the type of probabilistic relationships that human
experts tend to see between a child node and its parent nodes with qualitative
ordinal states. In the lack of clear measures and with states that leave room for

44



subjective interpretation, one cannot be expected to describe the probabilistic de-
pendence between the nodes with great precision. Rather, one might think that
in such contexts, depicting the probabilistic relationships between the nodes in
a coarser manner is best that can be achieved and it is acceptable to use a work-
able heuristic. The use of RNM in various applications indicates that it provides
satisfactory means for this kind of coarse modeling. Thus, though there is con-
ceptual difficulty related to the ill-defined mappings from the discrete states of
the ranked nodes to the state intervals, it can be regarded to be a heuristic feature
of RNM rather than a fatal flaw.

Discussing still the conceptual challenges related to the elicitation of weights, it
should be remembered that, as opposed to assessing only a single weight, RNM
always requires specification of two or more weights that reflect the strength of
influence of the parent nodes to the child node relative to each other. As the
weights are elicited by sequentially considering the behaviour of the child node
on the normalized scale, it could be expected to help to set the weights of the
parent nodes more coherently than direct estimation. This is a topic that should
be investigated empirically to be able to say some concrete conclusions about
the matter. However, planning and executing such research is beyond the scope
of this thesis. Instead, the discussion next continues with another topic related
to use of the interpretations of the weights. This concerns how to apply RNM
to nodes whose underlying continuous quantity is not an abstract concept but a
variable naturally measured on a ratio or an interval scale.

4.3 Variables with Interval or Ratio Scales as Ranked

Nodes: Illustrative Example

As discussed in Section 3.1, the emergence of RNM is related to cases where the
underlying continuous quantities of the ranked nodes are abstract in nature [25].
This is also the situation in the first applications of RNM [23, 24]. The use of
discrete ordinal scales such as {Low, Medium, High} is a natural way to de-
scribe states of continuous quantities that are abstract, like spryness or distur-
bance level. But similarly, one can also discretize continuous quantities measured
readily on interval or ratio scales into intervals identified with descriptive ordinal
states. For example, the scale {V ery Small, Small, Medium, Large, V ery Large}
can be used to describe the size of an apartment so that the states correspond to
consecutive intervals of surface area measured in square metres. In some applica-
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tions [15, 20, 46] of RNM, the states of ranked nodes have been defined like this.
However, there has not been any discussion on the properties and implications
concerning the use of RNM in this way. The matter is next addressed through an
illustrative example.

The BN in Figure 4.2 describes how the monthly rent, depicted by Rent, of an
apartment is dependent on three other features. Surface Area represents the sur-
face area of the apartment. Distance to Centre depicts the distance from the apart-
ment to the centre of the city. Time from Last Overhaul portrays the time that has
passed since the last overhaul of the apartment, or its construction, if there has
not been any overhauls.

Figure 4.2: Example BN related to the discussion on the application of RNM to
nodes with an interval scale.

Each of the nodes in the BN in Figure 4.2 can be considered to have a continuous
interval or ratio scale. The scale types, the units, as well as the lower and upper
limits of the scales are presented in Table 4.1. Suppose that the rent is known to
increase for an increasing surface area and decrease when the distance from the
centre or the time from the last overhaul are increasing. The monotonic influence
of the parent nodes to Rent is consistent with the functioning of RNM. Moreover,
the nodes could be considered as ranked nodes by appropriately discretizing the
ratio and interval scale. Thus, in principle, RNM could be used to construct a
CPT representing the probabilistic relationship between the nodes. How to do
this in practice is discussed next.

4.3.1 Discretization of Interval and Ratio Scales

In order to apply RNM to the example BN presented above, the discrete states of
the nodes need to be defined and identified with state intervals on [0, 1]. In Sec-
tion 4.1, it is discussed that the state intervals of the ranked nodes correspond to
equal sized portions of their underlying continuous quantities. Thus, the discrete
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Table 4.1: Units and the limits of the interval and ratio scales of the nodes in
Figure 4.2.

Surface Area Distance to Centre Time from Last Overhaul Rent
Scale Type Interval Ratio Ratio Interval

Unit m2 km yrs �

Upper Limit 90 20 20 1500
Lower Limit 10 0 0 400

states of the ranked nodes should now be readily achieved by dividing the ratio
and interval scales into desired numbers of intervals of equal width. For example,
if a 5 point scale, such as {V ery Low, Low, Medium, High, V ery High}, is used
for all the nodes in Figure 4.2, the resulting ranked nodes are those displayed in
Figure 4.3.

Figure 4.3: Identifying subintervals of equal width on the interval and ratio scales
with different ordinal states and state intervals.

The directions of the state intervals presented in Figure 4.3 are such that they
correctly depict the influence of the parent nodes to Rent. For example, each of
the states V ery Large of Surface Area, V ery Short of Distance to Centre, and V ery
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Short of Time from Last Overhaul promotes the state V ery High of Rent. This is be-
cause they are all identified to the state interval [0.8, 1] and a given sample point
from the normalized scale of a parent node always promotes the same value to be
the mode of the child node on [0, 1], see Section 3.5.1. However, when reviewing
which subintervals of the ratio and interval scales correspond to which labelled
states, one might feel there to be inaccuracy. For example, as opposed to the dis-
cretization of the underlying ratio scale of Distance to Centre displayed in Figure
4.3, one might claim that a distance of 4 km from the centre cannot be described
as ”very short”. Thus, based on the labelled states of the nodes, one might read-
ily discretize the underlying ratio and interval scales of the ranked nodes into
subintervals of different widths. In the case of the ongoing example, the resulting
discretizations could then be, e.g., those presented in Figure 4.4. In [20] and [46],
RNM is applied so that the discrete states of some ranked nodes correspond to
different sized portions on the underlying ratio scales. However, the rationales
behind the discretizations are not discussed in detail.

Figure 4.4: Identifying subintervals of different widths on the interval and ratio
scales with different ordinal states and state intervals.

Independent of how the discretizations of the underlying scales are performed, it
should be checked that they are compatible with the functioning of RNM in the
following sense. Referring to Figure 4.4, consider an apartment that has a sur-

48



face area between 60 and 90 m2, is located between 0 to 1.5 km from the centre,
and has 0 to 4 years from the last overhaul. Then, this apartment is expected to
have a rent somewhere between 1100 and 1500 � because all these intervals cor-
respond to the state interval [0.8, 1]. This exemplifies that when sample points of
the parent nodes are taken from the same state interval in RNM, also the mode of
the child node lies on that interval for all the combinations of the sample points.
The feature is independent of the weight expression or the weights which can
be verified by exploring Equations 3.1–3.4. If this type of verification of the dis-
cretizations is found to reveal incorrect implications concerning the probabilistic
relationships of the nodes, the discretizations should be revised.

The verification of discretizations is straightforward to carry out when all the
nodes have the same amount of discrete states. That is, the parent nodes are re-
peatedly fixed to be in states corresponding to a given state interval. For each
combination, it is checked whether the corresponding subintervals of the parent
nodes on their underlying scales really promote the child node to lie on the cor-
responding subinterval on its underlying scale. If the implications are deemed to
be incorrect, the discretizations are adjusted. If the nodes have varying number
of discrete states, the same routine cannot be used and the verification of the dis-
cretizations is harder to perform. Hence, it is favourable to use the same amount
of discrete states for each node. If a suitable discretization for all the nodes seems
impossible to find, it indicates that the RNM does not provide adequate means to
construct the CPT representing the probabilistic relationship between the parent
nodes and the child node.

4.3.2 Revised Interpretation of Scale [0, 1]

The discussion in Section 4.3.1 indicates that contrary to the interpretations made
in Section 4.1, the state intervals in RNM do not necessarily represent equal por-
tions of the underlying continuous quantities of the ranked nodes. Thus, the
interpretation of the normalized scale [0, 1] requires revision for the case where
the continuous quantities are represented by ratio and interval scales.

In Section 4.3.1, the discretizations of the ratio or interval scales of the ranked
nodes are recommended to be adjusted so that they are compatible with the
functioning of RNM. This corresponds to having the discrete states of the par-
ent nodes associated to given values on [0, 1] promoting discrete states of the
child node associated to the same values. Performing the discretizations in this
way corresponds to making elementary statements about the probabilistic rela-
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tionship between the parent nodes and the child node. These statements set the
framework for the more detailed description using a weight expression, weights,
and a variance parameter. Thus, the normalized scale [0, 1] can be generally inter-
preted as an interface that provides the basis for any description of the probabilis-
tic relationship between the parent nodes and the child node. Related to this, the
state intervals of the ranked nodes can be viewed as representing distinguishable
portions of their underlying scales through which their probabilistic relationship
with the other nodes can be described.

4.3.3 Elicitation of Weights

After verifying the discretizations of the interval or ratio scales of the ranked
nodes, the use of RNM can be continued in the normal way, as described in
Chapter 3. Thus, one would first select the weight expression considered the
most appropriate and then assign the weights to the parent nodes. In accordance
with the description of RNM in Chapter 3, the weights can be assigned directly
and then be refined if the verification of the resulting CPT indicates need for it.
As opposed to this, the elicitation could also be based on the interpretations of
the weights derived in Section 4.2. Recall that in Section 4.2.5, it is introduced
how the elicitation of weights in RNM can be supported by the use of Equations
4.6, 4.10, 4.14, and 4.16. In 4.2.6, the abstract nature of the underlying continuous
quantities of the ranked nodes is suspected to introduce some cognitive challenge
to the elicitation of the weights based on the interpretations. This matter is now
revised for the case where the ranked nodes have interval or ratio scales by con-
sidering the BN in Figure 4.4.

In Figure 4.4, consecutive subintervals on the interval scale of a ranked node cor-
respond to consecutive state intervals on [0, 1]. Based on this, one can think that
there is a continuous monotonic mapping between the scales. A piecewise linear
mapping is an example of such a mapping. Figure 4.5 displays piecewise linear
mappings between the underlying and the normalized scales of Surface Area and
Rent that are in accordance to the discretizations presented in Figure 4.4.
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(a) (b)

Figure 4.5: Piecewise linear mapping of the underlying scale of (a) Surface Area
and (b) Rent into [0, 1] in accordance to the discretizations displayed in Figure 4.4.

The functional form of the mapping for Surface Area in Figure 4.5a is

h1(x) =



x−10
25

, 10 ≤ x < 15

0.2 + x−15
50

, 15 ≤ x < 25

0.4 + x−25
75

, 25 ≤ x < 40

0.6 + x−40
100

, 40 ≤ x < 60

0.8 + x−60
150

, 60 ≤ x ≤ 90

, (4.18)

where x is the surface area in m2 and h1(x) is the corresponding value on [0, 1].
Correspondingly, the functional form of the mapping for Rent in Figure 4.5b is

h4(x) =



x−400
750

, 400 ≤ x < 550

0.2 + x−550
500

, 550 ≤ x < 650

0.4 + x−650
750

, 650 ≤ x < 800

0.6 + x−800
1500

, 800 ≤ x < 1100

0.8 + x−1100
2000

, 1100 ≤ x ≤ 1500

, (4.19)

where x is the rent in euros and h4(x) is the corresponding value on [0, 1].

Suppose piecewise linear mappings similar to those presented in Figure 4.5 are
defined for all the nodes in Figure 4.4. Then, these mappings link together points
on the underlying scales of the nodes in the same way as common state inter-
vals of the nodes are discussed to link together subintervals on their underlying
scales in Section 4.3.1. This means that the elicitation of the weights by means
introduced in Section 4.2.5 can be carried out by relating the elicitation questions
to the interval and ratio scales of the nodes. For example, suppose that the de-
pendence of Rent from its parent nodes is characterized by either the weight ex-
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pression WMEAN or WMIN. In this case, the weight of Surface Area can be asked
with the following question:

Q1a: ”Think initially of an apartment with the surface area 90 m2 that is right in the
centre of the city and is brand new. The rent of this kind of apartment is most probably
1500 �. Consider then another apartment that is as new and located in the same place but
has only 10 m2 of surface area. What is the rent of this kind of apartment most probably?”

The apartment that is initially described in Q1a corresponds to each of the par-
ent nodes being at point c = 1 on the normalized scales, see Figure 4.4. Thus,
in RNM, the initial mode of Rent on the normalized scale is µa = c = 1 that
corresponds to h−1

4 (1) = 1500 � based on Equation 4.19. The second apartment
corresponds to change ∆x1 = −1 on the normalized scale of Surface Area. Sup-
pose that the answer obtained to Q1a is 500 �. This corresponds to the value
µb = h4(500) = 0.133 on the normalized scale of Rent. Thus, the change of mode
on the normalized scale of Rent is ∆µ = µb − µa = −0.867.

If the weight expression WMEAN is used, the relative weight of Surface Area, wN1 ,
according to Equation 4.6 is

wN1 =
∆µ

∆x1

=
−0.876

−1
= 0.876. (4.20)

As discussed in Section 4.2.1, only the relative weights of the parent nodes have
effect in WMEAN. Thus, the value of wN1 obtained contains the required informa-
tion of the effect of Surface Area to Rent when WMEAN is used.

When WMIN is the weight expression, the weight of Surface Area, w1, is given by
Equation 4.10 with the substitution n = 3:

w1 =
(n− 1)∆µ

∆x1 −∆µ
=

2 ∗ −0.867

−1− (−0.867)
= 13.0. (4.21)

In the case of WMAX, w1 could be elicited with the question

Q2: ”Think initially of an apartment with the surface area 10 m2 that is 20 km from
the centre of the city and has not had an overhaul for 20 years. The rent of this kind of
apartment is most probably 400 �. Consider then another apartment that is located in
the same place and has the same time from the last overhaul but has 90 m2 of surface area.
What is the rent of this kind of apartment most probably?”

Now, the apartment that is initially described in Q2 corresponds to each of the
parent nodes being at point c = 0 on the normalized scales, see Figure 4.4. This
yields the initial mode of Rent on the normalized scale to be µa = c = 0 that
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corresponds to h−1
4 (0) = 400 �. The second apartment corresponds to change

∆x1 = 1 on the normalized scale of Surface Area. Suppose that the answer ob-
tained to Q2 is 1200 �. This corresponds to the value µb = h4(1200) = 0.85 on the
normalized scale of Rent. Thus, the change of the mode on the normalized scale
of Rent is ∆µ = µb − µa = 0.85 and the value of w1 given by Equation 4.14 with
the substitution n = 3 is

w1 =
(n− 1)∆µ

∆x1 −∆µ
=

2 ∗ 0.85

1− 0.85
= 11.3. (4.22)

If MIXMINMAX is the weight expression, w1 can be elicited by asking the follow-
ing question:

Q3:”Consider an apartment with the surface area 90 m2 and is right in the centre of the
city but has 20 years since its last overhaul. What is the rent of the apartment most
probably?”

The apartment described in Q3 corresponds to Surface Area and Distance from the
Centre to have the value xMAX = 1 on the normalized scales and Time from Last
Overhaul to have the value xMIN = 0, see Figure 4.4. Suppose the answer received
to Q2a is 1000 �. Then, the value of wNMIN obtained from Equation 4.16 is

wNMIN =
µ− xMAX

xMIN − xMAX

=
h−1

4 (1000)− 1

0− 1
=

0.7333− 1

−1
= 0.27, (4.23)

and the corresponding value of wNMAX is 1− wNMIN=0.73.

