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1 Introduction

1.1 Background and motivation

Repeated games are a common model for long-term competition and cooper-
ation. They are widely used in modeling economic interactions, for example
competition between firms [Abreu, 1986]. This study focuses on games with
infinite horizon and perfect information. The repeated games explain the
observed behavior better than finite games, because they predict more coop-
eration [Mailath and Samuelson, 2006]. The model can also be interpreted
as uncertain horizon. It is a suitable model, if the players do not know when
the game is going to end, but there is a constant probability for ending after
every round. The applications can also be found in computer science, where
games models of systems, logics, automata or computational complexities
[Björklund, 2005].

The theory of repeated games builds on a seminal work of Abreu (see Abreu
[1988], Abreu [1986] and Abreu et al. [1990]). He showed that all the equilib-
rium behavior is reduced to simple strategies, which comprise only the initial
strategy and extremal punishments for each player. Without this simplifi-
cation ensuring if a strategy is an equilibrium solution, would be an infinite
task. Abreu has shown that all equilibrium outcomes are possible to repre-
sent using only simple strategies and extremal punishments for each player
[Abreu, 1988]. The extremal credible punishment has an important role in
the computation of other equilibrium solutions.

Abreu’s theory builds a framework for computing the equilibrium solutions of
repeated games, but does not solve the problem directly. The numerical com-
putation of equilibrium payoffs is a much studied problem. There are several
algorithms for this problem including the work of Cronshaw [1997], Judd
et al. [2003], Salcedo and Sultanum [2012], Burkov and Chaib-draa [2010]
and Abreu and Sannikov [2013]. All of these assume correlated strategies,
which simplifies the computation. These studies just compute the payoff
and they do not discuss strategies behind these solutions. Berg and Kitti
[2012] presented an algorithm to compute all the pure-strategy equilibrium
solutions, both payoffs and corresponding game plays. The extremal punish-
ments are assumed to be known and Berg [2013] presents a simple algorithm
for computing the extremal equilibrium solutions.

Regardless of the fundamental role of extremal equilibrium payoffs, there is
no systematic analysis or algorithms to find the extremal payoffs of repeated
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games. This study answers this problem and presents an algorithm to find
extremal punishments. The earlier research considers only individual cases
[Abreu, 1986] or the different models like the game with imperfect monitoring
Gossner and Hörner [2010].

Payoffs are discounted so the payoffs far in the future have a smaller weights
in average payoff. The discount factor has a major effect to equilibrium
solutions. The discount factor comes often from interest rate, but it is also
commonly interpreted as subjective patience of a player. The minimax payoff
and the Nash equilibria of the stage game set bounds to extremal punishment,
but there has not been a way to find the exact minimum in the general case.
The problem turns out to be an infinite horizon combinatorial optimization
problem. There are no general algorithms for this kind of problem, so the
presented branch-and-bound algorithm is quite pioneering in this sense.

1.2 Research objectives

The aim of this study is to present a systematic analysis of minimal equi-
librium payoffs of the repeated games. The existence of equilibrium solu-
tion is guaranteed [Abreu, 1986], but there is no proof for the computability
of the solution for general game. The extremal equilibrium outcomes may
be extremely complex [Nachbar and Zame, 1996]. This study introduces a
branch-and-bound algorithm to compute the minimal equilibrium payoffs and
strategies. The algorithm finds only pure strategies, which are possible to
present in the finite form. Together with Berg and Kitti [2012] work there is
now an algorithm for computing the pure-strategy equilibriums for arbitrary
N-player stage game with possible unequal discount factors. Although there
is no good theoretical performance bound for the algorithm, but excessive
numerical testing well indicates typical performance.

1.3 Structure of work

The structure of the work is the following. First, in Section 2, there is a review
to the literature and theory of repeated games. Section 3 focuses on the
extremal equilibria in different games and divides the games into the classes
by the extremal equilibrium. The existence and computability of the solution
is also covered in this section. Sometimes the extremal equilibrium outcomes
are complex and it is not possible to solve these analytically. Section 4
describes an algorithm for these hard cases. The limitations and performance
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of the algorithm are analyzed in Section 5 with the examples of a Cournot
game and a simple matrix game called anti-No Conflict. The study ends up
in the conclusions in Section 6.

2 Repeated games

A game is a decision making situation where the player chooses one of his
alternative actions and these choices determine the players’ payoffs. The
choices of the players are called actions. The game is called single-shot game
or stage game if there is just one decision and no repeated interaction. The
classical example of single-shot game is the game called prisoner’s dilemma
(PD), which is presented in a matrix form in following way:

L R
T 3, 3 0, 4
B 4, 0 1, 1

One player chooses the row, and another chooses the column simultaneously,
without knowing the choices of the other players. The first number in the
matrix is the payoff for player 1 and the second is player’s payoff. The
dilemma is that player 1 gets a better payoff by choosing B and the player
2 by choosing R regardless the other player’s action. The joint optimum
solution (T,L) is dominated by other strategies and thus never reached by
rational players. PD is widely used to explain behavior in decision problems
such as the tragedy of commons, arm races [Majeski, 1984] and pollution.

Repeated game means that the stage game is played finitely or infinitely
many times consecutively. Every stage game can be seen as a start of new
infinite game and these games are called subgames. The sequence of stage
game outcomes is called a path. A game with infinite horizon is a suitable
model for many everyday decisions because often relationships last long time
or may not have a predetermined end. Players discount their future payoff
by their discount factors δi, i = {1, .., n}, δi ∈ (0, 1). This is a common
assumption in economic models and mathematically necessary for keeping
payoffs bounded. The discount factor δ can be also interpreted as probability
that the interaction continues. This study concentrates on games with perfect
monitoring meaning that a player can observe the other’s actions between
every stage game.

A strategy of a player is a complete plan how to choose an action after an
arbitrary game history. If the strategy defines a certain action for every
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situation, it is called pure strategy. Alternatively, a strategy may only de-
scribe the probabilities of different actions. This kind of strategy is known
as mixed strategy. Third and the most general class of strategy are correlated
strategies. The player observes a signal and players can therefore coordinate
their actions by those signals. Mixed and correlated strategies are a common
assumption in the studies of the field. The main weakness of these strategies
is that players are assumed to observe not only the past outcomes, but also
the strategies of each other.

Each player has one strategy and the Nash equilibrium is a strategy combina-
tion, where no player has an incentive to change his strategy assuming other
players does not change their strategies. There is one pure Nash equilibrium
in the previous Prisoner’s dilemma example: (B,R). If the game is repeated,
we also consider that there are no profitable deviations at any point of the
infinitely long game. If this holds, the strategy is said to be subgame perfect.
Although, the stage game and its equilibria may be simple, the repeated
version of the game may provide countless number of equilibrium solutions.
That is because players can punish and reward each other by their choices.

This section starts with an introduction and a mathematical formulation
of repeated games. Then the basic solution concept, Nash equilibrium, is
explained and generalized to repeated games. The end of the section reviews
simple strategy-approach and numerical methods for computing equilibria.

2.1 Stage game in normal form

Stage game G is presented in normal form

G = {N,A, u} (1)

where N={1,...,n} is the set of players, who choose their actions simultane-
ously from their available actions Ai, i ∈ N . The sets Ai are assumed to be
finite. The action profiles are A = A1 × ... × An and an action profile leads
to a payoff vector u : A→ Rn, which contains a payoff for each player. The
payoffs are often written in a matrix form. The minimax is the payoff, which
the player can ensure although all other players would try to minimize his
payoff. A player has no incentive to accept any payoff lower than minimax.
The minimax payoff in the prisoner’s dilemma is 1 for both players. It is thus
the absolute lower bound for any equilibrium solution, if it is assumed that
the players can observe what the other player has done [Gossner and Hörner,
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2010]. The minimax pure-strategy payoff of stage game is formally defined

vi = min
a−i

max
ai

ui(ai, a−i). (2)

2.2 Formulation of repeated game

A repeated game consists on stage games, which are played successively. The
formal definition is

G∞(δ), (3)

where G is a stage game and δ is the discount factor which is needed to
compute the payoffs.

