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The Basel II regulatory framework offers a simplified approach for quantifying credit risk of 

corporate loan portfolios. It is insufficient for banks and financial institutions as it does not take 

specific portfolio characteristics into consideration. Therefore, internal models are needed. Risk 

management practitioners are particularly interested in significant, but rare, losses caused by a 

large number of simultaneous defaults. Monte Carlo simulation models are widely utilized in 

finance to quantify risk of credit portfolios. But for a rare-event simulation the plain Monte Carlo 

method is inefficient.

The purpose of this thesis is to determine if the plain method can be improved using importance 

sampling to produce statistically significant estimates for a real life credit portfolio. We use R 

programming language and a conventional home office laptop to compute simulations for the 

portfolio and its individual loans as well. Additionally, we use stock market data to infer the 

correlation structure of our credit portfolio model. This thesis focuses on a simulation application 

but a detailed presentation of the theoretical background is provided.
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Basel II vakavaraisuuskehikko tarjoaa yksinkertaisen lähestymistavan yritysluottosalkun 

luottoriskin mittaamiseen. Se on kuitenkin riittämätön pankeille ja finanssi-instituutioille, koska 

se ei huomioi luottosalkun erityispiirteitä. Siksi tarvitaan sisäisiä malleja. Riskienhallinnan 

asiantuntijat ovat erityisen kiinnostuneita harvinaisen suurista tappioista, jotka johtuvat suuresta 

yhdenaikaisten maksukyvyttömyyksien määrästä. Monte Carlo -simulaatiomallit ovat laajalti 

rahoitusalalla käytössä luottosalkkujen riskien mittaamisessa. Mutta harvinaisten tapahtumien 

simuloinnissa tavanomainen Monte Carlo -menetelmä on tehoton.

Tämän työn tarkoitus on selvittää voidaanko tavanomaista Monte Carlo -menetelmää parantaa 

painoarvo-otannalla tuottamaan tilastollisesti merkitseviä estimaatteja reaalimaailman 

luottosalkulle. Käytämme R-ohjelmointikieltä ja tavanomaista kannettavaa kotitietokonetta 

simulaatioiden suorittamiseen koko salkulle sekä yksittäisille luotoille. Lisäksi käytämme 

osakekurssiaineistoa luottosalkkumallimme korrelaatiorakenteen määritykseen. Työn keskipiste 

on simulaatiosovelluksessa, mutta myös teoreettiset taustat esitellään yksityiskohtaisesti.
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1 Introduction 

Credit risk is risk of loss due to default of a loan by an obligor or decrease 

of credit worthiness caused by a migration to a lower credit rating. An obligor 

defaults its loan when it fails to pay its debt or portion of it. Number of defaults 

in credit portfolio is dependent on the state of economy. Financial institutions 

suffer greater losses due to defaults in a recession than in other states of 

economy. Capital requirements, capital held against large future credit losses, for 

credit risk brought by the Basel Committee do not sufficiently take portfolio 

characteristics into consideration. Therefore, banks and financial institutions 

utilize internal models to accurately measure variation of credit portfolio losses 

and therefore capital required to sustain large losses. 

Credit risk models are divided into two categories: reduced-form models 

and structural models. The CreditMetrics model of J.P Morgan is the most used 

reduced-form model alongside the CreditRisk+ developed by Credit Suisse 

Financial Products (Fatemi and Fooladi 2006). The KMV has developed 

structural model called the Portfolio Manager that was the most used model in 

2002 (Smithson et al 2002). According to survey of European Central Bank 2007 

most central banks use models based on the CreditMetrics framework. 

Differences and similarities between these models are widely studied. (Crouhy et 

al 2000)  (Gordy 2000) 

This thesis concentrates on the CreditMetrics framework that can be seen 

as an extension of Merton’s option pricing approach based on a firm’s asset 

value process (Crouhy et al 2000). The fundamental idea behind the model is that 

a change in an obligor’s credit quality will affect the risk of the credit portfolio. 

When the change in downside is substantial the obligor is considered to default 

it’s loan and the lender suffers a portion of the loan value as credit loss. We 

concentrate on a two-state model of the CreditMetrics meaning that the obligor 
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is either in default state or not. The task comes to simulate the defaults of 

obligors of the portfolio. As the default events in corporate loan portfolios are 

rare the plain Monte Carlo method is inefficient for portfolio loss distribution 

estimation. Not only the rare events but the dependence structure of default 

events introduces great challenges. Large losses are greatly determined by 

dependencies between obligors. The tendency of obligors defaulting 

simultaneously is modelled via common systematic risk factors in the 

CreditMetrics framework. The model is called the normal copula model. For 

corporate loan portfolios it is computationally inefficient to generate large 

portfolio losses with the plain Monte Carlo method. 

The purpose of this thesis is to determine whether plain Monte Carlo 

simulation can be improved with importance sampling to produce statistically 

significant estimates for portfolio tail probabilities and conditional expectations. 

Also, it is of great interest to see if conditional expectations can be estimated for 

individual exposures. To make simulations relevant dependence structure used 

with the normal model is inferred from real stock market data and portfolio 

under examination is constructed to imitate a real life corporate loan portfolio. 

Thesis is organized as follows. Chapter 2 presents basic measures in 

defining risk of a corporate loan portfolio and how credit loss of a portfolio and 

an individual obligor is measured. Chapter 3 presents notations for the normal 

copula model and how correlated random variables are generated using cholesky 

factorization. 

In Chapter 4 we calibrate our correlation structure using 311 publicly 

traded corporations listed in stock markets in Helsinki, NASDAQ OMX 

Helsinki, and Stockholm, NASDAQ OMX Stockholm. Common systematic 

factors, industry factors, of the normal copula model are defined as seven 

different GICS industries. In this thesis we use equity correlations inferred from 
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stock market returns to describe the dependencies between obligors. A real life 

credit portfolio is constructed in chapter 4 assigning three different credit rating 

to every corporation that was used in defining correlation structure. The total 

sum of obligors in the real life portfolio is then 933. 

Large corporate loan portfolios that consist of hundreds or thousands of 

transactions compose challenges to simulation. It is practically impossible to 

estimate tail probabilities or individual risk contributions without incorporating 

variance reduction methods into plain Monte Carlo simulation. Applying 

importance sampling is described in detail in chapter 5. Two different methods 

are presented. Exponential twisting increases default probabilities to generate 

default events more frequently. Factor shifting shifts expectation of portfolio 

loss distribution to a desired α-quantile to make simulation more efficient. 

Risk measures value-at-risk and expected shortfall are presented in chapter 

6. Addition to plain Monte Carlo method, chapter 7 presents three different 

importance sampling Monte Carlo algorithms to estimate portfolio tail 

probabilities and conditional expectations. For internal risk management 

purposes measuring credit risk of portfolio is just the first the step. Banks and 

financial institutions are also interested in allocating capital to single transactions. 

Therefore, decomposition of total portfolio credit risk, portfolio loss, to 

individual transactions is required. Definition of conditional expectation for a 

marginal risk contribution is provided in chapter 7. 

Simulation results for the real life credit portfolio constructed in the 

chapter 4 are presented in chapter 8. First, we estimate tail probabilities and 

conditional expectations followed by marginal risk contribution estimation for 

individual exposures. Lastly, we will find out if our model calibrated for 

deterministic cost of default will be useful with stochastic cost of default. 
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Contrary to the Basel II regulatory capital which assumes infinite 

granularity of the portfolio, the credit risk model presented in this thesis takes 

concentration risk into consideration. For example, relatively large exposures 

exhibit greater capital charges relative to their exposure. All simulations are done 

in R programming language using home office laptop. Therefore, no excess 

computing power is employed.  
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2 Measuring credit risk 

Quantifying credit risk of a portfolio begins from the individual obligor 

level. Each obligor and its loan has following risk characteristics: credit rating, 

collateral and its seniority, the amount of exposure and dependence on common 

economic factors. Credit rating describes the creditworthiness of a firm, an obligor, 

and in technical terms it is translated into firm’s probability of not paying back 

its loan, probability of default. Collateral describes the risk profile of the individual 

loan and it secures portion of it in the event of default. The seniority of the 

collateral refers to the order of repayment when obligor has defaulted its loan. 

It transfers into loss given default, the portion of loan that borrower suffers when 

obligor defaults. The size of the exposure is the amount of capital that the 

obligor owes to the borrower at default, exposure at default.  

The dependency on common economic factors measures the impact of a 

state of economy to the firm’s ability to repay its loans. Firms are more likely to 

default their loans during economic downturn. Firms’ simultaneous tendency of 

defaulting loans called default correlation. 

2.1 Credit rating and probability of default 

A credit rating describes creditworthiness of a firm. The rating is based on 

qualitative and quantitative assessment of credit quality of the firm. Altman 

(1968) introduced the Z-score approach to measure credit quality and applied it 

to manufacturing corporations. The Z-score is based on the assumption that 

past accounting information can be used to estimate the default probability of a 

firm. In the United States most issuers of public debt are rated by rating agencies 

Moody’s, S&P and Fitch. In Europe this is not usually the case. Therefore banks 

need to have their own internal rating systems to measure creditworthiness of 

their customers. Commonly used financial information in credit scoring models 
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is (Bluhm et al 2003) future earnings and cash flows, short- and long-term 

liabilities and financial obligations, a debt to equity ratio, liquidity of firm’s assets. 

Political and social situation of the firm’s home country and conditions of the 

market of the firm’s main activities are usually taken into consideration. Often 

the quality of the firm’s management and the general company structure is 

review for scoring. 

Quantitative credit scorings models provide statistical analysis of the credit 

quality of a firm. The most import explanatory variables are found to be financial 

ratios measuring profitability, leverage and liquidity (Allen et al 2004). The best 

practice in banking is that an automatic credit scoring produced by statistical 

models are re-evaluated by a rating specialist before granting the final credit 

grade. The most commonly used credit scoring models are multivariate scoring 

models the linear regression probability model, the logit model, the probit model 

and the multiple discriminant analysis model. These are parametric models 

aiming to score explanatory variables to describe creditworthiness. The credit 

grade of a firm is related to probability of default PD using historical observed 

default rates. This is called default probability calibration among practitioners. 

(de Servigny and Renault 2004) 

2.2 Loss given default 

The portion of a loan that a bank suffers as a credit loss in the event of 

default is called loss given default LGD. Often banks require collateral or other 

guarantees from borrowers to secure repayment of loans. Collateral is a 

borrower’s pledge of specific property to a lender. A firm investing a new 

production plant can pledge the plant to the lender. In the event of default, the 

lender liquidates the plant and receives the capital. The notional amount of a 

loan minus capital reclaimed as a results of liquidating the collateral bank 

considers as a credit loss. Key determinants of loss given default are the seniority 
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of the instrument, available collateral or guarantees, the industry of the obligor, 

the current business cycle and the bargaining power of debt holders. The most 

important drivers of these are the quality and the quantity of the collateral and 

the seniority. The seniority refers to the order of repayment in the event of 

default. Collateral consists of assets that servers as a guarantee in the event of 

default.  

Usually in commercial applications for measuring credit risk the 

probability of default and the loss given default are assumed to be independent 

of each other. However, empirical evidence suggests that there could be some 

co-movement. Altman et al (2001) showed that high default rates are linked to 

high loss given default rates because macroeconomic factors have similar 

influence on default rates and loss given default. 

Another link between default rates and realized LGD is found by examining 

the value of collateral in recession. Frey (2000) showed that in an economic 

downturn default rates are relatively high and that collateral values seem to 

decline as it is difficult to liquidate assets such as real estate due to imbalance of 

supply and demand on the market. Some types of collateral may bear a 

substantial portion of market risk. Therefore one could expect the collateral’s 

market value to decline in downturn. 

2.3 Exposure at default 

Exposure at default EAD is the quantity of exposure a bank has to its 

borrower. Generally it consists of liabilities already activated into bank’s balance 

sheet such as loans and off-balance sheet items consisting of undrawn credit 

lines. In reality, obligors tend to draw off committed lines of credit in times of 

financial distress, usually prior to default. Undrawn credit lines are taken into 

consideration when assessing the amount of exposure at default. 
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Banks can model EAD as a stochastic process given the uncertainty of 

quantity drawn from off-balance sheet commitments at default. Usually the 

expected portion of the outstanding credit lines depends on creditworthiness of 

the obligor and the type of credit facility involved. 

Banks can require covenants in a form of excess collateral to provide 

additional security in the time of financial stress. Covenants could also be applied 

in a way that allows banks to close committed credit lines due to triggers of early 

indicators of default. 

2.4 Expected loss 

To measure loss potential, of a loan, that can be expected due to default it 

is quite straight forward to calculate expected loss 

 EL =  E[L̃] = P(D) ∗ LGD ∗ EAD,  

where P(D) = PD is the probability of the default event, LGD and EAD are 

deterministic and independent of each other. The EL can been as a cost arising 

from lending activities amongst other expenditures. In risk management terms 

the sum of ELs of loans over bank’s entire portfolio is the amount of expected loss 

reserve that banks hold as a capital buffer against expected future losses over a 

particular time horizon, usually one calendar year. In loan pricing the EL is 

sometimes referred to as risk premium. 