4.3.4 Inconsistency in Elicitation

In the end of Section 4.2.5, it is discussed that a given weight can be elicited with
different forms of questions. This is seen as a facilitation to the elicitation pro-
cess as one can modify the questions such that they feel easy to answer. The
same feature can also be used as means to reveal inconsistencies in the RNM rep-
resentation by asking the same weight with different elicitation questions. For
example, instead of eliciting the weight of Surface Area with Q1a, one could just
as well use the following question:

Q1b:”Think initially of an apartment with the surface area 40 m2 that is 3 km from the
centre and is 8 years old. The rent of this kind of apartment is most probably 800 �.
Consider then another apartment that is as old and located in the same place but has only
30 m2 of surface area. What is the rent of this kind of apartment most probably?”
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In the question Q1b, the apartment that is first described corresponds to each
of the parent nodes being at point c = 0.6 on the normalized scales, see Figure
4.4. In RNM, this implies that the initial mode of Rent on the normalized scale is
µa = c = 0.6 that corresponds to h−1

4 (0.6) = 800 �. The surface area of the second
apartment type corresponds to the point xb1 = h1(30) = 0.467 on the normalized
scale. Suppose now that the answer obtained to the question Q1b is 720 �. Then,
substituting the values

n = 3

∆x1 = xb1 − c = 0.467− 0.6 = −0.133

∆µ = h4(720)− c = 0.4933− 0.6 = −0.1067

, (4.24)

to Equation 4.10 gives

w̃1 =
(n− 1)∆µ

∆x1 −∆µ
=

2 ∗ −0.1067

−0.133− (−0.1067)
= 8.0, (4.25)

which differs from the value w1 = 13.0 obtained in Equation 4.21. Hence, the
answers to Q1a and Q1b seem to be inconsistent. The origin and ways to deal
with such inconsistency is next discussed.

Modeling abilities of any canonical model are limited by its underlying assump-
tions. Therefore, they cannot be expected to flawlessly represent the probabilistic
relationships in a given real-life phenomenon. The inconsistency between w1 and
w̃1 above is an example of such imperfection in RNM. The origin of the emerging
inconsistency cannot be said to be a specific feature of RNM but the functioning
of the method as a whole. Accordingly, there are various ways to resolve the in-
consistency. The simplest way is that the answer to either of the questions Q1a
or Q1b is refined. The answer to Q1b that is consistent with the answer 500 � to
Q1a and the related weight w1 = 13.0 can be calculated, using Equation 4.10, as
follows:
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w1 =
(n− 1)∆µ

∆x1 −∆µ
⇔

13.0 =
2(h2(x)− 0.6)

−0.133− (h2(x)− 0.6)
⇔

h4(x) =
13.0(−0.133 + 0.6) + 0.6 ∗ 2

2 + 13.0

= 0.4844⇔
x = h−1

4 (0.4844)

= 713.33. (4.26)

Thus, if it is deemed acceptable to change the answer to Q1b from 720 � to 713.33
�, the inconsistency in the value of w1 is resolved.

Another way to deal with the inconsistency between w1 and w̃1 is to ask the an-
swers to questions Q1a and Q1b as intervals and take the value of w1 from the
possible intersection of the corresponding intervals obtained for w1. For exam-
ple, suppose the answers to Q1a and Q1b are the intervals [480 �, 520 �] and
[710 �, 730 �], respectively. The corresponding intervals for w1 are calculated by
similar means as the initial point estimates in Equations 4.21 and 4.25 and the
results are w1 ∈ [10.5, 16.8] for Q1a and w1 ∈ [4.7, 18.0] for Q1b. Thus, as a com-
promise, one could select the value of w1 to be, e.g., w1 = 14.0 that is found from
the intersection of the intervals for w1.

If the inconsistency between w1 and w̃1 cannot be resolved by either of the two
means presented above — one is not willing to change the answers to Q1a and
Q1b or the intervals obtained for w1 do not intersect —, partitioned expressions,
see Section 3.5.2, could be used as an aid. Now, the CPT of Rent could be gen-
erated by using weight w1 = 13.0 when Surface Area is in state V ery Small and
weight w̃1 = 8.0 when the node is in state Medium. This would then reflect the
idea that the strength of influence of Surface Area to Rent is not constant but varies
depending on the states of the former.

In principle, the inconsistency between w1 and w̃1 can also be handled by refining
the discretizations of the nodes Surface Area and Rent. For example, consider al-
tering the discretization of the interval scale of Surface Area displayed in Figure 4.4
so that the states Small and Medium correspond to subintervals [15 m2, 23.5 m2]

and [23.5 m2, 40 m2], respectively. In this case, the piecewise linear mapping h1(x)
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defined by Equation 4.18 changes into h̃1(x) defined by

h̃1(x) =



x−10
25

, 10 ≤ x < 15

0.2 + x−15
42.5

, 15 ≤ x < 23.5

0.4 + x−23.5
82.5

, 23.5 ≤ x < 40

0.6 + x−40
100

, 40 ≤ x < 60

0.8 + x−60
150

, 60 ≤ x ≤ 90

, (4.27)

Now, the value of ∆x1 in Equation 4.25 becomes ∆x1 = h̃1(30) − 0.6 = 0.4769 −
0.6 = −0.1231 which yields

w̃1 =
(n− 1)∆µ

∆x1 −∆µ
=

2 ∗ −0.1067

−0.1231− (−0.1067)
= 13.0, (4.28)

and resolves the inconsistency concerning the weight of Surface Area.

The inconsistency between w1 and w̃1 may also be dealt with by redefining the
mappings h1(x) and h4(x). As discussed above, piecewise linear functions are
just an example of the kind of continuous monotonic mapping that can be con-
sidered to exist between the interval or ratio scales and the normalized scales of
the nodes. To make the RNM representation more consistent with the answers
of the elicitation question regarding the weights, the mappings can be modified
freely. For example, h1(x) can be modified so that the value of xb1 = h1(30) in
Equation 4.24 yields the result w̃1 = w1 = 13.0 from Equation 4.25. The desired
value for h1(30) can be calculated from Equation 4.10 by

w̃1 =
(n− 1)∆µ

∆x1 −∆µ

=
(n− 1)∆µ

h1(30)− h1(40)−∆µ
⇔

13.0 =
2 ∗ −0.1067

h1(30)− 0.6− (−0.1067)
⇔

h1(30) = 0.4769. (4.29)

Contrary to the result above, the definition for h1(x) in Equation 4.18 yields h1(30) =

0.467. The result of Equation 4.29 can be taken into account in h1(x) by splitting
the linear part between x ∈ [25, 40] into two linear parts between x ∈ [25, 30] and
x ∈ [30, 40] so that h1(30) = 0.4769. This is illustrated in Figure 4.6.

Though there are number of ways to remove inconsistencies arising in the elici-
tation of the weights, one cannot expect to able to remove all of them. Handling
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Figure 4.6: Function h1(x) is linear when x ∈ [25, 40] and function h̃1(x) is linear
when x ∈ [25, 30] and x ∈ [30, 40].

successfully one of them might introduce a new one leading to an endless cycle
of corrections. The emergence of the inconsistencies can be regarded as an em-
bodiment of the lack of accuracy concerning the use of RNM to construct a CPT
representing the probabilistic relationships in the phenomenon at hand. Then, the
crucial question is whether a satisfying accuracy can be reached and whether it is
possible with an acceptable amount of effort. As discussed in Section 3.6, RNM
is regarded as a method to quickly construct initial CPTs that are used the start-
ing point of an iterative elicitation process based on, e.g., sensitivity analysis. In
the sensitivity analysis of a BN, one or more conditional probabilities are varied
and the effect on a probability of interest is observed. This indicates which con-
ditional probabilities are the most important to get correct. These values can then
be refined separately from the other elements in the CPTs. Hence, one should not
get tangled to some specific inconsistencies regarding the use of RNM. Removing
them might have a minimal effect on the overall quality of the BN or they might
represent flaws that are better corrected by other means than revised use of RNM.

4.4 Comparison to Other Canonical Models

In RNM, the central tendency of a child node is determined as a kind of weighted
aggregate of the states of parent nodes by using the normalized scale [0, 1]. The
selection of the weight expression and assessment of the weights and the variance
parameter basically corresponds to describing the nature of the simultaneous ef-
fect of the parent nodes on the child node. This way of RNM for considering the
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causal influence of the parent nodes differs from most of the canonical models.
Usually, e.g., in noisy-OR [45] and noisy-MAX [17, 52], the basic idea is that par-
ent nodes are causes which can affect the child node independent of each other.
This idea is known as independence of causal influence (ICI) in the literature
[31, 30, 18]. In ICI models, each parent node Xi is assumed to have a so-called
distinguished state x∗i in which it does not affect the child node. In principle,
if all the parent nodes X1, ..., Xn are in the distinguished states, then the child
node Xn+1 will be in its distinguished state x∗n+1 for sure. If the state of a single
parent node Xi changes from the distinguished state x∗i , it can disturb the child
node away from the distinguished state x∗n+1. The parameters to be assessed in
ICI models are usually the conditional probabilities of the states of the child node
given that all parent nodes except one are in the distinguished states, i.e.,

P (Xn+1 = xn+1|Xj = x∗,j Xi = x∗i∀i 6= j), i = 1, ..., n. (4.30)

Thus, contrary to RNM, one does not need to consider the combined influence of
parent nodes acting simultaneously but the effect of one parent node at a time.

The different ways for considering the nature of the probabilistic relationship be-
tween the nodes in the ICI models and RNM introduces a considerable difference
to the amount of parameters that need to be assessed in order to construct CPTs.
Suppose there are n parent nodes with the ith one having mi states and a child
node having mn+1 states. In this case, there are mn+1

∏n
i=1mi elements in the CPT

of the child node. As discussed in Section 3.6, the construction of the CPT of the
child node with RNM requires making

N sel
RNM = n+ 2, (4.31)

selections concerning the mapping of the states of the nodes to the state intervals
and the weight expression. In addition, one has to assign

Nass
RNM =

 n+ 1 if f ∈ {WMEAN, WMIN, WMAX}
3 if f = MIXMINMAX

, (4.32)

parameters specifying the weights related to the weight expression f as well as
the value of the variance parameter. In turn, the use of noisy-MAX requires one
to make

N sel
noisy−MAX = n+ 1, (4.33)
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Table 4.2: Distinguished states of the nodes in the example BN for the use of
noisy-MAX.

Node Skills Spryness Disturbance Level Productivity
Distinguished state Low Low High Low

selections concerning the distinguished states of the nodes and to assign

Nass
noisy−MAX = mn+1

n∑
i=1

mi, (4.34)

probabilities. Equations 4.31 and 4.33 indicate that the amount of decisions in
RNM and noisy-MAX differs only by one in favour of the latter. However, the
comparison of Equations 4.32 and 4.34 indicates that RNM requires significantly
smaller amount of numerical assessments than noisy-MAX.

To illustrate the difference in the amount of parameters between noisy-MAX and
RNM, consider the construction of the CPT of Productivity in the example BN dis-
played in Figure 2.1. This CPT has 34 = 81 elements, see Table A-4 in Appendix
A. Using noisy-MAX, one has to specify nowN sel

noisy−MAX = 4 distinguished states
that could be those presented in Table 4.2. That is, if all the parent nodes are in
the worst states, also Productivity is in the worst state for sure. In addition, one
is required to make NRNM

noisy−MAX = 18 probability assessments corresponding to
the entries of Table 4.3. The rows in Table 4.3 correspond to situations where
two parent nodes are in the distinguished states but one of them is not. That
is, one has to consider how a change in the state of a single parent node affects
Productivity when the other parent nodes are not promoting any change. The
remaining probability distributions of the full CPT of Productivity are determin-
istically generated based on the entries of Table 4.3, see, e.g., [17, 52] for details.
As presented in Chapter 3, the construction of the CPT of Productivity with RNM
requires N sel

RNM = 5 selections concerning the mappings of the states of the nodes
and the weight expression. In addition to these, Nass

RNM = 3 or Nass
RNM = 2 numeri-

cal assessments concerning the weights are needed.

The small amount of parameters to be elicited makes RNM seem appealing com-
pared to noisy-MAX or other canonical models. Moreover, avoiding the assess-
ment of probabilities may be considered desirable, as discussed in Section 3.6.
However, the selection of the canonical model cannot be based solely on the
amount of parameters to be elicited. Stress must be put on the ability of the
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Table 4.3: Conditional probability distributions of Productivity that need to be
elicited from the expert in noisy-MAX.

Parents Productivity
Skills Spryness Disturbance level High Medium Low
High

Low
High

Medium

Low

Medium
High

Low
Medium

Low

model to represent the probabilistic relationship between the nodes. There is no
single canonical model that would always be the best choice because the models
have been designed by assuming different kinds of probabilistic relationships.
When constructing a CPT, one should try to discover which one of the models
best portrays the probabilistic relationship of the nodes at hand. For example, if
the behaviour of Productivity can be described as some kind of weighted average
of the states of its parent nodes, RNM could be handy in constructing the CPT.
If, on the other hand, the interaction is perceived better using the idea of, e.g.,
noisy-MAX, one should use that instead. In [25], it is stated that RNM is comple-
mentary to other elicitation methods. The same idea applies to canonical models
in general. Different canonical models should be seen as tools supplementing
each other and one should always seek to use the one that best corresponds to
the given context.
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Chapter 5

On Computational Aspect of RNM

This Chapter explores RNM through two experimental studies related to the com-
putational properties of the method. The studies provide additional knowledge
concerning the practical use of RNM and complement the discussion of its mod-
eling aspect presented in Chapter 4. In Section 5.1, the computational complexity
of RNM is studied by measuring the calculation times of CPTs of various sizes
with two implementations of RNM. The calculations are carried out with Intel
Core i5 CPU 2.40 GHz processor, 4 GB RAM, and Windows Vista — a set-up
which is considered to be a standard desktop computer. In Section 5.2, the mod-
eling accuracy of RNM and the effect of the sample point size s are studied by
measuring how well RNM can approximate CPTs found in various BNs used in
real-life applications.

5.1 Experimental Study on Computational

Complexity of RNM

The generation of a CPT by RNM contains several computational operations. If
there are n parent nodes and the ith one has mi states, then there are in total∏n

i=1mi combinations of states of the parent nodes. With the sample point size
s, any combination of states (x1, ..., xn) requires constructing sn combinations of
sample points. For each combination of the sample points (z1,k, ..., zn,k), the value
of µk is calculated and the doubly truncated normal distribution TNormal(µk, σ2, 0, 1)

is integrated over the state intervals of the child node. If the child node has mn+1

states, the definite integral of TNormal(µk, σ2, 0, 1) is calculated over mn+1 − 1

state intervals. For example, consider a case where n = 5, m1, ...,m5 = 5, s = 5,
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and mn+1 = 5. Then, while generating the CPT,
∏5

i=1 5 ∗ 55 = 9765625 combina-
tions of sample points are constructed and the value of µk is calculated as many
times. Moreover, the definite integral of a doubly truncated normal distribution
is calculated (5− 1) ∗ 9765625 = 39062500 times.

