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1 Introduction

The valuation of investment opportunities is a common problem in allocating
capital and planning future actions. For example, private firms need to assess
the profitability of project possibilities in the process of capital budgeting.
In order to maximize the firm value, executives need estimates of the project
proposals’ values to be able to choose the most profitable ones and to discard
the rest.

Net present value (NPV) analysis provides a simple way to calculate the
profitability of investment opportunities by discounting the expected cash
flows related to the investment decision net of the initial investment cost
[Brealey et al., 2006]. NPV analysis makes it possible to calculate the explicit
value of the investment opportunity and leads to a simple investment rule:
invest only if the NPV is positive.

However, NPV analysis has its shortcomings. First, NPV analysis deals only
with the expected future cash flows instead of taking into account the joint
probability distribution of the future cash flows. Second, in simple NPV
models, the whole investment process is irreversible. By irreversibility we
mean that once a positive investment decision is made, the investor cannot
withdraw even if the NPV of the investment program becomes negative in
the future.1 Third, in NPV analysis the investment opportunities that are
not profitable at the moment have no value. If there is uncertainty about the
future cash flows of the investment, then the investment opportunity may
become profitable in the future, and, therefore, the investment possibility
has value even if is not yet profitable.

Real options valuation (ROV) is an investment valuation method that over-
comes the shortcomings of NPV analysis presented above [Dixit and Pindyck,
1994]. ROV utilizes the methods of valuing financial options in calculating
the value of an option to make a real investment, e.g., a possibility to build a
nuclear power plant or to exploit a discovered oil reserve. ROV also yields the
optimal investment rule informing the investor when it is optimal to invest
and when not.

Majd and Pindyck [1987] propose a real options model in which an investor
faces an opportunity to invest in a project, the payoff of which follows a

1NPV analysis can be applied to build more complicated investment models in which
there is optionality. For example, Hespos and Strassmann [1965] propose an investment
model where NPV analysis is applied in a decision tree framework to evaluate investment
possibilities which include optionality.
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continuous-time stochastic process. The investor will start receiving cash
inflows only when the initial capital investment is made and the project is
finished. In their model, the initial investment cannot be done at once, but
the investor can invest sequentially in continuous time at an investment rate
that is bounded between zero and a positive constant. Therefore, at all values
of remaining initial investment there exists a minimum time-to-build, i.e., the
time it takes to complete the initial investment assuming that the remaining
investment is made as quickly as possible. Their model yields results that
explain the behaviour of rational investors in situations where the outcome
of the project is uncertain, the investment decision is sequential, and there
is a significant time-to-build. An R&D project that could ultimately lead to
the creation of a new product is an example of such a situation.

The aim of this study is to extend the model of Majd and Pindyck by in-
troducing a second variable that follows a continuous-time stochastic process
and affects the payoff of the completed project. In some situations, the factors
behind the revenues and the costs of the finished project are fundamentally
different. Thus, in these situations there is a need to model the revenues and
costs explicitly with separate variables following separate processes. Then,
the inclusion of the second variable allows us to model the expected cash
inflows and outflows of the finished project separately and to isolate the ef-
fects that these variables have on the optimal investment behaviour. We
show that the inclusion of the second stochastic variable reverses some of
the earlier results. In particular, we show that for some parameter values,
the investment threshold, i.e., the value of the revenue variable above which
it is optimal to invest instead of waiting, decreases in the amount of initial
investment left, in contrast to the results that are implied by the model of
Majd and Pindyck.

This study is constructed as follows. In Section 2, we discuss the background
theory further by examining the fundamental differences between NPV analy-
sis and ROV. We present an example of both valuation methods and compare
the results. We also review earlier research on which our model is built. In
Section 3, we build our model and discuss its assumptions in more detail.
Section 4 presents the general results of the model and shows how the in-
clusion of the second stochastic variable yields informative results, which we
seek to explain. Section 5 concludes by discussing the implications of our
results and outlining possible directions for future research.
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2 Theory and background

2.1 Net present value analysis

NPV analysis is widely used in evaluating the value of investment opportu-
nities. For example, in a survey sent to the chief financial officers of Fortune
1000 companies, Ryan and Ryan [2002] found out that 96% of the responders
use NPV analysis in capital budgeting at least sometimes. In other words,
only 4% of the responders never use NPV analysis. Also, almost all of the
other valuation methods mentioned in the survey are modified versions of
traditional NPV analysis. In effect, many other valuation methods, such
as the internal rate of return method, are built on the idea of basic NPV
analysis.

One reason for the popularity of NPV analysis is its simplicity. To illustrate
the idea of NPV analysis, let us consider an opportunity to invest in a factory
that costs K amount of capital to build. Let us assume that the capital
investment can be done at once resulting in a finished factory of market
value Vt that evolves according to the geometric Brownian motion (GBM)

dVt = αVtdt+ σVtdzt, (1)

where α and σ are the capital appreciation rate and the volatility of V ,
respectively.2 By capital appreciation rate, we mean that the total rate
of return, which equals to the capital appreciation rate plus the payout or
dividend rate, is generally greater than the capital appreciation rate. This
assumption implies that the factory continues production forever once it is
built and that the sum of the discounted expected future cash flows that
the project yields equals to V at all times.3 Therefore, the NPV of the
now-or-never investment opportunity at time t = 0 is

NPV = V0 −K. (2)

The investment rule implied by Eq. (2) is that it is optimal to invest if NPV
is non-negative, i.e., V ≥ K, and not to invest if NPV is negative, i.e.,

2We will denote the value of V at time t with V in the following discussion if it is not
necessary to use Vt for clarity.

3Let us note the required rate of return for holding the factory with r and assume
that r > α. By the properties of GBM, the sum of discounted expected future cash
flows is

∫ t
0
(r − α)V0eαse−rsds = V0(1 − e−(r−α)t) assuming that the factory is scrapped

without costs after time t [Luenberger, 1998]. This with Eq. (1) implies that the factory
is operational forever since otherwise the factory would be either under- or overvalued.
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V < K. This implies that by NPV analysis the value of the opportunity to
invest is max(V −K, 0).

This example was presented in continuous time. If the situation were that
the cash flows would occur discretely in time, then we would sum instead of
integrating, and the NPV would be given by the formula

NPV =
∞∑
t=0

CFt
(1 + r)t

, (3)

where CFt is the cash flow at time t and r is the total required rate of return
for holding the factory.

2.2 Real options valuation

To motivate ROV, we revisit the assumptions of the NPV results in Eq.
(1). Since V evolves stochastically in time, there is a finite possibility that,
even though V < K at the moment, V will exceed K in some point in the
future, implying that the investment opportunity may become profitable by
the NPV investment rule. Therefore, the possibility to build the factory has
at least some positive value to the investor.

The situation here is similar to the investor holding a perpetual call option
with a strike price of K on the factory. It is known that although a financial
call option might be out of the money today, it has value to investors as the
price of the underlying asset might increase in the future providing a positive
payoff [Hull, 2010].4 This suggests that the investment opportunity is not
correctly valued by traditional NPV analysis if the investor has the option
to invest in the future instead of now.

The theory of financial options also proposes that even if V > K, it may be
optimal not to exercise the option yet. This is because there is a possibility
that the value of the underlying asset increases further creating an incentive
not to invest yet. This effect is often called as the value of waiting. Hence,
in this framework also the investment rule resulting from the NPV analysis
above is incorrect.

Motivated by the shortfalls of NPV analysis, we consider the investor’s prob-
lem solved in the previous chapter using the ROV framework. The investment

4The fact that one does not need to exercise an option if the payoff is negative is crucial
to this result.
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opportunity can be valued using ROV in two different ways: by using dy-
namic programming or contingent claims analysis [Dixit and Pindyck, 1994].
The former approach utilizes the Bellman equation in continuous time. The
latter assumes that the risk of the completed project can be replicated by a
dynamic portfolio formed of assets sold in the financial markets.

The main difference between the two approaches is in determining the re-
quired rate of return for the option. In the former approach, the discount
rate determining the required rate of return must be chosen in most cases
without capital market equilibrium models such as the capital asset pric-
ing model (CAPM).5 In the latter approach, one does not need to know
the required rate of return for the option as the partial differential equation
governing the option value is formed by delta hedging the uncertainty of the
option by using the portfolio that spans the risk of the underlying investment
opportunity. However, the qualitative results yielded by the approaches are
similar.

We use the dynamic programming approach because then we do not need
to assume that the risk of the underlying investment opportunity can be
replicated by other financial assets. This is often the case in projects that
lead to the adoption of novel technologies. Also, our focus is on gaining
insight into how the investor’s behaviour is qualitatively affected by different
parameters in our model and not on capital market considerations.