The players observe and remember the past actions, which are called the
history of the game. The history is denoted Ak = ×kA, where k is the
length of the history. When the game begins the history is empty: A0 = {∅}.
Each player has a strategy σi : Ak → Ai, k = 0, 1, 2... The strategy tells
the player how to choose an action after the current history. Note that the
strategy must define action for arbitrary history, not only for the history that
is realized, if the strategy is followed. This kind of strategy requires perfect
monitoring ergo players must perceive the previous action profiles. The pre-
vious definition of strategy restricts on pure strategies because history lead
to the exact action not the probability distribution over actions. [Mailath
and Samuelson, 2006, page 19].

The strategy profile is σ = {σ1, ..., σn} and it determines the outcome of the
game unambiguously. Players discount their future payoffs by a constant
player specific discount factor δi ∈ (0, 1). The interpretation of the discount
factor is that the player keep recent payoffs more valuable than those which
are realized far in the future. The average discounted payoff is defined

Ui(σ) = (1− δi)
∞∑
k=0

δki ui(σ(Ak)) (4)

Average payoff lies always in the convex hull of action profile payoffs. This
convex hull is called as the set of feasible payoffs and a point in the hull is
a feasible payoff. Ui(σ) denotes the average payoff from finitely or infinitely
length path and ui(a) is the payoff from a single action profile a. The sum is
scaled by (1−δi) to make repeated game payoff correspond to the stage-game
payoffs. Otherwise, the discount factor would affect the range of possible
average payoffs. The action profiles of a 2x2 matrix game are denoted by the
following table.
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L R
T a b
B c d

This allows a simple way for writing outcomes. If the strategy tells to repeat
action profile d, which is the Nash equilibrium of the single shot PD, the
outcome path is denoted d∞. Alternatively, if action profile a is played two
times and then the players alter between c and b the outcome path is aa(cb)∞.
The outcome paths plays important role in further analysis. The following
notation is used. The outcome action profile in subgame t is denoted q(t)(σ)
and the infinite stream of action profiles is denoted Q(σ) or just Q when
there is no risk of confusion.

2.2.1 The Nash equilibrium

The Nash equilibrium (NE) is the most fundamental solution concept in game
theory. The strategy profile σ∗ is a Nash equilibrium of the game if for all
players i and strategies σ

Ui(σ
∗) ≥ Ui(σi, σ

∗
−i), (5)

where the strategies of players, excluding player i, is denoted by σ−i =
{σ1, ..., σi−1, σi+1, ..., σn}. The condition (5) means that no player can im-
prove her payoff by changing her strategy alone. There may be many Nash
equilibria in the same game. On the other hand, it is possible that there are
no pure strategy equilibria at all. Nash [1951] proved in his famous theo-
rem, that every finite stage game has at least one Nash equilibrium if mixed
strategies are considered. Computing Nash equilibria for a game is a widely
studied and fundamental problem. The task is hard for a general stage game,
and for more advanced model such as repeated or stochastic games the task
may be cumbersome.

To keep notation in the next chapters compact, the set of all strategy profiles
is denoted Σ = Σ1 × ... × Σn, where Σi is the set of possible strategies for
player i. In addition, the set of all equilibrium strategies is Σp and naturally
Σp ⊂ Σ. The notations of this section follows the notation used by Abreu.

The payoff from the best deviation is denoted

v∗i (a) = max
ai

ui(ai, a−i) (6)

If a is a Nash equilibrium,
v∗i (a) = ui(a) (7)

for all players i ∈ N .
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2.3 Subgame-perfect equilibrium

Nash equilibrium is not a sufficient condition to ensure equilibrium behavior
in repeated games. Although the players has no incentive to deviate from
the strategy at the first round, there may be profitable options to deviate
later. The proper solution concept is subgame perfect equilibrium (SPE).
The strategy profile σ′ is a subgame-perfect equilibrium if for all histories
A =

⋃∞
k=0A

k, σ′ is a Nash equilibrium of the subgame. A contains also the
histories with are never realized, if the strategy σ′ is followed. [Mailath and
Samuelson, 2006, page 23].

The intuition behind SPE is clear, but the definition does not help much
when looking for solution for an infinitely repeated game. Checking whether
σ is an equilibrium strategy involves of comparing it with the infinite number
of strategies because a player can deviate in any subgame or combination of
subgames. The simple strategy approach solves this problem ingeniously.

2.4 Equilibrium with simple strategies

The question, whether a strategy profile σ0 is a subgame perfect equilibrium
or not, is very nontrivial. The strategy profile induces a path Q0. One has to
check not only whether there are profitable deviations in initial path Q0, but
also all possible combinations of deviations. The task is cumbersome, but
the seminal work of Abreu simplifies this analysis of equilibrium solutions.
He proved that the worst perfect equilibria exist for each player and all
equilibrium behavior is supported by threat of this worst punishment. Abreu
reduced his examination by introducing simple strategies [Abreu, 1988].

The definition of simple strategy σ(Q0, Q1, ..., Qn) is following: The strategy
consists of the set of paths, where Q0 is an outcome path, which the players
follow initially. If player i deviates from the strategy, then the other players
punish him by Qi. If the player deviates from his punishment path, the
punishment starts over. If a punishing player deviates, the others start punish
him. The only exception is that the deviations are not punished if at least
2 players deviate simultaneously. In this case, players just continue on the
original path. Abreu restricts only to games with Nash equilibrium in one-
shot game. The assumption is only technical to ensure the existence of SPE
in the repeated game. It is no restrictive assumption: If a SPE exists, we
can apply the theory anyway. It does not matter if there is not a single-shot
Nash equilibrium.
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A simple strategy is a subgame-perfect equilibrium if and only if it satisfies
condition

Uj(Q
t
i) ≥ (1− δj)v∗j (Qt

i) + δjUj(Qj) ∀i, j ∈ N, ∀t ∈ N (8)

The complete proof is presented in Abreu [1988]. However, the idea is simple.
For every player it shall be optimal to follow the path Qi at every time step
rather than deviate in one round and get the punishment after that. The
condition is sufficient and also necessary because otherwise a player can gain
profit by deviating from the simple strategy. The practical consequence is,
that it is enough to check that there are no profitable one-shot deviations
for any player. One-shot deviation is a strategy where a player deviates once
from his supposed action, but follows strategy again after that.

Next, we define an optimal penal code. The optimal penal code is a vector
of strategy profiles (σ−1 , ..., σ−n ), such that for all i σ−i ∈ Σp and v−i (σ−i ) =
min{Ui(σ)‖σ ∈ Σp}. A simple penal code is called optimal simple penal code
if it is an optimal penal code. A suboptimal punishment {Q1, ..., Qn}may dis-
card path Q0, which would be an equilibrium with the optimal punishments.
Too small, infeasible punishment does not discard all the non-equilibrium
solutions.

The simple penal code (Q1, ..., Qn) consist of strategy profiles
(σ(Q1, Q1, ..., Qn), ..., σ(Qn, Q1, ..., Qn)). The only difference between simple
strategy profiles is the path, which is followed initially. A simple penal code is
also the optimal simple penal code ifQi is the optimal penal code. This means
that optimal simple penal code is just a simple strategy, which produces the
optimal punishment path.