The numbers above may seem large but does this cause any practical problems
when the CPT is generated by a computer? When testing the above example in
AgenaRisk [38] software implementing RNM, the program warns the user of a
possibly slow calculation time and, indeed, the generation of the CPT lasts sev-
eral minutes. As RNM is meant to be a tool in probability elicitation, one is inter-
ested in whether the CPT can be generated reasonably fast. To gain insight into
the computational complexity of RNM from this practical point of view, an ex-
perimental study is performed. The study concerns generating CPTs with RNM
for different sets of controlled variables and measuring calculation times. Sec-
tion 5.1.1 presents the experimental design of the study. Section 5.1.2 presents the
results. Summary of the experiment is given in Section 5.1.3.

5.1.1 Experimental Design

To measure the calculation times of CPTs by RNM, the method is implemented
with MATLAB [39]. By carrying out the investigation with a self programmed im-
plementation, one can modify and explore the computational properties of RNM
with greater invisibility and detail than is possible with AgenaRisk. MATLAB is
used as it has several built-in functions that ease up the programming task and
help in investigating the properties of the implementation. In addition, MATLAB
is considered to be a good example of a software that can be used to develop
a custom-built program that utilizes RNM. Thus, implementing and investigat-
ing RNM with MATLAB provides information that can be used in planning and
executing such a custom-built program.

In the experiment, CPTs for a child node are generated with RNM using different
sets of controlled variables and calculation times are recorded. The controlled
variables that are varied in the experiment are the number of parent nodes n, the
numbers of states of the nodes mi, the sample point size s, and the weight ex-
pression f . To keep the number of combinations of the controlled variables man-
ageable, the number of states of the parent nodes and the child node is always
kept mutually equal, i.e., mi = m ∀i = 1, ..., n + 1. The ranges for the controlled
variables in the experiment are the following:
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• m ∈ {2, ..., 7}

• s ∈ {1, ..., 5}

• n ∈ {2, ..., nub}

• f ∈ {WMEAN, WMIN, WMAX, MIXMINMAX}

For m, the lower bound mlb = 2 is the minimum amount of states that a random
variable can have. The upper bound mub = 7 is selected because in current prac-
tice the ordinal scales typical to RNM — such as {V ery Low, Low, Medium, High,
V ery High}— usually consist of five or seven categories [48]. The lower bound
for s is set to slb = 1 which is the minimum number of sample points that can be
taken in practice. When using s = 1, the middle points of the state intervals of
the parent nodes are used as sample points. For larger values of s, the end points
of the state interval are always included in the sample points, as discussed in Sec-
tion 3.3.5. The upper bound of s is set to be sub = 5 which is the default sample
size in AgenaRisk and therefore a good reference point. Larger sample sizes are
ruled out of the experiment because the interest is more on studying how small
the elapsed times can be as opposed to how large they can become. As the idea in
RNM is to define the central tendency of the child node by ”weighing” the states
of the parent nodes, the case of a single parent node, n = 1, is not deemed to
be interesting. Therefore, the lower bound for n is set to be nlb = 2. The upper
bound nub is not set beforehand but measurements are conducted for different
n ≥ 2 until a suitable limit is reached.

Two implementations of RNM are used in the experiment. In the first implemen-
tation, referred to as A, the CPT of the child node is generated in two separate
steps. In the first step, all possible combinations of sample points (z1,k, ..., zn,k)

sn

k=1

for each combination of states of the parent nodes (x1, ..., xn) are constructed and
stored. In the second step, the CPT is generated by using the stored combina-
tions of sample points. The idea of dividing the generation of the CPT into two
separate steps stems from practical considerations. As all required combinations
of sample points are constructed and stored beforehand, they do not need to be
constructed repeatedly during an elicitation session where the CPT of the child
node may need to be refined and regenerated several times.

In the second implementation, referred to as B, the combinations of sample points
(z1,k, ..., zn,k)

sn

k=1 are not generated beforehand for each combination of states of the
parent nodes. Instead, the CPT is generated column by column so that only the
combinations of sample points (z1,k, ..., zn,k)

sn

k=1 related to a single combination of
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states of the parent nodes (x1, ..., xn) are in the memory storage at a time. Thus, as
opposed to A, the B reconstructs the combinations of sample points each time the
CPT is regenerated in an elicitation session. This increases the calculation times
of the CPTs. However, the second implementation requires less memory which
might turn out to be a desirable feature.

To increase the reliability of the results, the experiment is carried out by making
50 repetition trials for each set of the controlled variables. In each repetition,
the weights (w1, ..., wn) or (wMIN , wMAX) and the variance parameter σ2 are let
vary arbitrary in the default ranges defined in AgenaRisk. By not fixing these
parameters to be the same in each repetition indicates better the possible range of
calculation times of the implementations for a fixed set of the controlled variables
than using the same weights and variance parameter in each repetition.

The computer set-up used in the experiment is considered to be a standard desk-
top computer. This set-up is used to get an idea of what kinds of calculation times
can be expected in a real-life elicitation session. In order to be able to check the
effectiveness of the implementations of RNM used in the experiment, some re-
sults obtained with them are compared to manually measured calculation times
obtained with AgenaRisk.

5.1.2 Results

For both implementations A and B, the calculation times for a fixed set of the
controlled variables do not vary dramatically in the repetitions — the standard
deviations of the repetitions are typically about 10 percent or less of the average
values. This degree of variation is considered small enough to focus the analysis
of the results on the average values of the repetitions. Moreover, the results ob-
tained with different weight expressions are found to be similar with each other
for both implementations. This is illustrated in Figures C-1 and C-2 in Appendix
C for A and B, respectively. Figures C-1 and C-2 display the average calculation
times of CPTs for different sets of the controlled variables. It can be observed
that the average calculation times obtained with different weights expressions
are similar when the other controlled variables are fixed. This similarity of the re-
sults with different weight expressions indicates that the duration of calculating
µk is of the same magnitude for all of them. Because of the results obtained with
different weight expressions are so similar, further analysis is performed only for
the results obtained with one of them, i.e., WMEAN.

Figure 5.1 displays the average calculation times obtained with implementation
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Figure 5.1: Average calculation times of a CPT with implementation A for vary-
ing number of parent nodes n, number of states of the nodes m, and number of
sample points s using WMEAN as the weight expression.

A for different values of n, m, and s when using WMEAN as the weight expres-
sion. In Figure 5.1, each bar consists of two superimposed segments that corre-
spond to the two steps in implementation A. The lower segments represent the
proportion of the calculation time spent on constructing and storing all possible
combinations of sample points (z1,k, ..., zn,k)

sn

k=1 for each combination of states of
the parent nodes (x1, ..., xn). Correspondingly, the upper segments represent the
proportion taken by the generation of the CPT using the stored combinations of
sample points. Some of the charts in Figure 5.1 are lacking bars related to certain
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values of s or m. These omissions correspond to cases where the computer ran
out of memory while constructing the combinations of sample points.

It can be observed in Figure 5.1 that the calculation times tend to increase for
increasing n, m, and s. This is expected as an increase in any of these variables
increases the size of the computing task related to producing the CPT. Results
contrary to the general trend can be seen only in Figure 5.1a. This anomaly is con-
sidered to be the result of the fact that once the elapsed time are only thousandths
of a second, some computational mechanisms of MATLAB consume time enough
to obscure the differences between the different measurements. It can also be no-
ticed that increasing n with one unit increases the elapsed time considerably for
any fixed values of m and s ∈ {2, 3, 4, 5}. For example, for the combination of
variables (n = 2,m = 4, s = 5), increasing n with one unit always makes the
total calculation time to roughly tenfold in Figures 5.1a–5.1d. In the case s = 1,
the effect of increasing n is harder to notice as the calculation times are so much
smaller than with other sample sizes. This is discussed more below. The effect
of increasing either s or m with one unit while the other two variables are held
fixed is not nearly as drastic as with n. For example, starting from the situation
(n = 2,m = 4, s = 5), see Figure 5.1b, and increasing m unit by unit seems to in-
crease the total calculation time always with only some thousandths of a second.
The effect is even smaller if one starts to decrease the value of s while keeping
n = 2 and m = 4. The effect of n, m, and s on calculation time could be stud-
ied more thoroughly by, e.g., considering how the number of floating point op-
erations in the scripts of the implementations depends on them. However, such
investigation is not in the focus of the current study and is therefore now omitted.

Especially Figures 5.1a–5.1d imply that for given values of n and m the genera-
tion times are roughly on the same scale when s ∈ {2, 3, 4, 5} but the times re-
lated to s = 1 are always noticeably smaller. The main reason for this is related
to the number of combinations of sample points that are constructed while gen-
erating the CPT. For a given combination of states of the parent nodes (x1, ..., xn),
sn combinations of sample points (z1,k, ..., zn,k)

sn

k=1 need to be constructed. While
the term sn increases rapidly for increasing n when s > 1, in the case s = 1, only
one combination of sample points is constructed, independent of the number of
the parent nodes. On the other hand, in the case s > 1, there are several dou-
bly truncated normal distributions {TNormal(µk, σ2, 0, 1)}snk=1 that are integrated
over the state intervals of the child node for a given combination of states of the
parent nodes (x1, ..., xn). When s = 1, only one doubly truncated normal dis-
tribution is used. In implementation A, these circumstances mean that the same
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computational routine, that produces the whole CPT in the case s = 1, is repeated
for each combination of states of the parent nodes (x1, ..., xn) when s > 1. This is
why the average calculation times in Figure 5.1 are small when s = 1 compared
to the cases s ∈ {2, 3, 4, 5}.

Figure 5.2 displays the average calculation times obtained with implementation B
for different values of n, m, and s when using WMEAN as the weight expression.
Some of the charts in Figure 5.2 are lacking bars related to different combinations
of n, m, and s. These omissions correspond to cases where the calculation times
of the CPT are either measured to be several minutes in initial test runs or con-
cluded to be such based on preceding measurements. These cases are left out
from the final experiment as recording the repetitions would have been too slow.
On the other hand, in these cases, the calculation times are readily considered too
long from the practical point of view. These practical aspects are discussed more
below.

The results depicted in Figure 5.2 show similarity to those presented in Figure
5.1. Just like in Figure 5.1a, also in Figure 5.2a there are some anomalies. Again,
as the magnitude of the calculation times is only thousandths of a second, it is
assumed that these anomalies are caused by some overhead in MATLAB that ob-
scures the differences between the different measurements. In general, the bars
corresponding to the same set of variables (n,m, s) in Figures 5.1 and 5.2 repre-
sent similar times. This can be noticed especially when comparing the graphs in
Figures 5.1a–5.1c and 5.2a-5.2c with each other. In these graphs, the range of the
time axes are almost the same and the heights of the bars are easy to compare.
For the bars presented in Figures 5.2d–5.2f, the similarity to their counterparts
in Figures 5.1d–5.1f is harder to observe because the range of the time axes are
different. This is because in Figures 5.2d–5.2f, there are bars related to those cases
that caused MATLAB run out memory when using implementation A.

The graphs in Figures 5.1 and 5.2 also reveal that the calculation times with imple-
mentation B are generally slightly larger than with A for a fixed set of parameters
(n,m, s). Thus, it appears that A is computationally a bit lighter than B. The dif-
ference between the results of the two implementations is largest in the cases with
s = 1. This stems from the differences in the operation of the implementations.
When s = 1, in the second step of implementation A, the built-in functions of
matrix calculations in MATLAB can be used effectively to handle the combina-
tions of sample points saved in the first step of the implementation. Because of
the same reason, the results obtained with s = 1 using A are better than in cases
s > 1, as discussed earlier. In implementation B, where the combinations of sam-
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Average calculation times of a CPT with implementation B for vary-
ing number of parent nodes n, number of states of the nodes m, and number of
sample points s using weight expression WMEAN.

ple points are not constructed beforehand for each combination of states of the
parent nodes, the built-in functions of MATLAB cannot be used as effectively as
in A when s = 1. This is why the calculation times with implementation B are
larger than with A when s = 1.

Even though the total calculation times are similar for implementations A and
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B, the principal difference in their operation makes A faster in practical use.
When the CPT is refined and regenerated repeatedly, the combinations of the
sample points do not need to be reconstructed in implementation A. Thus, on
the repetitive use, the calculation times are only those represented by the upper
segments of the bars in Figure 5.1. For example, for the combination of variables
(n = 6,m = 6, s = 2), the average recalculation time of the CPT with implemen-
tation A corresponding to the upper segment of the highest bar in Figure 5.1f is
about 3 s. The corresponding time with implementation B displayed in Figure
5.2f is about 13 s.

The potential advantage that implementation B has over A is that the latter might
cause a memory shortage when storing all possible combinations of sample points.
However, based on the comparison of Figures 5.1d – 5.1f and 5.2d – 5.2f, it can be
seen that for those combinations of (n,m, s) that cause MATLAB run out of mem-
ory with implementation A and are included in the experiment with B, the aver-
age calculation times of B are ranging from about 30 s, e.g., (n = 5,m = 6, s = 5)

in Figure 5.2d, to about 80 s, e.g., (n = 6,m = 5, s = 4) in Figure 5.2f. As already
noted, for those combinations of (n,m, s) not included in the experiment with
B, the calculation times are measured to be several minutes in some initial tests.
Thus, though implementation B provides means to increase the sample point size
s above the critical limits of A, the calculation times in these cases become tens of
seconds or minutes.

In real-life elicitation sessions, where the parameters of RNM and the CPTs most
probably need to be refined repeatedly, calculation times of only few seconds
are desirable. Initially one might think that calculation times of about, e.g., 10
seconds are not too uncomfortable. However, if the regeneration needs to be per-
formed several times during the elicitation session, e.g., when adjusting the value
of the weight of a parent node, pauses of this magnitude might become irritating
and make the elicitation of the parameters feel cumbersome and demotivating. In
this light, implementation A is considered preferable to B in practical use because
the former is faster inside the range of acceptable calculation times.

The experiment provides knowledge on the computational complexity of RNM.
Naturally, the calculation times depend on the speed of the computer and the
way the implementation is programmed. If the experiment is carried out with
a more effective computer or with more effective implementations, the calcula-
tion times would be smaller. However, as explained in the end of Section 5.1.1,
the computer set-up of the experiment provides idea of what types of calcula-
tion times could be expected in a real-life elicitation session utilizing a standard
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desktop computer. To gain some insight into the level of effectiveness of the im-
plementations used, some tentative hand-made timer measurements of the cal-
culation times with AgenaRisk are compared to the average calculation times of
implementation A in Figure 5.1. In all comparisons, the total times obtained with
implementation A are smaller than the ones obtained with AgenaRisk. For ex-
ample, for the parameter combination (n = 4,m = 6, s = 5, f =WMEAN), the
average calculation time obtained with implementation A is 1.6 s whereas with
AgenaRisk the corresponding calculation times are each about two minutes in
three repetitions. Based on these comparisons, the results obtained in the exper-
iment do not give too conservative view of the calculation times of CPTs with
RNM in real-life elicitation sessions.