Let us return to modeling the investor’s problem using ROV. We will denote
the value of the option to build the factory with F (V ) ≡ F where V is the
value of the completed factory following the GBM given by Eq. (1). Note
that the option value is not explicitly a function of time as the investment
opportunity is taken to be perpetual. The initial capital investment is K.
Let us denote the required rate of return for holding the option with µ. We
should note that µ does not necessarily need to equal to the required rate of
return for the completed factory. We will also have to assume that µ > α
because otherwise it would be optimal never to exercise the option. Let
us further assume that there exists an unique constant V ∗, for which applies
that it is optimal not to exercise the option if V < V ∗ and optimal to exercise
the option if V = V ∗.6

By the assumptions made above we obtain the option value in the no-exercise
5For example, McDonald and Siegel [1986] determine the correct required rate of return

for the option implied by CAPM in a certain real option model.
6In our case the previous assumptions imply that this assumption holds [Dixit and

Pindyck, 1994].
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region V ∈ (0, V ∗) from the Bellman equation:

µF =
E[dF ]

dt
. (4)

By extending E[dF ] using Itō’s lemma, we obtain the following ordinary
differential equation (ODE) that the option value must solve in V ∈ [0, V ∗]
[Hull, 2010]:

1

2
σ2V 2FV V + αV FV − µF = 0.7 (5)

If V ≥ V ∗, then the option is as valuable as the payoff V −K since for these
values of V the option will be exercised.

The appropriate boundary conditions in this situation are

F (0) = 0, (6a)
F (V ∗) = V ∗ −K, (6b)
FV (V ∗) = 1. (6c)

Eq. (6a) states that if the market value of the factory becomes zero, then the
option loses its value because zero is an absorbing barrier for the GBM given
by Eq. (1). Eq. (6b) simply states that at the moment of exercise the option
is as valuable as the payoff it yields. This condition is usually called as the
value-matching condition. Eq. (6c) demands that the partial derivative of
the option value with respect to the stochastic variable is continuous at the
point of exercise.8 This condition is often referred to as the smooth-pasting
condition.

Without going into further detail, we state that the solution for the problem
above is [Dixit and Pindyck, 1994]

F (V ) =

{
AV γ if V ∈ [0, V ∗]

V −K if V ∈ (V ∗,∞)
, (7)

7Here, we adopted a shorthand notation for partial derivatives. For example, FV is the
partial derivative of F with respect to V . We will continue to use this notation for the
rest of the thesis.

8See Dixit and Pindyck [1994] for an intuitive explanation to this condition.
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where γ, V ∗, and A satisfy equations

γ =
1

2
− α

σ2
+

√(
α

σ2
− 1

2

)2

+
2µ

σ2
(8)

V ∗ =

(
γ

γ − 1

)
K (9)

A =
V ∗ −K
V ∗γ

. (10)

.

Note that by Eq. (8), γ > 1. Therefore, Eq. (9) implies that V ∗ > K. In
other words, the optimal investment rule of the real options model is different
than the rule that NPV analysis yielded: the result of ROV proposes that
it is suboptimal to exercise the option when V = K because there is more
value in waiting for the market value of the project to increase.

By using Eqs. (8)-(10), one can show that both F (V ) in the waiting region
given any value of V and V ∗ are increasing in σ. This means that an increase
in the uncertainty of the future project values increases the option value since
the possibility that the project value becomes larger in the future increases.
We should note that an increase in uncertainty increases also the possibility
that the project value becomes smaller. As the option does not need to be
exercised, the investor benefits of increases in the project value more than
she loses if the value decreases. Therefore, V ∗ increases in σ since uncertainty
increases the value of waiting.

One can also show that both the option value in the waiting region and the
investment threshold are increasing in α. The reason for this is that since
the difference between µ and α represents the cost of waiting, an increase
in α decreases the cost of waiting and, thus, postpones investment. The
conclusions above are inherent in many real option models. However, the
inclusion of new variables or an investment lag may reverse these results, as
we shall soon discover.

2.3 Literature review

One of the restricting assumptions above is that the factory can be built
instantly if the investor wishes to exercise the option. This is an unrealistic
approximation of most of real investment situations because there is usually
a considerable lag between the investment decision and the moment that the
finished investment starts to yield cash inflows.
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Majd and Pindyck [1987] extend the model discussed above by limiting the
rate by which the investor can invest the initial cost. Let us use the same
notation as above. In their model the remaining capital investment evolves
according to the differential equation

dK

dt
= −I, (11)

where I ∈ [0, k], and k presents the maximum investment rate implying that
the minimum time-to-build is K/k. Consequently, I can be seen as a control
variable that the investor manages during the investment process. From the
investor’s perspective, the problem is then to solve for the optimal control
law that tells when and at which rate it is optimal to invest.

Majd and Pindyck show that the optimal control problem has a bang-bang
solution: it is optimal to either invest at the maximum rate k or not at all.
The problem is solved numerically yielding both the option value F (V,K)
and the investment threshold V ∗(K). Then, the optimal behaviour is to
invest at rate k if V ≥ V ∗(K) and to wait if V < V ∗(K). V ∗(K) is found to
be increasing in K reflecting the facts that the longer is the minimum time-
to-build, the more uncertain is the value of the completed project, and the
larger is the value of K, the larger is also the discounted initial investment
remaining.

Majd and Pindyck also performed comparative statics with respect to pa-
rameters σ, δ, and k to gain further insight into the investor’s behaviour.9
They found out that V ∗(K) is increasing in σ. This is explained by the fact
that in this model the investor has a compound option. By compound option,
we mean that by investing an infinitesimal amount of capital, the investor
receives a new option on the project, only with less initial investment to go.
Therefore, the payoff of an incremental investment is a convex function of
V . This implies that the investor benefits from increased uncertainty as she
can profit from increases in V but can wait if V decreases. In contrast, the
cost of waiting is presented by δ that is constant with respect to all other
parameters. To conclude, the benefits of waiting increase in σ, whereas the
costs of waiting remain the same.

The effects of δ and k are not as straightforward. We first consider the
case of δ. As δ represents the opportunity cost of waiting, an increase in its
value has an effect of hastening investment. On the contrary, by Eq. (1), a

9Here, δ = µ− α is the difference between the total required rate of return for holding
asset V and the capital appreciation rate of V . Therefore, for example, a decrease in δ
implies an increase in the growth rate of V .
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larger δ means that the growth rate of V is smaller when holding r constant.
Therefore, an increase in δ also discourages investment as in some cases the
value of V is expected to decrease during the investment period. Majd and
Pindyck show that for low values of δ the former effect dominates, while
for larger values the latter one takes over. The overall result is that when
increasing δ from value of zero, V ∗(K) first decreases and then increases after
some point.

Because the value of k determines the minimum time-to-build, the effect
of δ on V ∗(K) is dependent on k. Since a large value of k means shorter
construction times and vice versa, a decrease in k should amplify both of the
effects discussed above. Indeed, Majd and Pindyck show that this happens.
The growth rate effect above is especially sensitive to the value of k as for
large values of k the effect that an increase in δ can discourage investment
nearly vanishes.

As discussed above, since k determines how fast the project can be finished,
its value also has a substantial effect on the results. The effect of k is that
the faster the project can be finished, the less is the discounted expected
cash flow foregone because of the time-to-build. Because of this, Majd and
Pindyck find that V ∗(K) is decreasing in k as larger values of k mean that
the project can be finished faster. The effect of k on V ∗(K) is also dependent
on δ as the cash flows foregone are proportional to δ. Because higher values
of δ mean that the cash flow foregone is larger, the effect of k on V ∗(K) is
more substantial if δ is relatively large.

To conclude the discussion of the model of Majd and Pindyck, we restate
their key results. The introduction of a time-to-build increases the investment
threshold in comparison with the earlier model, in which the factory could
be built instantly. Also, the time-to-build can reverse the earlier result that
an increase in δ always decreases the investment threshold as the investor
must consider how V is expected to evolve during the construction period.
Finally, Majd and Pindyck showed that the lower is the maximum rate of
construction, the higher is the investment threshold.

In the Majd and Pindyck model, there is a good deal of optionality in the
investment process because the investor can decide whether to invest or not
continuously in time. This might be a good approximation of multistage
investments in which the investment program can be stalled without cost
between the stages if the situation turns unfavourable. Also, the more con-
secutive stages there are in the investment process, the more realistic this
assumption becomes.
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However, in many investment situations the initial investment decision is
completely irreversible and only the finished project can be scrapped after
the construction period. This changes the situation fundamentally as once
the investment decision is done, the investor cannot act on bad news until
the construction period is over.

Bar-Ilan and Strange [1996] propose a model, in which the investor has an
opportunity to invest in a project, the value of which is a function of a revenue
variable evolving according to a GBM and a constant cost parameter. In their
model the investment decision is made at once and there is an investment
lag. Once the investment decision is made, the investor can abandon the
project at a cost only after the construction period. If the finished project
is abandoned, then the investor holds again an opportunity to invest in the
same project from scratch having to bear the initial investment cost and
construction period again.