The main lemma of Abreu [1988] proves that if a pathQ0 is a subgame-perfect
equilibrium, then

(1− δi)v∗i (Qt
0) ≤ Ui(Q

t
0)− δiv−i (9)

The condition is again both, necessary and sufficient. This means, that we
can easily check, if an arbitrary path Q, is possible to produce by an equi-
librium strategy. All that is needed is payoffs from the optimal simple penal
codes. The number of inequalities to check depends on the complexity of Q.
The example path aa(cd)∞ needs just four checks for each player. However,
nothing guarantees that the optimal simple punishments are possible to find
and execute by a finite-time algorithm.

The punishment path σi is sometimes called penal code because it consists
on a sequence of actions. Both proof are based on incentive compatibility
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(IC) condition, which applies definition of Nash equilibrium (5) in repeated
games.

(1− δi)ui(a∗) + δiv ≥ (1− δi)ui(a, a∗−i) + δv−i ∀i ∈ N, a ∈ A, (10)

where δi is the discount factor of player i, a∗ is an action chosen among the
strategy and v is the continuation payoff if the strategy is followed forever. If
v−i is the payoff from optimal punishment payoff, the condition is necessary
and sufficient for all equilibrium paths.

2.5 Finite automata representation of a strategy

Strategies in a repeated game can be presented in a simple way by grouping
histories into equivalence classes. A member of each class has an identical
continuation strategy. This kind of strategy is called automata. It consists of
a set of states W , an initial state w0, an output function f and a transition
function τ .

An output function f : W → A tells which action players should choose in
each state. A transition function τ : A×W → W describes the state in each
state after each action profile. This can be presented as a graph form.

T D

a b, c, d
a, b
c, d

Figure 1: An automaton for playing trigger strategy in prisoner’s dilemma

Figure 1 presents an automaton for the row players. The automaton imple-
ments well-known trigger strategy in prisoner’s dilemma. Transfer function
is presented by arcs and states by nodes. Initially, the player cooperates (T)
and repeat this action if the outcome is action a. Otherwise, the automaton
goes to another state, where the action D is played. There is no way out from
the second state, so the punishment lasts for the rest of the game. [Mailath
and Samuelson, 2006, page 29]
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2.6 The graph representation of all equilibrium solu-
tions

Berg and Kitti [2012] present a method for computing all equilibrium solu-
tions and payoffs in a repeated game. The idea is based on Abreu [1988]
framework, where a strategy is simplified to an outcome path and threat of
the punishment payoff. Their algorithm needs punishment payoffs for each
player as input, but provides no method for finding them. The number of
different equilibrium paths is often infinite, but at least sometimes all equi-
librium paths can be collected into one finite graph. Figure 2 presents an
example of a graph computed using method of Berg and Kitti. Note that
this graph does not directly tell the strategies behind these outcome paths.
All we know is that any infinitely long outcome path, which is possible to
construct by following the graph, results from at least one, but possibly many
equilibrium strategies. It is always possible to produce an outcome path of
an equilibrium play via simple strategies. It is done by using the outcome
path as an initial path and then punishing deviating players by optimal sim-
ple punishment paths. In some cases, we can numerically compute a graph,
which contains all the equilibrium outcomes of a game with a given discount
factor. That is remarkable achievement when the number of equilibrium
paths is infinite.

b

d

c

d

a a

a

d

c

d

b

a

a

a

d

a

a
a

a

d

a
a

a

aa

a

Figure 2: The graph of all equilibrium paths in PD with δ = 0.51

The novel idea behind the algorithm is doing tree search for possible out-
come paths and finding elementary paths, which produce all the equilibrium
solutions. The computation starts by dividing search tree branches into the
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first action feasible (FAF) and first action infeasible (FAI). The search stops
if all the open branches are classified. The definition of the first action feasible
path p is

con(p) ≤ con(f(p)), if length of p ≥ 2
con(p) ≤ v−, if length of p = 1 (11)

and for infeasible paths
con(p) > v (12)

where coni(p) is the continuation payoff after the path p. It means, that it
is the lowest average payoff, which player i can accept after playing path p,
without taking account possible payoff demands coming from the subpaths
of p. Moreover, f(p) refers to the last action of the path p. The continuation
payoff is the smallest value of v (Inequality 10), which is large enough to
satisfy the condition.

coni(a) =
(1− δi)
δi

((ui(a
∗, a∗−i)− ui(a)) + v−i (13)

Recursion can be used to compute continuation payoff of a path longer than
one action

coni(p) = δ−1i (coni(p
k−1)− (1− δi)ui(a)). (14)

If a path cannot be sorted to FAF or FAI, it is called neutral and the chil-
dren of this path are examined. The target is that all the branches can
be sorted to FAF or FAI category. It is possible that a FAF path contains
FAI paths as subpaths. Paths that do not contain infeasible parts are called
elementary paths. In practice, infeasible paths are pruned out during a novel
graph constructing process.

Continuation payoffs are used to cut branches in the algorithm. In this work
the definition is slightly different, so that also feasibility of subpaths of p is
checked while the continuation payoff is computed.

2.6.1 Measuring the equilibrium set

When the equilibrium paths are known, the corresponding equilibrium pay-
offs can be easily computed. The payoffs set consist of all equilibrium payoffs
of the game. Pure strategies produce a set of discrete points. Mixed- and
correlated strategies produce continuous sets, because the realized outcome
is random. The number of different equilibrium paths and payoffs is often
infinite although the graph may be finite. Payoff sets are typically fractals.
The set are constructed as self-affine set, which explains fractal nature. In
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practice the fractal nature is easy to understand when the equilibrium paths
are presented as a graph. In a graph it is possible to go through the same
nodes over and over again. Figure 3 presents an approximation of equilibrium
payoffs in PD.
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Payoff set of Prisoners dilemma at discount factor 0.58

Figure 3: The fractal set of equilibrium payoffs in PD with δ = 0.58

The fractal payoff sets were discovered first by Berg and Kitti [2014]. The
fractal form offers a clever way to measure "the number of the equilibrium"
payoffs or the density of the set. The general measure used for fractal density
is Hausdorff dimension, which generalizes the concept of dimension to real
numbers. The Hausdorff dimension is defined

dimH(V ) = inf{β ≥ 0 : Hβ(V ) = 0}, (15)

where

Hβ(V ) = lim
ε→0

inf{
∞∑
i=1

‖Wi‖β : V ⊂
∞⋃
i=1

‖Wi‖ ≤ ε for all i} (16)

Note that the Hausdorff dimension of a finite set is zero. Hausdorff dimension
can be computed from a graph by using the formula [Mauldin and Williams,
1988].

dimH(V ) = − log ρ(D)/ log δ (17)
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where ρ(D) is the largest eigenvalue of the graphs adjacency matrix. The
Hausdorff dimension can be possible computed exactly if the players have
equal discount factor, δ ≤ 1/2. With larger discount factors, the payoffs
may overlap and the formula (17) should be considered as an upper bound.
Extensions to estimating bounds for fractal dimension in overlapping case
exists (see Das and Ngai [2004] and Edgar and Golds [1999]).

2.7 Folk theorems in repeated games

Folk theorems are a class of important theoretical results related to repeated
games. The main result was known in game theoretical community some time
before they were proved or published, and that is why they are called Folk
theorems. The main claim is that any feasible payoff point is attainable by an
equilibrium strategy assuming a discount factor sufficiently close to one. The
result is well studied nowadays and there is a bunch of proofs for different
game classes. The first proofs consider on games with no discounting at all
(Friedman [1971]). The theory was completed by Fudenberg and Maskin
[1986], who extended the proof for discounted games assuming the games
satisfies the full dimensionality condition. Abreu et al. [1994] and Wen [1994]
introduced less restrictive conditions for the folk theorem. The first is called
NEU-condition, and the latter introduces the concept of an effective minimax
payoff.