The expected loss refers to expected value or mean value over long period 

of time or business cycle. The actual losses banks experience over the chosen 

time horizon deviates. To illustrate the variation of actual default rates, realized 

PDs, of companies figure 2.1 presents observed yearly default rates of Finnish 

companies between 1993 and 2012. The observed average default rate was 1.1% 

from 1993 to 2012 and 0.9% starting from 1999 when Finland adopted the Euro. 
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In the peak year 1993 the observed default rate was almost three times the 

average.  

In this case, if a bank expected its yearly default rate of its corporate loan 

portfolio to be the long term average 1.1% the losses in the year 1993 would 

have been almost three times the expected loss EL, holding LGD and EAD 

unchanged. It is clear that banks need to reserve additional cushion on top of EL 

to sustain much larger losses than the portfolio EL. 

Figure 2.1: Yearly default rates of Finnish companies 
between 1993-2012. Source: Statistics Finland 

2.5 Unexpected loss 

In order to survive over periods of financial distress banks need to reserve 

capital to sustain losses exceeding the average experienced losses from past 
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history. A convenient choice to measure losses greater than EL or unexpected loss 

is the standard deviation of EL 

 
UL = √ Var(E[L̃]).  

In practice, the excess risk capital saved for the cases of severe financial distress 

is called economic capital EC. Unexpected loss UL or it’s multiples can be used to 

quantify EC. Although it is common for practitioners to define economic capital 

using α-quantile 

 ECα = qα − ELportfolio,  

where qα is the α-quantile of portfolio loss corresponding to confidence level α. 

The portfolio EL is deducted because economic capital is defined as a risk capital 

reserved to cover losses exceeding expected loss of a portfolio, see figure 2.2 for 

illustration of the EC. Decomposing total risk capital into expected loss and 

economic capital is essential as the EL is a portfolio independent measure, recall 

that EL = PD ∗ LGD ∗ EAD, and the EC strongly depends on the composition of 

the bank’s portfolio1. Even one single loan can significantly change tail 

characteristics of portfolio loss distribution. 

                                                           
1 Basel II Regulatory Capital Requirement assumes infinite granularity of bank’s portfolio. FIRB 
and AIRB -capital changes are portfolio independent. 
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Figure 2.2: Loan portfolio loss distribution and economic 
capital measured as an α-quantile minus expected loss.  
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3 Credit portfolio model 

The purpose of the normal copula model is to capture dependencies 

across defaults. In corporate loan portfolios the dependencies between obligors 

are usually the key determinant of portfolio tail loss behaviour. Dependencies 

between obligors is captured with a multivariate normal vector of latent variables 

describing creditworthiness. Changes in obligors credit quality is modelled as a 

multifactor model of systematic risk factors, which can be interpreted as industry 

factors having similar effect on companies operating in the same region. 

3.1 Generating multivariate normal 

Instead of sampling correlated multivariate random variables with 

covariance matrix it is more convenient to introduce correlation structure 

through factor loadings and uncorrelated standard normal variables. This 

requires linear transformation for a multivariate normal vector. Covariance 

between systematic factors are defined as follows 

 Cov[Xi, Xj] = E[(Xi − μi)(Xj − μj)] = Σij, (3.1) 

where Xi is an observation of factor i, μx is the mean and Σij refers to a specific 

element on the covariance matrix Σ. The covariance matrix is implicitly defined 

through its diagonal elements σi
2 and correlations ρij 

 Σij = σiσjρij (3.2) 

and in matrix form 
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Σ =

(

 

σ1
σ2

⋱
σd)

 

(

 

ρ11 ρ12 ρ11
ρ12 ρ22 ρ2d

⋱
ρ1d ρ2d σdd)

 

(

 

σ1
σ2

⋱
σd)

 . (3.3) 

The Linear Transformation Property: Any linear transformation of 

normal vector is normal 

 𝐗 ~ N(𝛍, 𝚺) ⟹ 𝐀𝐗 ~ N(𝐀𝛍, 𝐀𝚺𝐀𝐓), (3.4) 

for any d-vector 𝛍, and any d x d matrix 𝚺, and any k x d matrix 𝐀. 

The covariance matrix Σ and mean vector μ specifies a multivariate normal 

distribution 𝐍(𝛍, 𝚺). Using the property (3.4) we have 𝐙 ~N(�̅�, 𝐈) and 𝐗 =  𝛍 +

𝐀𝐙 implying that 𝐗~ 𝛍 + N(�̅�, 𝐀𝐀T). Thus, we need to choose A that satisfies 

𝐀𝐀T = 𝚺 to sample the multivariate normal N(�̅�, 𝚺). (Glasserman 2003) 

3.1.1 Cholesky factorization 

A lower triangular matrix A is an attractive choice because it reduces the 

calculation of the multivariate normal to following 

 X1 = μ1 + A11Z1 

X2 = μ2 + A21Z1 + A22Z2 

       ⋮ 

Xd = μd + Ad1Z1 + Ad2Z2 +⋯+ AddZd 

(3.5) 

as a result the number of multiplications and additions are halved. The 

representation of  𝚺 with a lower triangular matrix 𝐀 is called Cholesky factorization 

and 𝚺 has to be positive definite. A lower triangular matrix 𝐀 is found by solving 

equations 
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                       A11
2 = Σ11 

               A11A21 = Σ21 

                               ⋮ 

               Ad1A11 = Σd1 

          A21
2 + A22

2 = Σ22 

                                ⋮ 

 Ad1
2 +⋯+ Add

2 = Σdd 

(3.6) 

If we have 𝐗~N(𝟎, 𝚺) and 𝐙~N(𝟎, 𝐈) then (3.5) simplifies to  

 𝐗 = a1Z1 + a2Z2 +⋯+ adZd (3.7) 

where aj is the jth row of the matrix 𝐀 and aj is called factor loadings. (Golub 

and Van Loan 1996) 

3.2 Normal copula model 

The normal copula model for credit risk portfolios associated with the 

CreditMetrics (Gupton et al 1997) introduces correlations between obligors’ 

default events via standard normal distributed variables (X1,X2, … ,Xm). We use  

the same notations presented in Glasserman and Li (2005) 

m = number of obligors in a portfolio 

Yk = default indicator of kth obligor, set to 1 if obligor 

defaults and 0 otherwise 

pk = marginal default probability of kth obligor  

ck = loss resulted from default of kth obligor  

L = c1Y1 + c2Y2 +⋯+ cmYm = total loss of portfolio 
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Let Xk be standard normal distributed and xk = Φ
−1(1 − pk) with Φ−1 

inverse of standard normal cumulative distribution function. The default 

threshold xk can be interpreted as a default boundary value in association of the 

Merton’s asset value process (Merton 1974). The marginal default probabilities 

pk are expected to be known. For each obligor we have a default indicator 

 Yk = 𝟏{Xk > xk},           k = 1…m. (3.8) 

Thus we have 

       P(Yk = 𝟏)  = P(Xk > Φ
−1(1 − pk)) 

                           = 1 − Φ(Φ−1(1 − pk)) = pk. 
(3.9) 

In our normal copula model dependencies across default indicators Yk are 

captured with a multivariate normal vector (X1,X2, … ,Xm) defined as a linear 

combination  

 Xk = ak1Z1 +⋯+ akdZd + bkεk,      

 k = 1,… ,m, 
(3.10) 

where 𝐙 = (Z1, … , Zd)
T are systematic independent standard normal distributed 

risk factors, εk~N(0,1) is an idiosyncratic risk factor of kth obligor, ak1, … , akd 

are factor loadings for kth obligor ∑ aki
2d

i=1 ≤ 1 and bk = √1 − (ak1
2 +⋯+ akd

2 ). 

Systematic risk factors Z1, … , Zd are interpreted as industry factors to 

witch obligors are exposed to. The correlation structure is defined by factor 

loadings ak1, … , akd and correlation between latent variables Xk and Xj is  ak aj
T.  
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From (3.9) and (3.10) we get conditional marginal default probability for 

the obligor k 

 pk(Z) = P(Yk = 1|Z) = P(Xk > xk|Z) 

            = P(akZ + bkεk > Φ
−1(1 − pk)) 

            = P(bkεk > −akZ + Φ
−1(1 − pk)) 

            = Φ(
akZ + Φ

−1(pk)

bk
) 

(3.11) 

where ak = (ak1, . . , akd) are the factor loadings of kth obligor of systematic 

factors Z1, … , Zd. Factor loadings are defined in the next chapter. 

3.3 Stochastic loss given default 

The CreditMetrics framework uses the beta distribution for stochastic loss 

given default LGD. The beta distribution is fully specified with its mean and 

standard deviation, and it provides high degree of flexibility for modelling 

stochastic LGD (Gupton et al 1997). The general density of the Beta-distribution 

is  

 
B(α, β, x) =

Γ(α + β)

Γ(α)Γ(β)
(1 − x)β−1xα−1,  

where Γ denotes the Gamma-function. Parameters α and β can be solved if 

expectation and standard variation of LGD is known. In Basel II regulatory 

capital framework corporate bonds under foundation internal rating based 

approach FIRB are assigned with constant loss given default rate of 45%. We 

adopt this and set E[LGD] = 0.45. 
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Tache (2004) examines modelling of loss given default and default events 

with single loss variable. He defines variance of LGD as a fixed percentage of 

maximally possible variance. It is common in credit portfolio models to use 

following representations for α and β  

 
     α =  LGD

1 − v

v
 

β = (1 − LGD)
1 − v

v
, 

(3.12) 

where parameter v has fixed value of 0.25. Substituting LGD = 0.45 into (3.12) 

we get α =  1.35, β = 1.65. The density function B(1.35,1.65, x) is presented in 

figure 3.1.  

 

Figure 3.1: Density function of loss given default 45%,  α =
1.35, β = 1.65. 

Figure 3.2 presents recovery rate distributions of corporate bonds for 

different seniorities. Recovery rate is  1 − LGD. The distribution in figure 3.1 is 

similar to senior unsecured corporate bonds in figure 3.2. So, we can use the 

density B(1.35,1.65, x) in our simulations. 
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Figure 3.2: Recovery rate, Residual value, distribution for different seniority 
classes (Gupton et al 1997)  
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4 Model calibration 

Default correlation refers to tendency for two, or more, companies to 

default at the period of time. In our model this trigger is one common risk factor. 

Companies operating in the same geographical region or in the same industry 

are exposed to same fluctuations in economic conditions. Default correlation is 

important in the determination of probability distribution for portfolio losses 

and vitally important in the determination of the α-quantile estimates for 

portfolio loss distribution. 

This chapter describes a method to define correlation structure for our 

credit portfolio model. For a large portfolio consisting of hundreds or thousands 

of exposures it is not computationally convenient to define correlations between 

obligors individually because it would result very large covariance matrices. 

Portfolio consisting  m = 1 000 different obligors would require calculation of 

m(m− 1) 2⁄ = 499 500 different correlation estimates. Thus, it is 

computationally efficient to introduce correlation through systematic risk 

factors. Separating idiosyncratic firm specific risk from common systematic risk 

also has its benefits. Firm specific risk is the part of risk that can be diversified 

away through portfolio diversification, while the risk contribution of systematic 

factors is non diversifiable. Correlation between two obligors is illustrated in 

figure 4.1. Parameters Ri represents the correlation between corporate and its 

industry and ρIndAIndB represents the correlation between industries of 

corporation A and B 
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Figure 4.1: The default correlation between two obligors. 

4.1 Correlation structure  

Global Industry Classification Standard categorizes corporations by ten 

different sectors, see table 4.1. In this thesis, publicly traded corporations listed 

in stock markets in Helsinki, NASDAQ OMX Helsinki, and Stockholm, 

NASDAQ OMX Stockholm, are included constructing a correlation structure. 

The stock market data is from Bloomberg Data Services starting from the 

beginning of year 2001 and ending in October 2014. Monthly logarithmic returns 

Si individual companies are calculated using every month’s last trading day 

quotes. 

Corporations having less than 24 months of data available are excluded. 

Sectors Energy and Utilities are also excluded due to small number of 

observations and Telecommunication Services and Information Technology are 

grouped to form one industry. There is possibility of over estimating correlation 

between obligor and the industry if small number of observations is used.  

Return series Ti of industry factor, or index related to the industry, is 

calculated as monthly logarithmic returns of sum of market capitalization of 
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companies assigned to each industry. For example, the return series of Materials 

industry is logarithmic returns of sum of market capitalizations of the 22 

companies that are included in Materials industry. Number of corporations by 

industries are presented in table 4.2 totaling 311 different corporation. 

Table 4.1: GICS-sectors. 