By assuming a more irreversible investment process, Bar-Ilan and Strange
reverse some of the results of Majd and Pindyck. Their main outcome is
that if the abandonment of the finished project is relatively costless and an
investment lag is present, then a larger uncertainty over the future values of
V can actually lower the investment threshold. The logic behind this is that
if the payoff of the investment is a convex function of V , Jensen’s inequality
implies that the expected payoff is increasing in the volatility of V . For
some values this effect might overcome the effect that increasing uncertainty
also increases the benefits of waiting. In other words, by making a positive
investment decision, the investor receives an European call option on the
project with a slightly modified payoff because of the option to abandon
the project after completion. Then, because the value of the call option is
increasing in the volatility, the marginal cost of waiting is also increasing in
the volatility of the underlying project.

Bar-Ilan and Strange also discovered that for the parameters they used, a
longer investment lag leads to a lower investment threshold, contradicting the
results of Majd and Pindyck [1987] yet again. The reason for this is similar
to the logic above. A longer investment lag means that the variance of the
future payoff is larger. This leads to two opposite effects. First, because of the
larger uncertainty over the future payoff, the benefits of waiting increase due
to the argument above. Second, the larger uncertainty yet again implies that
the expected payoff is larger. For the parameters used in their study, Bar-Ilan
and Strange found that the latter effect dominates and greater investment
lags encourage investment.

It should be noted that the results of Bar-Ilan and Strange are not contra-
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dictory with those of Majd and Pindyck because of the different investment
processes assumed. In Majd and Pindyck model, the investor has more op-
tionality within the investment process. Therefore, in their model the costs
of waiting are smaller in general. Moreover, the cost of waiting is captured
entirely by the term δ. In the Bar-Ilan and Strange model, the investment
period, during which no actions can be made, leads to the cost of waiting be-
ing a function of volatility. Hence, the differences in the investment processes
explain the differences in the results.

The models discussed above consist of only one stochastic variable. In some
investment situations, there is a need to incorporate other sources of uncer-
tainty explicitly as well by adding more stochastic variables into the model.
This serves as a key motivation to this thesis.

McDonald and Siegel [1986] study a model in which both the market value
of the project and the investment cost follow a GBM. In their model, the
option is perpetual, too. They note that the investment cost variable can
also be seen as the discounted sum of expected future costs incurred after
the project is launched. In this case, however, one cannot model the initial
investment cost explicitly anymore. Also, the model of McDonald and Siegel
is based on the assumption that the option can be exercised instantly.

McDonald and Siegel discover that in this situation the optimal investment
rule is to exercise the option when V/K ≥ D where D > 1 is a constant with
respect to V , K, and time. Furthermore, D is increasing in the volatilities of
the GBMs that the stochastic variables follow. In other words, uncertainty
discourages investment as the benefit of waiting increases in uncertainty in
this model as well. Also, an increase in the growth rate of V and a decrease
in the growth rate of K or the required rate of return for the option increase
the value of D since then the growth rate of the payoff increases.

The McDonald and Siegel model is linear homogenous and can be hence
solved as a one-factor model after a variable transform. Adkins and Pax-
son [2011] study real asset renewing decisions in a two-factor real options
framework. Unlike the McDonald and Siegel model, their model cannot be
transformed into a one-factor model. To solve the model, Adkins and Paxson
propose a quasi-analytical solution that serves as a reference on how to solve
two-factor real options models built on similar assumptions in general.
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3 Analytical model

3.1 Assumptions

In this study we extend the models proposed in both Majd and Pindyck
[1987] and McDonald and Siegel [1986] by considering a situation, where
there is an investment lag, initial capital cost, and two stochastic variables
that determine the payoff of the project. Especially, our aim is to study how
introducing a stochastic variable that represents the costs that the finished
project incurs affects the investor’s optimal investment policy.

Let us denote the discounted expected cash inflows of the finished project
with V and the discounted expected cash outflows with C. Then, the payoff of
the finished project is max(V −C, 0). Note that we implicitly assume that the
finished investment can be scrapped without any costs. This assumption is
not restricting as a rational investor will never finish the investment program
if the payoff will be negative.

We shall continue to assume that both the option to invest in the project
and the project itself are perpetual.10 This is not true in reality, but because
the cash flows are discounted, the effect of distant cash flows is negligible.
The gain of assuming perpetuality is that it relieves us from assuming that
the option value is an explicit function of time.

We shall assume that V and C follow the following GBMs

dVt = αV Vtdt+ σV Vtdzt (12a)
dCt = αCCtdt+ σCCtdwt, (12b)

where dzt and dwt are increments of uncorrelated Wiener processes. We
assume that the increments of the GBMs are uncorrelated as there are often
no reliable reasons for why one should assume them to be correlated. Also,
there is some discussion on whether the assumption that the value increments
of financial assets are correlated is reasonable [Wilmott, 2007]. Finally, the
induction of a correlation between the increments would be rather easy to
implement.

Note that the assumption that the drift and volatility parameters of GBMs
given by Eqs. (12a) and (12b) are constant implies that the decisions of the

10The assumption that the project is perpetual could be easily relaxed by modifying the
payoff of the investment option. We will not do so as it would not have interesting effects
on the results.
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investor do not affect the evolution of V and C. In the case of V , this is
essentially a perfect market assumption, i.e., the investor takes the market
value of the output of the firm as given. In the case of C, the interpretation
depends on the situation. If αC = 0, then the interpretation is simply that
the evolution of the cost variable is stochastic yet not mean reverting. When
αC > 0, the interpretation might be that the costs are expected to increase
in the long run. For example, if the main cost determinant of the finished
project is a diminishing natural resource, then the interpretation might be
that because the price of this resource will increase in the future due to
decreasing supply; consequently, the costs of production will rise.

By contrast, if αC < 0, then we can form an interesting interpretation.
Consider the case of new technology adoption, e.g., the adoption of electric
vehicles (EVs) and a charging infrastructure. If the adoption of EVs is in line
with the goals of governmental organizations, then they might invest in the
R&D involved to initiate private sector investment and further accelerate the
adoption process. In this case, it is also feasible for the public organizations
to make their information and progress available to the public so that the
private sector can capitalise on the evolving technology, thereby fulfilling the
goals behind the public investments.11 This implies that the private investor
in our case experiences an exogenous experience curve effect that decreases
the costs of the finished project over time. Hence, by considering the case
αC < 0, we can study how an exogenous learning curve effect described above
affects the actions of rational investors.

We shall model the investment process following the lead of Majd and Pindyck
[1987]. Let us denote the initial capital investment left with K, the invest-
ment rate with I, and the maximum investment rate with k. Then the
dynamics of K are captured by Eq. (11).

As seen above, the assumptions made about the investment process have
great influence over the results. Therefore, we shall consider the situations
in which our assumptions hold in greater depth. The key attribute of the in-
vestment dynamics assumed here is that the investor can continuously adapt
the rate at which she invests as new information about the expected prof-
itability of the finished project arrives. This implies that our framework is
most relevant in modeling situations in which the investment is made in mul-

11According to the Joint Research Centre of the European Commission [2013], circa 65%
of the outstanding total European EV R,D&D budget of 1.9 Be is from public funding.
The report also finds that an increased exchange of information between the projects would
result in a better societal return for the investments due to the exogenous learning effects
described above.
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tiple stages and the investor can halt the investment between the stages. If
the investor has an opportunity to halt the process during the stages, then
our model is even more relevant.

The more irreversible the investment process becomes, the less appropriate
our model turns in describing the optimal investment behaviour. In these
cases a model, in which the investment process is similar to the one in Bar-
Ilan and Strange [1996], should be employed. The difference between the
approaches matters in that they lead to different results.

As we will use the dynamic programming approach to value the investment
option, we denote the required rate of return for the option with µ. As
noted before, we have generally no way of using a capital market model to
determine the appropriate value of µ. One way to determine µ would be to
use Itō’s lemma to determine the stochastic process by which the analytical
solution for the option value evolves and then solve µ as a function of the
other parameters by using some financial market model. However, since we
will have to use a numerical program to calculate the option value, it is clear
that this is not feasible in our situation. Therefore, we will interpret µ as a
parameter that represents the cost of maintaining the investment possibility
in general.

We need to place one restriction on the value of µ, i.e., µ > αV . Otherwise,
for some values of αC it would be never optimal to exercise the option as the
capital gain of V would exceed the required rate of return.

3.2 Derivation of the model

Let us again denote the option value with F (V,C,K) ≡ F . Then, the option
value in (V,C,K) ∈ X ≡ (0,∞)×(0,∞)×(0,∞) given the investment policy
I(V,C,K) ≡ I can be obtained from the Bellman equation

µF = max
I∈[0,k]

(
E[dF ]

dt
− I
)
. (13)

Note that dF is a function of I. Here dt in the denominator means that
the expression in the nominator is divided by the increment of time, not
differentiated with respect to time. By expanding dF using Itō’s lemma and
taking the expected value, we get

µF = max
I∈[0,k]

(
1

2
σ2
V V

2FV V +
1

2
σ2
CC

2FCC + αV V FV + αCCFC − IFK − I
)
.