5.1.3 Summary

The results of the experiment indicate that RNM can well be implemented so
that its use is sensible from the point of view of generating CPTs fast enough. In
various applications of BNs, e.g., [1, 3, 4, 6, 7, 15, 20, 21, 22, 23, 24, 28, 29, 43, 46, 56],
the number of parent nodes n for a given child node is typically 1–4 and the
numbers of states of the nodes mi are usually ranging between 2 and 7. For these
cases, the implementations of RNM investigated can generate CPTs in just a few
seconds independent of the sample size s used. For larger values of n and mi,
the calculation time of RNM might become impractically large or cause memory
problems with increasing values of s. As already stated, the practical effect of this
feature depends on the computer and the implementation used. Nevertheless,
the results of the experiment rise the question of the importance of the value of s
used. In Section 4.1, the use of the sample points zi,k is shown to correspond to
the approximation of the hierarchical Bayesian model characterized by Equations
4.1–4.4. The accuracy of the discrete approximation increases with increasing s.
However, the effect of the sample point size on the modeling performance of
RNM in the practical use of the method is unclear. This matter is investigated in
the next section as a part of a study concerning the modeling accuracy of RNM.

70



5.2 Experimental Study on Modeling Accuracy of RNM

As discussed in Chapter 3, RNM is developed to represent quantitatively the
weighting schemes through which experts seem to consider the probabilistic re-
lationship between parent nodes and a child node in various applications. In [25],
the four weight expressions available in RNM are said to be sufficient for most
applications. Over the years, RNM has been utilized mostly in software quality
predicting, e.g., [23, 24] but also in other fields, e.g., human reliability analysis [3]
and association football gambling [7]. However, there has not been any studies on
how RNM performs with BNs in general. That is, when all parent nodes and the
child node can be considered as ranked nodes, does RNM provide means to gen-
erate a CPT representing the probabilistic relationship between the nodes? The
issue is studied in this section experimentally by approximating CPTs in existing
real-life benchmark BNs with RNM. This approach for studying the modeling ac-
curacy of RNM is similar to that used in [58] for studying the modeling accuracy
of another canonical model, noisy-MAX [17, 52]. In the study now performed,
the effects of the sample point size as well as the ranges of the weights and the
variance parameter on the modeling accuracy of RNM are studied in particular.
Moreover, the effect of using partitioned expressions is investigated. The experi-
mental design of the study is presented in Section 5.2.1. The results are presented
in Section 5.2.2. Summary of the experiment is given in Section 5.2.3.

5.2.1 Experimental Design

There are several measures that are used to describe the similarity of two dis-
crete probability distributions [37]. However, the discussion in [58] indicates that
there are not any well-established standard ways to measure the similarity of two
CPTs. One way is to calculate the similarity for each of the corresponding con-
ditional probability distributions in the CPTs with some standard measure and
then use the sum of the values to describe the similarity of the CPTs. However,
in [58], it is pointed out that the similarity values related to different conditional
probability distributions can be considered of different importance depending on
how probable the corresponding combinations of states of the parent nodes are.
This corresponds to taking a weighted sum of the similarity measures. Nonethe-
less, in this study, it is irrelevant how probable the conditioning combinations of
states of the parent nodes are. This is because the interest now is how well CPTs
constructed with RNM can represent the probabilistic relationship of the parent
nodes and the child node.
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In the experiments, the similarity of two CPTs Θ and Θ̃ with N = mn+1 ∗
∏n

i=1mi

elements is measured by considering them as points in RN and calculating the
Euclidean distance between them by

‖Θ− Θ̃‖ =

√√√√∏n
k=1mk∑
j=1

mn+1∑
i=1

(Θi,j − Θ̃i,j)2, (5.1)

where Θi,j and Θ̃i,j are the elements on the ith row and jth column in the CPTs
Θ and Θ̃, respectively, and the columns of the CPTs are conditional probability
distributions. This measure is one of those used in [58] to study the modeling
accuracy of noisy-MAX.

Minimization Problems

Finding the optimal approximation for a given CPT Θ corresponds to solving the
minimization problem

minimize
p∈P

‖Θ− Θ̃(p; s)‖, (5.2)

where p is a parameter configuration of RNM, P is the set of feasible parameter
configurations, Θ̃(p; s) is the CPT generated with RNM using p and the sample
point size s. Though s is a parameter of RNM, it is not included in the decision
variable p in the basic formulation of the optimization problem because its effect
is studied separately.

Two different forms of Problem 5.2 are studied. The first one corresponds to the
situation where the whole CPT is generated with a single set of parameters, which
was discussed in Section 3.3. The second form corresponds to generating the CPT
in parts using partitioned expressions in the way presented in Section 3.5.2. The
motivation for studying the second form of the minimization problem is to gain
better understanding of the utility and importance of the partitioned expressions
as a part of the effective use of RNM. The experimental designs for the two forms
of the minimization problem are explained in detail below.

In the first form of Problem 5.2, the decision variable p consists of four elements,
p=(φ, f,w, σ2). φ is a vector of n binary elements that define how the states of the
parent nodes are mapped to the state intervals. This corresponds to the decision
on whether the first state of the parent node is identified to a state interval whose
lower bound is 1 or to a state interval whose upper bound is 1, see Figure 3.1.
In the experiment, the first state of the child node is always mapped to a state
interval having 1 as the upper bound. f ∈ F = {WMEAN, WMIN, WMAX,
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MIXMINMAX} is the weight expression used. w and σ2 are the weights and the
variance parameter related to f , respectively. The first form of Problem 5.2 can be
written as

minimize
φ,f,w,σ2

‖Θ− Θ̃(φ, f,w, σ2; s)‖

subject to φ ∈ Ω,

f ∈ F,
w ≤ wi ≤ w ∀i = 1..., |w|,
σ2 ≤ σ2 ≤ σ2,

(5.3)

where Ω is a set of 2n elements that define all possible combinations of mappings
of the states of the parent nodes to the normalized scale [0, 1]. In addition, w,
w, σ2, and σ2 are the lower and upper bounds of the weights w = (w1, ..., w|w|)

and the variance parameter σ2, respectively. | · | is the cardinality measure, i.e., it
tells the number of elements in an array. For example, when f =MIXMINMAX,
|w| = 2 but for other values of f , |w| = n, i.e., equal to the number of the parent
nodes.

In the second form of Problem 5.2, the partitioning of the CPT is performed with
respect to the states of one parent node. In this case, the decision variable p con-
sists of five elements, p=(X,φ,f ,W,σ2). X is the parent node according to whose
states the CPT is divided into mX segments and generated with partitioned ex-
pressions. φ is vector that defines the mappings of the states of the parent nodes
to the state intervals. f = (f1, ..., fmX ) defines the weight expressions used in
the partitioned expressions while W = (w1, ...,wmX ) and σ2 = (σ2

1, ..., σ
2
mX

) con-
tain the weights and variance parameters, respectively. Hence, the minimization
problem is

minimize
X,φ,f ,W,σ2

‖Θ− Θ̃(X,φ,f ,W,σ2; s)‖

subject to X ∈ {X1, ..., Xn},
φ ∈ Ω,

fi ∈ F ∀i = 1, ...,mX ,

w ≤ wij ≤ w ∀j = 1, ..., |wi|,∀i = 1, ...,mX ,

σ2 ≤ σ2
i ≤ σ2, ∀i = 1, ...,mX ,

(5.4)

where wji is the ith element of the vector wj .
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Effect of Sample Point Size and Parameter Ranges

Problems 5.3 and 5.4 are solved separately for different values of the sample point
size s in order to investigate its effect on the modeling accuracy of RNM. In Sec-
tion 4.1, the use of sample points zi,k in RNM is shown to correspond to the ap-
proximation of the hierarchical Bayesian model characterized by Equations 4.1–
4.4. It is shown that the approximation becomes more accurate with the increas-
ing value of sample point size s, see Equation 4.5. Thus, for a fixed parameter
configuration p, the measure ‖Θ − Θ̃(p; s)‖ should also converge for an increas-
ing value of s. From the point of view of the minimization problem 5.2, this
corresponds to the phenomenon that the optimal configuration (p∗; s) converges
to some specific limit p∗.

In addition to studying the effect of the sample point size s on the modeling
performance of RNM, the effect of the parameter ranges is investigated as well.
For each value of s used, Problems 5.3 and 5.4 are solved using two values for the
bounds {w,w, σ2, σ2}. The first set is

w = 1,

w = 5,

σ2 = 5 ∗ 10−4,

σ2 = 0.5.

(5.5)

These values correspond to the bounds set to the weights and the variance pa-
rameter in the elicitation window of AgenaRisk that is displayed in Figure 5.3a.
In this window, one can set the values of the parameters using scroll bars. The
values of the parameters can also be set beyond these ranges in another elicitation
window of AgenaRisk that is displayed in Figure 5.3b. In this window, the values
are set directly without any visual support. Because of this, one may easily prefer
to use the elicitation window displayed in Figure 5.3a. In turn, this may cause the
user to get anchored to the restricted ranges available. That is, the user may set-
tle to use only those ranges of the parameters that are available in the elicitation
window and not consider values beyond these bounds.

To investigate how severe effects anchoring to the bounds in Equation 5.5 can
have on the modeling accuracy of RNM, Problems 5.3 and 5.4 are solved also
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(a) (b)

Figure 5.3: Windows for setting parameters of RNM in AgenaRisk software.

with the bounds 
w = 1,

w =∞,
σ2 = 10−6,

σ2 =∞.

(5.6)

These correspond to bounds that are plausible from the theoretical point of view.
Being the variance of a doubly truncated normal distribution, σ2 can have any
value in [ε,∞), where ε > 0. The value ε = 10−6 is now used as the lower bound
for σ2. Similarly to the variance parameter, there does not need to be any finite
upper limit for the weights of the parent nodes in RNM. Thus, the value of w =

∞. The lower limit w is set to 1 due to the reasons discussed in Section 4.2.2.

Solving the Minimization Problems

Problem 5.3 is solved by finding the optimal values of w and σ2 for each combi-
nation of φ and f and taking the best one of the resulting set of solutions. That is,
one first solves

minimize
w,σ2

‖Θ− Θ̃(w, σ2;φ, f, s)‖

subject to w ≤ wi ≤ w ∀i = 1, ..., |w|,
σ2 ≤ σ2 ≤ σ2,

(5.7)

for each φ ∈ Φ and f ∈ F . Then, the final solution ‖Θ− Θ̃; s‖∗ is obtained by

‖Θ− Θ̃; s‖∗ = min
φ∈Φ,f∈F

‖Θ− Θ̃;φ, f, s‖∗, (5.8)

where ‖Θ− Θ̃;φ, f, s‖∗ is the set of solutions to Problem 5.7.
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Problem 5.4 is solved by finding the optimal values of f , W and σ2 for each
combination of X and φ and taking the best one of the resulting set of solutions.
For a given combination of X and φ, the optimization proceeds as follows. First,
in each segment Θi of the partition and with each value of fi ∈ F , one solves the
problem

minimize
wi,σ2

i

‖Θi − Θ̃i(wi, σ2
i ;X,φ, fi, s)‖

subject to w ≤ wij ≤ w ∀j = 1, ..., |wi|,
σ2 ≤ σ2

i ≤ σ2.

(5.9)

Next, the best solutions over the weight expressions in each segment ‖Θi−Θ̃i;X,φ, s‖∗
are given by

‖Θi − Θ̃i;X,φ, s‖∗ = min
fi∈F
‖Θi − Θ̃i;X,φ, fi, s‖∗, (5.10)

where ‖Θi − Θ̃i;X,φ, fi, s‖∗ are the optimal solutions to Problem 5.9.

Finally, the corresponding overall Euclidean distance for the given values of X
and φ is obtained according to

‖Θ− Θ̃;X,φ, s‖∗ =

√√√√mX∑
i=1

(
‖Θi − Θ̃i;X,φ, s‖∗

)2

. (5.11)

After calculating the optimal solutions for all combinations of X and φ, the opti-
mal solution ‖Θ− Θ̃; s‖∗ is given by

‖Θ− Θ̃; s‖∗ = min
X∈{X1,...,Xn},φ∈Ω

‖Θ− Θ̃;X,φ, s‖∗. (5.12)

In practice, Problems 5.7 and 5.9 are solved with MATLAB utilizing the imple-
mentation A of RNM presented in Section 5.1. The optimization in MATLAB is
performed with the routine patternsearch designed for non-smooth optimization
problems. To show whether the problems 5.7 and 5.9 have unique solutions or
not is a non-trivial problem itself and beyond the scope of this thesis. Because of
the lack of knowledge concerning the existence of unique global minima, fmincon
is set to find local minima of the problems from three alternative initial points of
the iteration (w0,i, σ

2
0,i)

3
i=1. By using different initial points, the chance of finding

the smallest local minimum increases. When solving Problems 5.7 and 5.9, the
final results are obtained by taking the smallest of the local minima that the iter-
ations with different initial points produce. When the bounds in Equation 5.6 are
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used, the initial points of the iteration are
(w0,1, σ

2
0,1) = (1, ..., 1, 10−6),

(w0,2, σ
2
0,2) = (50, ..., 50, 0.25),

(w0,3, σ
2
0,3) = (1000, ..., 1000, 1).

(5.13)

With the bounds in Equation 5.5, the initial points of the iteration are
(w0,1, σ

2
0,1) = (1, ..., 1, 5 ∗ 10−4),

(w0,2, σ
2
0,2) = (2.5, ..., 2.5, 0.25),

(w0,3, σ
2
0,3) = (5, ..., 5, 0.5).

(5.14)

As discussed in Sections 4.2.1 and 4.2.4, only the relative sizes of the weights
matter in WMEAN and MIXMINMAX. Thus, in the case of these two weight
expressions, the optimal weights related to different initial points of iteration are
normalized to the scale [0, 1] in the end. This enables that when analyzing the
uniqueness of the optimal solutions, one readily detects those optimal solutions
that are seemingly different but actually correspond to the same relative weights.

Measures of Goodness of Fit

The Euclidean distance defined in Equation 5.1 is a sensible measure to describe
the similarity of two CPTs of given size. However, the measure is not adequate
to present and compare the accuracy of the optimal approximate CPTs when the
CPTs are of different sizes. This is because the value of the Euclidean distance
grows as the size of the CPT grows, even if the magnitude of the errors in ele-
ments would remain the same. Thus, instead of examining the optimal values
‖Θ− Θ̃; s‖∗ in Equations 5.8 and 5.12, two other measures are used in the analysis
of the optimization results. First one is the mean absolute error (MAE) defined
by

‖Θ− Θ̃∗‖MAE =
1

N

∏n
k=1mk∑
j=1

mn+1∑
i=1

|Θi,j − Θ̃i,j|, (5.15)

where N = mn+1

∏n
k=1 mk and Θ̃∗ is the approximate CPT related to the optimal

solution of the given minimization problem. MAE is the average of the absolute
errors in the elements of Θ̃∗ and describes the average goodness of the fit of the
approximation. The other measure used to analyze the optimization results is the
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maximum absolute error (MAX) defined by

‖Θ− Θ̃∗‖MAX = max
j=1,...,

∏n
k=1mk

i=1,...,mn+1

|Θi,j − Θ̃i,j|. (5.16)

MAX is the maximum absolute error in the elements of Θ̃∗ and describes the
worst fit for a single element in the approximation.

The MAE and MAX measures provide means to describe and compare the good-
ness of the fit of the approximate CPTs independent of the size of the CPTs. As
these measures are used in the analysis of the results also in [58], the modeling
accuracy of RNM can be compared to the modeling accuracy of noisy-MAX.