Full dimensionality, NEU and an effective minimax are all sufficient condi-
tions of Folk theorem in repeated games. Full dimensionality is the tightest
one. A game is full dimensional if and only if the dimension of feasible
payoffs is the same as the number of players. See Section 3.2.4 to find a com-
mon example of non-full dimensional game called matching pennies. NEU,
Nonequivalent utilities, is less restrictive and often necessary condition for
Folk theorem. It demands that players’ utilities are not equivalent in all
action profiles nor equivalent after a linear transform. Formally, there is no
c, d ∈ R (d>0) such that

ui(a) = c+ duj(a) ∀a ∈ A (18)

Effective minimax is defined

ui(w
i) = min

a
max
j∈As

max
aj

ui(aj, a−j) (19)

Effective minimax is an essential concept especially, if some players have
equivalent utilities, but there are at least two subsets of players with different
utilities.
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The practical interpretation of Folk theorem is that in society, a tribe or
other social systems every feasible outcome, even those, which seem to be
harmful for everyone, is possibly a result from the rational decision making
of individuals. The only condition is that the outcome is better than leaving
the society (minimax action).

The original form says only that every single payoff point is achieved some
discount factor, which possibly is different for different points. The latest
results spread the idea by proving, that there are games, where all the feasible
payoffs are attainable with every discount factor assuming the factor is high
enough (Berg and Karki [2013], Stahl [1991]).

Although the folk theorem ensures the existence of a countless number of
equilibrium strategies, finding or playing one is not necessarily an easy task
[Borgs et al., 2010]. As we will see in the next chapter, computing an equilib-
rium strategies is generally a hard task. This is also the case with repeated
games and subgame perfect equilibria. Folk theorems builds on the worst
credible punishment, which sometimes called also a threat point. Because
finding this point is a complex task, the equilibrium payoff set for players
with bounded rationality and computing capacity differs from the payoff set
for perfectly rational players.

2.8 Computational complexity of Nash and subgame-
perfect equilibria

Computing subgame-perfect equilibria is generally a hard task. The relevant
questions are, whether the solution exists and is it computable at all, if we
allow only pure strategies. If the answer is positive for both, we still need
an efficient algorithm for computation. An efficient way to compute optimal
punishment is also the key to computing the other equilibria. If it turns out
that there is no way to compute equilibria in efficient manner and bounded
computing capacity, it is also sets any practical implications under suspect.

Finding equilibrium in one-shot game is PPAD-complex (Daskalakis et al.
[2009]). See Table 1 for descriptions of complexity classes, which are discussed
in this section. The solution exists by Nash [1951], but is not necessarily
easy to find. Even in special cases such 2 player m×m game (Chen and
Deng [2006]) and computing an ε-equilibrium are PPAD-complex (Chen et al.
[2006]).

There are only few special class of games, which are known to be com-
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Complexity class Name Description

NP Non-deterministic polyno-
mial time

Given solution can be veri-
fied as a solution in polyno-
mial time

NP-hard Non-deterministic polyno-
mial time -hard

Problems in this class are at
least as hard as the hardest
problems in NP

NP-complete Non-deterministic polyno-
mial time -complete

Class of problems which
contains the hardest prob-
lems in NP

P Polynomial
Class of problems, which
can be solved in polynomial
time

PPAD Polynomial Parity Argu-
ments on Directed graphs

A complexity class closely
related to NP, but solution
is known to exist

PLS Polynomial Local Search
A complexity class closely
related to NP, but solution
is known to exist

Table 1: Description of complexity classes

putable in polynomial time. One is anonymous game, where approximate
Nash equilibrium is computable in polynomial time (Daskalakis et al. [2007])
and another is symmetric congestion game (Daskalakis et al. [2009]), where
even pure Nash equilibrium is polynomially computable. General congestion
game belongs to PLS-class.

Repeated games are generally not easier than one-shot games. Borgs et al.
[2010]] proves that finding Nash equilibria of (k + 1)-player infinitely repeated
games is as hard as finding Nash equilibria of k-player one-shot games. They
also prove that computing the threat point of the game is an NP-hard task.
In their setting in mixed strategies the threat equals minimax payoff.

Note that this work focuses on pure subgame-perfect equilibria. However,
computing SPE must be at least as hard as NE, because every SPE is always
also NE. Finding a threat point with pure strategies seems to be a compu-
tationally exhaustive task, with no guaranteed fast convergence in the worst
case. Anyway, problems of this kind can be tackled with an efficient heuristic
with good performance in a typical case.
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2.9 Numerical methods for computing equilibria

Since the fixed-point characterization of equilibrium was published by Abreu
[1986, 1988], a wide range of algorithms for computing equilibria has been
published. Most of the algorithms assume correlated strategies, which makes
the payoff set convex. The algorithm for computing payoff set was published
by Abreu et al. [1990] and it is known as APS algorithm. One well-known
implementation applies linear programming to solve the problem (Judd et al.
[2003]). This algorithm was upgraded later (Abreu and Sannikov [2013]) and
this upgraded algorithm is implemented and compared to our algorithm later
in this work.

APS algorithm starts from the set of all feasible payoffs W0 then computes
iteratively sets W1,W2, ..,Wn+1 = B(Wn) until convergence (Wn+1 = Wn).
The set-valued operator B is defined

B(W ) = co{v|∃w ∈ W,a ∈ A s.t. v = (1−δ)v∗(a)+δw and δ(w−P (W )) ≥ (1−δ)h(a)}
(20)

where
Pi(W ) = min{wi|w ∈ W for some w} (21)

and
h(a) = v∗(a)− u(a). (22)

The operator is monotonic and the computation algorithms implement and
approximate this operator. The main restriction is that they can only handle
games with two players and equal discount factors.

The set of pure-strategy equilibrium payoffs differs significantly from the set
of correlated strategies. Where the pure strategies produce a set of discrete
payoffs, the correlated strategies produce areas with no gaps or holes. The
reason is that the correlated strategies produce a random path, with the
infinite number of possibilities. Correlated strategies not only fill the gaps
between pure strategies, but also new equilibria appear. The extremal equi-
libria may also be different with pure and correlated strategies.

Berg and Kitti [2011] introduced an algorithm for computing all the pure
equilibrium strategies. Having all the strategies represented as a graph makes
it possible to plot equilibrium payoffs [Berg and Kitti, 2014]. The payoff sets
are fractals and hard to compute, if only pure strategies are allowed [Berg
and Kitti, 2014]. Their algorithm takes punishment payoffs as an input, but
finding those payoffs remains open question. Algorithm of Berg and Kitti
works for an arbitrary game matrix with arbitrary many players and unequal
discount factors are possible. This is a rare feature among the numerical
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algorithm for computing equilibria. The disadvantage is that computing
times may explode when the size of the game or discount factor increases.

3 Minimal equilibria

3.1 Definition and motivation

The focus of this section is finding the optimal penal codes for repeated
games. The punishment paths and payoffs are player specific, which makes
search somewhat more complicated. The optimal punishment means that
it produces the worst equilibrium payoff for a player. One could also state
that optimal punishment is the mildest punishment, which makes deviations
unprofitable. This is an important aspect in games with imperfect monitoring
when deviations are unobservable and player never knows for sure if the
other player has deviated. If deviations are observable, there is no need to
really execute any punishment, so long they are credible. The whole set of
equilibrium is possible to construct from the threat of the worst punishment
as seen in Section 2.4.

