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This thesis is concerned with two methods: Gaussian process
regression models and state-space models. Gaussian process
regression models have become increasingly popular tools for many
type of applications. One driving force is flexibility of Gaussian
processes. In this thesis we investigate methods for reducing the
computational complexity and apply them to two Gaussian process
regression problems. The first case is a Gaussian process with a
Matérn covariance function as the prior and the second case is a
Gaussian process with a squared exponential covariance function as
the prior.

The computational complexity of Gaussian process regression grows
cubically with the number of measurements. We reduce the
computation complexity to linear by converting Gaussian process
regression problems into state-space models and further into Kalman
filtering and smoothing problems. After the conversion, we use these
state-space models for two different experiments. The first experiment
is computed with generated data to show the results of the conversion.
The second experiment is real data regression, with prediction, to show
some capabilities of these methods.
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1 Introduction

This thesis is concerned with Gaussian process regression models (Rasmussen
and Williams, 2006) and state-space models. The idea is to combine the
good sides of these models by converting the Gaussian process regression
models into state-space models. During the recent decades Gaussian process
regression models have become increasingly popular tools for many type of
applications (see, e.g., Hartikainen, 2013). One driving force is flexibility of
Gaussian processes. Figure 1 illustrates difference between Gaussian process
regression and linear regression. It shows that Gaussian process regression
models are flexible, for example, when data has nonlinear dependencies. This
thesis is mainly based on the references: Sarkké et al. (2013), Hartikainen
and Sarkka (2010), Sarkkd and Hartikainen (2012) and Hartikainen (2013).
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(a) Gaussian process regression (b) Linear regression

Figure 1: Example of Gaussian process regression and linear regression.
Data is generated from sinc function with Gaussian noise. Red line
represents mean of the regression results and black markings are the
generated data.

One problem in Gaussian process regression is the computational complexity.
Computation time grows cubically O(n?®) in the number of measurement
n. This makes Gaussian process regression ineffective in large regression
problems. As shown by Sarkka et al. (2013), one way to solve this problem
is convert the Gaussian process into a state-space model. Some, but not all,
Gaussian processes can be converted into state-space models and vice versa.
When using a state-space model, computation time grows only linearly O(n)
in the number of points, while solution is the same.

The main emphasis in this thesis is in converting two commonly used Gaus-
sian process regression problems into state-space form. These converted
Gaussian processes are used in two different regression experiments.



2 Models and methods

In the following sections, we describe more specific Gaussian process re-
gression, Gaussian state-space models, conversion from Gaussian process re-
gression problems into state-space models, and finally Kalman filtering and
smoothing.

2.1 Gaussian processes
2.1.1 Gaussian process

A Gaussian process can be considered a generalization of multivariate Gaus-
sian distribution to infinite dimensions (Rasmussen and Williams, 2006). A
multivariate Gaussian distribution of finite dimension n is completely de-
fined by its mean g € R™ and covariance ¥ € R™™ ™. If z = {z1,--- ,2,} is
multivariate Gaussian distributed it is denoted as

(S >)) (1)

Difference between a Gaussian process and a multivariate Gaussian distri-
bution (see, e.g., Rasmussen and Williams, 2006) is that Gaussian process
is infinite dimensional. Because it is infinite dimensional, it has mean and
covariance functions instead of a mean vector and covariance matrix. If f(¢)
is Gaussian process, it is completely defined by its mean function p(t) and
covariance function k(t,t'), which is denoted as:

f(t) ~ GP(M(t)a k(tv t/))a (2)
where the mean and covariance functions are defined as
p(t) = E[£(1)]
k(t,t) = E[(f(t) — u(®)(f(t") — p")]. (3)

Usually, in Gaussian process regression, p is assumed to be zero. It simplifies
notation, but it is not necessary:

f(t) ~ GP(0,k(t,t)). (4)

A Gaussian process can be formally defined as follows (Rasmussen and
Williams, 2006).

Definition 2.1 (Gaussian process) Gaussian process is a collection of ran-
dom variables {f(t) : t € T} such that any finite subset {(x(t1), -, x(tyn)) :
ti, - ,tn, € T,n < 0o} is jointly Gaussian.



2.1.2 Gaussian process regression

In regression, the idea is to model dependencies inside some given data.
When we have the (estimated) model for these dependencies, we can predict
values for any new point. These new points are usually called test points.
For example, in linear regression we fit straight lines into (multidimensional)
data. Then, we have a linear function for representing the dependencies.
The parameters of the model are the linear regression coefficients.

Gaussian process regression (GPR) is non-parametric regression. Non-
parametric means that we skip the estimation of parameters that we had
in linear regression. Instead of estimating the parameters, we directly esti-
mate values for the test points. This is closely related to so called kernel
trick (Rasmussen and Williams, 2006). Because we do not form the para-
metric model, we can more freely choose the form of the dependencies. Only
some GPR problems can be converted into equivalent parametric regression
problems. In GPR, the dependencies of the data are encoded into the prior
covariance function. Because of this prior covariance function, GPR still
needs prior information. We have to choose shape and the hyperparameters
of the prior covariance function. For the prior covariance function, an arbi-
trary function of the pair ¢t and ¢’ will not do, but the covariance function
needs to be positive definite. Usually mean is assumed to be zero and the
covariance function dependent only on 7 € {t — ¢, |t — ¢|,¢ - t'} (Rasmussen
and Williams, 2006).