Bayesian Networks Investigated

Three benchmark BNs are used in the experiment: Alarm [4], Hailfinder [1], and
Insurance [6]. Alarm models patients in intensive medical care. Hailfinder is de-
veloped to forecast severe weather in North-Eastern Colorado, US. Insurance is a
model for estimating the expected claim costs for a car insurance policyholder.
The CPTs in Alarm and Hailfinder are known to be assessed by human experts
[57]. The background of the CPTs in Insurance is not specified in [6]. Alarm and
Hailfinder are also used in the earlier study concerning noisy-MAX [58]. The third
BN studied in [58] is left out from this experiment as it does not contain a single
group of parent nodes and a child node where the number of parent nodes is at
least two and each of the nodes in the group can be considered to be a ranked
node. Instead, Insurance is used as it contains such groups.

5.2.2 Results

In total, 22 suitable groups of parent nodes and a child node are in the BNs used.
Table 5.2.2 summarizes numerical characteristics of the related CPTs. The results
obtained to Problems 5.3 and 5.4 are examined in separate sections below.

Results of Problem 5.3

The analysis of the results of Problem 5.3 begins by examining the MAE values
of the optimal approximations Θ̃∗ obtained using the more restricted bounds in
Equation 5.5. Figure 5.4 displays the MAE values of the optimal approximations
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Table 5.1: Characteristics of the CPTs approximated in the experimental study. mi

refers to the number of states of the parent nodes and the child node. On each
row, the rightmost mi is the number of states of the child node. CPT size refers to
the number of elements in the CPT.

Child node BN m1 m2 m3 m4 m5 CPT size
SAO2 Alarm 2 3 3 - - 18

CO Alarm 3 3 3 - - 27
BP Alarm 3 3 3 - - 27

CombMoisture Hailfinder 4 4 4 - - 64
AreaMoDryAir Hailfinder 4 4 4 - - 64
CombClouds Hailfinder 3 3 3 - - 27
CldShadeOth Hailfinder 4 3 3 4 - 144

InsInMt Hailfinder 3 3 3 - - 27
InsChange Hailfinder 4 3 3 - - 36
CapInScen Hailfinder 3 3 3 - - 27

InsSclInScen Hailfinder 3 3 3 - - 27
CurPropConv Hailfinder 4 4 4 - - 64
CombVerMo Hailfinder 4 4 4 4 - 256
CompPlFcst Hailfinder 3 3 4 3 3 324

RiskAversion Insurance 3 4 4 - - 48
HomeBase Insurance 4 4 4 - - 64

DrivQuality Insurance 3 4 3 - - 36
VehicleYear Insurance 4 4 2 - - 32

MedCost Insurance 4 3 4 4 - 192
OtherCarCost Insurance 4 3 4 - - 48
ThisCarDam Insurance 4 3 4 - - 48

PropCost Insurance 4 4 4 - - 64

obtained with sample point sizes s = 1, ..., 5. Table 5.2 presents the averages and
medians of the MAE values for the different values of s.

Figure 5.4 implies that the MAE values obtained with different values of s are
generally similar for a given node. This is also reflected by the similarity of the
averages and medians of the MAE values related to different sample point sizes,
see Table 5.2. However, in Figure 5.4, there are especially two cases, PropCost
and SAO2, where there are distinctive differences in the MAE values related to
different values of s. In both of these cases, the MAE value related to s = 1

is distinctively smaller than the values related to other sample point sizes. The
common trend for all the nodes in Figure 5.4 is that the MAE values related to
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Figure 5.4: MAE values of the solutions to Problem 5.3 with the bounds in Equa-
tion 5.5.

Table 5.2: Averages, Av(‖Θ − Θ̃∗‖MAE), and medians, Md(‖Θ − Θ̃∗‖MAE), of the
MAE values related to the optimal solutions of Problem 5.3 obtained using the
bounds in Equation 5.5 and the sample point size s.

s
1 2 3 4 5

Av(‖Θ− Θ̃∗‖MAE) 0.134 0.146 0.138 0.140 0.139
Md(‖Θ− Θ̃∗‖MAE) 0.116 0.141 0.129 0.129 0.130

s = 1 and s = 2 tend to differ the most from the values related to other values
of s. In particular, the values related to s = 4 and s = 5 are always the closest
to each other. These observations are in line with the prediction made concern-
ing the convergence of the optimal solutions (φ∗, f ∗,w∗, σ2∗; s) with increasing s.
That is, the MAE values related to s = 1 and s = 2 tend to be the most distinc-
tive because the approximations Θ̃∗ obtained with given parameters have not yet
converged, i.e., the elements have not yet ”settled” to their final values. From this
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perspective, the nodes for which the MAE values are similar for different values
of s correspond to cases of rapid convergence. On the other hand, for nodes such
as PropCost and SAO2, the convergence of the optimal values oscillates more.

The study of the optimal solutions verifies them to be terms of converging se-
quences. For example, in Figure 5.4, RiskAversion is one of the nodes for which
the optimal solutions are expected to be terms of a rapidly converging sequence.
Table 5.3 presents the optimal solutions (φ∗, f ∗, w∗, σ2∗; s) and the related MAE
values obtained for the node with s = 1, ..., 8. The weight expression f ∗, the map-
ping vector φ∗, and the weight of the first parent node w1 are fixed from s = 1

onwards. The other parameters also converge as s increases.

Table 5.3: Optimal solutions and MAE values related to RiskAversion for Problem
5.3 using bounds in Equation 5.5.

s f ∗ φ∗ w∗ σ2∗ ‖Θ− Θ̃∗‖ ‖Θ− Θ̃∗‖MAE

1 WMIN (0, 1) (5.0, 1.33) 0.0724 1.00 0.110
2 WMIN (0, 1) (5.0, 1.51) 0.0632 0.986 0.110
3 WMIN (0, 1) (5.0, 1.45) 0.0663 0.990 0.110
4 WMIN (0, 1) (5.0, 1.43) 0.0673 0.992 0.110
5 WMIN (0, 1) (5.0, 1.42) 0.0678 0.993 0.110
6 WMIN (0, 1) (5.0, 1.42) 0.0681 0.993 0.110
7 WMIN (0, 1) (5.0, 1.41) 0.0683 0.993 0.110
8 WMIN (0, 1) (5.0, 1.41) 0.0684 0.993 0.110

Table 5.4 presents the optimal solutions of SAO2 for s = 1, ..., 8. The optimal
solutions verify the trend observable in Figure 5.4 — the optimal values of SAO2
oscillate at first but then they clearly converge with increasing s.

The results of SAO2 are also an example of the possible non-uniqueness of the op-
timal solutions. For s = 1 and s = 3, ..., 8, the same optimal value ‖Θ− Θ̃∗‖ is ob-
tained with two different weight expressions, WMAX and MIXMINMAX. These
cases are embodiments of the phenomenon that with suitable weights, the func-
tional forms of WMAX and MIXINMAX become identical. The two weight ex-
pressions become functionally identical when there are two parent nodes, which
receive weightswWMAX = (w,w) in WMAX andwMIX = ( 1

w+1
, w
w+1

) in MIXMIN-
MAX. Using these weights in the functions of the weight expressions in Equations
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Table 5.4: Optimal solutions related to SAO2 for Problem 5.3 using bounds in
Equation 5.5.
s f ∗ φ∗ w∗ σ2∗ ‖Θ− Θ̃∗‖ ‖Θ− Θ̃∗‖MAE

1
WMAX (1, 0) (5.0, 5.0) 0.0018 0.507 0.0631

MIXMINMAX (1, 0) (0.167, 0.833) 0.0018 0.507 0.0631
2 WMAX (1, 0) (3.19, 5.0) 0.0106 1.119 0.214

3
WMAX (1, 0) (5.0, 5.0) 5.0 ∗ 10−4 0.938 0.172

MIXMINMAX (1, 0) (0.167, 0.833) 5.0 ∗ 10−4 0.938 0.172

4
WMAX (1, 0) (5.0, 5.0) 9.1 ∗ 10−4 0.922 0.163

MIXMINMAX (1, 0) (0.167, 0.833) 9.1 ∗ 10−4 0.922 0.163

5
WMAX (1, 0) (5.0, 5.0) 5.0 ∗ 10−4 0.888 0.155

MIXMINMAX (1, 0) (0.167, 0.833) 5.0 ∗ 10−4 0.888 0.155

6
WMAX (1, 0) (5.0, 5.0) 5.7 ∗ 10−4 0.876 0.151

MIXMINMAX (1, 0) (0.167, 0.833) 5.7 ∗ 10−4 0.876 0.151

7
WMAX (1, 0) (5.0, 5.0) 5.0 ∗ 10−4 0.865 0.149

MIXMINMAX (1, 0) (0.167, 0.833) 5.0 ∗ 10−4 0.865 0.149

8
WMAX (1, 0) (5.0, 5.0) 5.0 ∗ 10−4 0.856 0.147

MIXMINMAX (1, 0) (0.167, 0.833) 5.0 ∗ 10−4 0.856 0.147

3.3 and 3.4, respectively, one obtains for a pair of sample points (a, b)

WMAX(a, b, w, w) = max

{
w ∗ a+ b

w + 1
,
w ∗ b+ a

w + 1

}
=

w

w + 1
max{a, b}+

1

w + 1
min{a, b} (5.17)

≡MIXMINMAX

(
a, b,

1

w + 1
,

w

w + 1

)
.

Whereas the optimal solutions of SAO2 have WMAX and MIXMINMAX coincid-
ing, the same can occur with WMIN and MIXMINMAX as well. By referring to
the definitions of these functions in Equations 3.2 and 3.4, for a pair of sample
points (a, b) one obtains

WMIN(a, b, w, w) = min

{
w ∗ a+ b

w + 1
,
w ∗ b+ a

w + 1

}
=

w

w + 1
min{a, b}+

1

w + 1
max{a, b} (5.18)

≡MIXMINMAX

(
a, b,

w

w + 1
,

1

w + 1

)
.

In total, six of the 22 nodes investigated are discovered to have non-unique opti-
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mal solutions in the sense that either WMAX or WMIN coincide with MIXMIN-
MAX. The connections between the weight expressions depicted by Equations
5.17 and 5.18 indicate that in some cases, the probabilistic relationship between
ranked nodes can be portrayed or understood in two different ways. The impli-
cations of this observation are discussed more in Section 5.2.3.

There are 16 nodes for which WMAX or WMIN do not coincide with MIXMIN-
MAX in the optimal solutions. In 13 of these cases, a unique optimal solution is
found for each value of s, similarly to RiskAversion. That is, in these 13 cases, the
optimal weight expression f ∗ and the optimal mapping vector φ∗ are the same
for a given node with each value of s. In addition, the optimal weights w∗ and
the variance parameter σ2∗ converge with increasing s. Behaviour different from
this common trend is observed for three nodes, InsChange, CombVerMo, and Vehi-
cleYear. These cases are next discussed separately.

In the case of InsChange, the optimal weight expression varies depending on the
value of s, see Table 5.5. For s = 1, 4, 5, the optimal weight expression is WMEAN
but for s = 2, 3, it is WMIN.

Table 5.5: Optimal solutions related to InsChange for Problem 5.3 using bounds in
Equation 5.5.

s f ∗ φ∗ w∗ σ2∗ ‖Θ− Θ̃∗‖ ‖Θ− Θ̃∗‖MAE

1 WMEAN (1, 1) (0.828, 0.173) 0.033 0.802 0.107
2 WMIN (1, 1) (5.0, 1.0) 0.023 0.757 0.099
3 WMIN (1, 1) (5.0, 1.0) 0.026 0.779 0.102
4 WMEAN (1, 1) (0.825, 0.175) 0.028 0.783 0.104
5 WMEAN (1, 1) (0.825, 0.175) 0.029 0.785 0.104

Table 5.6 presents the optimization results obtained with WMIN for s = 1, 4, 5 and
with WMEAN for s = 2, 3. Comparing these results to those in Table 5.5 reveals
that for a given value of s, the optimal Euclidean distance and the MAE values
obtained with WMEAN and WMIN are close to each other. Thus, the results
related to InsChange are another example of how different ways of considering
the probabilistic relationship of ranked nodes may lead to similar CPTs.

In the case of CombVerMo, the optimal weights w∗ are not necessarily unique for
a given value of s, see Table 5.7. Now, for s = 1, 3, 5, the different optimal weights
generate different approximate CPTs that have an equal Euclidean distance to the
target CPT. This represents the idea that different paramterizations of RNM can
generate CPTs that cannot be said to be unambiguously better or worse repre-
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Table 5.6: Optimal solutions related to InsChange for Problem 5.3 using bounds in
Equation 5.5 and a given weight expression.

s f φ∗|f w∗|f σ2∗|f ‖Θ− Θ̃∗‖|f ‖Θ− Θ̃∗‖MAE|f
1 WMIN (1, 1) (5.0, 1.0) 0.032 0.818 0.108
2 WMEAN (1, 1) (0.823, 0.177) 0.024 0.771 0.103
3 WMEAN (1, 1) (0.824, 0.176) 0.027 0.780 0.104
4 WMIN (1, 1) (5.0, 1.0) 0.027 0.787 0.104
5 WMIN (1, 1) (5.0, 1.0) 0.028 0.790 0.104

sentations of the probabilistic relationship of the parent nodes and the child node
when compared to each other.

Table 5.7: Optimal solutions related to CombVerMo for Problem 5.3 using bounds
in Equation 5.5.
s f ∗ φ∗ w∗ σ2∗ ‖Θ− Θ̃∗‖ ‖Θ− Θ̃∗‖MAE

1
WMIN (0, 0, 0) (1.329, 1.127, 1.229) 0.022 2.374 0.103
WMIN (0, 0, 0) (1.329, 1.229, 1.127) 0.022 2.374 0.103

2 WMIN (0, 0, 0) (1.192, 1.278, 1.241) 0.017 2.339 0.101

3
WMIN (0, 0, 0) (1.237, 1.265, 1.205) 0.019 2.351 0.102
WMIN (0, 0, 0) (1.205, 1.237, 1.265) 0.019 2.351 0.102

4 WMIN (0, 0, 0) (1.212, 1.236, 1.258) 0.019 2.355 0.102

5
WMIN (0, 0, 0) (1.294, 1.089, 1.276) 0.020 2.357 0.102
WMIN (0, 0, 0) (1.294, 1.276, 1.089) 0.020 2.357 0.102

In the case of VehicleYear, there are always two optimal solutions for a given value
of s, see Table 5.8. The optimal solutions are identical except for the mapping
vector φ∗. The way the states of the second parent node are mapped to the nor-
malized scale [0, 1] do not make any difference to the results. The reason for this
is discovered by examining the CPT of VehicleYear. It turns out that the other
parent node does not affect the child node in any way. Hence, the states of this
parent node can be mapped to [0, 1] in either way which explains the non-unique
optimal solutions.

Figure 5.5 presents the MAX values related to the optimal solutions of Problem
5.3 obtained using the bounds in Equation 5.5 and sample point sizes s = 1, ..., 5.
Table 5.9 presents the averages and medians of the MAX values for the values of
s.