 

  

Code Sector Subcode Industry Groups

10 Energy 1010 Energy

15 Materials 1510 Materials

2010 Capital Goods

2020 Commercial & Professional Services

2030 Transportation

2510 Automobiles & Components

2520 Consumer Durables & Apparel

2530 Hotels Restaurants & Leisure

2540 Media

2550 Retailing

3010 Food & Staples Retailing

3020 Food, Beverage & Tobacco

3030 Household & Personal Products

3510 Health Care Equipment & Services

3520 Pharmaceuticals & Biotechnology

4010 Banks

4020 Diversified Financials

4030 Insurance

4040 Real Estate

4510 Software & Services

4520 Technology Hardware & Equipment

4530
Semiconductors & Semiconductor 

Equipment

50
Telecommunication 

Services
5010 Telecommunication Services

55 Utilities 5510 Utilities

35 Health Care

40 Financials

45
Information 

Technology

20 Industrials

25
Consumer 

Discretionary

30 Consumer Staples
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Table 4.2: GICS-industries used to construct correlation 
structure and number of listed companies. 

 

4.2 Inferring correlations from equity returns 

We now estimate the correlation between companies and their industry 

return series. Pairwise correlation are calculated as a Pearson-correlation 

coefficient 

 
R =

∑ (Si
A − S̅A)n

i=1 (Ti − T̅)

√∑ (Si
A − S̅A)

2n
i=1 √∑ (Ti − T̅)2

n
i=1

, 
(4.1) 

where Si is the monthly logarithmic return of a corporation A, Ti is the monthly 

logarithmic return of sum of market capitalizations of companies assigned to the 

same industry as corporation A, and S̅ and T̅ are the means of Si and Ti. Summary 

of correlation coefficients RPe by industry is presented in table 4.3. Examining 

the obligor to industry correlations one will find that the distribution of 

correlations between obligor and industry relative to other industries is not 

significantly different. Industrial and Inf Tech + Telecom industries have one 

obligor each with very low correlation, NURMINEN LOGISTICS OYJ and 

SCANFIL OYJ. This could indicate misclassification of their industry. But from 

simulation point of view it is interesting to determine how their low correlation 

GICS Code GICS Observations

15 Materials 22

20 Industrials 93

25 Consmer Discretionary 46

30 Consumer Staples 13

35 Health Care 32

40 Financials 41

70 Inf Tech + Telecom 64
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affect marginal risk contribution estimates. Correlations between individual 

companies and their industries are presented in appendix A together with 

number quotes used in estimating correlations. 

Table 4.3: Summary of obligor to industry Pearson-correlation 
coefficients by industries.  

 

Industry to industry correlations are also defined as Pearson-correlation 

 
ΣA,B =

∑ (Ti
A − T̅A)n

i=1 (Ti
B − T̅B)

√∑ (Ti
A − T̅A)

2n
i=1 √∑ (Ti

B − T̅B)2n
i=1

, 
(4.2) 

where A and B refers to different industries. Industry correlation matrix 𝚺 is 

presented in in table 4.4.  

Min Q1 Median Mean Q3 Max

MA 0,218 0,386 0,487 0,464 0,533 0,659

IN 0,005 0,431 0,512 0,513 0,633 0,817

CD 0,193 0,408 0,520 0,498 0,599 0,708

CS 0,275 0,429 0,457 0,455 0,506 0,643

HC 0,197 0,335 0,411 0,401 0,484 0,574

FI 0,205 0,409 0,518 0,496 0,588 0,796

IT 0,068 0,405 0,489 0,481 0,563 0,774
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Table 4.4: Industry factor correlation matrix. AVG is the industry average 
correlation between industries.  

 

The correlation matrix in the table 4.4 seems valid. The least correlated 

industry is Consumer Staples which contains food industries and other non-

cyclical retail industries. Industrials and Consumer Discretionary has the greatest 

average correlations between other industries. This is a logical result as 

Industrials and Consumer Discretionary consists of industry groups that are 

relatively highly cyclical and exposed to global economic factors and Consumer 

Staples represents less cyclical industry groups. 

MA IN CD CS HC FI IT

MA 1,000 0,752 0,746 0,619 0,502 0,648 0,573

IN 0,752 1,000 0,890 0,633 0,702 0,817 0,793

CD 0,746 0,890 1,000 0,667 0,635 0,778 0,751

CS 0,619 0,633 0,667 1,000 0,447 0,584 0,461

HC 0,502 0,702 0,635 0,447 1,000 0,610 0,742

FI 0,648 0,817 0,778 0,584 0,610 1,000 0,708

IT 0,573 0,793 0,751 0,461 0,742 0,708 1,000

AVG 0,640 0,765 0,745 0,568 0,606 0,691 0,671

Materials = MA

Industrials = IN

Consmer Discretionary = CD

Consumer Staples = CS

Health Care = HC

Financials = FI

Inf Tech + Telecom = IT
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 Figure 4.2: Return series on industry factors used to construct 
correlation structure.  

Our model assumes that the default dependence between two obligors is 

entirely defined by the correlation between their respective industries and 

correlation between obligor and its industry, figure 4.1. This could lead to 

misclassification of correlation structure. But for our simulation purposes it is 

still adequate. 
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We now define the factor loadings ak1, … , akd of our normal copula model 

in such a way that they comprise the correlation structure presented in this 

chapter 3. In the CreditMetrics framework the level variation of company’s 

assets explained by industry factor is the correlation R. Let 𝐑 m x d matrix 

containing correlation coefficients of industry to obligor correlations with m 

referring to number of obligors and d referring to number of industry factors, 

systematic risk factor. We also have correlated systematic risk factors �̂� =

(Ẑ1, … , Ẑd)
T

 , �̂�~ N(0̅, Σd). Therefore the latent variable describing asset 

movement is  

 Xk = Rk1Ẑ1 +⋯+ RkdẐd + bkεk,      

 k = 1,… ,m. 
(4.3) 

The systematic part in (4.3) is 𝐗 = 𝐑�̂� in matrix form. After Cholesky 

factorization we have 𝐑�̂� = 𝐑𝐀𝐓𝐙,  𝐙~ N(0̅, 𝐈d) and A is the lower triangular 

matrix. For simplicity let 𝐂 = 𝐑𝐀𝐓. To ensure that 𝐑�̂� and 𝐑𝐀𝐓𝐙 have the 

variance after Cholesky factorization factor loadings of (3.10) are defined as 

 

akj = Ckj√ 
∑ Rki

2d
i=1

∑ Cki
2d

i=1

,    j = 1,… , d, (4.4) 

and with bk = √1 − (ak1
2 +⋯+ akd

2 ) we have Xk~(0,1). 

Inferring correlations from equity returns neglects capital structure of 

companies. Other companies are more leveraged than others, they have more 

debt respect to equity. Still, equity returns are widely used because they capture 

dependencies sufficiently (Hull 2005). Estimating correlations from asset returns 
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would require information about capital structure and default probabilities to 

infer asset value movements from equity returns. Frey and McNeil (2001) argue 

that equity correlations do not sufficiently measure dependencies and that using 

them introduces excess model risk because the normal copula model fails to 

produce losses extreme enough. This thesis focuses on reducing computation 

times so it is sufficient to use equity returns to infer correlations. 

Löffler (2004) states that asset returns are heavily tailed and asymmetric 

unlike the normal distribution. He uses t-distribution for asset returns to 

illustrate the correlation between obligors and explains the choice of degree of 

freedom parameter. Additionally he demonstrates that the tail behavior 

significantly differs when different degrees of freedom is used.  

4.3 A real life credit portfolio  

To measure performance differences between different Monte Carlo 

algorithms we need a real life corporate loan portfolio. Our credit portfolio is 

constructed using the same corporations that we used to estimate correlations 

structure. Each obligor is assigned with three credit ratings sampled randomly 

and their corresponding probability of defaults resulting 933 obligors in total. 

The credit rating distribution of obligors is presented in figure 4.3. The ratings 

correspond to Moody’s rating system for corporate bonds and average observed 

default probabilities, see table 4.5. Ratings are sampled using a method to 

produce large number of obligors with low probabilities of default in every 

industry. The rating distribution represents a typical corporate loan portfolio 

credit rating distribution of a Nordic bank except having large portion of 

obligors with the highest credit rating. 
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Figure 4.3: The sampled rating distribution of the real life 
portfolio. 

Table 4.5: Moody’s credit ratings and corresponding one-year default 
probabilities rates of corporate bonds between 1920-2007.  
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5 Importance sampling 

The plain Monte Carlo simulation becomes inefficient when estimating 

tail probabilities in rare-event simulation. Therefore, accurate measurement of 

credit risk in corporate loan portfolios often requires variance reduction when 

using Monte Carlo simulation. One commonly used method is the importance 

sampling (IS). An expectation under one probability measure is expressed as an 

expectation under a different measure to generate “important” outcomes 

thereby increasing sampling efficiency. Defining the change of probability 

distribution of risk factors is a critical step in developing IS-method. 

There are two commonly used ways to apply importance sampling to the 

normal copula model. One way is to increase default probabilities by twisting 

the conditional default probabilities and second way is to shift systematic factors 

to generate more scenarios with large losses. Applying importance sampling to 

systematic factors of single-factor model has been suggested by (Avranitis and 

Gregory 2001) and (Kalkbrener et al 2003). 

Mathematically importance sampling means changing the probability 

measure. For a more detailed mathematical treatment of importance sampling 

see (Glasserman 2003) and (McNeil et al 2005). Let us consider the problem of 

estimating 

 
η = E[h(X)] = ∫h(x)f(x) dx (5.1) 

where X is a random element of ℝd that has a probability density function f and 

h: ℝd → ℝ . Therefore, the ordinary Monte Carlo estimator is 
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η̂ = α̂(n) =

1

n
∑h(Xi)

n

i=1

 (5.2) 

where Xi and Xj are independent and Xi ~ f. If we have g that is a probability 

density in ℝd satisfying f(x) > 0 ⇒ g(x) > 0 ∀ x ∈ ℝd we can write alternatively 

 
η = ∫h(x)

f(x)

g(x)
g(x)dx. (5.3) 

This can be interpreted as an expectation respect to density g and therefore we 

can write 

 
η = Eg [h(X)

f(X)

g(X)
], (5.4) 

where E𝑔 represents the expectation of X ~ g. For independent Xi, … , Xnwe have 

the importance sampling estimator 

 
η̂g = η̂g(n) =

1

n
∑h(Xi)

f(Xi)

g(Xi)

n

i=1

, (5.5) 

where the importance sampling weight f(Xi)/ g(Xi) is the likelihood ratio or 

Radon-Nikodym derivative evaluated at Xi. From (5.4) we get that Eg[η̂g] = η 

and that η̂g is an unbiased estimator of η. With importance sampling we have 

second moment of η̂g 

 
Eg [(h(X)

f(X)

g(X)
)

2

] = E [h(X)2
f(X)

g(X)
], (5.6) 
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where Eg is the expectation of X ~ g. Without importance sampling the second 

moment is E[h(X)2]. The problem comes to find an optimal importance 

sampling density g to make the second moment smaller. Two commonly used 

alternatives in credit portfolio simulations for importance sampling are 

presented in following sections. 

5.1 Exponential twisting 

Convenient choice of transforming probability measure is twisting it 

exponentially. In case of exponential change of measure we have cumulative 

distribution function F on ℝ and cumulant generating function is defined by the 

logarithm of the moment generating function of F 

 
ψ(θ) = log∫  eθx dF(x)

∞

−∞

. (5.7) 

If ψ(θ) < ∞, we set 

 
Fθ(x) = ∫  eθu−ψ(θ) dF(u)

x

−∞

 (5.8) 

so that each Fθ is a probability function. Now F transforms Fθ exponentially and 

if F has a density f, then Fθ  has density 

 fθ(x) =  e
θx−ψ(θ)f(x) (5.9) 

In (5.8) the Radon-Nikodym derivative is dFθ dF⁄ =  eθx−ψ(θ) which is the 

importance sampling weight. In (5.7) we have ψ(θ) = log E[ eθx)]. The first 

derivative of cumulant generating function ψ(θ) equals to mean of Fθ 
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ψ′(θ) =

E[XeθX]

E[eθX]
= E[XeθX−ψ(θ)] = Eθ[X], 

(5.10) 

where X ~ f and Eθ is expectation under twisted probability measure. Portfolio 

loss L is a sum of independent random variables Yi with moment generating 

function 

 
E[eθL] =∏E[eθYkck]

m

k=1

=∏[pke
θck + (1 − pk)]

m

k=1

. (5.11) 

where ck is cost of default and Y𝑖 is the default indicator. The culumant 

generating function of distribution L can also be written in the form 

 ψL|Z(θ) = log E[(e
θL|Z)]

=∑ log

m

k=1

(pk(Z)e
θck + (1 − pk(Z))). 