In addition to Equation (4), there might be noise in the measurements yy.
Thus we do not know the actual values even at the measurement points, but
only noisy versions of them:

yr = f(tr) + ek, (5)

where €, is assumed to be independent and identically distributed Gaussian
2

random variable with zero mean and variance o;.
The result of Gaussian process regression is the posterior distribution of the
function f. Posterior can be evaluated for any test point ¢, or a vector of
test points t,. Finite dimensional posterior characterizes multivariate normal
distribution with mean f, and covariance V(f,). The following equations
can be used to compute posterior distribution, when prior mean is zero (see,

e.g., Rasmussen and Williams, 2006):
Fo=k(tt)T (k(t,t) + o)y, (6)
V(£.) = k(tet) = k(t )T (k(t, ) + 0n D)7 k(E, L), (7)
where k(x, ) is a prior covariance function giving the covariance of points

x and x’, t, is a vector of test points, t is a vector of measurement points,
and o2 is measurement noise variance.
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Figure 2: Example of Gaussian process regression. In both figures,
bold black line represents the function realization used in regression
and crosses are noisy measurements from that function. Figure 2a:
Random realizations from prior distribution of regression, green area
represents 95% confidence interval of prior. Figure 2b: A bold red
line represents mean of regression result and green represents 95%
confidence region of regression result.

2.1.3 Linear Gaussian state-space models

State-space models (see, e.g. Hartikainen, 2013) are a general framework for
modeling dynamic systems. In dynamic system aim is to estimate states
of the system, f(t) € R", from given measurements y, € R™. Measure-
ments yi, ..., yr are given at time steps ti,...,t7. Measurements might be
noisy and indirect functions of the states, and are typically modeled using a
measurement model of the form

i, ~ p(YxlF(t)), (8)

where p is the probability density of measurements given the state.

State’s dependence from previous states is expressed as an ordinary differ-
ential equation (ODE), which forms the dynamic model. This ODE might
also involve noise, so ODE becomes stochastic differential equation (SDE) of
the form (Sarkka, 2006)

d
T _ atf(0).0) + Ltywe). (9
where a(f(t),t) and L(t) are some functions and w(t) is a vector of white

noise processes. A white noise process refers to a zero mean Gaussian random



process, where each pair of values w(¢) and w(t') are uncorrelated when
t£ .

The state-space model used in this thesis is as follows:

IO _ k) 4+ L),
yr = Hf (tg) + e, (10)

where £ = 1,...,7 and F, L and H are given matrices, € is a zero mean
Gaussian measurement noise process, with constant covariance o2, and w(t)
is a scalar white noise process. The used state-space model in Equation
(10), is linear time-invariant (LTI) and noises are Gaussian, scalar, and
independent and identically distributed (I11D).

2.1.4 Kalman filtering and smoothing

Kalman filter and Rauch—Tung—Striebel smoother (RTSS) (Kalman, 1960)
(Rauch et al., 1965) (Sarkka, 2006) (Séarkka, 2013) produce effectively exact
solutions for state inference in linear-Gaussian state-space models, described
as,

dl(;(tt) —F£(#) 4 L),
y, =Hf(te) + €, €~ N(0,07 ), (11)

where k = 1,...,T, A, L, and H are given matrices, € is a vector of zero mean
Gaussian measurement noise processes with covariances 0'721 - Note that
the used state-space model in Equation (10), is a special case of the model
in Equation (11). Kalman filtering and smoothing solutions are optimal
in sense of Bayesian filtering and smoothing (see, e.g. Sarkki, 2013) and
they are recursive algorithms which can be used when state-space model is

discretized.

In the LTI case, as in Equation (11), the discretized model matrices can
be efficiently solved as a function of the time step size Aty = tgp+1 — t as
(Sarkké, 2006)

A(Atg) = Ay = O(Aty),

Aty
Q(At,) = Q;, = /O (At — 7)LQLT®(At, — 7)Tdr, (12)

where ®(7) denotes the matrix exponential, ®(7) = exp(F7). The used
dynamic model in Equation (10) is a special case of LTI dynamic model
in Equation (11) when white noise process is scalar, w(t) = w(t). With



notation from Equation (12), discretized solution to model in Equation (10)
is as follows:

Ftkt1) = Apf(te) + e @ ~ N(0,Qp),
Yk = Hf(tk) +ex, €ex ~ N(O, Jg,k)' (13)

Then this discretized state space model in Equation (13) can be solved with
the Kalman filtering and smoothing equations. Kalman filtering equations
are as follows (originally derived by Kalman, 1960, notation from Solin,
2012):

e The prediction step is

Myp_1 = Ag—1Myg_15_1
Pre-1 = Ap 1 Proip1 Al + Qg (14)

e The update step is

Vi =Yy, — Hpmy

Sk = HyPy_1HJ + Ry

K = Py Hi S, (15)
my, = my, 1 + Kgvg
Py = Prpo1 — KiSiKJ,

where my;,_; and Py, are the predicted mean and covariance of f(ty),
my,;, and Py, are the updated mean and covariance of f(t;) after update by
measurement y;. vi, S; and Ky, are simplifying variables. Ay, Q; and Hy,
are from Equations (12) and (13). Ry is measurement noise covariance, in
our case, Equation (10), denoted as o2 , and it is positive constant. Initial
value for mean, mg|y and covariance P(;|0 depends on a case.

In our case initial mean is zero and initial covariance is a solution to matrix
Riccati equation (see, e.g. Hartikainen, 2013),

dP

o =FP+ FPT +LQ.L" =0. (16)
Initial covariance is from Equation (16), because we use only stationary prior
covariance functions. A stationary covariance refers to a covariance function
k(7") which is only dependent on 7/ = ¢ — ¢, instead of both ¢ and #'.

Kalman filter equations are computed forwards, prediction step for all points
and update step only when there is data for that point. After Kalman fil-
tering equations we compute RTS smoother equations. These are computed



backwards for all points. RTS smoother equations are as follows (originally
derived by Rauch et al., 1965, notation from Solin, 2012),

my g = Agy
Piiar = APrp AL + Qy,
G = Py AL [Prs] ™! (17)
myp = my;, + G My r — my )]
Pyr =Py + GrlPiiiyr — Proapl Gi

where the first two equations are the Kalman filtering prediction step, myp
and Py are RTSS solutions to mean and covariance of f(tx) and Gy is a
simplifying variable. The initial step of RTSS, mpr and Ppr, is the same
as solution to last step of Kalman filter, my7 and Ppyp.