(14)
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By noting that the expression to be maximized with respect to I is linear in
I, we conclude that if it is optimal to invest at all, then it is also optimal to
invest at the maximum rate k. Therefore, the optimal investment policy is
a bang-bang control as in the model of Majd and Pindyck [1987].

Let us assume that there exists a unique continuous surface V ∗(C,K) in X
so that it is optimal to invest if V ≥ V ∗(C,K) and wait otherwise. This
assumption is based on the intuition that the option value will be increasing
in V . Let us denote the option value in the investment region R ≡ X ∩{V ≥
V ∗(C,K)} with F and in the waiting region W ≡ X \R with f .

Under the assumption above the option value functions in the two regions
are given by PDEs

1

2
σ2
V V

2FV V +
1

2
σ2
CC

2FCC + αV V FV + αCCFC − kFK − µF − k = 0 in R,

(15a)
1

2
σ2
V V

2fV V +
1

2
σ2
CC

2fCC + αV V fV + αCCfC − µf = 0 in W.

(15b)

Note that only Eq. (15a) contains partial derivatives with respect to K as
no investment occurs in W .

The appropriate boundary conditions to the problem are

F (V,C, 0) = max(V − C, 0) (16a)
lim
V→0

f(V,C,K) = 0 (16b)

lim
C→∞

f(V,C,K) = 0 (16c)

F (V ∗(C,K), C,K) = f(V ∗(C,K), C,K) (16d)
FV (V ∗(C,K), C,K) = fV (V ∗(C,K), C,K) (16e)
FC(V ∗(C,K), C,K) = fC(V ∗(C,K), C,K) (16f)

Eq. (16a) is simply the payoff of the option, whereas Eq. (16b) states that
when V reaches zero, the option becomes worthless. This is because zero is
an absorbing barrier to the GBM given by Eq. (12a). Eq. (16c) means that
the option value converges to zero as the expected costs of the finished project
grow arbitrarily large. Eq. (16d) is the value-matching condition discussed
above. Eqs. (16e) and (16f) are the smooth-pasting conditions. Note that
now there are two smooth-pasting conditions as there are two stochastic
variables.
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A general solution to Eq. (15b) is of the form

f(V,C,K) = A(K)V β(K)Cη(K), (17)

where coefficients β(K) and η(K) must satisfy condition

1

2
σ2
V β(β − 1) +

1

2
σ2
Cη(η − 1) + αV β + αCη − µ = 0 (18)

for each value of K. We use short-hand notation for β(K) and η(K) here.
By general solution, we mean that any linear combination of functions of the
form given by Eq. (17) satisfies the PDE given by Eq. (15b).

Eq. (18) has solutions in all four quadrants of the (β, η)-plane [Adkins and
Paxson, 2011]. However, we can rule out three of the four quadrants by using
the boundary conditions given by Eqs. (16b) and (16c). Doing so we obtain
that for a solution of the option value in W it must hold that β > 0 and
η < 0.

From now on, we will assume that the solution to PDE (15b) is f(V,C,K) =
A(K)V β(K)Cη(K) where (β(K), η(K)) ∈ (0,∞) × (−∞, 0) ∀ K ∈ (0,∞) so
that Eq. (18) holds. A(K) must be solved using the other boundary condi-
tions and the option value in R.

Since the PDE in the investment region has no analytical solutions, we will
use a numerical approach based on an explicit finite difference method to
solve the rest of the investor’s problem. However, now that we know the
form of the analytical solution in the waiting region, we can write boundary
conditions (16d)-(16f) in a more convenient form. By inserting the quasi-
analytical solution given by Eq. (17) in the conditions mentioned above, we
obtain that at the investment threshold the following conditions must be
met:

F (V ∗(C,K), C,K)

FV (V ∗(C,K), C,K)
=
V ∗(C,K)

β(K)
, (19a)

F (V ∗(C,K), C,K)

FC(V ∗(C,K), C,K)
=

C

η(K)
, (19b)

where β(K) and η(K) satisfy Eq. (18). We will utilize conditions (19a)
and (19b) in the numerical program to find the placement of the investment
threshold. Once the investment threshold is solved, we can solve the values of
A(K), β(K), and η(K) for each discrete value of K. The numerical program
is discussed in further detail in Appendix A.
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4 Results

4.1 Base case

We will present the results of the model in two parts. First, we will consider
a base case and provide a discussion of the results in general. Then, we
will present the most interesting results by using the method of comparative
statics, i.e., examine how the results change when one parameter is changed
while the others remain the same. This allows us to isolate the effects of
single parameters on the investor’s optimal investment policy.

Let us consider a situation where the investor has an investment opportunity
of the kind discussed in the previous section. Let the total investment re-
quired to finish the investment program be K = 6 (Me) and the maximum
investment rate be k = 1 (Me/year). This implies that the minimum time
to complete the investment program is six years and that the unit of time is
years. We shall assume that the drift of V is αV = 0.04 and the volatility
of V is σV = 0.14. Let us consider at first a case where the drift of C is the
same as the drift of V (αC = 0.04) and the volatility of C is equal to the
volatility of V as well (σC = 0.14). We will assume that the required rate of
return of the option is µ = 0.08. In further discussion, we will refer to this
set of parameter values as the base case.

If we were considering an all-equity firm that consisted only of the invest-
ment opportunity studied here, then the base case values would imply that
the volatility of the firm’s stock is approximately

√
0.142 + 0.142 = 19.8%.

Considering that the implied volatility of the S&P 500 index options sold on
the Chicago Board Options Exchange is usually around 20%, the assumptions
made on the volatilities of the processes are fairly realistic [Yahoo Finance].12

The assumption that the drift rates of V and C are equal in the base case
implies that the instantaneous growth rate of V − C is linear in V − C so
that it is negative if V −C < 0, positive if V −C > 0, and zero if V −C = 0.
Moreover, the capital rate of return for V − C equals to αV = αC = 0.04.
This assumption is reasonably realistic as well considering that the total rate
of return for V −C equals to the capital rate of return plus the payout rate.
If the payout rate were for example 0.04 for both V and C, then the total rate
of return would be 0.08, which is realistic considering the historical returns

12One should note that the S&P 500 represents a well diversified portfolio of leveraged
assets. Therefore, using its volatility to represent the volatility of a typical firm is a rough
approximation.
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Figure 1: The option value, investment threshold and NPV rule when K = 6

on equity investments.

Figure 1 shows the option value and the investment threshold in the base
case when K = 6. We can see that the option value is increasing in V and
decreasing in C as intuition suggests. This is the case for other values of K
as well. The black line in the figure shows the position of the investment
threshold V ∗(C,K = 6).13 As we can see, the threshold is rising in C, which
is also intuitively explained by the fact C represents the costs of the finished
project. Note also that the investment threshold is not an isocurve of the
option value. Therefore, we cannot in general draw a straight connection
between the option value and the location of the investment threshold.

The red dashed line in Figure 1 shows the NPV investment rule in this
situation assuming that the whole investment is finished at the full rate if it
is optimal to invest.14 We can see that the NPV rule is to invest in cases
where it is optimal to wait according to the ROV rule. Also, in the waiting
area of the NPV rule, the option to invest has no value contradicting the

13The threshold curve is not smooth because of the numerical finite difference scheme
used to solve the problem.

14In this case the NPV rule is to invest only if e−µ
K
k

(
V eαV

K
k − CeαC

K
k

)
−

k
µ

(
1− e−µK

k

)
≥ 0.
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Figure 2: The option value surface, now-or-never NPV, and investment
threshold when K = 6.00

ROV results.

The NPV rule is by its definition obtained by calculating the expected cash
flows of the project net of the initial investment costs. Therefore, there
must be other reasons than the initial investment cost for the investment
threshold V ∗(C,K = 6) to be above the NPV rule. The reason is twofold.
First, since both V and C evolve stochastically in time, there is a chance that
the investment opportunity might increase in value over time. This implies
that there are benefits to waiting that are not present in the NPV analysis.
Second, as there is uncertainty on the value of the finished project due to
the time-to-build, it is optimal to wait longer than the NPV rule suggests
in order to cover this uncertainty by waiting for the expected value of the
finished project to rise well above the NPV rule.

One should also note that the slope of V ∗(C,K = 6) is greater than that of
the NPV rule. This is explained by the fact that because of the assumption
that V and C follow GBMs, the volatility of the process that V − C follows
increases in both V and C. Therefore, at larger values of V and C, the
benefits of waiting are larger than at lower values. We should note that
even when K decreases, the slopes of the curves remain different due to this
reason.
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Figure 3: The investment threshold of the base case for different values of K

Figure 2 shows the option value surface, the now-or-never NPV, and the
projection of the investment threshold on the option value surface when K =
6.00. We can see that the value-matching and smooth-pasting conditions are
met by the numerical solution: the option values in the investing and waiting
regions meet on the investment threshold, and the surface is smooth on the
threshold. Also, we notice that the option value is non-negative for all values
of (V,C). Furthermore, by comparing the option value and the NPV, we
observe that the option value is greater than the NPV for all values of (V,C)
reflecting the fact that unlike NPV analysis, ROV considers also the value of
waiting and the possibility to vary the investment rate. We also notice that
the difference between the option value and the NPV converges to zero as
V increases and C decreases. This happens since if V >> 1 and C << 1,
then the investment program will be completed almost certainly at full pace
without pauses yielding on average a total payoff that equals to the NPV.