(5.12) 

Glasserman and Li (2005) propose increasing default probabilities pk depending 

on cost of default ck and default probability. Taking first derivative of (5.12) 

respect to θ for individual obligor results the exponentially twisted default 

probability 

 
p̃k(θ(Z)) =

pk(Z)e
θ(Z)ck

pk(Z)eθ
(Z)c𝑘 + (1 − pk(Z))

, (5.13) 

where θ(Z) is the twisting parameter conditional on systematic factor Z, pk(Z) is 

the conditional marginal default probability of obligor k and ck is the cost of 

default. For θ(Z) > 0 the default probabilities are increased and choosing θ(Z) =

0 we get p̃k(0) = pk(Z). The larger the cost of default, the larger the twisted 
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probability. We want to generate large portfolio losses L. Therefore, we 

concentrate on increasing conditional default probabilities and having θ(Z) > 0. 

Although negative values of θ(Z) are useful in estimating conditional 

expectations given L = x. (Glasserman 2003) 

Now we can write the IS-estimator for exponential twisting 

 1{L > x}  e−θ(Z)L+ψL(θ(Z))⏟          
IS−weight

, (5.14) 

where  𝟏{L > x} is an indicator for portfolio loss exceeding loss level x and L =

∑ ciYi
k
i . To define optimal θ, the second moment of the IS-estimator can be 

minimized (Glasseman and Li 2005)  

 M2(x, θ) = Eθ[e
−2θL+2ψL(θ) 𝟏{L > x}] 

                  ≤ e−2θx+2ψL(θ), 
(5.15) 

where  E𝜃 stands for expectation under exponential twisting distribution with 

parameter θ. The upper bound to holds if θ ≥ 0. It is suggested to focus on 

minimizing the upper bound as it is far more convenient. So we need to 

maximize θx − ψ(θ). The cumulant generating function ψL is strictly convex, 

second derivative is positive, and ψL(0) = 0. For further theoretical background 

see Barndorff-Nielson (1978). The maximum is attained at 

 
θx(Z) = {

    unique solution to ψ′(θ) = x,      x > ψ′(0)

     0                                                      ,     x ≤ ψ′(0),
 (5.16) 

where θx(Z) is the optimal twist conditional on systematic factor Z. A unique 

solution indeed exists because, for all Z, the derivative increases from −∞ to ∞ 
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as θ(Z) increases from −∞ to ∞ (Glasserman and Li  2005). We solve 

numerically equation  

 ∂

∂θ
ψ(θx(Z)) = ∑[

pk(Z) e
θx(Z)ck

pk(Z)e
θ(Z)c𝑘 + (1 − pk(Z))

]

m

k=1

= x, 

                       x > ψ′(0). 

(5.17) 

Setting θ(Z) = θx(Z) we twist the expected conditional portfolio loss E[L|Z] to 

x and the exponentially twisted conditional default probability is  

 
p̃k,θ(Z)(Z) =

pk(Z)e
θx(Z)ck

pk(Z)eθx
(Z)ck + (1 − pk(Z))

. (5.18) 

Since we are interested in large losses we have to take into consideration 

what is the key driver of large portfolio losses. If we had independent obligors 

the exponential twisting would result meaningful reduction of variance. This is 

not necessarily the case when obligors are dependent because large losses occur 

when obligors defaults simultaneously especially when the dependence structure 

is strong (McNeil et al 2005). Meaning that the key driver of large portfolio losses 

is the systematic factor Z.  In this case the exponential twisting of conditional 

default probabilities does not guarantee sufficient variance reduction or 

reduction at all. Therefore, it is suggested to apply importance sampling on 

systematic factors (Glasserman and Li 2005). 

5.2 Shifting factor means 

If obligors are highly dependent it is useful to apply importance sampling 

on systematic factors by shifting Z = (Z1, … , Zd). An attractive IS distribution 

for the factor Z would be the probability density proportional to the function 
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z → P(L > x|Z = z) e−

1
2
 zTz, (5.19) 

where P(L > x|Z = z) is the conditional expectation of portfolio loss exceeding 

x. Sampling with the density (5.19) is not feasible because it is required to be 

normalized with the value P(L > x|) to make it a density. So it is proposed to 

use the normal density with the same mode (Glasserman and Li 2005). A similar 

problem arises in an option-pricing context in which Glasserman et al (1999) 

suggest to use the normal density with the same mode as the optimal density. 

This mode occurs at a solution to an optimization problem 

 
max
z
P(L > x|Z = z) e−

1
2
 zTz. (5.20) 

The solution, the optimal shift μ∗ of the systematic factor Z , is then also the 

mean of the approximating normal density distribution. After shifting we have 

Z ~N(μ∗, I). The likelihood ratio that relates N(0, I) and N(μ∗, I) is  

 
wμ = e

− μTZ + 
1
2
 μTμ. (5.21) 

Because P(L > x|Z = z) does not have representation in closed form it is difficult 

to find exact solution for μ∗. Therefore, it is suggested to simplify the problem 

through approximation. Glasserman and Li (2005) propose few different 

approaches for this and each approach produces different values for the optimal 

shift μ∗. They justify tail bound approximation method stating that it produces an 

asymptotically optimal solution when the number of obligors m approaches 

infinity. Conversely, Egloff et al (2005) argue that since credit portfolios are finite 

of their size and the interest lies on a particular α-quantile, or expected shortfall 

above a specific α-quantile, instead of the asymptotic tail of the loss distribution, 

the methods based on asymptotic arguments may not be the most effective way 
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of reducing variance. It is shown by Egloff et al (2004) that importance sampling 

techniques in this thesis do not guarantee improvements for the plain Monte 

Carlo simulation and they suggest the adaptive stochastic approximation method 

of Robbins-Monro (Robbins and Monro 1951).  

Kalkbrener et al (2004) have proposed the homogenous portfolio approximation 

to find the optimal importance sampling shift for systematic factors. In a 

homogenous portfolio, all loans are specified by identical default probability, 

cost of default and correlation between obligors. Authors found that their 

method significantly reduces the variance of the Monte Carlo estimates and 

computing time necessary to calculate high α-quantiles of the portfolio loss 

distribution. 

Since the evidence does not clearly suggest one particular method over the 

others and all of the alternatives seem to produce roughly the same variance 

reduction, it is still unclear which of these approximation methods is the most 

robust one. Therefore, we use the normal approximation because it is 

computationally efficient and simple to incorporate into our normal copula 

model. For (5.19) we have normal approximation  

 
P(L > x|Z = z) ≈ 1 − Φ(

x − E[L | Z = z]

√Var[L | Z = z]
), (5.22) 

Recall that E[L | Z = z] = ∑ ckpk(z)
m
k=1  and Var[L | Z = z] = ∑ ck

2[pk(z) −
m
k=1

pk(z)
2]. Substituting these into (5.19) and (5.22) we get a multi-dimensional 

optimization problem 
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max
z

[
 
 
 

1 − Φ

(

 
x − ∑ ckpk(z)

m
k=1

√∑ ck
2[pk(z) − pk(z)2]

m
k=1 )

 

]
 
 
 

 e−
1
2
 zTz. (5.23) 

The R programming language has nloptm package for solving non-linear 

optimization problems using derivative-free algorithm cobyla with nonlinear 

inequality and equality constraints.  
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6 Risk measures 

Value at Risk (VaR) is widely used measure of risk in financial risk 

management. It is simply a α-quantile of a portfolio loss distribution. VaR 

corresponds to a confidence level of 100(1 − 𝛼) percent and is defined as 

 VaRα(X) = sup{x|P[X ≥ x] > α}, (6.1) 

where sup{x|A} is the upper limit of portfolio loss x given event an A. As a risk 

measure VaR is easy to understand, but it is not a coherent risk measure since it 

is not sub-additive. This means that risk of a portfolio could exceed the sum of 

the stand-alone risk of its components. VaR -measure also ignores losses beyond 

the chosen limit. Alternatively α-quantile is referred to as a tail probability.  

Expected Shortfall (ES) is more convenient choice of a risk measure as it 

is both coherent and it accounts losses beyond chosen confidence level. ES is 

simply expected loss in a condition that portfolio loss exceeds a given limit 

 ESα(X) = E[X|X ≥ VaRα(X)] (6.2) 

for a confidence level of 100(1 − α) percent. (Arzner et al 1999) 

The expectation for portfolio loss conditioned on portfolio loss exceeding 

a threshold x is  

 
r = E[L|L > x] =

E[L 𝟏 {L > x}]

P(L > x)
, (6.3) 

where the loss level x corresponds to VaRα(X). The IS-estimator with respect to 

probability density g is defined as  
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r̂IS =

∑ Lk wk 𝟏{Lk > x}
n
k=1

∑  wk 𝟏{Lk > x}
n
k=1

, (6.4) 

where wk and Lk are the likelihood ratio and portfolio loss of kth replication. 

The ratio is zero whenever the denominator is zero. Choosing wk = 1 in (6.4) 

we get the plain Monte Carlo estimator. To measure the accuracy of (6.4) 

confidence intervals are used. With the Lk sampled under g probability density 

function, the distribution 

 r̂IS − r

σ̂IS √n⁄
 (6.5) 

converges to the standard normal and  

 
r̂IS ± zδ/2

σ̂IS

√n
 (6.6) 

is an asymptotically valid 1 − δ confidence interval of r and zδ/2 = −Φ
−1(𝛿/2). 

Using the general result for ratio estimates (Glasserman 2003), we have the 

variance estimator 

 
σ̂IS = (

n∑ (Lkwk − r̂wk)
2n

k=1 𝟏{Lk > x}

(∑ wk𝟏{Lk > x}
n
k=1 )2

)

½

, (6.7) 

in which the ratio is zero whenever the denominator is zero.   
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7 Monte Carlo algorithms 

This chapter presents algorithms to estimate portfolio tail loss 

probabilities and tail loss expectations with plain Monte Carlo and IS Monte 

Carlo simulation. There are three different alternatives for IS. The exponential 

twisting algorithm increases default probabilities and the factor shifting 

algorithm shifts systematic factor to generate higher conditional default 

probabilities. Two step IS Monte Carlo algorithm applies both exponential 

twisting and factor shifting. Simulated default indicators are weighted using IS-

weights presented in chapter 5. 

Algorithms are divided into steps a-d. Numerated steps describe one 

simulation round consisting of M number on repetitions. Final two steps 

describe computation of tail loss probability and conditional expectations. 

Factor loadings are solved using the same equation regardless of the algorithm. 

Portfolio loss L̂ is sum of all exposures ck of defaulted obligors. 

7.1 Plain Monte Carlo algorithm 

Plain Monte Carlo algorithm for multi-factor model is described in figure 

7.1. In step a) we generate systematic factors Z and define whether obligor 

defaulted and then we sum defaulted exposures over portfolio. In step b) we 

calculate the portion of repetitions having portfolio loss greater than x, tail 

probability, and in step c) we calculate average loss when portfolio loss exceeds 

x, expected shortfall. In step a) pk is computed using (3.11). 

Multi-factor algorithm in figure 7.1 can be used as a single-factor model 

replacing a) 1-2 steps with steps presented in figure 7.2. In this case the 

systematic factor Z is a scalar. 
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a) Repeat M times 

1. Solve factor loadings âkj = Ckj√ ∑ Rki
2d

i=1 ∑ Cki
2d

i⁄    

2. Compute b̂k = √1 − (âk1
2 +⋯+ âkd

2 ) 

3. Generate standard normal distributed systematic factor Ẑ and 

compute conditional marginal default probabilities pk(Ẑ) 

4. Generate standard normal distributed variables X̂k 

5. Define default indicators Ŷk = 𝟏{X̂k > Φ
−1 (1 − pk(Ẑ))} 

6. Sum portfolio loss L̂ = ∑ ckŶk
m
k=1  

b) Compute P̂(L > x) =
1

M
∑ 𝟏{L̂j > x}
M
j=i  

c) Compute r̂IS = ∑ L̂j𝟏{L̂j > x}
M
j=i ∑ 𝟏{L̂j > x}

M
j=i⁄  

Figure 7.1: The algorithm of the plain Monte Carlo simulation of a 
multi-factor model. 

1. Solve factor loadings âk1 = R̂k, where R̂k is a correlation 

between obligor and systematic factor 

2. Compute b̂k = √1 − âk1
2   

Figure 7.2: Replacing steps of the  plain Monte Carlo simulation of a 
single-factor model. 