3.2 Infinitely repeated games

The absolute lower bound for all equilibrium payoffs is the stage games min-
imax payoff. The intuition behind this is that player can just choose his
minimax action and receive the minimax as an average payoff. If a strategy
gives a smaller payoff than the minimax payoff, the deviation is profitable and
the strategy cannot be an equilibrium. Whether minimax payoff is possible
to get by an equilibrium strategy, depends strongly on the discount factors.
The smallest equilibrium payoff lies always between the minimax payoff and
stage game Nash equilibrium payoff. Folk theorems are the major theorems
about equilibria in repeated games. The theorem proves that with certain
conditions all the feasible payoffs, that weakly dominates the minimax, is
possible to realize as a Nash equilibrium. See Friedman [1971] for classic
form and Fudenberg and Maskin [1986] for games with discounting. It as-
sumed that players have not equivalent utilities in all actions profiles (Abreu
et al. [1994]). Otherwise the minimax payoff may be impossible to reach.

In the next sections the games are divided into four categories and examine
the condition, when the minimax payoff is reached. Algorithm in Section 4
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focuses especially to cases where the minimax payoff is not an equilibrium
in stage-game and solutions may be extremely complex. These games are
found in categories B and C.

Figure 4 illustrates relationships between categories. The main point is di-
viding games to B and C categories. The games in A and D are just trivial
cases inside of these main categories.

B
CA

D

Figure 4: Relationships between categories

3.2.1 Category A

Definition of the category: Minimax is a Nash equilibrium

The stage game has a Nash equilibrium giving the minimax payoff for player i.
There fore the minimax payoff is the punishment and repeating the minimax
action is the punishment path for player i. The Nash equilibrium of stage
game is also equilibrium in repeated game as we see straight from IC. By
definition v∗i (aN) = ui(aN)∀i, if aN ∈ A is a Nash equilibrium of the stage
game. Then

v∗i (aN) = ui(aN) ≥ δi
1− δi

(Ui(aN)− v−i ) (23)

The path a∞N can be used as a punishment and substitute v−i = Ui(aN). Thus
the condition (23) is reduced to trivial inequality (24)

0 ≥ 0, (24)

which is trivially true. A well-known example of this class is the prisoner’s
dilemma, which equilibrium solution (B,R) leads to the minimax payoff (1,1).
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3.2.2 Category B

Definition of the category: uj(aminimax,i) ≥ uj(aminimax,j)∀i, j ∈ N

The stage game’s minimax action profile gives any other player greater payoff
than her minimax. Repeating minimax actions is a subgame perfect equilib-
rium if players are sufficiently patient. If minimax action is not unique, it is
sufficient to find one action for each player so that condition is satisfied.

An example is a discrete form of Cournot game, which is used an example
in Section 5.1. The minimax action profile for player i is denoted ai. The
incentive condition (10) can be written in form

v∗i (aj)− ui(aj) ≥ δ(Ui(aj)− vi + v∗i (aj)− ui(aj)) (25)

The definition of this class by this, new notation is

Ui(aj) ≥ vi∀j. (26)

The left side of equation (25) is surely non-negative. The stationary repeating
of minimax actions satisfies IC always if

δi ≥
v∗i (aj)− ui(aj)

v∗i (aj)− ui(aj) + Ui(qj)− vi
∀i× j, i 6= j (27)

Low discount factors may also allow the minimax payoff although the con-
dition (27) does not hold. Anyway, this happens only with some individual
discount factors, not their neighborhood, if path p is non-stationary, meaning
not repeating a single action. Payoff Ui(p) depends on the discount factor
(see equation (4)). Generally, low discount factors may lead to very nonsta-
tionary penal codes.

3.2.3 Category C

Definition of the category: uj(aminimax,i) < uj(aminimax,j) for some i, j ∈ N

The stage game’s minimax action profile gives some other player smaller or
equivalent payoff than her minimax payoff. The punishment payoff is always
greater than minimax payoff and punishment paths tend to be very complex.
An example is a three-player game

C D
L R L R

T 1,1,1 0,0,0 T 0,0,0 0,0,0
B 0,0,0 0,0,0 B 0,0,0 1,1,1
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With equal discount factors the only equilibrium is repeating action with
the payoff (1,1,1), but with an unequal discount factor the worst equilibrium
payoffs may be close to minimax. With discount factors (0.15, 0.65, 0.95)
the lower bounds are close to zero ( 10−12, 10−3) for players 1 and 2 and
0.49 for player 3. The best-found punishment paths are d14a∞ (for 1 and
2) and (ba)∞ (for 3) by the the algorithm. No player accepts zero payoff,
but all payoffs above that are reachable. Note that, because the utilities are
equivalent for all player, the minimax payoffs are never reached [Wen, 1994,
Chen, 2008, Chen and Takahashi, 2012].

3.2.4 Category D

Definition of the category: No pure strategy equilibrium

There are some games where it is impossible to construct pure strategy
subgame-perfect equilibrium. The well-known example is a game called
matching pennies, which presented below.

L R
T −1, 1 1,−1
B 1,−1 −1, 1

In this game minimax payoff is one the both players, which strictly dominates
the set of feasible payoffs. However, it is possible that there are pure subgame-
perfect equilibria, although the stage game has no pure equilibria. A simple
example is following game

L M R
T 1, 2 −1, 3 0, 0
C 0, 0 −1,−1 3,−1
B 0, 0 0, 0 2, 1

Paths (a∞, i∞) can be used as simple penal code, if discount factor δi ≥ 1/4
∀i. The punished players gets average payoff U1(a

∞) = U2(i
∞) = 1 and the

punishing player gets payoff U2(a
∞) = U1(i

∞) = 2. Both payoff points ((1,2)
and (2,1)) strictly dominates the minimax payoff (0,0).

Necessary and sufficient condition for pure-strategy equilibria is left outside
of this work. Anyway, to find pure-strategy equilibria, there must be feasible
payoffs, which weakly dominates minimax payoff. That is because minimax
is the absolute lower bound for any equilibrium behavior with pure strategies.
The sufficient condition is a pure equilibrium in a stage-game. The sufficient
and necessary condition is still an open question.

21



3.3 Computability of the optimal punishment

An important question related to any numerical algorithm is whether the
solution exists and is it possible to find by the algorithm. The existence of
extremal equilibrium has been proved (Abreu [1986]), but it is not obvious
if it is possible to find with any numerical algorithm. Nachbar and Zame
[1996] stated that there are equilibrium strategies, which are not possible to
implement by finite automata. Are there such simple strategies? Is it possible
that extremal equilibria are of this type? Could such a strategy be a credible
threat if players have no method to know about it? These questions are open,
but we concentrate on strategies with finite complexity. At least we know that
there are some games, where it is possible to represent all the equilibrium
solutions as a finite directed graph [Berg and Kitti, 2011]. Unfortunately,
there are no conditions for games where this finite representation is possible.

A common way to overcome the problems with infinitely complexity is adopt
a model with bounded rationality [Simon, 1972, Rubinstein, 1986]. Kalai and
Stanford [1988] claimed that every subgame-perfect equilibrium is possible
to approximate by finite automata, if ε-equilibria are accepted. ε-equilibrium
means that there may be profitable deviations, but the possible gain from
deviation is always smaller than ε. The equilibrium condition 5 changes to
form

Ui(σ
′) ≥ Ui(σi, σ

′
−i)− ε,∀i (28)

Their theorem says, that for every equilibrium σ∗ there is a strategy σ′ with
finite complexity, so that

|Ui(σ′)− Ui(σ∗)| < ε,∀i (29)

and σ′ is a subgame-perfect ε-equilibrium. The reverse does not hold. Ev-
ery ε-equilibrium is not close to subgame-perfect equilibrium, thus searching
optimal strategy from the set of finite strategies may be fruitless in some
games.

If it is possible to present all the equilibrium strategies in a graph, we can
apply the dynamic programming argument to find out the form of punish-
ment paths. The problem is thus finding the extremal discounted infinite
path from the graph. An infinite path in a finite graph arrives sooner or
later at a node, where it has visited before. At this point Bellman’s principle
says that, the optimal path must continue in the same way as the previous
visit in the same node. We always know that the optimal path begins with
some start part and then ends up in an infinite loop. This idea is exploited
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in generation method of infinite paths in the algorithm. Madani et al. [2010]
has examined an efficient algorithms for this kind of problem.