2.2 Converting Gaussian process regression into Kalman fil-
tering and smoothing problem

In the following subsections, we first explain how a linear time-invariant
Gaussian process can be converted to a state-space form and then we work
out the conversion of two specific Gaussian processes. In Results, Section 3,
we use these converted Gaussian processes in experiments. Some Gaussian
processes can be represented equivalently in state-space form, some can be
only approximated, and some cannot be converted to state-space form at
all. In the experiments, the first Gaussian process represents one which can
be converted to state-space form without approximation and the second one
represents a class which has to be approximated.

The first Gaussian process has a Matérn covariance function with smoothness
parameter v = 7/2. In the experiments, other parameters are £ = 1 and
0?2 = 1. Matérn covariance functions, with finite and half-integer value
for smoothness parameter v, are class of Gaussian processes, which can be
converted without approximation to state-space form. In the Experiment
1, we show how the regression result does not differ but computation time

differ.

The second Gaussian process has a squared ezponential (SE) covariance func-
tion. It is actually the same as Matérn covariance function with infinite
smoothness parameter ¥ — co. When the smoothness parameter has higher
value than 5/2 it is hard to see the difference between SE covariance func-
tion and Matérn covariance function. In the Experiment 2, Gaussian process
with SE covariance function is used for real data regression.



2.2.1 Linear time-invariant SDEs and Gaussian processes

One way to convert Gaussian process to state-space model is to approximate
Gaussian process as a solution to nth order linear SDE (Sérkka et al., 2013),

n n—1
dd’];(f) +an_1w+...+a1d£$)+aof(t) = w(t), (18)
where w(t) is a zero-mean continuous time Gaussian white noise process. The
solution process f(t), random function, is a Gaussian process because w(t) is
Gaussian process and solution of a linear differential equation is a linear oper-
ation on the input. SDE in Equation (18) can equivalently be represented in
the following state space form. If we define f = (f,df/dt,...,d" "L f/dt" 1),

then we have

0 1 0

df @) _ S :
= N F (OR[N KO

—ap —ai —Qp—1 1

F L

Notice that the scalar function f(¢) is just the first component of the vector
f(t). Thus if we assume that we measure noise corrupted values y of f(tx)
at points 1, ...,ty, we can write this as

ye=(1 0 -+ 0)f(t)+ex, (20)
H

which indeed is a model of the form Equation (10).

We still need to get the values aq, ...,a,—1. These can be found by finding
the bond between Gaussian process representation in Equation (18) and the
covariance function of the same Gaussian process. If we take the formal
Fourier transform of the Equation (18) and solve for the Fourier transform
of the process, F(iw), we get

1
<(2w)" + an_1(iw)" 1 + ... + a1 (iw) + ag

~~

G(iw)

F(iw) =

) W),  (21)

where W (iw) is the (formal) Fourier transform of the white noise process
w(t). The above equation can be interpreted such that the process F(iw) is
obtained by feeding white noise through a system with the transfer function

G(iw).

From the above description it is now easy to compute the corresponding
spectral density of the process, which is just the square of the absolute value



of the Fourier transform of the process. If we denote the spectral density of
the white noise |W (iw)|? = Q., the spectral density of the process is

S(w) = G(iw)QG(—iw). (22)

Then the classical Wiener-Khinchin theorem states that the stationary co-
variance function k(t) of the process is given by the inverse Fourier transform
of the spectral density (Sarkké et al., 2013):

k(t) = FYS(w)] = % / S(w) exp(ict)dt. (23)

Now we know how to form state space model as in Equation (19) from a
Gaussian process:

1. Solve S(w) from Equation (23).

2. Solve G(iw) and Q. from Equation (22). There are many solutions for
G(iw). It has to be chosen so that all of its poles are in left side of the
imaginary plane. Pole means a root of the denominator in variable w.

3. Find right values to the matrix F from G(iw). The matrices L and H
are always have the same form, but dimensions might differ. They can
be found from Equations (19) and (20).

If neither step 1 or 2 can be solved exactly, they can be approximated with
finite-dimensional polynomials. There are still problems, and as said earlier,
all Gaussian processes cannot be converted into state-space models. For
example, Fourier transform, as an integral transform, might not converge.
The second example shows that SE covariance function cannot be converted
exactly without additional approximations.

2.2.2 Gaussian processes with Matérn covariance functions

Gaussian processes with Matérn covariance functions are widely used Gaus-
sian processes. There are general algorithms for converting this class of
Gaussian processes to state-space form (Sarkka et al., 2013). In this thesis
we convert one special case of this class to state-space form. In our case
smoothness parameter v = 7/2. There are two other parameters and in this
case, the solution has a closed form.

The conversion begins with covariance function. The general form of Matérn
covariance function is (Rasmussen and Williams, 2006)

21-v vt Y vt
k atern =02 Kuiv 24
Matern(T) Ur(y)< ] ) ] (24)
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with positive parameters o2, v and ¢, where K, is a modified Bessel func-

tion (Abramowitz and Stegun, 1965). Covariance function in Equation (24)
simplifies a lot when v is half-integer: v = p+1/2, where p is a non-negative
integer. We can derive the general expression (see, e.g., Abramowitz and
Stegun, 1965), giving

2UT (p+1) & (p+1) 8T r
v=p+1/2 o .
kMatern (T> = exp ( / ) 2p n 1 Z ( 7 > . (25)

(n —
7Jz(pz

From Equation (25) we can derive simple covariance functions for given v.
In this case we have v = 7/5, then we get