7.2 Importance sampling Monte Carlo algorithms 

The exponential twisting algorithm begins by computing factor loadings 

in same way that we did with the plain algorithm. The optimal twist is solved 

using conditional marginal default probabilities (3.11) and solving (5.17) we get 

the twisted probabilities. Tail loss probabilities c) and conditional expected loss 

d) are computed using IS-weight wθ. Note that the optimal twist θx is dependent 

on systematic factor Ẑ and therefore it is required to be solved in every 
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simulation round. This makes the algorithm significantly slower than the shifting 

algorithm. The optimal shift depends only on the specification of portfolio and 

therefore it is required to be solved only once. Exponential twisting Monte Carlo 

algorithm is described in figure 7.3. 

a) Repeat M times 

1. Solve factor loadings âkj = Ckj√ ∑ Rki
2d

i=1 ∑ Cki
2d

i⁄    

2. Compute b̂k = √1 − (âk1
2 +⋯+ âkd

2
)  

3. Generate standard normal distributed systematic factor Ẑ and 

compute conditional marginal default probabilities pk(Ẑ) 

4. Solve optimal twist θx(Ẑ) 

5. Set θx = 0 if E[L] = ∑ pk(Ẑ)ck < x
m
j=1  

6. Compute exponentially shifted marginal default probabilities 

p̃k(θx(Ẑ)), equation (5.19) 

7. Generate standard normal distributed variables X̂k 

8. Define indicators Ŷk = 𝟏{X̂k > Φ
−1 (1 − p̃k (θx(Ẑ)))} 

9. Sum portfolio loss L̂ = ∑ ckŶk
m
k=1  

10. Compute likelihood ratio wθx(Ẑ) = e
−θx(Ẑ)L+ψL(θx(Ẑ)) 

b) Compute P̂(L > x) =
1

M
∑ 𝟏{L̂j > x}
M
j=i w

θx(Ẑ)

j
 

c) Compute r̂IS = ∑ L̂jwθx(Ẑ)
j

𝟏{L̂j > x}
M
j=i ∑ w

θx(Ẑ)

j
𝟏{L̂j > x}

M
j=i⁄  

Figure 7.3: The algorithm of the exponentially twisted Monte Carlo 
simulation of a multi-factor model. 

The shifting algorithm is presented in figure 7.4. First step solves optimal 

shift. Conditional marginal default probabilities are computed using (3.11) like 
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in the plain algorithm but now with shifted systematic factor. Tail loss 

probabilities c) and expectations d) are computed using IS-weight wμ. 

Two-step algorithm combines exponential twisting and factor shifting. 

Twisting is applied into conditional marginal default probabilities computed with 

shifted systematic factor. Tail loss probabilities and expectations are scaled with 

both IS-weights. Algorithm is described in figure 7.5. 

a) Solve optimal shift μ∗ using (5.23) 

b) Repeat M times 

1. Solve factor loadings âkj = Ckj√ ∑ Rki
2d

i=1 ∑ Cki
2d

i⁄    

2. Compute b̂k = √1 − (âk1
2 +⋯+ âkd

2
)  

3. Generate systematic factor Z̃ ~ N(μ∗, I) and compute shifted 

conditional marginal default probabilities pk(Z̃), equation (3.11) 

4. Generate standard normal distributed variables X̂k 

5. Define indicators Ŷk = 𝟏{X̂k > Φ
−1 (1 − pk(Z̃))} 

6. Sum portfolio loss L̂ = ∑ ckŶk
m
k=1  

7. Compute likelihood ratio wμ∗ = e
− μ∗

T
Z̃  + 

1

2
 μ∗

T
μ∗

 

c) Compute P̂(L > x) =
1

M
∑ 𝟏{L̂j > x}
M
j=i wμ∗

j
 

d) Compute r̂IS = ∑ L̂jwμ∗
j
𝟏{L̂j > x}

M
j=i ∑ wμ∗

j
𝟏{L̂j > x}

M
j=i⁄  

Figure 7.4: The algorithm of the factor shifting Monte Carlo 
simulation of a multi-factor model. 
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a) Solve optimal shift μ∗ using (5.23) 

b) Repeat M times 

1. Solve factor loadings âkj = Ckj√ ∑ Rki
2d

i=1 ∑ Cki
2d

i⁄    

1. Compute b̂k = √1 − (âk1
2 +⋯+ âkd

2
)  

2. Generate systematic factor Z̃ ~ N(μ∗, I) and compute shifted 

conditional marginal default probabilities pk(Z̃), equation (3.11) 

3. Solve optimal shift θx(Z̃) 

4. Set θx = 0 if E[L] = ∑ pk(Ẑ)ck < x
m
j=1  

5. Compute exponentially shifted marginal default probabilities 

p̃k(θx(Z̃)), equation (5.19) 

6. Generate standard normal distributed variables X̂k 

7. Define indicators Ŷk = 𝟏{X̂k > Φ
−1 (1 − p̃k (θx(Z̃)))} 

8. Sum portfolio loss L̂ = ∑ ckŶk
m
k=1  

9. Compute likelihood ratios wθx(Z̃ ) = e
−θx(Z̃ )L+ψL(θx(Z̃ ))  

and wμ∗ = e
− μ∗

T
Z̃  + 

1

2
 μ∗

T
μ∗

 

c) Compute P̂(L > x) =
1

M
∑ 𝟏{L̂j > x}
M
j=i w

θx(Z̃ )

j
wμ∗
j

 

d) Compute r̂IS =
∑ L̂jwθx(Z̃ )

j
w
μ∗
j
𝟏{L̂j>x}

M
j=i

∑ w
θx(Z̃ )

j
w
μ∗
j
𝟏{L̂j>x}

M
j=i

 

Figure 7.5: The algorithm of the two-step IS Monte Carlo simulation 
of a multi-factor model. 

A conditional expectation for individual exposures is estimated similarly 

to the portfolio conditional expectation taking weighted average loss in a 

condition that portfolio loss exceeds  x 
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r̂k
obl =

∑ ckŶk wj
IS𝟏{L̂j > x}

M
j=i

∑  wj
IS𝟏{L̂j > x}

M
j=i

, (7.1) 

where k refers to kth obligor in the portfolio and j refers to jth simulation round. 

7.2.1 Stochastic cost default 

Our importance sampling algorithms are optimized for deterministic cost 

of default ck. However, in real life there is uncertainty in recovery rates of 

defaulted exposures. We incorporate stochastic loss given default by replacing 

constant ck with 

 ck = ekqk(αk, βk), qk~B(αk, βk),  (7.2) 

where ek  is exposure at default, qk is loss given default LGD,  αk and βk are 

solved from (3.12) when E[LGD] is known. Stochastic cost of default ck is 

generated in every simulation round. 

7.3 Simulation with homogeneous portfolio 

We begin examining properties of our calibrated model using 

homogeneous portfolio consisting of identical exposures having same marginal 

default probability pk = p, cost of default ck = c, correlation Rk = R and 

industry. When using only one industry the model is referred to as single factor 

model. 

Simulation results of estimating VaR of homogeneous portfolio using two-

step IS Monte Carlo with different number of obligors m are presented in figure 

7.6. VaR is calculated using (6.1) with loss level x that corresponds to VaR99.9% 

obtained from (7.3). Estimated portfolio VaR approaches to asymptotic VaR99.9% 
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of (7.3) when the number of obligors m increases. In other words, the smaller 

the number of obligors, the larger is the tail probability when loss level x is held 

constant. Asymptotic formula for portfolio α-quantile is  

 
qα(L) = Φ(

Φ−1(pk) + √R2 Φ
−1(α)

√1 − R2
), (7.3) 

when the number of obligors m in the portfolio approaches to infinity, pk = p 

is the marginal default probability of obligors and R is the correlation parameter 

(McNeil et al 2005). 

 

Figure 7.6: VaR -estimate of two-step IS Monte Carlo 
simulation using homogeneous portfolio with 
different number of obligors. 

7.3.1 Relaxed homogeneous portfolio, single factor model 

This subsection illustrates the differences between the algorithms tail 

probability -estimates and their confidence limits. Note that estimated 

confidence limits are not unbiased as they are estimated using sample variance. 

Homogeneous and relaxed homogeneous portfolios are used. 
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First, let us look at the performance of our four different algorithms with 

homogeneous portfolio described in table 7.1. Probability of default p and 

correlation R corresponds to an average values of our example portfolio 

described section 4.3. 

Table 7.1: Specification of portfolio #A1.  

 

Simulation results are illustrated in figure 7.7. The exponential twisting 

fails to reduce variance of tail probability estimate because the dominant driver 

of default events is the dependence across obligors. Note that because 

homogeneous portfolio is used the cost of default do not have an effect on the 

optimality of the twisting parameter and therefore the performance of the 

algorithm. Optimal exponential twisting is different in every simulation round 

but optimal factor shift is independent on simulation round. For loss levels x 

100, 150 and 250 optimal shifts are 1.500669, 2.139131 and 3.497177 

respectively. The greater the portfolio loss level x is the greater is the shift needed 

to produce large portfolio losses.  

Factor shifting algorithm performs better than the twisting algorithm 

because the key driver of large losses is the relatively strong dependence between 

defaults. Performance of the shifting algorithm is independent on loss level 

unlike with the twisting algorithm. Confidence limits grow wider when loss level 

is increased. Two-step algorithm outperforms other algorithms as it combines 

both benefits of the two importance sampling methods. 

Confidence limits are calculated using sample variance of 100 replications 

with normal distribution assumption. Simulations are run with M = 1 000. 

Obligor group #1 933 0,0121 1 0,485
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Figure 7.7: Estimated tail probabilities and 95% confidence limits for the 
portfolio #A1 with all algorithms.  

We now relax the constraint of constant p among obligors and estimate 

tail probabilities for portfolio #A2 described in table 7.2. Obligors are divided 

into three different groups having same parameters except p. Simulation results 

are presented in figure 7.9. Twisting algorithm outperforms shifting algorithm 

because the key driver of default events is probability of default instead of 

dependence across obligors. Again two-step algorithm produces smallest 

confidence limits for tail probability estimates. 
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Table 7.2: Specification of portfolio #A2.  

 

 
Figure 7.9: Estimated tail probabilities and 95% confidence limits for the 
portfolio #2 with all algorithms.  

 
 

Obligor group #1 311 0,00121 1 0,173

Obligor group #2 311 0,000121 1 0,173

Obligor group #3 311 0,0000121 1 0,173
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7.3.2 Simulation times 

Simulation times are roughly the same with the factor shifting algorithm 

and the plain algorithm. With 933 obligors, solving the optimal shift takes less 

than one second. Computing 1000 rounds and 100 repetitions takes 

approximately 45 seconds with a conventional home office laptop. The twisting 

algorithm and the two-step algorithm are computationally more expensive. 

Because the optimal twist is dependent on systematic factor Z, it is solved in 

every single simulation round and it greatly increases computation time. The 

twisting algorithm and the two-step algorithm take four to five times the 

computation time of the plain and the shifting algorithms.  
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8 Risk measures for a real life credit portfolio 

This chapter presents tail probability and conditional expectation 

estimates for our real life credit portfolio. Section 8.1 presents marginal risk 

contribution estimates for relaxed homogeneous portfolio with seven different 

obligor groups categorized by seven different industries. In section 8.2 we 

estimate tail probabilities and conditional expectations for our real life portfolio 

with varying deterministic cost of default using all four different algorithms. 

Section 8.3 presents marginal risk contributions for all obligors included in the 

real life portfolio simulated using the factor shifting algorithm. In section 8.4 we 

will determine whether our shifting algorithm optimized for a deterministic cost 

of default is able to produce statistically significant tail probability estimates for 

obligors having a stochastic cost of default.  

8.1 A homogeneous multi-factor model 

First, we examine our seven factor model and an example portfolio #B1 

that consists of 100 obligors in each seven industry with the same parameters 

m = 100, p = 0.0121, c = 1 and R = 0.485. Each obligor has exposure of 1 and 

therefore the total exposure of portfolio is 700. Loss level x = 115  gives a tail 

loss probability P̂(L > 115) ≈ 0.0005. Mean, min and max values of conditional 

expectation (7.1) r̂obl(x = 115) estimates of obligor groups are presented in 

table 8.1.  Mean, min and max values are calculated by industry over 100 obligors. 

The average industry to industry correlations are taken from table 4.4. The 

simulation was run with 1 000 000 rounds and R = 0.485 is the average over all 

933 obligors. Note that the larger the average correlation between industries the 

larger the conditional expectation contribution because m,p, c, R are constant for 

all obligors. Deviations from mean value is solely caused by simulation error. 

For obligors in the Consumer Staples industry credit economic capital is then 

calculated as EC = ES99.95% − EL = 0.11908 − 0.0121 = 0.11787. In other 
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words capital consumption is 11.79% of obligor’s exposure using expected 

shortfall and confidence level of 99.95%. 

Table 8.1: Mean, minimum and maximum of r̂𝑜𝑏𝑙(x = 115) of the 
portfolio #B1 and the average correlation between industries.  

 

8.2 Portfolio risk measures with deterministic cost of default 

Simulation results for the real life portfolio are presented in table 8.2. All 

obligors have deterministic and homogeneous cost of default 1. The exponential 

twisting algorithm marginally decreases the variance of tail probability estimates. 

The shifting algorithm produces a substantial reduction compared to the plain 

algorithm. Standard deviations computed from 100 repetitions of tail probability 

estimates simulated with shift- and two-step algorithms do not differ 

significantly from each other. However, the two-step simulation takes almost 

five times the computation time of the shifting algorithm. Conditional 

expectation estimates and standard deviations in table 8.3 show that the two-

step and shifting algorithms outperform the plain and the twisting algorithms. 