The MAX values obtained with alternative s presented in Figure 5.5 are similar
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Table 5.8: Optimal solutions related to VehicleYear for Problem 5.3 using bounds
in Equation 5.5.

s f ∗ φ∗ w∗ σ2∗ ‖Θ− Θ̃∗‖ ‖Θ− Θ̃∗‖MAE

1
WMEAN (1, 0) (0.833, 0.167) 0.044 0.508 0.070
WMEAN (1, 1) (0.833, 0.167) 0.044 0.508 0.070

2
WMEAN (1, 0) (0.833, 0.167) 0.036 0.517 0.071
WMEAN (1, 1) (0.833, 0.167) 0.036 0.517 0.071

3
WMEAN (1, 0) (0.833, 0.167) 0.039 0.512 0.070
WMEAN (1, 1) (0.833, 0.167) 0.039 0.512 0.070

4
WMEAN (1, 0) (0.833, 0.167) 0.040 0.511 0.070
WMEAN (1, 1) (0.833, 0.167) 0.040 0.511 0.070

5
WMEAN (1, 0) (0.833, 0.167) 0.040 0.511 0.070
WMEAN (1, 1) (0.833, 0.167) 0.040 0.511 0.070
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Figure 5.5: MAX values of the solutions to Problem 5.3 with the bounds in Equa-
tion 5.5.
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Table 5.9: Averages, Av(‖Θ − Θ̃∗‖MAX), and medians, Md(‖Θ − Θ̃∗‖MAX), of the
MAX values related to the optimal solutions of Problem 5.3 obtained using the
bounds in Equation 5.5 and the sample point size s.

s
Av(‖Θ− Θ̃∗‖MAX) 0.477 0.450 0.465 0.469 0.469
Md(‖Θ− Θ̃∗‖MAX) 0.475 0.440 0.459 0.463 0.465

for a given node. Especially the MAX values related to s = 4 and s = 5 are
always close to each other. Thus, the convergence of the optimal solutions can be
observed from Figure 5.5 similarly to Figure 5.4. The likeness of the MAX values
is also reflected by the similarity of the averages and medians presented in Table
5.9.

The MAX values in Figure 5.5 are considerably larger than the MAE values in
Figure 5.4 for each node. This becomes apparent also by comparing the averages
and medians of the MAE and MAX values presented in Tables 5.2 and 5.9, re-
spectively. Whereas the averages and medians of the MAE values vary roughly
between 0.11–0.14, the corresponding range for the averages and medians of the
MAX values is roughly 0.44–0.48. Thus, the accuracy of the optimal approximate
CPT Θ̃∗ may be worse in some elements than it is on average. This indicates that
in many cases the probabilistic relationship between the nodes does not purely
correspond to the form of a single weight expression.

To get an idea of how ”good” the modeling accuracy of RNM is, the results can
be compared to those obtained for noisy-MAX in a similar study reported in [58].
For noisy-MAX, the medians of the MAE values of the 17 nodes from Alarm and
19 nodes from Hailfinder are less than 0.01 in both cases. In turn, the medians
of the MAX values related to Alarm and Hailfinder in [58] are less than 0.1 and
equal to roughly 0.2, respectively. As noted above, the medians of the MAE and
MAX values now obtained vary in ranges 0.11–0.14 and 0.44–0.48, respectively.
In [58], the names of the nodes are not presented. Therefore, a full comparison
of the results between the experiments is not possible. Despite of this, the com-
parison of the median values for the MAE and MAX measures suggests that the
modeling accuracy of RNM is poorer than that of noisy-MAX. The difference in
the results indicates that a majority of the CPTs approximated represent proba-
bilistic relationships that correspond better to the basic idea of noisy-MAX rather
than of RNM, see the discussion in Section 4.4. Thus, the results indicate that the
probabilistic relationships that RNM is designed to represent are not as common
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in applications of BNs as the ones corresponding to noisy-MAX.

From the technical point of view, the difference in the results reflects the amount
of decision variables in the optimization problems. As discussed in Section 4.4,
the number of parameters to be elicited in noisy-MAX is larger than in RNM.
Table 5.10 illustrates this by presenting the values of N sel

RNM , Nass
RNM , N sel

noisy−MAX ,
and $Nass

noisy−MAX , see Equations 4.31–4.34, for the nodes investigated in this the-
sis. The values of Nass

RNM correspond to the optimal solutions now obtained. The
fact that noisy-MAX requires more parameters corresponds to having more de-
grees of freedom in constructing the approximate CPT Θ̃ similar to the target CPT
Θ. This can also be a reason why the approximations obtained with noisy-MAX
are more accurate than the approximations obtained with RNM.

Table 5.10: Amounts of selectable,N sel
∗ , and assignable,Nass

∗ , parameters required
by noisy-MAX and RNM to generate approximations of the CPTs of the child
nodes.

Child node N sel
noisy−MAX Nass

noisy−MAX N sel
RNM Nass

RNM

SAO2 3 9 4 3
CO 3 12 4 3
BP 3 12 4 3

CombMoisture 3 24 4 3
AreaMoDryAir 3 24 4 3
CombClouds 3 12 4 3
CldShadeOth 4 24 5 4

InsInMt 3 12 4 3
InsChange 3 15 4 3
CapInScen 3 12 4 3

InsSclInScen 3 12 4 3
CurPropConv 3 24 4 3
CombVerMo 4 36 5 4
CompPlFcst 5 27 6 5

RiskAversion 3 20 4 3
HomeBase 3 24 4 3

DrivQuality 3 15 4 3
VehicleYear 3 12 4 3

MedCost 4 32 5 4
OtherCarCost 3 20 4 3
ThisCarDam 3 20 4 3

PropCost 3 24 4 3
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As discussed in Section 5.2.1, Problem 5.3 is solved using two alternative bounds
for the weights and the variance parameter in order to investigate the effect of
their ranges on the modeling accuracy of RNM. Figures 5.6 and 5.7 present the
MAE and MAX values related to the optimal solutions obtained when solving
Problem 5.3 with the bounds in Equation 5.6. The averages and medians of the
MAE and MAX values are presented in Tables 5.11 and 5.12, respectively.
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Figure 5.6: MAE values of the solutions to Problem 5.3 with the bounds in Equa-
tion 5.6.

Table 5.11: Averages, Av(‖Θ− Θ̃∗‖MAE), and medians, Md(‖Θ− Θ̃∗‖MAE), of the
MAE values related to the optimal solutions of Problem 5.3 obtained using the
bounds in Equation 5.6 and the sample point size s.

s
1 2 3 4 5

Av(‖Θ− Θ̃∗‖MAE) 0.121 0.135 0.122 0.123 0.123
Md(‖Θ− Θ̃∗‖MAE) 0.106 0.140 0.111 0.110 0.111
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Figure 5.7: MAX values of the solutions to Problem 5.3 with the bounds in Equa-
tion 5.6.

Table 5.12: Averages, Av(‖Θ− Θ̃∗‖MAX), and medians, Md(‖Θ− Θ̃∗‖MAX), of the
MAX values related to the optimal solutions of Problem 5.3 obtained using the
bounds in Equation 5.6 and the sample point size s.

s
1 2 3 4 5

Av(‖Θ− Θ̃∗‖MAX) 0.448 0.435 0.440 0.444 0.444
Md(‖Θ− Θ̃∗‖MAX) 0.436 0.416 0.416 0.418 0.421

Figures 5.4 and 5.6 indicate that using the wider ranges for w and σ2 usually
decreases the MAE values but the improvements are not drastic overall. While
the improvement is roughly 0.07 at best — e.g., MedCost with s = 5 — it is only
a few hundredths in most of the cases. This is also reflected by the magnitude of
the differences of the corresponding elements in Tables 5.2 and 5.11.

Figures 5.5 and 5.7 also point out that the MAX values related to the optimal solu-
tions obtained using the bounds in Equation 5.6 are in extreme cases considerably
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different from the ones obtained using the bounds in Equation 5.5. For example,
for SAO2 with s = 1 and for PropCost with s = 4, 5, the improvement in the
MAX value is roughly 0.3. On the other hand, for BP with s = 5, the MAX value
actually increases with roughly 0.07 when using the wider ranges. The optimal
Euclidean distance obtained for BP with s = 5 using the bounds in Equation 5.5
is 1.058. When using the bounds in Equation 5.6, the corresponding distance is
1.015. Thus, this case illustrates that the Euclidean distance between two CPTs
may decrease even though the difference in some of their elements increases. De-
spite the large change in the MAX values in some extreme cases, Figures 5.5 and
5.7 indicate that widening the ranges of w and σ2 does not produce significant
effect overall. This is also apparent from the similarity of the corresponding av-
erages and medians of the MAX values in Tables 5.9 and 5.12.

Widening the ranges ofw and σ2 points out new cases concerning the non-uniqueness
of the optimal solutions. For example, when using the bounds in Equation 5.5 and
sample size s = 2, the unique optimal solution related to the CPT of CapInScen
is the one presented in the first row of Table 5.13. However, when the bounds in
Equation 5.6 are used, two more optimal solutions producing the same Euclidean
distance are discovered. The elements of the approximate CPTs corresponding
to the optimal solutions presented in Table 5.13 are the same with an accuracy
of 10−4. This example is another illustration of how different ways of viewing
the probabilistic relationship between the ranked nodes may produce practically
identical CPTs.

Table 5.13: Optimal solutions related to CapInScen for Problem 5.3 using bounds
in Equations 5.5 and 5.6 as well as the sample point size s = 2.

Bounds s f ∗ φ∗ w∗ σ2∗ ‖Θ− Θ̃∗‖ ‖Θ− Θ̃∗‖MAE

5.5
3 WMEAN (0,0)

(0.730, 0.270) 5 ∗ 10−4 1.206 0.185
5.6 (0.923, 0.077) 10−5 1.206 0.185
5.6 (0.739, 0.261) 1.2 ∗ 10−4 1.206 0.185

In many cases, the optimal solutions of Problem 5.3 obtained using the bounds in
Equation 5.6 have arbitrary large elements in the optimal weightsw∗. In some of
these cases, the large values of the weights make the solutions intractable with re-
spect to the uniqueness. As an example, Table 5.14 presents the optimal solutions
related to InsChange using the sample point size s = 3.

The three optimal solutions in Table 5.14 correspond to the three initial points of
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Table 5.14: Optimal solutions related to InsChange for Problem 5.3 using bounds
in Equation 5.6 and the sample point size s = 2.

s f ∗ φ∗ w∗ σ2∗ ‖Θ− Θ̃∗‖ ‖Θ− Θ̃∗‖MAE

3
WMIN (1, 1) (9.007*1015, 1.0) 0.028 0.727 0.090
WMIN (1, 1) (5.630*1014, 1.0) 0.028 0.727 0.090
WMIN (1, 1) (2.815*1014, 1.0) 0.028 0.727 0.090

iteration presented in Equation 5.13. The elements in the corresponding approxi-
mate CPTs are the same with an accuracy of 10−15. Thus, in practice, the optimal
solutions in Table 5.14 correspond to the same approximation Θ̃∗. Yet, the val-
ues of the weight of the second parent node vary between the optimal solutions
making the solutions intractable from the point of view of uniqueness. Despite
this ambiguity, in this particular case, each of the optimal solutions indicates that
the Euclidean distance between the approximate and the target CPT is minimized
with the following practice concerning sample points z1,k and z2,k: If z1,k ≤ z2,k,
then µk ≈ z1,k. If z1,k > z2,k, then µk = (z1,k + z2,k)/2. This is evident when substi-
tuting z1,k and z2,k to Equation 3.2 together with w1 � w2. In other words, when
the first parent node is in a lower state than the second, the mode of the child
node is determined by the state of the first parent node alone. When the second
parent node is in a state lower than the first one, then the mode of the child node
is the average of the states of the parent nodes.

The arbitrary large weights are frequently present in the optimal solutions where
the use of MIXMINMAX corresponds to using either WMIN or WMAX in the
way characterized by Equations 5.17 and 5.18. For example, Table 5.15 presents
the optimal solutions related to OtherCarCost. Basically, the optimal weights in
Table 5.15 are an approximation of the case w → ∞ in Equation 5.18. This corre-
sponds to the situation where the mode of the child node is determined by taking
the minimum of the set of sample points {zi,k}ni=1.

In general, the results obtained using the bounds in Equation 5.6 indicate that in
some cases the modeling accuracy of RNM is maximized when the weight of a
given parent node can be set arbitrary high. If the weights are elicited indirectly
by means described in Section 4.2.5, one does not need to be concerned with their
upper bound. However, if the weights are assessed directly with a graphical user
interface using scroll bars such as that presented in Figure 5.3a, a finite upper
bounds is required. Even though one might have the option to assign a larger
value to a parent node than the scroll bar indicates, one might still be anchored to
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Table 5.15: Optimal solutions related to OtherCarCost for Problem 5.3 using
bounds in Equation 5.6 and the sample point size s = 3.

s f ∗ φ∗ w∗ σ2∗ ‖Θ− Θ̃∗‖ ‖Θ− Θ̃∗‖MAE

3
WMIN (0, 0) (1.239*1016, 6.755*1015) 0.035 1.868 0.197
WMIN (0, 0) (1.126*1016, 6.755*1015) 0.035 1.868 0.197
WMIN (0, 0) (3.378*1015, 1.126*1015) 0.035 1.868 0.197

MIXMINMAX (0, 0) (1.902*10−14, 1.000) 0.035 1.868 0.197

use the upper bound of the scroll bar. This can lead to the underestimation of the
strength of influence of some parent nodes. However, the results obtained in the
experiment indicate that the inaccuracy that would be resulting, e.g., when using
5 as the upper bound for the weights, is not drastic in general.

The optimization results of Problem 5.3 indicate that there is not a value of s
that would maximize the modeling accuracy of RNM in general. For example,
in the case of SAO2, the MAE and MAX values related to s = 1 in Figures 5.4–
5.7 are better than the ones obtained with other values of s. On the other hand,
in the case of InsChange, the lowest MAE and MAX values in Figures 5.4–5.7 are
obtained with s = 2. In Section 4.1, it is discussed that the use of RNM can be con-
sidered to approximate the use of a hierarchical Bayesian model characterized by
Equations 4.1–4.5. Though the approximation of the model becomes more precise
with increasing s, it does not mean that the model itself would provide means to
accurately approximate a given CPT. The hierarchical Bayesian model is just a
heuristic approach to generate a CPT representing the probabilistic relationship
between the parent nodes and the child node. Similarly, RNM with any value of
s can be considered to correspond to some kind of heuristics to generate CPTs. In
various cases, different one of these heuristics provides the best means to repre-
sent the probabilistic relationship of the parent nodes and the child node. Thus,
there is no necessity to use as large sample point size as possible. One may well
use RNM with small values of s, like s = 1 or s = 2, in order to make the compu-
tations lighter and faster to carry out.

Results of Problem 5.4

As discussed in Section 5.2.1, the motivation of studying Problem 5.4 is to un-
derstand better the importance of partitioned expressions in the effective use of
RNM. Hence, the analysis of the optimal solutions of Problem 5.4 is focused on
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comparing the MAE and MAX values to those describing the optimal solutions
of Problem 5.3. The effect of widening the bounds of the weights and variance
parameter from those in Equation 5.5 to those in Equation 5.6 is also examined.