Figure 3 shows the investment thresholds for various values of K in the base
case. We can see that the threshold curves are increasing in C for each value
of K as they should by the argument that the value of the finished project
is decreasing in C. Also, in the base case the investment thresholds increase
in K. This is due to two reasons. First, the remaining initial investment
increases in K. Second, the uncertainty over the value of the payoff when
the investment program is completed is increasing in K since a large value
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of K indicates that the minimum time-to-build is large as well.

Note that Figure 3 can be used as a decision rule: since we have implicitly
assumed that the investor can observe V , C, and K at each point in time,
the investor can use the investment thresholds at different values of K as a
guide on how to proceed optimally with the investment program.

4.2 Comparative statics

4.2.1 Sensitivity with respect to αC

We shall begin this section by considering how the value of αC affects the
investment threshold. Figure 4 shows the investment thresholds at different
values of K for various values of αC while holding the other parameters
the same as in the base case. We can see that for the smaller values of K
the effect of αC on the results is monotonic: a decrease in αC shifts the
investment threshold up and, thus, increases the incentive to wait. However,
for K = 6 the effect is more subtle: when αC decreases from 0.08 to -0.10 the
investment threshold shifts up, but as αC decreases further the investment
threshold V ∗(C,K = 6) shifts downwards. As the main motivation for this
study is to gain insight on how the inclusion of C affects the investor’s choices,
we need to discuss the mechanics behind the effects of αC on the investor’s
optimal behaviour in detail.

The effect of αC on the results can be understood by considering the expected
evolution of V − C. By using Eqs. (12a) and (12b) we get

E[(V − C)t+s|Ft] = Vte
αV s − CteαCs, (20)

where Ft is a set containing all information on the evolution of V and C up
to time t. Now we can see that the expected evolution of the payoff depends
on the value of αC . The expected increase of V − C is increasing in V and
αV and decreasing in C and αC .

Let us consider first how αC affects the investment boundary when K =
0.01, i.e, the capital investment is nearly finished and the payoff can be
obtained almost instantaneously. This will help us understand the effect on
the investment thresholds for larger values of K. The plots in Figure 4 show
that the investment threshold V ∗(C,K = 0.01) increases monotonically as
αC decreases. In other words, when αC decreases, the future probability
distribution of the payoff shifts to a desirable direction creating incentives
for waiting since the gap between the capital appreciation of V − C and
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Figure 4: The sensitivity of the investment threshold with respect to αC
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the required rate of return µ narrows. This is also shown by McDonald and
Siegel [1986] in the case K → 0.15

Now we can consider the effect of αC on the investment thresholds when
K > 0.01 and the payoff cannot be obtained instantaneously on demand.
Recall that the underlying idea behind the dynamic programming approach
used to solve the investor’s problem is that at each state (V,C,K) the optimal
decision is derived assuming that the subsequent decisions are optimal as well.
In our case, this means that the investor holding the option to invest with K
amount of initial investment remaining knows the optimal investment rule
for smaller values of K as well. Due to the fact that the cash flows are
discounted, this implies that for larger values of K it is optimal to wait for
V and C to reach such values that the remaining initial investment will be
done with minimal pauses on average assuming that the investor follows the
optimal investment rule.16 In this way, the initial investment costs will be
paid as late as it is reasonable while still allowing the investor to obtain the
payoff as soon as it is optimal to do so in most cases. The drivers behind this
logic are that, first, the discount factor implies that cash outflows paid in the
future are less valuable than if they were paid now, and second, because of the
discount rate, it is better to obtain the payoff now than in the future assuming
that it would actually be optimal to obtain the payoff now. Therefore, the
placement of the investment thresholds at larger values ofK depends on both
the placement of the investment threshold when K → 0 and the stochastic
evolution of the payoff.

To fully understand the logic above, we shall first consider the situation in
the upper left plot of Figure 4, where αV < αC . By Eq. (20) this implies
that the payoff is expected to increase in the future less than in the base
case displayed by Figure 3. Therefore, as αC increases from the base case
value αC = 0.04, the investment threshold for K = 0.01 decreases for each
value of C since the incentive to wait diminishes. Following the threshold
V ∗(C,K = 0.01), the thresholds for larger values of K shift down as well
since otherwise the investor would wait for too long to begin investing and
the expected discounted payoff at the end of the investment program would
decrease. Notice also that the spread between the thresholds for different
values of K increases in C. This is explained by Eq. (20): since the expected
increase of C is linear in C, the investor will wait for V to increase further

15It can be shown numerically that V ∗(C,K) converges to the analytical results of
McDonald and Siegel [1986] when K → 0.

16It can be shown numerically that if V −C evolves according to Eq. (20), the investor
will receive the payoff after the minimum time-to-build once it is optimal to invest at
K = 6 by investing at full rate up to the completion of the investment program.
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for larger values of C to offset the larger expected increase of C. This argu-
ment applies generally as the effects of αC on the investment thresholds are
amplified at large values of C.

Let us then consider what happens when αC decreases from 0.08 to 0.00 by
examining the upper plots in Figure 4. We notice that V ∗(C,K = 0.01) shifts
upwards for each value of C in comparison to the same threshold curve for
αC = 0.08 as αC decreases. This reflects the increased incentive to wait since
for αC = 0.00 C is not expected to increase at all, whereas the stochastic
process of V remains the same as before. In effect, when αC decreases, the
gap between µ and the growth rate of the payoff decreases and, thus, the
cost of waiting decreases as discussed above.

However, we notice that the investment thresholds for large values of K shift
up less than the thresholds for smaller values of K for each value of C as
αC decreases. The explanation for this is that the decrease of αC from 0.08
to 0.00 increases the growth rate of the payoff. Therefore, since after the
decrease of αC the payoff is expected to increase more during the minimum
time-to-build than in the case of αC = 0.08, it is optimal to start investing at
lower values of V with respect to the investment threshold at K → 0 given a
value of C than in the case αC = 0.08. As explained above, this enables the
investor to obtain the payoff as soon as it is optimal to do so on average.

Moreover, we observe that for small (large) values of C, the investment
threshold is increasing (decreasing) in K. This is explained by the effect
of the initial investment cost on the threshold. Since the investor needs to
payK amount of capital to obtain the payoff, it is not optimal to start invest-
ing if the expected payoff of the investment program exercised by the optimal
policy does not at least exceed the discounted initial investment left. This
is depicted by the fact that the intercept of the investment threshold and
the vertical axis is positive in all cases where K > 0. Also, as K decreases,
this intercept converges to zero as the initial investment left decreases and
its effect on the investment threshold vanishes. Recall that the initial invest-
ment outflows are completely irreversible. Therefore, the initial investment
outflows that are already paid are not taken into consideration in the sub-
sequent investment decisions. This explains why for small values of C, the
investor will in the end settle for a payoff that is smaller than it is on the
investment thresholds for larger values of K, as can be seen in Figure 4.

This threshold-increasing effect of K is present for all values of C and its
magnitude does not depend on the value of C. For small values of C, first, the
expected payoff of the optimally completed investment program is not large
in comparison to K for values of V that are near the investment threshold,
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and second, the absolute change in the value of the payoff during the time-
to-build is on average small according to Eq. (20). Therefore, for small
values of C, the investment threshold is increasing in K since the need to
wait for V to reach such values that the expected payoff overcomes the initial
investment dominates the investment-hastening effect of the expected growth
of the payoff during the investment period.

In contrast, for larger values of C, the expected payoff of an optimally exe-
cuted investment program is significantly larger than the initial investment
and the expected absolute increase of the payoff during the investment pro-
gram is substantial. Therefore, the effect of the expected growth of the payoff
during the investment process dominates the effect of the initial investment
and, thus, the investment threshold is actually decreasing in K for large
values of C.

Finally, we will consider the cases where αC decreases below zero, i.e., C is
expected to decrease in the future. We can see from Figure 4 that V ∗(C,K =
0.01) will shift further up as αC decreases. The effect on the thresholds at
higher values of K is not as dramatic, however. We notice that, for example,
V ∗(C,K = 6) stays the same as αC changes from 0.00 to -0.10 and actually
shifts down when αC decreases further to -0.20. This happens as now C
is expected to decrease in the future, whereas V is expected to increase as
before. Therefore, when K = 6, it is optimal to start investing even if C is
substantially larger than what it should be in order to exercise the option as
K → 0.