9 ANV VA o _\ﬁT
kmatern72(T) = 0 (1-1- T ar T s Pl ) (26)

By using methods introduced earlier, we can derive the state space model,
Equation (13), for this Gaussian process. Spectral density can be derived
with Fourier transform, inverse to Equation (23), giving

2 10976¢+/7

5(7 + 2w?)* @7)

SMatern?Z ( )

Reordering spectral density in Equation (27) we can derive the spectral den-
sity of the white noise @), and the transfer function G(iw),

G(iw) = 1 3 12 )
() +4 () iw+6 () ()2 + 4 (4T) (iw)? + (i)’
02109767
°T BT (28)

and from the transfer function we can find values for the matrix F, ag =

(ﬁ/€)4, a; =4 (V7/0)3, a3 =6 (ﬁ/€)2 and a3z = 4+/7/¢. Matrices L and
H are the same as in Equations (19) and (20). With this notation we can
derive state-space model matrices,

0 1 0 0
0 0 1 0
F= 0 0 0 1
(7)' (8) () ()
L=0 00 1)" (29)

H=(1 0 0 0).

Figure 3 illustrates a Gaussian process with Matérn covariance function, with
parameters v = 7/2, £ = 1, and 02 = 1. We want to represent the Gaussian
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Figure 3: Figures of Gaussian process with Matérn covariance function
and parameters v = 7/2, £ = 1 and 0? = 1. Green in Figure 3c
represents 95% confidence interval of prior.

process as a state space model. To convert the Gaussian process, we need
to know the covariance function, Figure 3a, and the spectral density, Figure
3b. Figure 3c shows random draws from this Gaussian process and green
area represents 95% confidence region.

2.2.3 Gaussian processes with squared exponential covariance func-
tions

Gaussian processes with squared exponential covariance functions are an-
other widely used Gaussian processes in GP regression (Rasmussen and
Williams, 2006). State-space form of the squared exponential covariance
function is not so simple; the exact solution is infinite dimensional, so it
has to be approximated (Hartikainen, 2013, Hartikainen and Séarkka, 2010).
There are also general state-space solution to squared exponential covariance
function, Hartikainen (2013), but there is needed numerical computations. In
this chapter, we derive a state-space solution to squared exponential covari-
ance function with approximation degree N = 2. There are two parameters
and in this case, the solution has a closed form. Same methods can be used
for higher approximation degrees.
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Squared exponential covariance function is as follows (Rasmussen and
Williams, 2006):

kse(T) = 0 exp(—72/£2). (30)

Transforming of the covariance function to state-space form begins with com-
puting the spectral density. It can be derived with Fourier transform, inverse
to Equation (23):

Ssp(w) = o?V2rlexp (—w?), (31)

and this can be approximated by the Taylor series,

o2\ 2ml

Ssp(w) ~ IN =2
1+ %uﬂ Fo iy 2N W2N
802V2m 1
_ , 32
& (ﬁ;—i—;‘zwg—i-w‘*) (82)
Qc ~

|G (iw)[?
where Q. is given above. G(iw) can be solved as follows:

1. Find the poles of |G(iw)|?. In this case the poles are:

+v—-2=£2
L
+V2E£24
14

£1.55377 £ 0.6435941¢
iw =~ 7

w =

w =

In general, when N is unknown, poles can be found numerically for
every /.

2. There should be poles in pairs, which are complex conjugates. Take
the poles from left half of imaginary plane and construct a polynomial
from these. In this case:

—1.55377 — 0.6435941 . —1.55377 + 0.6435941
iw = 7 , W R 7
G(iw) !
w) ~ - -
(iw _ —1.5537720.6435941) (ZOJ _ —1.55377—;0.6435942)

1

- 2.832841 4 3.1(2754(,“0) 4 (Z'(AJ)Q.
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Figure 4: Figures of Gaussian process with squared exponential co-
variance function, with parameters ¢ = 1 and ¢? = 1. In this case,
state-space model is only approximation. Exact values are from Gaus-
sian form and approximations are from state space model, with dif-
ferent approximation degrees N. Green in Figure 4c represents 95%
confidence interval of prior.

We now have G(iw) and from it we can find values for the matrix F: ag =

% and a1 = %. Then we need to form matrices L and H. These

matrices are the same as in Equations (19) and (20). Thus we get the state-
space model matrices:

0 1
F = <_2.82841 _3.10754> )
¢

£2
L=(0 1), (33)
H= (1 0).

Figure 4 illustrates a Gaussian process with a squared exponential covariance
function, with parameters £ = 1 and ¢?> = 1. We want to represent the
Gaussian process as a state space model. To convert the Gaussian process,
we need to know the covariance function, as in Figure 4a, and the spectral
density, as in Figure 4b. Figure 4c shows random draws from this Gaussian
process and green area represents 95% confidence region.
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2.2.4 Hyperparameter optimization

Usually the prior covariance function has some unknown hyperparameters.
One way to choose the parameters is to minimize energy function () —
the negative logarithm of the posterior distribution — with respect to hyper-
parameters. For example, in Matérn covariance function, there are three
hyperparameters, v, o and £. This kind of optimization refers to a maa-
imum a posteriori (MAP) estimate. In our case, when we have a uniform
prior, this optimization gives the mazimum likelihood (ML) estimate. When
using a linear state-space model, as in Equation (11), the recursive algorithm
for computing energy function o7 (@) for given parameters 8, is as follows
(Sirkks, 2013):

oi(60) = 1 1(0) + 1 log 278(0) + L0l (0)S; (O)we(0),  (31)

where Sj(0) and vy(0) can be found from Kalman filtering Equations (14)
and (15), for given hyperparameters 6. Initial value ¢(@) = 0. Once we
have the algorithm for computing energy function, we can optimize it. For
example, MATLAB® has many optimization algorithms which can be used
(MathWorks, 2013a). We could also use Markov chain Monte Carlo methods
for generating Monte Carlo approximations for the posterior distribution
(Sarkka, 2013).