Figure 5.8 presents the MAE values of the optimal approximations Θ̃∗ obtained
when solving Problem 5.4 with sample point sizes s = 1, ..., 5 and using the
bounds in Equation 5.5. The averages and medians of the MAE values are pre-
sented in Table 5.16.
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Figure 5.8: MAE values of the solutions to Problem 5.4 with the bounds in Equa-
tion 5.5.

Figures 5.4 and 5.8 indicate that in many cases, the use of partitioned expressions
clearly improves the accuracy of the approximate CPT. For example, the MAE
value related to CO with s = 1 is reduced from over 0.15 to less than 0.05. Using
the numbers in Tables 5.2 and 5.16, it can be calculated that the averages and
medians of the MAE values reduce by roughly 0.03–0.06 depending on s. These
correspond to relative improvements between 20–50 %.

Figures 5.4 and 5.8 as well as Tables 5.2 and 5.16 imply also that the improve-
ments are usually the largest when s = 1 and the smallest when s = 2. Especially
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Table 5.16: Averages, Av(‖Θ− Θ̃∗‖MAE), and medians, Md(‖Θ− Θ̃∗‖MAE), of the
MAE values related to the optimal solutions of Problem 5.4 obtained using the
bounds in Equation 5.5 and the sample point size s.

s
1 2 3 4 5

Av(‖Θ− Θ̃∗‖MAE) 0.077 0.116 0.102 0.098 0.096
Md(‖Θ− Θ̃∗‖MAE) 0.056 0.109 0.087 0.081 0.077

in Figure 5.8, the MAE values obtained with s = 1 are for many nodes distinc-
tively smaller than the ones obtained with other values of s. Examples include
DrivQuality and CO among others. Common to these cases is also that the worst
MAE values are obtained with s = 2. The reason for this phenomenon might be
related to the following feature of RNM. When s = 1, the sample points used are
the centre points of the state intervals of the parent nodes. As opposed to this,
when s = 2, the sample points are the lower and upper bounds of the state inter-
vals. These are the two extreme cases of the use of the sample points — all cases
with s ≥ 3 can be regarded as some kind of compromises between these two.
When s = 1, only one mean parameter µ1 is generated for a given combination of
the states of the parent nodes (X1 = x1, ..., Xn = xn). The conditional probability
distribution of the child node P (Xn+1|X1 = x1, ..., Xn = xn) is obtained by inte-
grating a single doubly truncated normal distribution TNormal(µ1, σ

2, 0, 1) over
the state intervals of the child node. When s = 2, the different mean parame-
ters µk are calculated by using only the most extreme points related to the state
intervals of the parent nodes. This means that the resulting values of the mean
parameters related to the given combination of the states of the parent nodes
(X1 = x1, ..., Xn = xn) are the very extremes that can be obtained. The integra-
tion of the doubly truncated normal distributions may produce different condi-
tional probability distributions P (Xn+1|X1 = x1, ..., Xn = xn;µk). As the final
probability distribution P (Xn+1|X1 = x1, ..., Xn = xn) is taken as the average of
P (Xn+1|X1 = x1, ..., Xn = xn;µk), it may behave differently from the one obtained
by integrating a single doubly truncated normal distribution. This could explain
why the results obtained with s = 1 and s = 2 are usually the most different
among the ones obtained with different values of s. The reason why the results
with s = 1 are in many cases so much better than the ones with s = 2 would then
indicate that in these particular cases, the distributions in the CPTs correspond
better to the approximations obtained when only a single doubly truncated nor-
mal distributions is used. As stated above, this is just a possible explanation of
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the phenomenon. The issue should be studied more to explain it better. However,
this is not in the focus of the thesis and is therefore now omitted.

Figure 5.9 displays the MAX values related to the optimal solutions of Problem
5.4 when using the bounds in Equation 5.5 and sample point sizes s = 1, ..., 5.
The averages and medians are presented in Table 5.17. By comparing Figures 5.5
and 5.9, one can observe that the MAX values improve when using partitioned
expressions. For example, in the case of CO, the improvement is about 0.3–0.5.
The general improvement in the MAX values is also pointed out by Tables 5.9
and 5.17. The improvements in the averages and medians of the MAX values
vary roughly between 0.1 and 0.17 depending on s. The relative improvements
are now varying between roughly 18–35 %. Though the relative improvements
are smaller, the use of partitioned expressions decreased the MAX values more
than the MAE values. This encourages their use as means to decrease the extreme
inaccuracies in the CPT. However, Figures 5.8 and 5.9 indicate that in many cases
the MAX values remain larger than the MAE values. If the accuracy is considered
too low, one should consider partitioning the CPT even more or possibly correct
the critical inaccuracies manually.

Table 5.17: Averages, Av(‖Θ− Θ̃∗‖MAX), and medians, Md(‖Θ− Θ̃∗‖MAX), of the
MAX values related to the optimal solutions of Problem 5.4 obtained using the
bounds in Equation 5.5 and the sample point size s.

s
1 2 3 4 5

Av(‖Θ− Θ̃∗‖MAX) 0.350 0.370 0.357 0.359 0.359
Md(‖Θ− Θ̃∗‖MAX) 0.309 0.332 0.333 0.333 0.333

Figures 5.10 and 5.11 display the MAE and MAX values related to the optimal
solutions obtained when solving Problem 5.4 using the bounds in Equation 5.6
and sample point sizes s = 1, ..., 5. The averages and medians of the MAE and
MAX values are presented in Tables 5.18 and 5.19, respectively.

Widening the ranges of the weights and the variance parameter has similar effects
on the optimal solutions when using partitioned expressions as when a single
weight expression is used. For example, Figures 5.8 and 5.10 as well as Tables
5.16 and 5.18 indicate that the MAE values obtained with the wider ranges are
in general only a few hundredths smaller than those obtained with the narrower
ranges. Compared to the non-partitioned case, the effect of widening the ranges
ofw and σ2 is now a bit larger. Figures 5.9 and 5.11 as well as Tables 5.17 and 5.19
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Figure 5.9: MAX values of the solutions to Problem 5.4 with the bounds in Equa-
tion 5.5.

Table 5.18: Averages, Av(‖Θ− Θ̃∗‖MAE), and medians, Md(‖Θ− Θ̃∗‖MAE), of the
MAE values related to the optimal solutions of Problem 5.4 obtained using the
bounds in Equation 5.6 and the sample point size s.

s
1 2 3 4 5

Av(‖Θ− Θ̃∗‖MAE) 0.064 0.099 0.083 0.078 0.075
Md(‖Θ− Θ̃∗‖MAE) 0.045 0.088 0.074 0.069 0.065

imply that the MAX values improve on average by roughly 0.03–0.04.

Overall, the results of the experiments indicate that the use of partitioned expres-
sions can considerably enhance the modeling accuracy of RNM. This is expected
because the use of partitioned expressions provides more parameters to modify
the approximate CPT to be more similar with the original. Naturally, the down-
side of the use of partitioned expressions is that it increases the elicitation effort.
Table 5.20 presents the values ofN sel

RNM andNass
RNM related to the optimal solutions
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Figure 5.10: MAE values of the solutions to Problem 5.3 with the bounds in Equa-
tion 5.6.

Table 5.19: Averages, Av(‖Θ− Θ̃∗‖MAX), and medians, Md(‖Θ− Θ̃∗‖MAX), of the
MAX values related to the optimal solutions of Problem 5.4 obtained using the
bounds in Equation 5.6 and the sample point size s.

s
1 2 3 4 5

Av(‖Θ− Θ̃∗‖MAX) 0.312 0.333 0.306 0.303 0.305
Md(‖Θ− Θ̃∗‖MAX) 0.299 0.321 0.292 0.275 0.275

presented in Figures 5.10 and 5.11 for s = 1.

Tables 5.10 and 5.20 indicate that the sum of the selectable and assignable param-
eters still remains lower for RNM than for noisy-MAX in most of the cases. Thus,
the difference between the numbers of parameters may still be used as a rationale
why the optimization results for RNM after the use of partitioned expressions are
not as good as the ones obtained with noisy-MAX in [58].
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Figure 5.11: MAX values of the solutions to Problem 5.3 with the bounds in Equa-
tion 5.6.

5.2.3 Summary

The results obtained for RNM in the experiment are discovered to be generally
poorer than those obtained for noisy-MAX in [58]. While the results of these ex-
periments are not fully comparable, they indicate that the probabilistic relation-
ships that RNM is designed to describe are not as common in the applications of
BNs as those described by noisy-MAX. The poorer modeling accuracy of RNM
may be explained by the fact that it uses smaller amount of parameters in order
to calculate the CPT than noisy-MAX.

When using RNM without partitioned expressions, the medians of the MAE and
MAX values obtained in the experiment are at best roughly 0.1 and 0.4, respec-
tively. When partitioning the CPTs according to the states of a single parent node,
the corresponding medians are roughly 0.05 and 0.3. Some of the CPTs are ap-
proximated by RNM considerably better than the median values. This indicates
that the method may provide means to construct CPTs of satisfying accuracy.
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Table 5.20: Amounts of selectable, N sel
RMS , and assignable, Nass

RMS , parameters re-
lated to the optimal solutions of Problem 5.4 using bounds in Equation 5.6.

Child node N sel
RNM Nass

RNM

SAO2 6 9
CO 6 9
BP 6 9

CombMoisture 7 12
AreaMoDryAir 7 12
CombClouds 6 9
CldShadeOth 7 12

InsInMt 6 9
InsChange 7 12
CapInScen 6 9

InsSclInScen 6 9
CurPropConv 7 12
CombVerMo 8 16
CompPlFcst 9 20

RiskAversion 7 12
HomeBase 7 12

DrivQuality 6 9
VehicleYear 7 12

MedCost 8 12
OtherCarCost 7 12
ThisCarDam 7 12

PropCost 7 12

The modeling accuracy of RNM is discovered to be insensitive to widening the
ranges of the weights and the variance parameter from the default ranges used in
AgenaRisk software [38]. The use of partitioned expressions improves the mod-
eling accuracy more. However, the use of partitioned expressions also increases
the amount of parameters to be elicited. Thus, the effective use of RNM includes
making a suitable trade-off between the accuracy of the CPT and the elicitation
effort.

To summarize, the small amount of parameters required by RNM indicates that it
provides means to construct CPTs with small elicitation effort. On the other hand,
the resulting CPTs may not represent the probabilistic relationships of the nodes
accurately enough. These features suggest to use RNM as means to quickly con-
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struct rough CPTs that are used as the starting points of iterative elicitation pro-
cess based on, e.g., the sensitivity analysis of the BN which is discussed in Section
3.6. Based on the results of the sensitivity analysis, the CPT could be refined by
adjusting the parameters of RNM, using partitioned expressions , or, e.g., altering
the critical elements in the CPT directly. Overall, the degree of refinement would
be determined by the desired accuracy of the CPT.
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Chapter 6

Conclusion

This thesis studied the ranked nodes method (RNM) [25] which is used to con-
struct conditional probability tables (CPTs) to Bayesian networks (BNs) consist-
ing of ranked nodes on the basis of expert elicitation. The thesis presented RNM
with a precision that enables the implementation of the method in practise. Based
on this presentation, RNM was studied from both modeling and computational
aspects in ways that enhance the understanding of the functioning of the method,
extend its practical usability, and clarify its possibilities and limitations.

When studying RNM from the modeling point of view, the thesis discussed the
interpretation of the normalized scale [0, 1] with respect to the discrete states of
the ranked nodes. In the discussion, it was shown that the use of the method ap-
proximates the use of a hierarchical Bayesian model of continuous random vari-
ables. This finding helps to understand the method and it was also utilized when
explaining results of an experimental study concerning the modeling accuracy of
RNM. In addition, exact interpretations were derived for weights used in RNM.
Based on these interpretations, the weights can be elicited in a more transparent
and consistent way compared to their direct assessment. However, the abstract
nature of the normalized scale might make the elicitation cognitively challenging
in practice. The matter should be studied further empirically to gain more insight
into it.

The thesis examined through an illustrative example the application of RNM to
ranked nodes whose underlying continuous quantity is expressed as a ratio or
interval scale. Through the example, it was discussed how the scales should be
discretized compatibly to the functioning of RNM. In addition, the interpretation
of the normalized scale [0, 1] was revised. Moreover, the utilization of the inter-
pretations of the weights in their elicitation with explicit and adjustable questions
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concerning the scales of the nodes was presented. The ideas introduced enable
the use of RNM in various practical applications in a more transparent and user
friendly way.

The computational complexity of RNM was examined in the thesis by measuring
the calculation times of CPTs with a self-made implementation of the method.
The results indicate that RNM can be implemented so that in most common set-
tings the CPTs can be calculated in the magnitude of a second. Thus, the practical
use of RNM is not hindered by long calculation times of the CPTs.

The modeling accuracy of RNM and its dependence on various computational
parameters were examined by approximating CPTs included in existing real-life
benchmark BNs. RNM is found to provide accurate approximations in some
cases. Moreover, for some of the approximate CPTs, the use of partitioned ex-
pressions is discovered to enhance the accuracy of the approximations drastically.
However, in general, the results are found to be poorer than the ones obtained in
a similar study concerning noisy-MAX [58]. This can be understood to indicate
the relative rarity of the probabilistic relationships compatible with the assump-
tions of RNM in the applications of BNs. The poorer modeling accuracy of RNM
can also be due to the smaller amount of parameters it uses. Overall, the results
of the empirical studies indicate that RNM offers means to promptly construct
rough approximations of CPTs that can be refined based on, e.g., the sensitivity
analysis of the BN. This means varying one or more conditional probabilities in
the BN and investigating the changes that it introduces to a probability of interest
[10]. This type of analysis identifies which conditional probabilities need to be
defined more accurately than others.

The results and discoveries of this thesis motivate further research on several top-
ics. The empirical study concerning the modeling accuracy of RNM included 22
CPTs that were approximated. To obtain more reliable results on the common-
ness of the probabilistic relationships compatible with the assumptions of RNM,
a larger sample of CPTs should be investigated. The modeling accuracy of RNM
could also be studied empirically from the viewpoint of the elicitation of param-
eters. For example, similarly to the idea in [59], human test subjects would be
allowed to make trials with an artificial model obeying a CPT constructed with
RNM. With enough observations acquired with the trials, the test subjects could
be considered to have become experts concerning the behaviour of the model.
Then, they would be asked to construct a CPT representing their observations
with different means, e.g., using direct elicitation and assessing parameters of
RNM. The results of the experiment would indicate how intuitive it is to assess
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the parameters of RNM. The same kind of set-up could also be used to verify
whether the elicitation of weights based on the interpretations derived in this
thesis is a more useful way to elicit the weights than their direct assessment.

The ideas presented in this thesis for handling ranked nodes with ratio or inter-
val scales should be further studied and systematized. The systematization could
refer to guidelines or instructions concerning the discretization of the scales. In
addition, it could deal with incompatibilities between the statements of the expert
and the implications of the RNM representation. To this end, it would be benefi-
cial to carry out empirical experiments in realistic settings with real experts. The
systematization could also be elaborated with similar empirical experiments as
described above. For example, human test subjects would be allowed to make
trials with an artificial model of continuous random variables that are defined as
ranked nodes using piecewise linear functions presented in the thesis. Then, it
would be investigated how well the test subjects can discretize the random vari-
ables into ranked nodes and assess the weights by answering questions about the
mode of the child node in various scenarios.