Our interpretation of the results above is that by starting to invest at larger
values of K, the investor buys the right to be able to receive the payoff
just as V and C reach such values that it is optimal to do so, rather than
having to wait for the minimum time-to-build to receive the payoff once this
happens. This interpretation justifies the observation that the investment
threshold may be decreasing in K for large values of C since it is optimal
to start investing even when the current value of the payoff is suboptimal in
comparison to the threshold at K → 0 if the payoff is expected to increase
fast enough after the investment process begins. Also, the observation that
V ∗(C,K = 6) shifts downwards as αC decreases from -0.10 to -0.20 is then
well explained by the fact that since C is expected to decrease at a larger
rate when αC = −0.20, it is optimal to start investing at higher values of C
given a value of V because the expected decrease of C is greater.
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4.2.2 Sensitivity with respect to k

As our explanation for the results above relies on the logic that the investor
holding the option considers both the expected evolution of V −C during the
investment period and the optimal investment policy at smaller values of K
when making decisions on whether to invest or wait, we would assume that
the results of the comparative statics above would be amplified for smaller
values of k since this would imply a longer investment period. Consider for
example the case where αC < 0 and C is expected to decrease while V is
expected to increase. Now, if we decrease the maximum investment rate,
then we expect that it is optimal to start investing at even higher values
of C given a value of V since the minimum time-to-build is longer, thereby
implying that the expected decrease of C during the investment period is
larger as well. By generalizing the logic above, we would assume that an
decrease in k would amplify the results of the comparative statics above.
Motivated by this, we will next analyze the results of the same comparative
statics as above, but using a smaller maximum investment rate k = 0.5. This
doubles the minimum time-to-build for every value of K in comparison to
the value k = 1 used above.

Figure 5 shows the results of the comparative statics with respect to αC
when k = 0.5 and the other parameters are the same as in the base case. We
notice that the intuition above is correct as the smaller value of k amplifies
the effects of αC on the investment thresholds. Note that the investment
thresholds are not affected by the change in the value of k when K = 0.01
since then the payoff can be received almost instantly. The reason why the
other thresholds react more dramatically to changes in αC than in the case
above is that now the investor needs to look further ahead in time when
making decisions for larger values of K as the minimum time-to-build is
longer.

An interesting result occurs in the lower right case of Figure 5 where αC =
−0.20. For large values of C and K, it is optimal to invest even if V −C < 0.
However, this is well explained by the expected increase of V − C during
the investment program. Also, for each value of C, the NPV rule in this
extreme situation is to invest at a smaller value of V than the ROV rule
suggests. The observation applies generally: the ROV investment threshold
is always larger than the now-or-never NPV threshold. This strengthens our
explanation for why it might be optimal to invest even if the current value
of the payoff is negative since the fact that the ROV threshold is larger than
the NPV threshold in all situations ensures that the average value of the
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when k = 0.5
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investment program executed by the ROV rule is positive in all cases.

Recall that Majd and Pindyck [1987] found the investment threshold to be
increasing in K for all parameter values. On the contrary, in our two-factor
model, the investment thresholds may be decreasing inK for certain values of
C. What explains this difference? The answer is obvious: our model is built
on different assumptions. Particularly, in our model there are two stochastic
variables that determine the payoff whereas the model of Majd and Pindyck
consists only of one. Therefore, the results are not completely comparable.
This is also the explanation for why we find that in our model the investment
threshold can be increasing in k, which might seem to contradict the results
of Majd and Pindyck. However, this effect is well explained by the evolution
of the payoff as seen above.

4.2.3 Sensitivity with respect to other parameters

To conclude the comparative statics, we will briefly discuss the effect of
the other parameters as well. We shall start by discussing the parameters
that determine the uncertainty in the situation, i.e., σV and σC . These
parameters increase the volatility of the stochastic process that V −C follows.
Since our model is similar to the model of Majd and Pindyck [1987] in the
sense that the investor is holding a compound option, an increase in the
volatility of the payoff only increases the benefits of waiting and shifts the
investment thresholds up in all cases. Also, if we assumed that the increments
of V and C were correlated, then the effect of the correlation would be
to increase or decrease the volatility of the payoff. If the correlation were
positive (negative), then uncertainty would decrease (increase) shifting the
investment thresholds down (up).17

The effect of αV on the results is similar to that of αC . An increase in
αV increases the benefits of waiting and shifts the investment threshold
V ∗(C,K = 0.01) upwards. Again, the investment thresholds at larger val-
ues of K are located in a way that once the first initial investment is made,
the investor will on average be able to invest continuously at the maximum
rate up to the end of the investment program. We should also note that
the investment thresholds grow without boundaries as αV → µ (assuming
that αV > αC) since then the long-term capital rate of return of the payoff
converges to µ and the cost of waiting diminishes. Finally, as µ represents

17By using Eqs. (12a) and (12b), we obtain that in the case of a non-zero
correlation, the stochastic part of the increment of the payoff has a variance of(
σ2
V V

2
t − 2VtCtσV σCρ+ σ2

CC
2
t

)
dt, where ρ is the correlation between dzt and dwt.
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the cost of waiting in our model, the effect of an increase in µ is to shift the
investment threshold down for all values of K and thus hasten investment.

5 Conclusions and discussion

The study proposes a method to compute the option value and the invest-
ment thresholds in a situation where the investor can sequentially invest in
project opportunity, the payoff of which is a function of two stochastic vari-
ables. The sequential nature of the investment process is modeled by allowing
the investor to choose at which rate to invest continuously in time. As the
investment rate is assumed to be bounded between zero and a positive con-
stant, the investor cannot obtain the payoff instantly but has to wait for at
least a minimum time-to-build.

The results of the model are analyzed using the method of comparative stat-
ics. We find that when K → 0, the investment threshold increases in αV
and decreases in αC . For larger values of K, the placement of the invest-
ment thresholds depends on the expected stochastic evolution of the payoff
V − C alongside with the minimum time-to-build. As the value of k affects
the minimum time-to-build, it affects the investment thresholds as well. We
explain the results of the comparative statics by considering the investor’s
problem in the framework of dynamic programming. Uncertainty is found
to postpone investment in all cases. Also, the ROV investment threshold
is found to be always larger than the now-or-never NPV threshold given a
value of C.

Some of the outcomes that the model yields might seem to be in contradiction
with the earlier results of Dixit and Pindyck [1994]. However, the differences
are explained by the fact that in our model the stochastic evolution of the
payoff is different than in the model of Majd and Pindyck because of the
inclusion of the second stochastic variable.

We chose V and C to represent the discounted cash in- and outflows of the
completed project. We also assumed that the value of the completed project
is V −C. However, the stochastic variables could have other interpretations
depending on which particular investment situation is at interest. Also, the
payoff could be generally any function of V and C in our framework.18 In
this sense, our model is general and can be used to analyze multiple invest-

18We do not take a stance on which conditions the payoff function should meet in order
for the problem to have a solution.
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ment situations that meet the assumptions made about the nature of the
investment process and the stochastic variables.

One of the limiting assumptions behind the model is that the investor can
decide on whether to invest or wait continuously in time. As discussed above,
this assumption might be a rather good approximation in some situations.
However, if the initial investment decision is completely irreversible, then our
model is irrelevant. For example, the initial decision to build a coal power
plant is practically completely irreversible and the construction time of the
plant is substantial. Also, the major revenue and cost determinants of the
power plant, i.e, the prices of electricity and coal, evolve stochastically in
time. Therefore, the exercise of building and solving a two-factor model, in
which the investment decision is modeled following the lead of Bar-Ilan and
Strange [1996] could be interesting. In this case, the effect of the volatilities
of the processes that V and C follow on the results could be the opposite than
it is in our model. In addition, it would be interesting to see if the effect of the
drift rates would be similar to our model since even if the initial investment
decision is made completely irreversible, the investment lag implies that a
rational investor considers how the payoff is expected to evolve during the
lag when making investment decisions.
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A The numerical method

We first apply the transformation F (V,C,K) = e−µ
K
k G(X, Y,K), whereX =

lnV and Y = lnC, to the PDE given by Eq. (15a) to modify the PDE to
a simpler form and to ensure numerical stability. After the transformation,
the PDE in R is:
1

2
σ2
VGXX +

1

2
σ2
CGY Y + (αV −

1

2
σ2
V )GX + (αC −

1

2
σ2
C)GY − kGK − keµ

K
k = 0.

(21)
Note that the coefficients of the PDE are now constant. After the transfor-
mation, the boundary conditions that solution for Eq. (21) must satisfy are:

G(X, Y, 0) = eXY , (22a)
G(X∗(Y,K), Y,K)

GX(X∗(Y,K), Y,K)
=

1

β(K)
, (22b)

G(X∗(Y,K), Y,K)

GY (X∗(Y,K), Y,K)
=

1

η(K)
, (22c)

where β(K) and η(K) solve Eq. (18) for each value of K.