The twisting algorithm does not reduce the variance of tail probability estimates 

notably compared to the plain algorithm. 

  

Industry Max Mean Min Avg corr

Materials 0,14769 0,14400 0,14035 0,640

Industrial 0,19558 0,19092 0,18741 0,765

Consumer Discretionary 0,18866 0,18303 0,18017 0,745

Consumer Staples 0,12248 0,11908 0,11557 0,568

Heath Care 0,13631 0,13310 0,12886 0,606

Financials 0,16812 0,16320 0,15980 0,691

Inf Tech & Telecom 0,15876 0,15627 0,15309 0,671
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Table 8.2: Tail probability estimates and standard deviations for the real life 
portfolio with deterministic cost of default 1, simulation rounds 1000 with 100 
repetitions. 

 

Table 8.3: Estimated conditional expectations and standard deviations for 
the real life portfolio with deterministic cost of default 1, simulation rounds 
100 000. 

 

Next we take our real life portfolio and assign following cost of defaults 

{1, 2, 4, 8, 16, 32, 64, 128, 256, 1, 2, 4… } to 933 obligors alphabetically. For 

x Tail Pr Std Tail Pr Std Tail Pr Std Tail Pr Std

20 1,33E-01 1,00E-02 1,33E-01 9,70E-03 1,33E-01 5,64E-03 1,34E-01 4,65E-03

40 2,18E-02 4,52E-03 2,18E-02 4,49E-03 2,28E-02 1,15E-03 2,27E-02 1,01E-03

60 5,37E-03 2,50E-03 5,34E-03 2,34E-03 5,47E-03 3,31E-04 5,46E-03 2,84E-04

80 1,43E-03 1,08E-03 1,50E-03 1,11E-03 1,60E-03 1,00E-04 1,60E-03 8,62E-05

100 5,20E-04 6,59E-04 5,24E-04 6,47E-04 5,25E-04 3,41E-05 5,26E-04 3,12E-05

120 2,20E-04 4,62E-04 2,02E-04 4,26E-04 1,89E-04 1,28E-05 1,88E-04 1,11E-05

140 8,00E-05 2,73E-04 8,90E-05 2,75E-04 7,16E-05 4,99E-06 7,16E-05 4,06E-06

Plain Twist Shift Two-step

x Std Std Std Std

20 31,8 35,8 31,8 35,2 31,9 14,8 32,0 13,5

40 54,8 105,3 54,8 103,6 54,9 21,1 55,0 18,6

60 76,5 222,9 76,5 218,7 77,3 26,4 77,3 23,0

80 98,1 491,0 97,9 476,0 99,0 30,4 99,0 26,6

100 125,4 1457,6 127,2 1541,6 120,4 33,9 120,5 29,4

120 139,1 1558,7 138,5 1528,7 141,3 37,2 141,5 32,1

140 149,5 780,8 150,2 684,3 162,2 39,3 162,2 33,6

Two-stepPlain Twist Shift
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example ASPOCOMP GROUP OYJ is assigned with {1, 2, 4} and ADDTECH 

is assigned with {8, 16, 32 } and so on. The total exposure of the portfolio is 

52 696. Tail probability estimates are presented in table 8.4 and conditional 

expectations in table 8.5. The plain and the twisting algorithms produce tail 

probability estimates with much greater variation than the shifting and the two-

step algorithms. Simulating with the shifting algorithm 1 000 rounds with 1 000 

repetitions we get a tail probability estimate 3.00084 ∗ 10−4 and a 95 % 

confidence interval [3.015797 ∗ 10−4, 2.985882 ∗ 10−4] for loss level x =

9 410. 

Table 8.4: Estimated tail probabilities and standard deviations for real life 
portfolio with varying deterministic cost of default. Simulation rounds 1000 with 
100 repetitions. 

 

Table 8.5 presents estimates for conditional expectations and standard 

deviations. Conditional expectation estimates of the plain and the twisting 

algorithms have is large enough of deviation to make estimates meaningless. The 

shifting and the two-step algorithms produce relatively accurate estimates. Loss 

level x = 11 000 corresponds to VaR99.9992% and estimated 95% confidence 

x Tail Pr Std Tail Pr Std Tail Pr Std Tail Pr Std

2 000     1,60E-01 1,26E-02 1,60E-01 1,14E-02 1,59E-01 6,83E-03 1,59E-01 5,21E-03

3 500     3,43E-02 5,16E-03 3,51E-02 4,75E-03 3,43E-02 1,96E-03 3,47E-02 1,45E-03

5 000     8,95E-03 3,05E-03 9,13E-03 2,73E-03 8,85E-03 6,16E-04 8,93E-03 4,32E-04

6 500     2,74E-03 1,57E-03 2,84E-03 1,51E-03 2,63E-03 1,91E-04 2,63E-03 1,31E-04

8 000     6,80E-04 8,03E-04 7,19E-04 7,68E-04 8,30E-04 6,32E-05 8,34E-04 4,57E-05

9 500     2,60E-04 5,05E-04 2,46E-04 4,24E-04 2,83E-04 2,14E-05 2,82E-04 1,78E-05

11 000   8,00E-05 2,73E-04 8,52E-05 2,48E-04 9,85E-05 7,75E-06 9,83E-05 4,69E-06

Plain Twist Shift Two-step
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intervals for the conditional expectation are r̂ ≈ 12 446 ± 19.2 and r̂ ≈

12 449 ± 14.0 using the shifting and the two-step algorithms. Intervals are 

computed using (6.6) and (6.7). 

Table 8.5: Estimated conditional expectations and standard deviations for real 
life portfolio with varying deterministic cost of default, simulation rounds 100 
000. 

 

8.3 Marginal risk contributions 

Now we examine the robustness of marginal risk contribution estimates. 

The marginal risk contribution is measured as a conditional expectation 

computed using (7.1) with loss level x = 9 410 corresponding to VaR99.97%. 

Table 8.6 lists the greatest difference between 95% upper confidence limit and 

mean value proportionate to the conditional expectation estimate among 933 

obligors. The shifting algorithm is run with 1 000 000 simulation rounds and the 

two-step is run with 200 000 rounds so that the computation time is roughly the 

same. Both algorithms are run with the same number of repetitions 

{10, 20, 30, 40, 50}. The two-step performs better when the same number of 

simulations rounds is used. Measuring performance from computation time 

x Std Std Std Std

2 000    3004 2733 3010 2670 3014 1336 3016 1144

3 500    4606 6376 4611 6158 4618 1786 4626 1408

5 000    6201 12962 6192 12466 6241 2202 6252 1663

6 500    7908 27922 7922 27981 7844 2469 7833 1870

8 000    9434 49557 9333 45226 9397 2697 9397 2018

9 500    10846 55542 10778 52588 10927 2863 10926 2142

11 000  12071 88168 12065 93206 12446 3099 12449 2252

Two-stepPlain Twist Shift
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point of view the shifting algorithm is more efficient. Simulation time for 50 000 

000 rounds with shifting algorithm takes just under eight hours. 

Table 8.6: Greatest difference between 95% upper confidence limit 
and mean value proportionate to conditional expectation estimate 
of 933 obligors. 

 

Table 8.7 presents marginal risk contribution estimates, upper and lower 

limits together with one-sided 95% confidence interval widths proportionate to 

the estimated conditional expectation of the top 10 widest confidence intervals. 

All obligors have very low probability of default p and low correlation R with 

their respective industry. This is a logical result as shifting systematic factor Z 

increases default probability with respect to correlation R. One could argue that 

NURMINEN LOGISTICS and SCANFIL have exceptionally low correlation 

with their respective industries, and that it should be revised whether their 

dependence on other obligors could be captured better by another industry 

factor. However, the simulation result is vitally important as it illustrates that the 

marginal contributions can be estimated even if we have obligors with very low 

correlation coupled with very low probability of default. 

  

Shift Two-step

Repetitions

10 22,2% 60,5%

20 13,3% 30,2%

30 11,1% 22,1%

40 9,9% 19,1%

50 8,5% 19,0%

r̂obl
upper− r̂obl r̂obl⁄ r̂obl

upper− r̂obl r̂obl⁄
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Table 8.7: Top 10 widest 95% confidence intervals of marginal risk contribution 
estimates simulated using shifting algorithm using 50 000 000 rounds. 

 

 
Figure 8.1: One-sided 95% confidence intervals proportionate to 
estimated conditional expectations by obligor. 

Figure 8.1 shows one-sided 95% confidence intervals of marginal risk 

contributions estimated using the shifting algorithm. Out of 933 obligors 853 

OBLIGOR
Upper 

Limit

Lower 

Limit
Width EL

NURMINEN LOGISTICS OYJ 0,00543 9,00E-05 64 0,00715 0,00659 0,00603 8,5% 0,00576

SCANFIL OYJ 0,06831 9,00E-05 1 0,00021 0,00020 0,00019 5,2% 0,00009

NURMINEN LOGISTICS OYJ 0,00543 2,00E-04 128 0,03119 0,02976 0,02833 4,8% 0,0256

SCANFIL OYJ 0,06831 2,00E-04 2 0,00091 0,00088 0,00086 3,1% 0,0004

TAKOMA OYJ 0,21242 9,00E-05 128 0,15537 0,15158 0,14779 2,5% 0,01152

ORION OYJ 0,25216 9,00E-05 1 0,00097 0,00094 0,00092 2,5% 0,00009

RAPALA VMC OYJ 0,20614 9,00E-05 64 0,06418 0,06268 0,06117 2,4% 0,00576

UNIFLEX AB 0,21849 9,00E-05 8 0,00957 0,00936 0,00914 2,3% 0,00072

TURVATIIMI OYJ 0,18963 9,00E-05 1 0,00089 0,00087 0,00085 2,3% 0,00009

TAKOMA OYJ 0,21242 9,00E-05 64 0,07605 0,07435 0,07265 2,3% 0,00576
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have smaller than 1% difference between the upper limit and the mean value. 

The portfolio conditional expectation with x = 9 410 is r̂ = ES99.97% =

10 840.95 ± 0.80.  

8.4 Tail probabilities with stochastic cost of default 

Although the factor shifting algorithm is optimized for a deterministic cost 

of default it is still interesting to test if it can be used with a stochastic cost of 

default. Every obligor is now assigned with expectation of LGD of 45% and the 

LGD has density function B(1.35,1.65, x). Additionally, cost of defaults assigned 

to each obligor in section 8.2 are scaled by dividing with 0.45 to keep the 

expected loss EL of obligors unchanged.  

Table 8.9: Tail probability estimates, standard deviations and 95% 
confidence limits for the real life portfolio with a stochastic LGD 
using the shifting algorithm with 1000 rounds and 500 repetitions. 

 

Table 8.9 presents tail probability estimates, standard deviations and 95% 

confidence limits with the same loss levels we used in previous section with the 

deterministic cost of default. Increasing simulation repetition to 500 we get fairly 

small confidence limits. Small enough to conclude that the factor shifting 

algorithm produces statistically significant tail probability estimates. Simulating 

x Tail Pr Std Upper Lower

2 000        1,663E-01 8,048E-03 1,656E-01 1,670E-01

3 500        3,789E-02 2,598E-03 3,766E-02 3,812E-02

5 000        9,963E-03 7,523E-04 9,897E-03 1,003E-02

6 500        2,949E-03 2,545E-04 2,927E-03 2,972E-03

8 000        9,436E-04 8,334E-05 9,509E-04 9,363E-04

9 500        3,196E-04 3,143E-05 3,224E-04 3,168E-04

11 000      1,137E-04 1,228E-05 1,148E-04 1,126E-04
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1 000 rounds with 1 000 repetitions we get a tail probability estimate 2.992905 ∗

10−4 and confidence interval [3.011056 ∗ 10−4, 2.974755 ∗ 10−4] for loss level 

x = 9 600. It is roughly the same tail probability, 2.985882 ∗ 10−4, that 

corresponds to the loss level x = 9 410 with the deterministic cost of default. 

Therefore, stochastic LGD increases VaR99.97% 2.0% in our setting. If we had 

infinite number of obligors we would get the same VaR for the deterministic and 

the stochastic LGD.  
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9 Conclusions 

The exponential twisting reduces variance of tail probability estimates 

when default events of obligors are independent or have relatively low 

correlation. Simulation results for the relaxed homogeneous portfolio suggest 

that the exponential twisting produces a greater variance reduction than the 

factors shifting with very low probabilities of default and very low correlations. 

In real world such low levels of correlation are rarely observed in corporate loan 

portfolios. It would be interesting to make the same comparison with the 

exponential twisting and the factor shifting algorithms for a retail credit 

portfolio. Because retail exposures tend to have weaker correlation structure 

than corporate exposures. Using our real life corporate loan portfolio we can 

conclude that the exponential twisting alone does not result meaningful a 

variance reduction of tail probability estimates. 