In the study concerning the modeling accuracy of RNM, it was also discovered
that the best approximate CPTs were often obtained using a single point on the
normalized scale to represent the state of a parent node. The generality of this
phenomenon should be verified by approximating larger amount of CPTs. If the
results would turn out to be generalizable, it could lead to establishing an alter-
native version of RNM where the states of nodes are not identified with subinter-
vals on the normalized scale but as single points. Such a version of RNM might
broaden the utilization possibilities of the method to nodes whose discrete states
cannot be deemed to represent any underlying continuous quantity.
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Appendix A

Distributions of Nodes in Figure 2.1

Table A-1: Skills.

States High Medium Low
Probabilities 0.25 0.60 0.15

Table A-2: Spryness.

States High Medium Low
Probabilities 0.25 0.50 0.25

Table A-3: Disturbance Level.

States High Medium Low
Probabilities 0.167 0.667 0.167
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Table A-4: Productivity.

Parents States and Probabilities
Skills Spryness Disturbance level High Medium Low

High

High
Low 0.909 0.091 0.000

Medium 0.699 0.301 0.000
High 0.389 0.606 0.007

Medium
Low 0.786 0.214 0.000

Medium 0.493 0.504 0.003
High 0.203 0.766 0.031

Low
Low 0.599 0.399 0.001

Medium 0.288 0.696 0.016
High 0.084 0.821 0.095

Medium

High
Low 0.506 0.491 0.003

Medium 0.213 0.759 0.029
High 0.052 0.805 0.142

Medium
Low 0.300 0.686 0.01

Medium 0.089 0.821 0.089
High 0.014 0.686 0.300

Low
Low 0.142 0.805 0.052

Medium 0.029 0.759 0.213
High 0.003 0.491 0.506

Low

High
Low 0.095 0.821 0.084

Medium 0.016 0.696 0.288
High 0.001 0.399 0.599

Medium
Low 0.031 0.766 0.203

Medium 0.003 0.504 0.493
High 0.000 0.214 0.786

Low
Low 0.007 0.606 0.387

Medium 0.000 0.301 0.699
High 0.000 0.091 0.909
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Appendix B

Proof of Equation 4.5

The claim of Equation 4.5 is presented below as Theorem 1. The proof of Theorem
1 is based on a series of aiding definitions and lemmas that are presented first.
The starting point of the upcoming analysis is the acknowledgement that Rn and
the Euclidean norm ‖ · ‖ : Rn → R defined by

‖u‖ = ‖(u1, ..., un)‖ =

√√√√ n∑
i=1

u2
i ,

form a metric space, see [53].

First, two different but equivalent definitions concerning the continuity of func-
tions operating in Cartesian spaces are given. The equivalent definitions in Defi-
nition 1 adapt the ones presented in [53].

Definition 1. (a) The function F : Rd → Rn is continuous if for any point u0 ∈ Rd it
applies that

∀ ε > 0 ∃ δ > 0 : u ∈ Rd ∧ ‖u− u0‖ < δ ⇒ ‖F (u)− F (u0)‖ < ε.

(b) Equivalently, F is continuous if the following holds for any u0 ∈ Rd and a sequence
{ui}∞i=1 ⊂ Rd:

lim
i→∞
‖ui − u0‖ = 0⇒ lim

i→∞
‖F (ui)− F (u0)‖ = 0.

Now, the following notation for the convergence of a sequence {yi} is adapted:

yi
i→∞−−−→ y ⇔ lim

i→∞
‖yi − y‖ = 0.
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Lemma 1. The weight expressions WMEAN, WMIN, WMAX, and MIXMINMAX —
defined in Equations 3.1-3.4, respectively — are continuous with respect to the sample
points {zi,k}.

Proof. For the brevity of notation, let the combination of sample points {z1,k, ..., zn,k}
be marked with {p1, ..., pn}. Now, suppose there are sequences {∆1,m}∞m=1, ..., {∆n,m}∞m=1

so that ∆i,m
m→∞−−−→ 0 ∀i = 1, ..., n. Then, obviously,

(p1 + ∆1,m, ..., pn + ∆n,m)
m→∞−−−→ (p1, ..., pn).

Referring to Definition 1(b), the continuity of the weight expressions is proved by
showing that

(p1 + ∆1,m, ..., pn + ∆n,m)
m→∞−−−→ (p1, ..., pn)⇒

f(p1 + ∆1,m, ..., pn + ∆n,m,w)
m→∞−−−→ f(p1, ..., pn,w), (B.1)

where f is the given weight expression andw refers to the weights. The proof for
the different weight expressions goes as follows:

1. f = WMEAN

WMEAN(p1 + ∆1,m, ..., pn + ∆n,m,w) =

∑n
i=1 wi(pi + ∆i,m)∑n

i=1 wi
=∑n

i=1wipi∑n
i=1 wi

+

∑n
i=1wi∆i,m∑n

i=1wi

m→∞−−−→
∑n

i=1wipi∑n
i=1 wi

= WMEAN(p1, ..., pn,w).

2. f = WMIN

WMIN(p1 + ∆1,m, ..., pn + ∆n,m,w) = min
i=1,...,n

{
wi ∗ (pi + ∆i,m) +

∑n
j 6=i(pj + ∆j,m)

wi + n− 1

}
=

min
i=1,...,n

{
wi ∗ pi +

∑n
j 6=i pj

wi + n− 1
+
wi ∗∆i,m +

∑n
j 6=i ∆j,m

wi + n− 1

}
m→∞−−−→

min
i=1,...,n

{
wi ∗ pi +

∑n
j 6=i pj

wi + n− 1

}
= WMIN(p1, ..., pn,w).

3. f = WMAX

Replace WMIN and min by WMAX and max in the proof for WMIN, respec-
tively.
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4. f = MIXMINMAX

MIXMINMAX(p1 + ∆1,m, ..., pn + ∆n,m,w) =

wMIN ∗mini=1,...,n{pi + ∆i,m}+ wMAX ∗maxi=1,...,n{pi + ∆i,m}
wMIN + wMAX

m→∞−−−→
wMIN ∗mini=1,...,n{pi}+ wMAX ∗maxi=1,...,n{pi}

wMIN + wMAX

=

MIXMINMAX(p1, ..., pn,w).

Lemma 2. Let ω1 : Rn → R and ω2 : R → R be continuous functions. Then, the
composite function ω2 ◦ ω1 : Rn → R is continuous.

Proof. The proof refers to Definition 1(a) of continuity. Let ε > 0. Then, because
ω2 is continuous, there exists δ1 > 0 so that

u,y ∈ Rn ∧ ‖ω1(u)− ω1(y)‖ < δ1 ⇒ ‖ω2(ω1(u))− ω2(ω1(y))‖ < ε. (B.2)

On the other hand, because ω1 is continuous, there exists δ2 so that

‖u− y‖ < δ2 ⇒ ‖ω1(u)− ω1(y)‖ < δ1. (B.3)

Thus, Equations B.2 and B.3 imply that

∀ ε > 0 ∃ δ2 > 0 : ‖u− y‖ < δ2 ⇒ ‖ω2(ω1(u))− ω2(ω1(y))‖ < ε.

Lemma 3. Normpdf(u, µ, σ2) is continuous with respect to µ.

Proof.

g1(µ) = − 1

2σ2
(u− µ)2,

is continuous because it is a polynomial function [50]. The exponent function

g2(y) = ey,

is continuous as well [50]. By Lemma 2, the composite function

g2 ◦ g1(µ) = g2(g1(µ)) = e−
1

2σ2
(u−µ)2 ,
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is continuous. Hence, also

Normpdf(u, µ, σ2) =
1√

2πσ2
e−

1
2σ2

(u−µ)2 ,

is continuous with respect to µ.

Lemma 4. For arbitrary c1, c2 ∈ R, the function g : R→ R defined by

g(µ) =

∫ c2

c1

Normpdf(u, µ, σ2)du,

is continuous.

Proof. Let there be a function v : R→ R defined by

v(u) = Normpdf(u, µ, σ2),

a sequence {µk}∞k=1 ∈ R such that

µk
k→∞−−−→ µ,

and a set of functions {vk(u)}∞k=1 : R→ R defined by

vk(u) = Normpdf(u, µk, σ
2).

Then, Lemma 3 implies that

vk(u)
k→∞−−−→ v(u). (B.4)

Moreover, it applies that

0 < vk(u) ≤ 1√
2πσ

∀ k ≥ 1, ∀ u ∈ R. (B.5)

Now, based on Equations B.4 and B.5, Lebesgue’s dominated convergence theo-
rem [53] implies that

lim
k→∞

∫ c2

c1

vk(u)du =

∫ c2

c1

v(u)du ∀ c1, c2 ∈ R. (B.6)

In turn, Equation B.6 implies that the function

q(µ) =

∫ c2

c1

Normpdf(u, µ, σ2)du,
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is continuous.

Definition 2. Function h : [0, 1]n → R is defined by

h(p1, ..., pn) =

∫ c2

c1

TNormpdf(u, f(p1, ..., pn,w), σ2, 0, 1)du, (B.7)

where f ∈ {WMEAN, WMIN, WMAX, MIXMINMAX} is any of the weight expres-
sions, see Equations 3.1-3.4,w are the weights, and TNormpdf is the probability density
function of a doubly truncated normal distribution, see Equation 3.3.5.

Lemma 5. h(p1, ..., pn) is continuous.

Proof. By Lemma 4, the functions g1, g2 : R→ R defined by

q1(µ) =

∫ c2

c1

Normpdf(u, µ, σ2)du, (B.8)

and

q2(µ) =

∫ 1

0

Normpdf(u, µ, σ2)du, (B.9)

are continuous with respect to µ. Moreover, q2(µ) > 0 ∀ µ ∈ R. Thus, the function
h̃ : R→ R defined by

h̃(µ) =
q1(µ)

q2(µ)
=

∫ c2

c1

TNormpdf(u, µ, σ2, 0, 1)du, (B.10)

is continuous as a rational function [50]. Now, by Lemmas 1 and 2, the function

h(p1, ..., pn) = h̃ ◦ f(p1, ..., pn,w) = h̃(f(p1, ..., pn,w)), (B.11)

is continuous.

Lemma 6. h(p1, ..., pn) is integrable.

Proof. For any σ2 > 0, h is obviously bounded. This and Lemma 5 imply that h is
integrable, see [34].

Theorem 1. For i = 1, ..., n, let there be an interval [ai, bi] ⊂ [0, 1] and a set {χkii }ski=1

defined by

χkii = ai + (ki − 1)
bi − ai
s− 1

. (B.12)
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Then, it applies that

1

sn

s∑
k1=1

...
s∑

kn=1

h(χk11 , ..., χ
kn
n )

s→∞−−−→ E(h(χ1, ..., χn)|χi ∼ U(ai, bi) ∀ i = 1, ..., n).

(B.13)

Proof. Let the points {b∗i }ni=1 be defined by

b∗i = bi +
bi − ai
s− 1

, (B.14)

and an elementary n-dimensional volume element be defined by

∆V =
n∏
i=1

b∗i − ai
s

=
1

sn

n∏
i=1

(b∗i − ai). (B.15)

Equation B.14 implies that

lim
s→∞

b∗i = bi ∀ i = 1, ..., n.

On the other hand, h(p1, ..., pn) is known to be integrable, see Lemma 6. Thus, it
applies that

s∑
k1=1

...
s∑

kn=1

h(χk11 , ..., χ
kn
n )∆V

s→∞−−−→
∫ b1

a1

...

∫ bn

an

h(χ1, ..., χn)dχn...dχ1. (B.16)

Together, Equations B.15 and B.16 imply that

1

sn

s∑
k1=1

...
s∑

kn=1

h(χk11 , ..., χ
kn
n )

s→∞−−−→
∫ b1

a1

...

∫ bn

an

h(χ1, ..., χn) ∗ 1∏n
i=1(bi − ai)

dχn...dχ1 =

E(h(χ1, ..., χn)|χi ∼ U(ai, bi) ∀ i = 1, ..., n). (B.17)

Next, recall properties of RNM presented in Section 3.3.5. For a given combina-
tion of states (x1, ..., xn) of the parent nodes X1, ..., Xn, sn combinations of sample
points {(z1,k, ..., zn,k)}snk=1 are formed so that zi,k is always one of the s equidistant
sample points taken from the state interval zi = [ai, bi] ⊂ [0, 1] corresponding
to xi. For each of the combinations {(z1,k, ..., zn,k)}snk=1, the mean parameter µk is
calculated by

µk = f(z1,k, ..., zn,k,w), (B.18)

where f is the weight expression and w are the weights — see Equations 3.1-3.4.

118



For each µk, conditional probabilities are calculated according to Equation 3.8,
i.e.,

P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn;µk) =

∫ bn+1

an+1

TNormpdf(x, µk, σ
2, 0, 1)dx,

(B.19)
where [an+1, bn+1] = zn+1 is the state interval corresponding to the state xn+1 of
the child node Xn+1. In addition, recall from Section 4.1 that the random variable
γ is defined by Equations 4.1-4.3 as

γ =
∫ bn+1

an+1
TNormpdf(u, µ, σ2, 0, 1)du,

µ = f(χ1, ..., χn,w),

χi ∼ U(ai, bi), i = 1, ..., n.

(B.20)

Corollary 1. Let P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn;µk) and γ be defined according
to Equations B.19 and B.20, respectively. Then,

1

sn

sn∑
k=1

P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn;µk)
s→∞−−−→ E(γ). (B.21)

Proof. Equations B.7 and B.20 imply that with the substitution c1 = an+1,

c2 = bn+1,
(B.22)

it applies that
γ = h(χ1, ..., χn). (B.23)

Equation B.23 implies that

E(γ) = E(h(χ1, ..., χn)). (B.24)

That is, the right hand sides of Equations B.17 and B.21 are the same. On the other
hand, with the substitutions defined by Equation B.22, it follows from Equations
B.7, and B.19 that

P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn;µk) = h(z1,k, ..., zn,k). (B.25)

On the other hand, for each i = 1, ..., n, the set {χkii=i}ski=1 defined by Equation
B.12 corresponds to the equidistant sample points taken from the state interval
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zi. Thus, it applies that

1

sn

s∑
k1=1

...

s∑
kn=1

h(χk11 , ..., χ
kn
n ) =

1

sn

sn∑
k=1

h(z1,k, ..., zn,k) =

1

sn

sn∑
k=1

P (Xn+1 = xn+1|X1 = x1, ..., Xn = xn;µk), (B.26)

where the last equality is due to Equation B.25. Equation B.26 shows that the left
hand sides of Equations B.17 and B.21 are the same. Hence, by Equations B.24
and B.26 as well as Theorem 1, it applies that the claim presented in Equations
4.5 and B.21 is true.
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Appendix C

Results of Experiment in Section 5.1
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Figure C-1: Average calculation times of a CPT with implementation A and with
different weight expressions for varying number of parent nodes n, number of
states of the nodes m, and number of sample points s.
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Figure C-2: Average calculation times of a CPT with implementation B and with
different weight expressions for varying number of parent nodes n, number of
states of the nodes m, and number of sample points s.
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