The algorithm of this work can be interpreted as algorithm for ε-equilibria.
There is a small ε in inequalities to prevent numerical rounding problems.
The selected epsilon is many decades smaller than precision needed to com-
pute numerical examples in this work. It thus likely that found paths are also
subgame-perfect equilibria, not only epsilon equilibria. On the other hand, it
would be easy to modify the algorithm for searching epsilon equilibria with
arbitrary epsilon.

3.4 Extremal equilibria in different games

Assumptions like perfect monitoring and pure strategies were made in the
previous section. This section reviews literature about extremal equilibria
in different games. The question about the worst punishment has not so
fundamental role in games with the finite horizon, but extremal equilibria
are a well-studied subject in several game classes. The optimal punishment
strategies and payoffs vary much between the game classes.

3.4.1 Normal-form game

Finding equilibria in normal-form game is a long-standing problem. Comput-
ing the equilibria of a normal-form game is a computationally hard problem
for arbitrary game (Daskalakis et al. [2009]), but for small games it is trivial,
because we can just check every action profile separately. The extremal equi-
librium is found by picking the smallest payoffs from the sets of equilibria.

3.4.2 Finitely repeated games

A finitely repeated game does not differ a much from a single-shot game if
perfect information is assumed. Strategies can be enumerated, and the game
is possible to present in the normal form. If there are multiple pure-strategy
equilibria, the equilibrium behavior will not be trivial anymore. Benoit and
Krishna [1985] makes a systematic search for the worst equilibria and proves
a folk theorem for the game class. They also state that equilibria in finitely
repeated games approach the infinite case if the game is sufficiently long.
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3.4.3 Correlated and mixed strategies

Pure strategies are a special case in mixed strategies where probability of one
action is one and others action are zero. Correlated strategies are yet wider
generalization where players can alter their strategies by a public signal. If a
player decide not to alter his strategy, his strategy belong to mixed or pure
strategies.

Assuming players can synchronize their actions by a public correlation ma-
chine, also correlated strategies are possible. A correlated strategy is a func-
tion s : R × H → ∆(A). R ∈ (0, 1) is a signal observed by a player and
in certain cases all players can observe the same signal. The model has
been popular, and it makes the payoff set convex. Plenty of studies present
methods for computing the payoff set with correlated strategies. Judd et al.
[2003] presents one algorithm for computing the payoff set. Abreu and San-
nikov [2013] together with Salcedo and Sultanum [2012] extend this method.
The algorithm gives inner and outer approximation to the set. The extremal
points of the set are computed. The extremal equilibria payoffs may be lower
than when restricting to just pure strategies.

Solving the equilibrium strategies with mixed strategies is still an open ques-
tion. There are at least two difficulties. 1) The natural assumption is that
the other players observe only the outcome, not the strategy. The other
player cannot detect a deviation like with pure strategies. 2) One could use
mixed strategies that are not equilibria in the stage game. This equivalent in
pure strategies where an equilibrium path may contain actions that are not
equilibria in a stage game. The problem is worse in mixed strategies because
there is the infinite number of mixed strategies in each stage game.

3.4.4 Imperfect and private monitoring

There are two additional models for repeated interaction, where perfect mon-
itoring is not assumed. The models are imperfect and private monitoring.
The method for constructing equilibria differs much from method used un-
der public monitoring. In these models, players do not perceive action, but
only an action dependant random variable P. Abreu et al. [1990] presented a
method for constructing equilibria of such game. Private monitoring means
that player knows only his own actions. This is the case for example in price
competition between firms when the firms know only their own prices. Goss-
ner and Hörner [2010] proved that equilibrium payoffs may be even under
the minimax payoff, which not possible in games with perfect monitoring.

24



4 The algorithm description

This section contains the detailed description of the algorithm. The algo-
rithm is suitable for an arbitrary game with a finite number of players and
action profiles. The discount factors may be different for each player. Find-
ing optimal punishment is formulated as an integer programming problem
and solved using a branch and bound algorithm. The formulation and gen-
eral branch and bound algorithm are introduced in Section 4.1. The detailed
description of the algorithm is found after that beginning from Section 4.2.

4.1 Formulation of the problem

Searching the optimal punishment is basically an optimization problem.The
problem is formulated as an infinite horizon combinatorial problem and
solved using a branch and bound -algorithm. The problem is formulated
below.

minσ
∑N

i=1 Ui(σi)
s.t. (1− δi)∆i(σ

k
j ) ≤ δi(Ui(σ

k+1
j , δi)− Ui(σi, δi))∀k ∈ N, i, j ∈ N (30)

The solution, σ, includes one infinite punishment path for each player. Paths
are searched in finite form, so that they consist on finite start and finite loop,
which is repeated infinitely. An example path could be aabaad and the loop
consist of n last actions. Thus the infinite path could be aab(aad)∞. The
best found punishment gives an upper bound for the global minimum of the
problem. The algorithm gives also lower bounds for the punishment payoffs.
The lower bound for the payoff is the minimum of lower bounds of open
branches.

4.1.1 General branch and bound algorithm

Branch and bound is a general algorithm for discrete optimization. It was
described by Land and Doig [1960]. The idea behind the algorithm is enu-
merating all feasible solutions and do a tree-like search for them. The general
steps of a branch and bound algorithm are following:

1. A bounding function Gives the lower bound for the best solution in a
given subspace
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2. A strategy for selecting the next subproblem

3. A branching rule subdividing the subspace if the subspace cannot be
discarded

Infinite horizon does not change the basic principles of the algorithm, but
needs to be taken account at stopping condition. A common condition is to
stop, if the best found solution gives the objective function value equal to
lower bound. In infinite version a solutions close enough to the lower bound
(difference < ε) stops the algorithm.

4.2 Description of the algorithm

The algorithm is based on generating all finite length start parts of paths and
discarding the ones that either have profitable deviations or do not provide
a small enough payoff. The idea of the algorithm is demonstrated in the
next simple example. A 2x2 stage game has four possible actions profiles:
a, b, c and d. The initial branches are {a,a}, {a,b}, {a,c},..., {d,d}, which
contain the first action profiles for each player. If the branch {a,b} cannot be
discarded its children are added to the of open branches (B). The children are
{aa,ba}, {aa,bb},{aa,bc},...,{ad,bd}. The algorithm returns the bounds for
the punishment payoffs and stops when the bounds go under the limit. The
lower and upper bounds for the branch’s payoff are needed also for pruning
the set of open branches.

The algorithm finds a punishment path for each player, and they are de-
noted by p = {p1, p2, . . . , pn}. Each branch b in the search tree contains the
beginning of the punishment path for each player. For example, a branch
b = (ab, cc) in a two-player game means that p1 = ab, p2 = cc, player 1’s
punishment path starts with ab and player 2’s starts with cc. The branching
is done by adding one action profile for each player, so each node gets 42 = 16
children in a game with two players and four action profiles. However, most
of the branches can be cut soon, which often prevents the rapid growth of
the search tree.

The initialization step creates all the one-length path combinations. The
current lower and upper bounds are denoted by lb and ub, respectively. For
a branch b, the lower and upper bounds are lb(b) and ub(b).

The lower bound is the sum of the payoff from branch and continuation
payoff, which is computed by IC condition (10). The algorithm tries to
complete the branch to an infinite path. If an equilibrium path is found, it is
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used as an upper bound for the minimum equilibrium payoff of the branch.
The infinite paths are generated by adding following loops: if the path is
abad, we examine the paths aba(d)∞, ab(ad)∞, a(bad)∞ and (abad)∞.

u2

u1

ub2(p2)

lb2(p2)

U2(p2)

v1 v1lb1 ub1

Figure 5: Difference between upper and lower bounds as function of discount
factor.