If we have discrete state-space model, as in Equation (13), it is straight for-
ward to use energy function (Sarkka, 2013). When we have a prior covariance
function for a Gaussian process regression, it needs many steps before we can
compute the energy function. The steps are listed here:

1. Form continuous LTI model, as in Section 2.2.3 or 2.2.3. If there
exists multiple models, form a superposition model of the models, as
described in Equations (35) and (36) in Section 2.3.1.

2. Evaluate a discretized solution to a continuous LTI model, with a dis-
cretization step At = tg41 — tx in Equation (12).

3. Compute the Kalman filter, Equations (14) and (15), and the energy
function iteration step in Equation (34). Initial values to mean and

energy are zero. Initial value to covariance can be computed from
Equation (16).

4. If there exist more measurement points, go back to step 2. If step size
has not changed, you can go straight back to step 3. The evaluation of
energy function uses only measurement points, it is independent from
test points.
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2.3 Additional methods for state-space models

In this section, we shortly introduce two additional methods for state-space
models that are used in Experiment 2.

2.3.1 Superposition of multiple state-space models

With state-space models, it is easy to make superposition of multiple models.
It allows us to use more complicated models. Here we show how superposi-
tion model can be constructed. Define two state-space models as follows:

dfdlt(t) =F1f1(t) + Liwi(t),
yp1 = Hifi(te) + €,
ddet(t) = Fafy(t) + Lowa(?),

Yr2 = Hafo(tk) + €x2, (35)

where wi(t) and ws(t) are Gaussian white noise processes with spectral
densities Q. ; and Q5. Derive superposition of the models as follows:

t
Ye = Yr1 + Y2 = (Hi Hp) <f1( k)> + (€1 + €r2),
——— fz(tk) e
" Flie) °
k

0 (3 - (210 ()
F f(t) L w0

_ Qc,l 0
Qc - ( 0 QC,Z) ) (36)

where w(t) is a Gaussian white noise process with a spectral density Q.. If
we need a third model, we can sum it as earlier to the superposition model,
Equation (36), and we can continue this as long as we need to.

2.3.2 Stochastic resonator model

A benefit of conversion from Gaussian process regression models to state-
space model is that we can easily use these Gaussian processes with other
state-space models. For example, many physical models are state-space mod-
els. In the second experiment we use a resonator model. A resonator model
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is denoted as follows, in terms of state-space model, as in Equation (10)

(Sirkkd et al., 2012):
_ 0 2 f
F= (—27rf —{) ’

L=(0 1), (37)
H=(1 0),
where f € R is frequency and ¢ > 0 is damping. In this case, Q. > 0

is an independent parameter, which does not effect the model matrices in
Equation (37).



17

3 Results

In the following subsections, we use methods of this thesis in two different
experiments.

3.1 Experiment 1

This experiment demonstrates the equivalence of regression results in the
original Gaussian process regression and regression after the conversion to
state space form. It also shows the difference in computation times with
increasing number of training points. When the number points grows, com-
putation time in original Gaussian process regression should grow cubically
and computation time in state-space model should grow linearly.

The Gaussian process has zero mean and Matérn covariance function with
parameters v = 7/2, = 1, and 02 = 1. The regression results should also be
the same with both the approaches when using a Matérn covariance function
with v as a finite half-integer, but that is not proved in this thesis.

At first, random draws are generated from the Gaussian process. From the
Gaussian process model, it can be done by generating values from a mul-
tivariate Gaussian distribution. The covariance matrix used in the multi-
variate distribution is evaluated from the covariance function and the mean
is zero. For example, MATLAB® has function "randn" to generate multi-
variate Gaussian distributed values (MathWorks, 2013b). Then we add some
Gaussian noise to that random draw, so that we have noisy measurements for
the regression. This Gaussian noise can also be generated with this "randn"
function from MATLAB®. In this thesis, measurement noise is expected to
be IID and zero-mean.

We compute Gaussian process regression with Equations (6) and (7). These
equations give mean and covariance of estimation. Deriving state-space so-
lution has more steps. First we convert covariance of Gaussian process to
continuous LTI state-space model, we do this with Equations (28) and (29).
We discretize it with Equation (12). We solve the needed stationary co-
variance from Equation (16). From the discretized solution we can get the
regression result with Kalman filter and RT'S smoother in Equations (14) to
(17). Note that Kalman filter’s update step in Equation (15) is executed
only when there exist data and all the other Kalman filtering and smooth-
ing equations are executed for all the test points. The discretized solution
depends on step size, so if test points has different step sizes, discretized
solution has to be computed for all test points.

Figure 5 shows differences between computation times. We generated data as
described earlier, for 5000 test points. Then we computed the regression with
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Figure 5: Comparing computation time of the ordinary Gaussian pro-
cess regression with computation time of the same regression when
using state-space model.

the same data, first only for 100 points, then 200 points and so on, until the
last regressions were computed with the whole 5000 points. We smoothed the
computation times taking average of 30 repeated regressions. Figure 5 shows
that computation time grows cubically when using the original Gaussian
process regression model and linearly when using the state-space model.

Figure 6a shows random draws form prior and 95% confidence region. It
shows that the random draws are almost inside the 95% confidence region.
Figure 6b shows the Gaussian process regression mean and 95% confidence
region. We computed the regression for one of the random draws added
some Gaussian noise. Now, when we have the data, 95% confidence region
of posterior is much smaller than the confidence region of prior. We show
both regression results, from state-space model and from Gaussian process
regression model. You cannot see the difference. Sum of the squared differ-
ences between variances and means of the results are O(1072%). It is in the
same order of magnitude as numerical precision of the computation program.
Figure 6b shows that the actual values are inside the 95% confidence region
of the posterior.
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(a) Random draws from the prior of Gaussian process regression. Green
shows 95% confidence region. Crosses represent noise measurements from
a random draw. Bold black line represents the random draw.
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(b) Gaussian process regression to noise measurements (crosses) of random
realization of Gaussian process (bold black line). The same regression is
computed after conversion to state-space form. Sum of squared differences
between these regressions are O(10728). You cannot see the differences
between the regression results: mean (bold red line) and confidence interval
(green area).