Since we will solve the PDE numerically in a cubic grid, we need some ad-
ditional boundary conditions that apply at the boundaries of the grid. For
this purpose, we assume the following second-order boundary conditions:

lim
X→∞

GXX = 0 (23a)

lim
X→−∞

GXX = 0 (23b)

lim
Y→∞

GY Y = 0 (23c)

lim
Y→−∞

GY Y = 0 (23d)

These boundary conditions are chosen since they are known to work well
with many financial options [Wilmott, 2007]. Also, these conditions were
found to work in the case of our model. We will from now require that these
conditions are approximately met at the boundaries of the lattice.

Let us denote G(i∆X, j∆Y, l∆K) = Gl
i,j, where i ∈ {imin, imin + 1, ..., imax},

j ∈ {jmin, jmin + 1, ..., jmax}, and l ∈ {lmin, lmin + 1, ..., lmax}. ∆X, ∆Y , ∆K,
and the minimum and maximum indices are predetermined constants that
govern the dimensions of the lattice.19

19imin and jmin will be negative in order to obtain option values near the zero-border
in the (V,C)-world. The value of lmin will be zero.



33

We will use the following finite difference approximations for the partial
derivatives of G:

GX(i∆X, j∆Y, l∆K) =
Gl
i+1,j −Gl

i−1,j

2∆X
, (24a)

GY (i∆X, j∆Y, l∆K) =
Gl
i,j+1 −Gl

i,j−1

2∆Y
, (24b)

GXX(i∆X, j∆Y, l∆K) =
Gl
i+1,j − 2Gl

i,j +Gl
i−1,j

(∆X)2
, (24c)

GY Y (i∆X, j∆Y, l∆K) =
Gl
i,j+1 − 2Gl

i,j +Gl
i,j−1

(∆Y )2
, (24d)

GK(i∆X, j∆Y, l∆K) =
Gl+1
i,j −Gl

i,j

∆K
. (24e)

By inserting the approximations above in the transformed PDE given by Eq.
(21), we obtain the difference equation:

Gl+1
i,j = a+G

l
i+1,j + a−G

l
i−1,j + b+G

l
i,j+1 + b−G

l
i,j−1 + cGl

i,j − nl, (25)

where

a+ =
∆K

2k∆X
(
σ2
V

∆X
+ αV −

σ2
V

2
), (26a)

a− =
∆K

2k∆X
(
σ2
V

∆X
− αV +

σ2
V

2
), (26b)

b+ =
∆K

2k∆Y
(
σ2
C

∆Y
+ αC −

σ2
C

2
), (26c)

b− =
∆K

2k∆Y
(
σ2
C

∆Y
− αC +

σ2
C

2
), (26d)

c = 1− σ2
V ∆K

k(∆X)2
− σ2

C∆K

k(∆Y )2
, (26e)

nl = ∆Keµ
l∆K
k . (26f)

If the lattice point considered is on the lattice boundary, then we discretize
the boundary conditions given by Eqs. (24a)-(24e). Then, the discretized
boundary conditions can be inserted in Eq. (25) to compute the option value
at the lattice point.

We shall now illustrate the idea of the computational method. First, we
calculate the values of G when l = 0 using Eq. (22a). Then we calculate the
values of option when l = 1 using Eq. (25) and the discretized versions of
boundary conditions (24a)-(24e).
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Now that we know the preliminary option values at l = 1, the next task is
to find the investment threshold. For this we use boundary conditions (22b),
(22c), and (18). By combining these conditions, the following equation must
be met on the investment threshold:

1

2
σ2
V

GX

G
(
GX

G
− 1) +

1

2
σ2
C

GY

G
(
GY

G
− 1) + αV

GX

G
+ αC

GY

G
− µ = 0 (27)

Our strategy is then to evaluate the left-hand side of the equation at every
lattice point for l = 1 by using the finite difference approximations in Eqs.
(24a) and (24b).20 The location of the investment threshold given a value of
j is then the pair (i, j), for which the absolute value of the left-hand side of
Eq. (27) is the smallest in i ∈ {imin + 1, imin + 1, ..., imax − 1}.21 After we
have numerically solved the free boundary for l = 1, we can solve the values
of constants A(∆K), β(∆K), and η(∆K) using Eqs. (22b) and (22c), the
value-matching condition in Eq. (16d), the made functional transformation,
and the form of the analytical solution in the waiting region given by Eq.
(17). We solve the values of these constants at each investment threshold for
l = 1 and take the averages of these values to determine the final values.

Now that we have calculated the initial option values, the placement of the
investment threshold, and the constants of the analytical solution in the
lower region, we should fill the waiting region for l = 1 with the values given
by the analytical solution before repeating the procedure above for l = 2.
However, this as this proves to cause numerical instability, we update the
option values after the initial option values and the investment thresholds
have been determined for all values of l. We note that this is technically
wrong as the numerical option values in the waiting region affect the option
values in the investment region for larger values of l. However, as the results
seem to be realistic, we allow this minor flaw.

Once the iteration above has been completed for all values of l and the option
values in the waiting region are updated, the final solution for the investor’s
problem is obtained by using the functional and variable transformations in
the opposite direction than what was initially done.

20The locations of the investment threshold at l = lmin and l = lmax are extrapolated.
21Here, we implicitly assume that the investment threshold is not at imin or imax for

any value of Y or K. This assumption is met if the lattice dimensions are chosen properly.
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B Summary in Finnish

Investointimahdollisuuksien arvon määrittäminen on yleinen ongelma niin
yksityisissä kuin myös julkisissa organisaatioissa. Usein ongelmana on se, et-
tä päätöksentekijöiden tulee valita optimaaliset sijoitusmahdollisuudet kaik-
kien mahdollisuuksien joukosta ottaen huomioon budjettirajoite sekä mah-
dollisesti muita rajoitteita. Koska päätöksenteon kriteerinä on usein ainakin
investointikohteiden arvo, on selvää että kohteiden arvon määrittäminen on
oleellinen osa kuvailtua päätöksentekoprosessia. Arvon määrittämisen ohella
on oleellista tietää myös onko kohteeseen sijoittaminen ylipäätänsä kannat-
tavaa.

Nettonykyarvoanalyysi on eräs yksinkertainen tapa määrittää sijoitusmah-
dollisuuden arvo. Ideana on määrittää sijoitusmahdollisuuden tuottamien
kassavirtojen nykyarvo diskonttaamalla kassavirtojen arvioidut odotusarvot
käyttäen diskonttauskertoimena tuottovaatimusta, joka kuvaa sijoituskoh-
teen riskiä. Investointimahdollisuuden nettonykyarvo on täten edellä mai-
nittujen diskontattujen odotusarvoisten kassavirtojen summa. Kun nettony-
kyarvo on määritetty, saadaan yksinkertainen päätössääntö; investoi vain jos
nettonykyarvo on ei-negatiivinen.

Nettonykyarvoanalyysillä on kuitenkin puutteensa. Ensiksi, se ei ota lainkaan
kantaa investointimahdollisuuden tuottamien kassavirtojen yhteiseen toden-
näköisyysjakaumaan, sillä nettonykyarvon kaavassa tarvitaan vain tämän
yhteisjakauman keskiarvoa. Toiseksi, mikäli kassavirtojen jakauma muuttuu
ajassa, ei nettonykyarvoanalyysi ota huomioon sitä mahdollisuutta, että tällä
hetkellä kannattamattomasta mahdollisuudesta voi tulla kannattava tulevai-
suudessa. Jälkimmäinen seikka tarkoittaa sitä, että nettonykyarvoanalyysi
arvioi kannattamattomien investointimahdollisuuksien arvon väärin, sillä yl-
lä esitetyn argumentin mukaan myös näillä on arvoa, mikäli kassavirtojen
jakauma kehittyy ajassa.

Reaalioptioanalyysi on vaihtoehtoinen keino mallintaa investointimahdolli-
suuksia. Reaalioptioanalyysin lähtökohtana on se, että reaalisia investoin-
timahdollisuuksia mallinnetaan finanssioptioiden tavoin. Reaalisuudella tar-
koitetaan tässä asiayhteydessä sitä, että sijoituskohde ei ole arvopaperi, vaan
esimerkiksi tuotekehitysprojekti. Reaalioptioanalyysin viitekehyksessä esimer-
kiksi mahdollisuus rakentaa ydinvoimalaitos nähdään osto-optiona ydinvoi-
malaitokseen investointikustannuksen suuruisella toteutushinnalla. Tästä nä-
kökulman muutoksesta seuraa kaksi asiaa. Ensinnäkin, vaikka sijoitusmah-
dollisuuden nettonykyarvo olisi negatiivinen, on sijoitusmahdollisuudella ar-
voa. Toiseksi, myös päätössääntö eroaa nettonykyarvoanalyysin vastaavasta.
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Nimittäin, vaikka mahdollisuuden nettonykyarvo olisi positiivinen, ei ole vält-
tämättä vielä optimaalista harjoittaa optiota ja tehdä sijoitusta. Syynä on
se, että sijoituskohteesta voi tulla tulevaisuudessa vieläkin kannattavampi.
On kuitenkin huomattava, että mikäli investointimahdollisuuden tuottamat
kassavirrat ovat täysin deterministiset ja aikainvariantit, ovat reaalioptioana-
lyysin tulokset identtiset nettonykyarvoanalyysin tulosten kanssa. Reaaliop-
tioanalyysin edut tulevat esiin siis tilanteissa, joissa investointikohteen arvo
muuttuu ajassa.