The next example demonstrates branch cutting and stopping conditions. Let
v = 1, δ = 1/2, ub2(b) = 2.5 and u(a) = 5. The figure (4.2) visualizes the
notation. There is an infinite equilibrium path with payoff 2.5 (ub2(b)), which
is also the upper bound of the punishment payoff. Now, we need not consider
paths starting with action profile a since they give too high payoffs, i.e., the
smallest payoff after starting with a and continuing with the minimax payoff
is (1 − δ)5 + δ1 ≥ 3.5. This is an example of cutting the branch because of
too large payoff. The cutting condition for non-feasible paths is different. If
the path demands a continuation payoff, which is either impossibly large or
so large that the paths payoff exceed the current upper bound, the path is
cut off.

Assume that u2(c) = u1(b) = 1 equilibrium payoffs, which are got by paths
σ1 = c∞ and σ2 = b∞. The payoff 1 is now the new upper bound. We can
stop the algorithm since the minimum payoff cannot be below the minimax
value. Thus, c∞ is the punishment path for player 1 and 1 is the minimum
payoff. The lower bound is the smallest lower bound in the set of branches
or minimax, which is greater.
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Algorithm 1 presents the main steps, which are explained more thoroughly
in Sections 4.4-4.6. Step 2a consider the branch selection problem. Step 2b
checks that the punished player has no incentive to deviate from the examined
path. Step 2b computes the minimum continuation payoff requirements after
the punishment path. It checks that the branch gives lower payoff than
the current upper bound. Otherwise, the path cannot be the minimum.
The step also checks that the continuation payoff requirements are not too
high. If these conditions are satisfied, then the payoffs for different loops
are computed and the bounds are updated. The algorithm stops when the
bounds are within a given tolerance.

Input: Stage game in normal form, discount factors δi
Result: Bounds for v−(δ), best found feasible path

1 Initialize the set of open branches B;
2 Set ub← v and lb← v;
3 while ubi − lbi < ε, ∀i do
4 1) b← pick the next branch from B;
5 2) for every player i do
6 for k = 1→ |pi| do
7 a) Check that the punished player does not deviate from pi at

stage k;
8 if there is a deviation then Goto Step 1;
9 b) Compute the minimum continuation requirements after path

pi for all players;
10 if the lowest payoff from the branch is higher than ubi then Goto

Step 1;
11 else if any continuation payoff requirement is too high then

Goto Step 1;
12 c) Compute the players’ payoffs for a path qk = pik−1(pik−1)

∞;
13 end
14 end
15 3) Compute the bounds;
16 4) Update B;
17 end

Algorithm 1: Compute the minimum paths and payoffs
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4.3 Step 1: Selecting the next branch

The heuristic for the next branch selection is one key issue in algorithm
performance. This phase may also require significant amount of computing
power. There is no method for guessing, which branches are the most poten-
tial punishments. There may be a huge number of local optima and totally
different paths may produce payoffs of the same kind. The most important
decision is the search method. The common alternatives are breadth-first
search (BFS) and depth-first-search (DFS). In addition a heuristic or ran-
domizing could be a good alternative.

Breadth-first-search is used in the examples of this work. The redeeming
feature of this method is reliability, but it may not be the fastest search
method. The typical problem of DFS and heuristics is that they may stick
in one branch (and its sub-branches) and never reach the global optima. A
suitable heuristic could still reduce the computing times dramatically.

4.4 Step 2a: Checking deviations

This step ensures that the punished player does not deviate from the exam-
ined path. For example, if the path starts with abca and the player could get
better payoff by deviating from c to a, then the outcome would be (aba)∞.
The punishment starts always over after the deviation and player deviates
every time at time same point. The path starting with abca cannot be an
equilibrium path, because deviating is profitable for the player. Let M(k)
(defined in formula (31)) be the payoff of the punished player if he always
deviates from the kth action profile

M(k) =
1− δi
1− δki

[
Ui(pi

k−1) + δk−1i v∗i (f(pik−1))
]
. (31)

The notation f(pik−1) refers to the first action of the path pik−1. The devia-
tion is not profitable if M(k) is smaller than or equal to the payoff that the
player receives when path pi is followed. Now, if any M(k) ≥ ubi then also
the path pi gives a higher payoff than ubi, and the branch cannot form the
punishment path. Thus, if the following condition does not hold

ubi ≥
1− δi
1− δki

[
Ui(pi

k−1) + δk−1i v∗i (f(pik−1))
]
, ∀k, (32)

then the branch can be cut.
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4.5 Step 2b: Computing minimum payoff requirements

Let conji denote the minimum continuation payoff of player i that is required
after the path pj. The v is solved from Inequality (10) and the smallest v
satisfying the condition is

conji = max
k=1,...,|pj|

[(1− δi)v∗i (f(pjk−1)) + δilbi(par(b))− Ui(pjk−1)] /δ|pj|−k+1
i ,

(33)
where par(b) is the parent node of branch b and |pj| is the length of the
path. The index k goes through all the possible stages where the player can
deviate, and the deviation is followed by the punishment payoff of the parent
node lbi(par(b)). Now, the lower bound of branch b is

lbi(b) = (1− δi)Ui(pi) + δ
|pi|
i max[conii, lbi], (34)

where Ui(pi) is the payoff of player i from path pi. The lower bound is
reached, if there is an equilibrium code which payoff is exactly conii. If
the lower bound of the branch is higher than the global upper bound, i.e.,
lbi(b) ≥ ubi, then the branch can be cut. Thus, the path should be examined
only if

conii < δ
−|pi|
i (ubi − (1− δi)Ui(pi)). (35)

The computation of con makes possible to cut the infeasible branches. If a
path requires too high continuation payoff that cannot be achieved in the
game, then the branch can be cut. The path can be an equilibrium only if

conji ≤ vi, ∀i, j. (36)

If either of the conditions (35) and (36) does not hold, the branch is cut.

4.6 Step 3: Computing the bounds

The lower bound of b was computed in Step 2b. The upper bound of b can
be computed with the paths qk = pik−1(pik−1)

∞ from Step 2c. Now, it is
possible to check that these paths have none profitable deviations for any
player. The order of path checking is important. The worst case is that all
the combinations of loop lengths must be checked. It is best start from loops
giving the smallest payoffs and check others only if needed.

The checking feasibility of path combination q = {q1, q2, ..., qn} consists on
following steps.
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1. Payoffs from loops are computed in phase 2c in Algorithm 1

2. If Ui(pj∞k−1) < conji for any i× j, the loop k is discarded. However, the
path is not necessarily feasible, because conji is just a lower bound for
demanded continuation payoff.

3. The loop with smallest payoff is chosen for every player and the feasi-
bility of path combination is checked. The condition is

Ui(qj) ≤ (1− δi)v∗i (qjk) + δiUi(qi) (37)

The total number of checks is n2k because every player’s punishment
must be feasible for everyone in every phase k.

4. If the path in Step 3 is feasible, the payoffs Ui(qi) are used as punish-
ment. Otherwise, all the loop combinations must be checked separately.
This brute-force approach is needed seldom in games examined in this
study.

4.7 Step 4: Updating B

If the upper bound
∑

i ubi(b) <
∑

i ubi, then we update ubi = ubi(b), and
remove the branches b′ from B that satisfy condition

lbi(b) ≥ ubi, b ∈ B. (38)

This phase is known as pruning in the branch-and-bound algorithm. The
current branch b is removed from B in Step 1. Moreover, we add the children
of b to B. The lower bounds of the parent is saved and used as a initial value
of child’s lower bound. We leave for future research how to examine only the
relevant children and how to go through the branches in a good order. In
this paper, we pick the branches in Step 1 in the first in last out order.