Figure 6: Example of Gaussian process regression. Figure 6b: Crosses
represent data used for regression. We generated the data from Gaus-
sian process with Matérn covariance function and parameter values
v=17/2, 0% and £ = 1. We added Gaussian noise to measurements.
Gaussian noise had constant variance o2 = 1. Figure 6a shows 4 ran-
dom realization from the Gaussian prior.

19
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3.2 Experiment 2

This experiment demonstrates real data regression with state-space model.
This experiment uses Mauna Loa Observatory data from Hawaii. Data is
average monthly measurements of COy concentration from year 1970 to the
end of 2012. Data can be downloaded from Tans and Keeling (2013). We
predict this data 20 years into the future. Same data, but different time
period, was also used by Rasmussen and Williams (2006).

In this experiment, we have the three main steps. First we need to choose
which models we want to use and initial values for hyperparameters. Then
we need to find the optimal hyperparameters. Finally, we can predict the
future values with optimized model.

As the prior, we use two squared exponential covariance functions and a
resonator model. The first SE explains the longer distance variation, the
second SE explains the smaller distance variation and resonator explains the
annual periodic variation. The prior mean is set to zero.

Initial values for the models are as follows:

e The first squared exponential covariance function has initial values:
0? = 10°, /1 = 10? and Ny = 6. It explains large-scale smooth varia-
tion.

e The second squared exponential covariance function has initial values:
0'% =1, /o =1 and Ny = 6. It explains small-scale smooth variation.
Without this model, optimization will not converge, oo will be too
large.

e The resonator model has initial values: (.3 = 0.01 and f3 = 1. This
model explains variation during the year.

All the parameters are chosen by manually minimizing sensitivity of initial
values and at the same time so that the result looks reasonable. Parameters
N; and N> are not optimized and these are chosen so that approximation
is close enough to the real SE covariance function. Differences between the
exact SE covariance and the approximation can be seen in Figure 4. The pa-
rameter f3 is not optimized, because optimization algorithm did not change
the value, but it disturbed the optimization.

After choosing the initial values and models, parameter optimization is done
by the methods explained in Section 2.2.4. Optimization gives the values:
0% ~9.28 - 10%, 01 ~ 126,
03 ~ 0.367, 0y ~ 1.17, (38)
Qe3 ~3.35-1073.
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Now we can do the regression as in Experiment 1. First we form the model
matrices for every model as in Section 2.2.3 for SE covariances and by Equa-
tion (37) for the resonator. Then we sum the models to superposition model
using Equations (35) and (36). Then we discretize it with Equation (12) and
solve the needed stationary covariance from Equation (16). Finally from
the discretized solution, we get the regression result with Kalman filter and
RTS smoother in Equations (14) to (17). Actually, in Kalman filtering and
smoothing, we need to discretize the continuous superposition model every
time the step size changes. Kalman filtering and smoothing are continued
for the 20 additional years. Update step of the Kalman filter is skipped for
these additional years.

Next we show the Kalman filtering and smoothing solution. Figure 7a shows
the result. Green area represents 95% confidence region of prediction and
black points represent the data. The predicted mean seems reasonable. Mean
of the prediction continues growing with the same speed as earlier. Mean is
at center of the green area. The predicted confidence region looks almost the
same as in Rasmussen and Williams (2006). We did not use the last three
years for the regression but for evaluation of the regression. Figure 7b shows
more closely those three years. It shows that prediction is good at least for
the first three years. In that sense, we can assume that the prediction is
good also for the later years.
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Figure 7: The 516 observations of monthly averages of the atmosphere
concentration of COs from 1970 to the end of 2012, together with 95%
predicted confidence region for a Gaussian process regression model, 20
years into the future. We used state-space inference instead of original
Gaussian process regression. Green area represents the 95% confidence
region of the prediction and black points represent the data. Figure
7a shows the used data with prediction. We did not use the last three
years for the regression but for evaluation of the regression. Figure 7b
shows the first three predicted ears more closely. For these three years
we had also data. Figure 7b shows that prediction for the first three
years is close to the data.
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4 Conclusion and discussion

We have shown how some Gaussian process regression models can be con-
verted into state-space models and further into Kalman filtering and smooth-
ing problems. The computation complexity in GPR models is O(n?) and in
state-space models computational complexity is O(n), where n is number of
training points. This was demonstrated in Experiment 1. Because of the
computational complexity, state-space models are much more effective for
large data sets than GPR models. In Experiment 1 we also tested that the
conversion from a GPR model into state-space model does not effect on the
regression result, when using Matérn covariance function as a prior.

In Experiment 2 we showed another benefit from the conversion. When a
GPR model is converted into a state-space model, we can combine it with
other state-space models and many real processes can be represented as
state-space models. In Experiment 2 we used resonator model, which is
state-space models. In Experiment 2 we also computed regression for real
data. The prediction looks reasonable and it is close to the one computed in
Rasmussen and Williams (2006) for the same data. They used a GPR model
for prediction.

In Experiment 2 we had two squared exponential covariance functions as the
prior. We showed that in this case the model cannot be converted exactly into
a state-space model. We chose an approximation degree such that the result
was close enough to the original Gaussian process. The model could not be
converted exactly because of smoothness. The squared exponential covari-
ance function is infinite smooth. During the conversion we approximated the
GP as solution to nth order SDE, where n is finite integer. Because of nth
order SDE, infinite smoothness results infinite-dimensional model matrices.
The first model had finite smoothness, so we had finite-dimensional model
matrices and we needed no approximation with it.