The real life portfolio consisted of obligors having correlation structure 

inferred directly from logarithmic market returns of 311 companies listed in the 

NASDAQ OMX Helsinki and the NASDAQ OMX Stockholm stock 

exchanges. Credit ratings and corresponding PDs assigned to obligors represent 

a rating distribution of a typical corporate loan portfolio except having high 

number of obligors with the highest credit rating to ensure relevance of 

simulation results. 

The normal approximation method was used in solving the optimal shift 

parameter for the factor shifting. Although the normal approximation method 

is optimal for portfolios having infinite number of obligors it still produces a 

substantial variance reduction for the estimates in our real life setting. The 

normal approximation gives optimal shift that can be used with stochastic cost 

of default and we still get a significant variance reduction. 
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The optimal shift aims to minimize variance of a specific tail probability 

estimate but we managed to estimate individual marginal risk contributions with 

relatively high degree of statistical significance. For obligors with very low 

correlation between their industries we were able to simulate marginal risk 

contribution estimates with one-sided 95% confidence intervals less than 8.5%. 

The absolute quantity of exposures does not directly have an effect on 

simulation performance when estimating marginal risk contributions. However, 

the exposure distribution of a portfolio has an effect on the variance of risk 

contribution estimates, especially when the number of obligors is small. Meaning 

that if the total portfolio exposure is concentrated on small number of obligors 

the conditional expectation estimates for obligors with a small exposure, and 

small correlation and probability of default, could have a much greater variance. 

Our real life portfolio consisted of exposures ranging from 1 to 256. Examining 

obligors having the same correlation and the probability of default with differing 

exposures the confidence intervals of marginal risk contribution estimates were 

not statistically different. Thus, we can conclude that in our model the 

distribution of exposures does not have an impact on simulation performance. 

We would need a greater concentration of portfolio exposure for a smaller 

number of obligors to observe this effect. 

We concluded that our model increases VaR99.97% by 2.0% when the 

stochastic cost of default is implemented with the real life portfolio. This 

increase could be seen as an additional concentration risk. Increasing the number 

of obligors would result smaller difference between the deterministic and the 

stochastic LGD and with infinite number of obligors the difference would go to 

zero. 

Simulations need to be computed in batches because R programming runs 

everything in RAM and therefore a conventional home office laptop is only 

capable of storing limited amount of data at the time. The R is still very efficient 
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because it enables to make computation in matrix form without for-loops. One 

must notice that the model developed in this thesis and its performance is highly 

dependent on the calibration and the constituents of the portfolio. However, we 

have proven that with very low default probabilities and very low correlations it 

is possible to estimate marginal risk contributions without excessive computing 

power relatively accurately and it would not take longer than one day at the 

office! 
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Appendix A 

TICKER CORPORATION 

GICS 

CODE RETURNS CORR 

ACG1V FH ASPOCOMP GROUP OYJ 70 166 0,3663 

ADDTB SS ADDTECH AB-B SHARES 20 158 0,6409 

AEROB SS AEROCRINE AB - B 35 89 0,4161 

AFB SS AF AB-B SHS 20 166 0,5345 

AFE1V FH AFFECTO OYJ 70 114 0,3754 

AHL1V FH AHLSTROM OYJ 15 104 0,4911 

AKTAV FH AKTIA BANK OYJ 40 62 0,2766 

ALBBV FH ALANDSBANKEN-B 40 166 0,2204 

ALFA SS ALFA LAVAL AB 20 150 0,5724 

ALIV SS AUTOLIV INC-SWED DEP RECEIPT 25 143 0,5828 

ALN1V FH ALMA MEDIA CORP 25 115 0,2423 

ALNX SS ALLENEX AB 35 95 0,3174 

AMEAS FH AMER SPORTS OYJ 25 166 0,5732 

ANOT SS ANOTO GROUP AB 70 166 0,4496 

APETI FH APETIT OYJ 30 163 0,4567 

ASP SS ASPIRO AB 70 166 0,3753 

ASSAB SS ASSA ABLOY AB-B 20 166 0,5420 

ASU1V FH ASPO OYJ 20 166 0,4071 

ATCOB SS ATLAS COPCO AB-B SHS 20 166 0,6812 

ATRAV FH ATRIA OYJ 30 166 0,5309 

AVEGB SS AVEGA GROUP AB-B SHS 70 83 0,5593 

AXFO SS AXFOOD AB 30 166 0,4283 

AXIS SS AXIS COMMUNICATIONS AB 70 166 0,4856 

AZN SS ASTRAZENECA PLC 35 166 0,2006 

BALDB SS FASTIGHETS AB BALDER-B SHRS 40 166 0,4094 

BAS1V FH BASWARE OYJ 70 166 0,4857 

BBTOB SS B&B TOOLS AB-B SHS 20 166 0,6334 

BEGR SS BE GROUP AB 20 96 0,7579 

BEIAB SS BEIJER ALMA AB 20 166 0,6365 
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BEIJB SS G & L BEIJER AB-B SHS 20 166 0,5264 

BELE SS BEIJER ELECTRONICS AB 70 166 0,5382 

BETSB SS BETSSON AB 25 166 0,3883 

BILIA SS BILIA AB-A SHS 25 166 0,6459 

BILL SS BILLERUD AKTIEBOLAG 15 156 0,6037 

BINV SS BIOINVENT INTERNATIONAL AB 35 161 0,4739 

BIOBV FH BIOHIT OYJ-B 35 166 0,4908 

BIOGB SS BIOGAIA AB-B SHS 35 166 0,5712 

BIOT SS BIOTAGE AB 35 166 0,5737 

BMAX SS BYGGMAX GROUP AB 25 53 0,6643 

BOL SS BOLIDEN AB 15 166 0,4863 

BONG SS BONG LJUNGDAHL AB 20 160 0,3606 

BORG SS BJOERN BORG AB 25 119 0,4082 

BOUL SS BOULE DIAGNOSTICS INTERNATIO 35 41 0,3827 

BRGB SS BERGS TIMBER AB-B SHARES 15 166 0,3182 

BTH1V FH BIOTIE THERAPIES OYJ 35 166 0,2622 

BTSB SS BTS GROUP AB-B SHARES 20 161 0,5095 

BURE SS BURE EQUITY AB 40 166 0,3719 

CAST SS CASTELLUM AB 40 166 0,6015 

CATE SS CATENA AB 40 103 0,4007 

CCC SS CAVOTEC SA 20 37 0,3443 

CDON SS CDON GROUP 25 47 0,5447 

CEVI SS CELLAVISION AB 35 85 0,4969 

CGCBV FH CARGOTEC OYJ-B SHARE 20 113 0,8167 

CLAB SS CLOETTA AB-B SHS 30 71 0,2747 

CLASB SS CLAS OHLSON AB-B SHS 25 166 0,5217 

CNC1V FH CENCORP OYJ 70 166 0,4900 

COIC SS CONCENTRIC AB 20 41 0,7139 

CONSB SS CONSILIUM AB- B SHS 20 166 0,3862 

CORE SS COREM PROPERTY GROUP AB-B 40 166 0,2605 

CPMBV FH CAPMAN OYJ-B SHS 40 163 0,5090 

CRA1V FH CRAMO OYJ 20 166 0,6177 

CTH1V FH COMPONENTA OYJ 20 152 0,3730 

CTL1V FH COMPTEL OYJ 70 166 0,6277 
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CTT SS CTT SYSTEMS AB 20 166 0,3684 

CTY1S FH CITYCON OYJ 40 163 0,5187 

CYBE SS CYBERCOM GROUP AB 70 166 0,6161 

DEDI SS DEDICARE AB-B 35 42 0,1965 

DGC SS DGC ONE AB 70 76 0,4654 

DIG1V FH DIGIA OYJ 70 163 0,5449 

DIOS SS DIOS FASTIGHETER AB 40 102 0,3594 

DORO SS DORO AB 70 102 0,2519 

DOV1V FH DOVRE GROUP OYJ 20 166 0,4320 

DUNI SS DUNI AB 25 84 0,6731 

DURCB SS DUROC AB-B SHS 20 166 0,5566 

EBC1V FH ELEKTROBIT OYJ 70 166 0,4878 

ECEX SS EAST CAPITAL EXPLORER AB 40 84 0,5729 

EFO1V FH EFORE OYJ 20 166 0,3944 

EKTAB SS ELEKTA AB-B SHS 35 166 0,3047 

ELANB SS ELANDERS AB-B SHS 25 166 0,5502 

ELEAV FH ELECSTER OYJ-A SHS 20 166 0,4310 

ELEC SS ELECTRA GRUPPEN AB 25 100 0,5358 

ELI1V FH ELISA OYJ 70 166 0,4923 

ELOSB SS ELOS AB 35 166 0,3409 

ELUXB SS ELECTROLUX AB-SER B 25 166 0,5366 

ENEA SS ENEA AB 70 166 0,4908 

ENRO SS ENIRO AB 25 166 0,4516 

EQV1V FH EQ OYJ 40 157 0,4481 

ERICB SS ERICSSON LM-B SHS 70 166 0,6487 

ETT1V FH ETTEPLAN OYJ 20 159 0,4423 

EWRK SS EWORK SCANDINAVIA AB 70 78 0,4665 

EXL1V FH EXEL COMPOSITES OYJ 20 163 0,5195 

FABG SS FABEGE AB 40 166 0,6261 

FAG SS FAGERHULT AB 20 159 0,3851 

FEEL SS FEELGOOD SVENSKA AB 35 163 0,3637 

FIA1S FH FINNAIR OYJ 20 166 0,4570 

FINGB SS FINGERPRINT CARDS AB-B 70 166 0,4103 

FIS1V FH FISKARS OYJ ABP 25 166 0,5185 
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FLG1S FH FINNLINES OYJ 20 163 0,3814 

FPAR SS FASTPARTNER AB 40 166 0,6291 

FPIP SS FORMPIPE SOFTWARE AB 70 116 0,3787 

FSC1V FH F-SECURE OYJ 70 166 0,6311 

GETIB SS GETINGE AB-B SHS 35 166 0,5205 

GHP SS GLOBAL HEALTH PARTNER AB 35 73 0,4437 

GLA1V FH GLASTON OYJ ABP 20 163 0,4899 

GUNN SS GUNNEBO AB 20 166 0,6151 

GVKOB SS GEVEKO AB-B SHS 20 166 0,4573 

HEBAB SS HEBA FASTIGHETS AB-B 40 166 0,4943 

HEMX SS HEMTEX AB 25 109 0,5991 

HEXAB SS HEXAGON AB-B SHS 70 166 0,4484 

HIQ SS HIQ INTERNATIONAL AB 70 166 0,7740 

HKSAV FH HKSCAN OYJ-A SHS 30 166 0,6428 

HLDX SS HALDEX AB 20 166 0,7196 

HMB SS HENNES & MAURITZ AB-B SHS 25 166 0,4076 

HMS SS HMS NETWORKS AB 70 85 0,3249 

HOLMB SS HOLMEN AB-B SHARES 15 166 0,5131 

HONBS FH HONKARAKENNE OYJ-B SHS 25 166 0,3918 

HPOLB SS HEXPOL AB 20 77 0,6707 

HUFVC SS HUFVUDSTADEN AB-C SHS 40 153 0,5802 

HUH1V FH HUHTAMAKI OYJ 15 166 0,4205 

HUSQB SS HUSQVARNA AB-B SHS 25 101 0,5482 

IARB SS IAR SYSTEMS GROUP AB 70 166 0,6230 

ICP1V FH INCAP OYJ 20 149 0,3334 

ICTAB SS INTELLECTA AB-B SHARES 20 160 0,2666 

IFA1V FH INNOFACTOR OYJ 70 166 0,4277 

IFSB SS INDUST & FINANCIAL SYSTEM-B 70 166 0,6230 

ILK2S FH ILKKA-YHTYMA OYJ-II 25 156 0,4561 

INDT SS INDUTRADE AB 20 109 0,6602 

INDUC SS INDUSTRIVARDEN AB-C SHS 40 166 0,7961 

INVEB SS INVESTOR AB-B SHS 40 166 0,7368 

IS SS IMAGE SYSTEMS AB 70 162 0,3016 

ITABB SS ITAB SHOP CONCEPT AB 20 123 0,4455 
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JM SS JM AB 25 166 0,5994 