Kandidaatintutkielmassa tarkasteltiin tilannetta, jossa investoijalla on mah-
dollisuus sijoittaa reaaliseen sijoituskohteeseen, jonka arvo riippuu kahdesta
muuttujasta. Muuttujien oletettiin kehittyvän stokastisesti ajassa toisistaan
riippumatta. Muuttujien tulkittiin kuvaavan valmiin investointikohteen dis-
kontattuja tuloja ja menoja.

Koska useimmissa käytännön tilanteissa investointikohdetta ei voida raken-
taa tai saada valmiiksi hetkessä, mallinnettiin investointiprosessi siten, että
investoija voi sijoittaa mahdollisuuteen korkeintaan tietyllä määrällä aikayk-
sikköä kohden. Malli rakennettiin jatkuvassa ajassa, jolloin oletettiin, että
investoija voi säätää investointinopeutta niin ikään jatkuva-aikaisesti. Inves-
tointinopeuden oletettiin olevan rajoitettu nollan ja positiivisen vakion eli
maksimaalisen investointinopeuden välille. Tästä seuraa loogisesti se, että
jokaisella jäljellä olevan alkuinvestoinnin arvolla on olemassa minimiraken-
nusaika eli aika, jonka päästä investointikohde olisi valmis olettaen, että jäl-
jellä oleva alkuinvestointi maksetaan mahdollisimman nopeasti.

Tutkielman päämääränä oli rakentaa tilannetta mallintava reaalioptiomalli
sekä ratkaista option arvofunktio ja optimaalinen päätössääntö, joka kertoo
optimaalisen investointinopeuden kussakin tilanteessa. Tavoitteena oli erityi-
sesti tutkia sitä, kuinka valmiin investoinnin kustannuksia kuvaavan muut-
tujan odotettu kehityskulku vaikuttaa investoijan optimaaliseen päätössään-
töön. Koska saatu malli täytyi ratkaista numeerisin keinoin, oli osatavoitteena
myös kehittää toimiva numeerinen ratkaisumenetelmä.

Rakennetun mallin tuloksena saatiin sekä option arvo että optimaalinen pää-
tössääntö numeerisessa muodossa. Tulokset analysoitiin tarkastelemalla en-
siksi esimerkkitapausta ja suorittamalla tämän jälkeen herkkyysanalyysi mal-
lin parametrien suhteen.

Saatu päätössääntö on niin kutsuttu ”bang-bang”-ohjaus; mikäli on ylipäätän-
sä optimaalista investoida, kannattaa investoida maksimaalisella nopeudella.
Lisäksi päätössääntö on kaikilla jäljellä olevan alkuinvestoinnin arvoilla kas-
vava funktio kustannusmuuttujasta. Toisin sanottuna, mitä suuremmat ovat
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projektin arvioidut kulut tällä hetkellä, sitä suurempi tulee olla tulomuuttu-
jan arvo, jotta olisi optimaalista investoida odottamisen sijaan.

Se, kuinka päätössääntö käyttäytyy jäljellä olevan alkuinvestoinnin funktio-
na, ei ole lainkaan triviaalia. Tämän vuoksi päätössäännön dynamiikka se-
litettiin kaksivaiheisesti. Ensiksi tarkasteltiin päätössääntöä silloin, kun al-
kuinvestointia on hyvin vähän jäljellä, jolloin minimirakennusaika on lyhyt.
Tämän jälkeen pääteltiin kuinka päätössääntö kehittyy jäljellä olevan inves-
toinnin kasvaessa soveltaen dynaamisen ohjelmoinnin periaatetta ja valmiin
investointikohteen arvon odotusarvoista kehittymistä investointijakson aika-
na.

Herkkyysanalyysissa havaittiin, että mitä nopeammin tulomuuttujan tai mi-
tä hitaammin kustannusmuuttujan odotetaan kasvavan tulevaisuudessa, si-
tä suurempi tulee tulomuuttujan arvon olla suhteessa kustannusmuuttujaan,
jotta optio olisi optimaalista harjoittaa loppuun valmiin investointikohteen
saamiseksi. Tulos kuvaa sitä, että mikäli alkuinvestointia on jäljellä vain vä-
hän ja investointiprosessi voidaan saada halutessa nopeasti valmiiksi, ovat
odottamisen hyödyt suuret suhteessa haittoihin. Teknisesti ottaen kyse on
siitä, että option tuottovaatimuksen ja valmiin projektin odotusarvoisen ar-
vonnousun välinen ero pienenee, jos tulomuuttujan kasvuvauhti kasvaa tai
kustannusmuuttujan kasvuvauhti pienenee.

Päätössääntö suuremmilla jäljellä olevan alkuinvestoinnin arvoilla määräy-
tyy sen mukaan, kuinka investointikohteen arvon odotetaan kehittyvän in-
vestointiprosessin aikana. Nyrkkisääntö on se, että alkuinvestointi kannattaa
lykätä mahdollisimman kauas tulevaisuuteen, muttei kuitenkaan liian kauas
ottaen huomioon päätössääntö pienillä jäljellä olevan investoinnin arvoilla.
Perusteena tälle on se, että on parempi maksaa investointikulut huomenna
kuin tänään. Tämä taas johtuu siitä, että rahavirrat diskontataan nykyhet-
keen myös reaalioptioviitekehyksessä. Toisaalta, samasta syystä on epäedul-
lista viivästyttää alkuinvestointeja liian kauan, sillä tällöin investointiproses-
sin valmistuminen viivästyy liikaa pienentäen investoinnin nykyarvoa.

Yllä mainitun nyrkkisäännön mielenkiintoinen implikaatio on se, että jos kus-
tannusmuuttujan oletetaan pienenevän tulevaisuudessa riittävän nopeasti, on
mahdollista, että suurilla jäljellä olevan investoinnin arvoilla on optimaalista
investoida tilanteissa, joissa tämänhetkinen arvioitujen tulojen ja menojen
erotus on negatiivinen. Tämä tulos selittyy hyvin sillä, että koska kustan-
nusmuuttujan oletetaan laskevan tulevaisuudessa, kannattaa investoijan en-
nakoida ja alkaa investoimaan ajoissa, jotta investointikohde voidaan saada
valmiiksi heti kun optio on optimaalista harjoittaa loppuun.
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Mallin muuttujien kasvunopeuksien vaikutuksen ohella tutkittiin sitä, kuin-
ka muuttujien tulevaisuuden arvojen keskihajonta, eli volatiliteetti, ja maksi-
maalinen investointinopeus vaikuttavat tuloksiin. Herkkyysanalyysin keinoin
havaittiin, että muuttujien volatiliteetin kasvattaminen viivästyttää inves-
tointeja, sillä volatiliteetin kasvaessa odottamisen hyödyt kasvavat enemmän
kuin haitat. Huomattiin myös, että pienemmillä maksimaalisen investointi-
nopeuden arvoilla on optimaalista ennakoida enemmän muuttujien odotet-
tua aikakehitystä. Tulos selittyy sillä, että pienempi investointinopeus johtaa
pidempiin investointiaikoihin.

Yksi mallin rajoittavimmista oletuksista on se, että investoijan oletettiin ky-
kenevän päättämään investointinopeudesta kaikkina ajanhetkinä. Tämä joh-
taa erityisesti siihen, että investoija voi pysäyttää investointiprosessin milloin
tahansa. On selvää, että useimmiten tositilanteissa näin ei ole. Mikäli inves-
tointiprosessi on melko joustava siinä suhteessa, että investointiprosessin jat-
kamista voidaan lykätä prosessin eri vaiheiden välissä tai peräti vaiheiden
aikana, on rakennettu malli kohtalainen approksimaatio tilanteesta. Kuiten-
kin, jos investointipäätös on kokonaisuutena peruuttamaton, eli positiivinen
päätös johtaa koko investoinnin toteuttamiseen kerrallaan, on malli epärele-
vantti. Tämän vuoksi olisi mielenkiintoista rakentaa vastaava malli tilantees-
sa, jossa investointipäätös kokonaisuudessaan on tehtävä kerrallaan. Tällöin
esimerkiksi muuttujien volatiliteettien vaikutus investointisääntöön voisi ol-
la päinvastainen. Lisäksi olisi mielenkiintoista nähdä, että olisiko muuttujien
kasvunopeuksien ja päätössäännön välinen dynamiikka tutkielman tuloksia
vastaava.
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