With our method, a spectral density has to be in specific form. It has to be
rational function, both denominator and numerator has to be polynomial of
squared frequency, and degree of the numerator has to be smaller than degree
of the denominator. Spectral densities of all covariance functions are not that
form. Some spectral densities can be approximated as such form, even if they
are not that form originally. There might exists some covariance functions
which cannot be approximated in that form at all. We also found other type
of problems during the conversion. The spectral density is Fourier transform
of the prior covariance function. Fourier transform does not converge for all
functions.

We predict that using the same methods backwards we can convert state-
space models into Gaussian process regression models. In that case we can
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combine converted state-space models with GP models which cannot be con-
verted into state-space models. We can also predict that only some state-
space models can be converted into GP models.

We can use the methods represented in this thesis to convert other GPR
models into state-space models. The methods can be extended to multidi-
mensional, or spatio-temporal, case this is shown by Solin (2012). We can
improve also the optimization by computing gradient function of the energy
function as was shown by Mbalawata et al. (2012). Some optimization al-
gorithms compute the gradient numerically if the gradient function is not
given by user (MathWorks, 2013a). Numerical gradient is ineffective to com-
pute, the original energy function has to be evaluated many times on every
iteration and it might be inaccurate. Inaccuracy of the gradient slows the
optimization and makes it inaccurate.

In this thesis, we managed to reduce computational complexity of two com-
mon Gaussian process regression models. We did this by converting the
Gaussian process regression models into the state-space models. The result
was exactly the same when we used the Matérn covariance function as a
priori. The methods can be used to convert more Gaussian processes into
state-space models.
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A Summary in Finnish

Tama tyo keskittyi kahteen menetelméén: regressiomalleihin gaussisten pro-
sessien avulla (GPR-malleihin) ja tila-avaruusmalleihin. GPR-mallit ovat vii-
me aikoina lisdantyneet niiden helppouden ja hyvén sovellettavuuden ta-
kia. GPR-mallit ovat kuitenkin laskennallisesti raskaita. Niisséd laskenta-
aika kasvaa kuutiollisesti, kun havaintopisteita lisatdan. Tila-avaruusmallit
vastaavat tdhin ongelmaan, koska niissé laskenta-aika kasvaa ainoastaan
lineaarisesti suhteessa laskentapisteiden maaraan. Tila-avaruusmallit ovat
my0s yleisia fysikaalisten ilmididen selittdmisessa. Téaméan tyon paatavoittee-
na oli muuntaa kaksi yleistd GPR-mallia vastaavaan tila-avaruusmuotoon.
Tila-avaruusmuodot muunnettiin vield edelleen Kalmanin suodatus- ja si-
lotusongelmiksi, jotka ovat yleisia ja tehokkaita ratkaisumenetelmia tila-
avaruusmalleille.

Ensimmainen koetilanne tehtiin simuloidulla aineistolla, jossa saadaan hy-
vin esiin muunnoksen ominaisuudet. Toinen koetilanne tehtiin aidolla aineis-
tolla ja menetelmia kaytettiin ennustamiseen. Jalkimmaéinen koetilanne oli
monimutkaisempi ja ndytti samalla, minkélaisiin ongelmiin menetelmié voi
soveltaa.

Gaussinen prosessi on moniulotteisen normaalijakauman yleistys dareton-
ulotteiseksi. GPR-malleissa estimoidaan funktioita oletuksella, ettd funk-
tio olisi gaussinen prosessi. GPR-malleissa aineiston sisédisid riippuvuuksia
mallinnetaan kovarianssifunktiolla eiké esimerkiksi lineaarisilla kertoimilla.
GPR-mallien tuloksena saadaan suoraan estimoitavan funktion arvoja ei-
ké esimerkiksi lineaarisia kertoimia. Lineaarisessa regressiossa funktion ar-
vot lasketaan jalkikdteen néistd lineaarisista kertoimista. Témén kertoimien
puuttumisen takia GPR mallit ovat joustavampia kuin lineaarinen regressio.

Tila-avaruusmalleissa tilojen vélisié riippuvuuksia mallinnetaan (stokastisel-
la) differentiaaliyhtalolld. Liséksi tiloja ei valttdmatta tunneta suoraan vaan
niistd saadaan hairiollisia mittauksia. Naista hairiollisista mittauksista pyri-
tddn ratkaisemaan tilat. Tilat pystytdan ratkaisemaan optimaalisesti esimer-
kiksi Kalmanin suodatus- ja silotusalgoritmeilla.

Yksi tapa muuntaa GPR-malli tila-avaruusmuotoon on approksimoida kéy-
tettyd gaussisen prosessin prioria stokastisella differentiaaliyhtalolla. Téalloin
alkuperdinen gaussinen prosessi saadaan stokastisen differentiaaliyhtélon rat-
kaisuna. Téllaisessa stokastisessa differentiaaliyhtilossé summataan gaussi-
sen prosessin derivaattoja yhteen niin, etta tulokseksi saadaan valkoista ko-
hinaa. Kun on olemassa lineaarinen stokastinen differentiaaliyht&lo, siité saa-
daan yhtéloa uudelleenjarjestamaélla tila-avaruusmuoto.