KABEB SS KABE HUSVAGNAR AB-B SHS 25 166 0,4909 

KAHL SS KAPPAHL AB 25 105 0,5663 

KARO SS KARO BIO AB 35 166 0,4099 

KCR1V FH KONECRANES OYJ 20 166 0,7036 

KDEV SS KAROLINSKA DEVELOPMENT-B 35 43 0,3534 

KELAS FH KESLA OYJ-A 20 166 0,5126 

KESBV FH KESKO OYJ-B SHS 30 166 0,4363 

KINVB SS INVESTMENT AB KINNEVIK-B SHS 40 180 0,4742 

KLED SS KUNGSLEDEN AB 40 166 0,5880 

KLOV SS KLOVERN AB 40 147 0,4109 

KNEBV FH KONE OYJ-B 20 113 0,5248 

KNOW SS KNOW IT AB 70 162 0,6384 

KRA1V FH KEMIRA OYJ 15 166 0,3857 

KSLAV FH KESKISUOMALAINEN OYJ-A SHS 25 142 0,4014 

LAGRB SS LAGERCRANTZ GROUP AB-B SHS 70 158 0,5742 

LAMMB SS LAMMHULTS DESIGN GROUP AB 20 166 0,4750 

LAT1V FH LASSILA & TIKANOJA OYJ 20 166 0,5297 

LATOB SS INVESTMENT AB LATOUR-B SHS 40 166 0,5780 

LEM1S FH LEMMINKAINEN OYJ 20 166 0,6241 

LIAB SS LINDAB INTERNATIONAL AB 20 96 0,7869 

LJGRB SS ATRIUM LJUNGBERG AB-B SHS 40 166 0,4259 

LUMI SS LUNDIN MINING CORP-SDR 15 166 0,3953 

LUNDB SS LUNDBERGS AB-B SHS 40 166 0,6589 

MARAS FH MARTELA OYJ 20 166 0,4844 

MEABB SS MALMBERGS ELEKTRISKA AB-B 20 155 0,4915 

MEDAA SS MEDA AB-A SHS 35 166 0,4457 

MEKO SS MEKONOMEN AB 25 166 0,3836 

MELK SS MELKER SCHORLING AB 40 98 0,7056 

MEO1V FH METSO OYJ 20 166 0,7305 

METSA FH METSA BOARD OYJ 15 166 0,6064 

MIC SS MILLICOM INTL CELLULAR-SDR 70 125 0,4551 

MIDWB SS MIDWAY HOLDING AB-B SHS 20 166 0,2746 

MMO1V FH MARIMEKKO OYJ 25 166 0,5156 



 

71 
 

MOB SS MOBERG DERMA AB 35 41 0,2987 

MQ SS MQ HOLDING AB 25 53 0,4066 

MSCB SS MSC KONSULT AB-B SHS 70 166 0,5184 

MSONB SS MIDSONA AB-B SHS 30 166 0,4497 

MTGB SS MODERN TIMES GROUP-B SHS 25 166 0,6184 

MULQ SS MULTIQ INTERNATIONAL AB 70 163 0,4608 

MVIRB SS MEDIVIR AB-B SHS 35 166 0,5587 

NCCB SS NCC AB-B SHS 20 166 0,5802 

NDA1V FH NORDEA BANK AB - FDR 40 166 0,4626 

NEO1V FH NEO INDUSTRIAL OYJ 20 166 0,3442 

NETB SS NET ENTERTAINMENT NE AB 70 90 0,4439 

NETIB SS NET INSIGHT AB-B 70 166 0,5923 

NEWAB SS NEW WAVE GROUP AB -B SHS 25 166 0,7077 

NIBEB SS NIBE INDUSTRIER AB-B SHS 20 166 0,4580 

NLG1V FH NURMINEN LOGISTICS OYJ-A 20 96 0,0054 

NMAN SS NEDERMAN HOLDING AB 20 90 0,5861 

NOBI SS NOBIA AB 25 149 0,6362 

NOK1V FH NOKIA OYJ 70 166 0,5270 

NOLAB SS NOLATO AB-B SHS 70 166 0,5933 

NOMI SS NORDIC MINES AB 15 95 0,3348 

NOTE SS NOTE AB 70 125 0,3130 

NOVE SS NOVESTRA AB 40 163 0,2712 

NRE1V FH NOKIAN RENKAAT OYJ 25 166 0,5603 

NSPB SS NORDIC SERVICE PARTNERS HLDG 25 102 0,5160 

NTEKB SS NOVOTEK AB-B SHS 70 166 0,5315 

OASM SS OASMIA PHARMACEUTICAL AB 35 106 0,4792 

ODD SS ODD MOLLY INTERNATIONAL AB 25 89 0,4503 

OEMB SS OEM INTERNATIONAL AB-B SHS 20 166 0,4706 

OKDBV FH ORIOLA-KD OYJ   B SHARES 35 100 0,5050 

OKM1V FH OKMETIC OYJ 70 163 0,4207 

OLVAS FH OLVI OYJ-A SHARES 30 163 0,5098 

ORES SS ORESUND INVESTMENT AB 40 166 0,4158 

ORI SS ORIFLAME COSMETICS SA-SDR 30 128 0,4618 

ORNBV FH ORION OYJ-CLASS B 35 100 0,2522 
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ORTIB SS ORTIVUS AB-B SHS 35 166 0,4108 

ORX SS OREXO AB 35 108 0,4328 

OTE1V FH OUTOTEC OYJ 20 97 0,7041 

OUT1V FH OUTOKUMPU OYJ 15 166 0,5228 

PACT SS PROACT IT GROUP AB 70 166 0,5748 

PART SS PARTNERTECH AB 70 166 0,7323 

PEABB SS PEAB AB 20 166 0,5011 

PKC1V FH PKC GROUP OYJ 20 166 0,7084 

PKK1V FH POHJOIS-KARJALAN KIRJAPAINO 25 102 0,1925 

PNA1V FH PANOSTAJA OYJ 40 166 0,2050 

PON1V FH PONSSE OYJ 20 160 0,5718 

POOLB SS POOLIA AB-B SH 20 166 0,4946 

POY1V FH POYRY OYJ 20 166 0,5564 

PREC SS PRECISE BIOMETRICS AB 70 166 0,5387 

PREVB SS PREVAS AB-B SHS 70 166 0,5279 

PRICB SS PRICER AB-B SHS 70 166 0,4856 

PROB SS PROBI AB 35 119 0,2242 

PROEB SS PROFFICE AB-B SHS 20 166 0,6307 

PROFB SS PROFILGRUPPEN AB-B SHS 15 166 0,4288 

QPR1V FH QPR SOFTWARE OYJ 70 146 0,3534 

RABTB SS REDERI AB TRANSATLANTIC 20 166 0,4087 

RAIVV FH RAISIO OYJ-V SHS 30 166 0,4294 

RAP1V FH RAPALA VMC OYJ 25 163 0,2061 

RATOB SS RATOS AB-B SHS 40 166 0,5726 

RAYB SS RAYSEARCH LABORATORIES AB 35 166 0,5100 

REG1V FH REVENIO GROUP OYJ 35 166 0,3466 

REJLB SS REJLERKONCERNEN AB-B SHARES 20 138 0,3560 

REZT SS REZIDOR HOTEL GROUP AB 25 96 0,6406 

RMR1V FH RAMIRENT OYJ 20 159 0,6592 

RNBS SS RNB RETAIL AND BRANDS AB 25 161 0,5250 

RROS SS ROTTNEROS AB 15 166 0,4425 

RTIMB SS RORVIK TIMBER AB-B SHS 15 166 0,3750 

RUTAV FH RAUTE OYJ-A SHS 20 166 0,5510 

SAA1V FH SANOMA OYJ 25 166 0,5995 
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SAABB SS SAAB AB-B 20 166 0,5085 

SAGCV FH SAGA FURS OYJ 20 149 0,2061 

SAMAS FH SAMPO OYJ-A SHS 40 180 0,5180 

SAND SS SANDVIK AB 20 166 0,6893 

SAS SS SAS AB 20 166 0,3972 

SCAB SS SVENSKA CELLULOSA AB-B SHS 15 166 0,5076 

SCI1V FH SIEVI CAPITAL OYJ 40 166 0,3565 

SCL1V FH SCANFIL OYJ 70 34 0,0683 

SDA1V FH SPONDA OYJ 40 166 0,5206 

SEBC SS SKANDINAVISKA ENSKILDA BAN-C 40 166 0,5563 

SECTB SS SECTRA AB-B SHS 35 166 0,3684 

SECUB SS SECURITAS AB-B SHS 20 166 0,4623 

SEMC SS SEMCON AB 20 166 0,6390 

SENS SS SENSYS TRAFFIC AB 70 166 0,3266 

SHBB SS SVENSKA HANDELSBANKEN-B SHS 40 166 0,5689 

SINT SS SINTERCAST AB 20 166 0,4514 

SKAB SS SKANSKA AB-B SHS 20 166 0,5892 

SKFB SS SKF AB-B SHARES 20 166 0,6708 

SKISB SS SKISTAR AB 25 166 0,3864 

SMF SS SEMAFO INC 15 37 0,2354 

SOBI SS SWEDISH ORPHAN BIOVITRUM AB 35 98 0,4116 

SOFB SS SOFTRONIC AB-B SHS 70 166 0,6020 

SOPRA FH SOPRANO OYJ 70 87 0,2845 

SOSI1 FH SOTKAMO SILVER AB 15 28 0,2178 

SRV1V FH SRV GROUP OYJ 20 89 0,4714 

SSABB SS SSAB AB - B SHARES 15 166 0,5942 

SSH1V FH SSH COMMUNICATIONS SECURITY 70 166 0,4516 

SSK1S FH SUOMEN SAASTAJIEN KIINTEISTO 40 72 0,3431 

STCBV FH STOCKMANN OYJ ABP-B SHARE 25 166 0,6714 

STERV FH STORA ENSO OYJ-R SHS 15 166 0,6591 

STQ1V FH SOLTEQ OYJ 70 166 0,5374 

SUY1V FH SUOMINEN OYJ 30 157 0,4894 

SVEDB SS SVEDBERGS I DALSTORP AB-B SH 20 166 0,5121 

SVIK SS STUDSVIK AB 20 162 0,4683 
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SWECB SS SWECO AB-B SHS 20 166 0,4514 

SWMA SS SWEDISH MATCH AB 30 166 0,2991 

SWOLB SS SWEDOL AB-B 25 101 0,6292 

SYSR SS SYSTEMAIR AB 20 85 0,6980 

TAGR SS TRIGON AGRI A/S 30 90 0,5064 

TAM1V FH TAKOMA OYJ 20 123 0,2124 

TEL2B SS TELE2 AB-B SHS 70 166 0,5529 

TEM1V FH TECNOTREE OYJ 70 163 0,5090 

TIE1V FH TIETO OYJ 70 166 0,6287 

TIK1V FH TIKKURILA OYJ 15 56 0,5334 

TLS1V FH TELIASONERA AB 70 143 0,3726 

TLT1V FH TELESTE OYJ 70 166 0,5839 

TLV1V FH TALVIVAARA MINING CO PLC-DI 15 61 0,4884 

TPS1V FH TECHNOPOLIS OYJ 40 166 0,5966 

TRACB SS AB TRACTION -B SHS 40 166 0,5220 

TRAD SS TRADEDOUBLER 70 108 0,5474 

TRELB SS TRELLEBORG AB-B SHS 20 166 0,6597 

TRH1V FH TRAINERS' HOUSE OYJ 20 166 0,3582 

TRMO SS TRANSMODE HOLDING AB 70 42 0,4222 

TTM1V FH TALENTUM OYJ 25 166 0,4577 

TULAV FH TULIKIVI OYJ-A SHS 20 166 0,5066 

TUT1V FH TURVATIIMI OYJ 20 160 0,1896 

UFLXB SS UNIFLEX AB 20 120 0,2185 

UNIB SS UNIBET GROUP PLC-SDR 25 123 0,3793 

UNR1V FH UPONOR OYJ 20 166 0,6285 

UPM1V FH UPM-KYMMENE OYJ 15 166 0,6426 

VAC1V FH VACON OYJ 20 166 0,5358 

VAIAS FH VAISALA OYJ- A SHS 70 166 0,5436 

VBGB SS VBG GROUP AB-B SHS 20 166 0,6326 

VIK1V FH VIKING LINE ABP 25 157 0,1996 

VITB SS VITEC SOFTWARE GROUP AB-B SH 70 159 0,2406 

VITR SS VITROLIFE AB 35 161 0,4813 

VNIL SS VOSTOK NAFTA INVESTMENT-SDR 40 88 0,4930 

VOLVB SS VOLVO AB-B SHS 20 166 0,6833 
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VRGB SS VENUE RETAIL GROUP AB 25 166 0,5015 

WALLB SS WALLENSTAM AB-B SHS 40 166 0,6650 

WAT1V FH VAAHTO GROUP OYJ 20 166 0,2913 

WIHL SS WIHLBORGS FASTIGHETER AB 40 114 0,6124 

WRT1V FH WARTSILA OYJ ABP 20 166 0,6648 

WUF1V FH WULFF-GROUP OYJ 25 149 0,4306 

XANOB SS XANO INDUSTRI AB 20 166 0,4347 

XNS1V FH IXONOS OYJ 70 166 0,3878 

YLEPS FH YLEISELEKTRONIIKKA OYJ 70 166 0,2784 

YTY1V FH YIT OYJ 20 166 0,7090 

 