Stokastisen differentiaaliyhtialon kertoimet saadaan spektrin avulla. Sek&
priorin kovarianssifunktiosta ettd stokastisen differentiaaliyhtélon ratkaisus-



28

ta on laskettavissa spektri. Maaraamaélla spektrit arvoiltaan yhtd suuriksi
voidaan tuntemattomat kertoimet selvittda. Stokastisen differentiaaliyhtélon
spektri on muotoa polynomi jaettuna polynomilla. Lisdksi nimittdjan poly-
nomin pitaé olla suurempaa astetta kuin osoittajan. Jos priorin kovarianssis-
ta saatu spektri ei ole tallaista muotoa, sitd pitda approksimoida sellaisena.
Tamaén jéilkeen stokastisen differentiaaliyhtélon kertoimien arvoilla on viel&
useita vaihtoehtoja ja niistd téaytyy valita sellaiset arvot, ettd systeemista
tulee stabiili. Tila-avaruusmuoto ratkaistaan jarjestamalla saatu stokastinen
differentiaaliyht&lé uudelleen. Tamaé tila-avaruusmuoto on yleisesti jatkuva,
ja se pitda diskretoida laskentapisteissé. Diskreettiin tila-avaruusmuotoon
voidaan kayttda Kalmanin suodatus- ja silotusalgoritmeja ongelman ratkai-
semiseksi.

Ensimmainen muunnettu gaussinen prosessi kuului Matérn luokkaan. En-
simmaisessa sovellusesimerkissa testattiin tdmén muunnoksen ominaisuuk-
sia itse luodulla aineistolla. Mallin muunnoksessa ei tehty mitdan approk-
simaatioita ja siten regression tuloksissa ei ollut eroa. Laskenta-aika erosi
kuitenkin merkittavasti. Tila-avaruusmallin laskenta-aika kasvoi lineaarises-
ti ja alkuperdisen GPR~-mallin laskenta-aika kasvoi huomattavasti lineaarista
nopeammin. Laskennat suoritettiin kolmekymmentéa kertaa ja niista otettiin
keskiarvot. Néin saatiin poistettua héiriot laskenta-ajoista.

Toisella muunnetulla gaussisella prosessilla oli nelidllinen eksponentti-
kovarianssifunktio, ja sitd kéytettiin toisessa sovellusesimerkissid. Tamén
GP:n muuntamisessa piti kiyttda approksimaatiota. Approksimaatioaste va-
littiin silla tavalla ettéd saatu spektri oli riittavén lahelld alkuperaistd. Kaik-
kiaan tassa esimerkissa oli kiytossa kolme mallia: kaksi gaussista prosessia,
joilla oli nelidlliset eksponentti-kovarianssifunktiot, ja liséné resonaattorimal-
li. Resonaattorimalli on tila-avaruusmalli.

Toisessa esimerkissé aineistona kiytettiin Mauna Loan mittausaseman kuu-
kausittaisia hiilidioksidipitoisuuksia vuodesta 1970 vuoden 2012 loppuun.
Téatéa aineistoa ennustettiin kaksikymmentd vuotta eteenpéin. Hyperpara-
metrien suurimman uskottavuuden optimointi 16ysi selvin (paikallisen) opti-
min, ja sama optimi 10ytyi, vaikka hyperparametrien alkuarvoja muunneltiin.
Tulos vaikutti jarkevéltd. Ennusteen mukaan hiilidioksidipitoisuudet kasva-
vat myoOs tulevaisuudessa ja kasvunopeus hieman kiihtyy ldhivuosina. En-
nusteesta nikyi selvasti vuoden sisdinen vaihtelu usealle vuodelle eteenpdin.
Léhivuosille ennuste antoi pienen luottamusvélin, ehké jopa epérealistisen
pienen. MyShempiné vuosina luottamusvali levenee, mutta leveneminenkin
oli yllattavan hidasta.

Tarve toisen esimerkin approksimaatiolle tuli siitd, ettd neli6llinen
eksponentti-kovarianssifunktio on darettomén siled. Gaussista prosessia ap-
proksimoitiin ratkaisuna aérellisulotteiselle stokastiselle differentiaaliyht&lol-
le, kun GP-malli muunnettiin tila-avaruusmuotoon. Téstéd seurasi, etté tila-
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avaruusmatriisien koko oli verrannollinen kovarianssifunktion sileydelle. A-
rettomén sileéin kovarianssifunktion tila-avaruusmatriisit olisivat dédreténu-
lotteisia. Lisérajoituksia GP:n priori kovarianssifunktiolle antoi myo6s Fou-
rierin muunnos. Spektri saatiin Fourierin muunnoksella priori kovarianssi-
funktiosta. Fourierin muunnos on integraalimuunnos eiké ole laskettavissa
kaikille funktioille.

Toisen esimerkin resonaattorimalli havainnollisti sitd, kuinka tila-
avaruusmalleja ja GPR-malleja voidaan yhdistdd ensin muuntamalla
GPR-malli tila-avaruusmuotoon. Taméan tyon tulosten perusteella voisi
ennustaa, ettd kiyttamailld vastaavia menetelmid vastakkaiseen suuntaan
pystyttaisiin muuntamaan tila-avaruusmalleja GPR-malleiksi. Lisdksi voisi
ennustaa, ettd vain osa tila-avaruusmalleista pystytddn muuntamaan GPR-
malleiksi. Tall6in myds tila-avaruusmuotoon muuntumattomat GPR-mallit
voitaisiin yhdistda tila-avaruusmalleihin.

Tassa tyossa esiteltyja menetelmia pystyy kiyttdmaén uusien GPR-mallien
muuntoon tila-avaruusmuotoon. Lisdksi menetelmét ovat laajennettavissa
useampaan ulottuvuuteen, ja esimerkiksi hyperparametrien optimointia pys-
tyy tehostamaan ja tarkentamaan laskemalla energiafunktion gradientin. Jos
kiyttdja ei anna gradienttia, osa optimointialgoritmeista laskee gradientin
numeerisesti. Téllainen numeerinen gradientin laskenta ei valttdméatta tuo-
ta tarkkaa gradientin arvoa, ja se hairitsee optimointia. Lisdksi numeerisen
gradientin laskenta vaatii useita laskentakertoja alkuperiiselle funktiolle, ja
se on laskennallisesti raskasta.
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