The lower bounds are updated by lbi = min lbi(b), b ∈ B. If ubi− lbi < ε, for
all i, the algorithm stops. If ubi 6= lbi, then the found punishment path for
player i is feasible but may be suboptimal. We also terminate the algorithm
if the length of the punishment path reaches a given limit.
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5 Numerical examples

5.1 Duopoly game

The first example is the duopoly game from Abreu [1988]. The game is
a matrix version of classic Cournot duopoly where the player decide the
amount of production. The price and profit are determined by the markets.
The actions and payoffs are found in following table:

L M H
L 10, 10 (a) 3, 15 (b) 0, 7 (c)
M 15, 3 (d) 7, 7 (e) −4, 5 (f)
H 7, 0 (g) 5,−4 (h) −15,−15 (i)

The firms have three output levels: low (L), medium (M) and high (H). The
nine action profiles are denoted by letters a to i, and the stage game Nash
equilibrium is e, i.e., (M,M), giving payoff 7. The joint optimum (10,10) is
not an equilibrium solution in the stage game. The minimax payoff is vi = 0,
and thus for all discount factors it holds that 0 ≤ v−i (δ) ≤ 7, i = 1, 2.

The punishment paths and payoffs are computed with different discount fac-
tors. The found upper bounds are presented in Figure 6. It is seen that the
minimum payoff is the stage game Nash equilibrium when the discount fac-
tors are low and close to the minimax value with high discount factors. The
games between those and unequal discount factors leads to more complex so-
lution and are computationally harder. The punishment paths are simple for
both low and high discount factor values. The stage game Nash equilibrium
is repeated and the punishment path is e∞ when the discount factor is low,
and the minimax is repeated (c∞, b∞), when the discount factor is high. The
punishment paths are more complicated for discount factors between 0.1 and
0.5, even though the minimum payoff is close to zero. For example, the best
found paths for (δ1, δ2) = (0.4, 0.8) are p1 = c∞ and p2 = hhhdadgd∞ giving
payoffs 0 and 1.5 · 10−4, which may be suboptimal.
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Figure 6: The upper bounds for the minimum payoffs in duopoly.
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Figure 7: The difference between the bounds in duopoly.

The difference between the upper and lower bounds are shown in Figure 7.
We can see that the algorithm converges in most cases but it has problems
when one player has a small discount factor and the other has a high value.
In these cases, the algorithm has to go through a lot of paths that have no
profitable deviations. Finally, the convergence of the bounds as a function
of the path length is demonstrated in Figure 8 for (δ1, δ2) = (0.4, 0.8). We
can see that the differences are small already for short path lengths and they
converge faster for the player with a smaller discount factor value. This is a
general phenomenon since the punishment paths are typically shorter. The
reason is that only the first payoffs matter when the discount factor is small.
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Figure 8: Development of the bounds when (δ1, δ2) = (0.4, 0.8).

5.2 Anti-No Conflict Game

The second example called anti-no conflict game is good example of a game
with complex punishment paths. The game matrix is following:

L R
T 5, 5 4, 3
B 3, 4 2, 2

The game has a dominant Nash equilibrium (T, L). The minimax value is
4, but the corresponding action profiles (T,R) and (B,L) cannot be played
repeatedly since they give a smaller payoff than 4 to the punishing player.
The upper bounds and the differences between the bounds are shown in
Figures 9 and 10.
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Figure 9: The upper bounds for the minimum payoffs in anti-no conflict
game.
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Figure 10: The difference between the bounds in anti-no conflict game.

We see from the figures that it is possible to punish the other player if the
discount factors are high enough. The minimum never reaches the minimax
value, except in some separate discount factor combinations. The punishment
paths are long and complicated for high discount factor values. For example,
it is possible to punish with a path daac(baaaadaa)∞, when δ = 0.8. The
payoff is approx. 2.9 · 10−7 over the minimax value and it may still be
suboptimal. It should be noted that it may be possible to reach a low payoff
with a simple path. For example, the path dca∞ gives already a low payoff
of 4.08. Moreover, the algorithm has problems with convergence when one
discount factor is low and the other one is high.

5.3 Comparison to Abreu&Sannikov-algorithm

Abreu and Sannikov have introduced an algorithm for computing the equilib-
rium payoff set with correlated strategies. Their work is discussed in Section
2.9. Payoff sets in pure strategies are computationally hard to solve. The
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lower bounds of their payoffs are the minimal equilibrium payoffs in the game.
In this section we compare lower bounds in anti-no conflict game. Also, the
performance of algorithms is reviewed although the output is very different.

5.3.1 Difference between lower bounds

Pure strategies are a subset of correlated strategies. It is obvious that the
equilibrium set with correlated strategies includes the set with pure strate-
gies. However, the threat point differs often. As we see in Figure 11 the threat
in anti-no conflict game really is lower with correlated strategies. With low
discount factors, the cooperation is the only equilibrium of the game with
high discount factor it is possible to reach minimax payoff. Between those
there is area where the threat point is between those.
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Figure 11: Punishment payoff in anti-no conflict game. Only bounds are com-
puted succesfully with pure-strategies. The results with corralated strategies
converged.

Abreu&Sannikov -algorithm is usually much faster than the one presented in
this work. Totally 49 games are computed for the figure. Takes 7.6 seconds
with Abreu&Sannikov -algorithm and over 1100 seconds with the algorithm
for pure strategies. The Abreu&Sannikov-algorithm is reported to be over
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1000 times quicker than older JYC algorithm [Abreu and Sannikov, 2013,
Judd et al., 2003]. The running time of the pure-strategy algorithm seems to
be somewhere between these, although the outcome is directly comparable.

5.4 Worst-case performance analysis

The computing work is proportional to the number of examined branches
and to the work needed to compute each branch. It would be impossible, or
at least extremely messy, task to derive exact bounds for computing time.
Anyway, we can estimate work needed for pure brute-force search in the
search tree and compare it work done by the algorithm. Of course, brute
force search is also the worst-case bound for the algorithm.

The size of a search tree is computed by formula

W = Σl
i=1M

i = O(M l) = O(mNl), (39)

where l is the depth of search tree andM is the number of actions in a game.
Alternately number of actions can be expressed as function of the number of
players in a game N and the number of strategies available for each player m.
The relation between these isM = mN . This upper bound holds for any kind
of algorithm or heuristic, which is used for computing the search-tree. The
work, which is needed for one branch, increases at least linearly to number
of players, number of strategies for each player and the length of the path.
The worst-case work is at least

O(Nml) (40)

N is the number of players in a game. In practical implementation the branch
selection process is partly implemented in the work with each branch. That
is why, we can expect a bit worse performance in computing branches and a
bit better performance in the number of branches. There is an exponential
relationship between work and number of players, which makes games with
many players exhaustive. Remember that number of branches grows expo-
nentially with number of players. The algorithm stops when upper and lower
bounds are close enough to each other. The precision is now denoted by p,
where p is the difference between upper and lower bound divided the size of
feasible payoff set. In the example if all the payoffs are between 0 and 10.
The precision 10−6 mean that the algorithm stops when difference between
bounds is smaller than 10−5. Next, we compute how many actions from start
we need to include to ensure that the payoff is in wanted precision. We do
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not assume any information about feasible continuation payoffs. U(p) and
U(p) are maximum and minimum payoff from path p. Continuation payoff is
just the largest and the smallest feasible payoff, which are denoted as U and
U . After each stage game the feasible payoff set is the scaled by discount
factor. To ensure small enough set we need to solve equation

U(p)− U(p) ≤ p(U − U)

((1− δ)U(pk) + dkU)− ((1− δ)U(pk) + dkU) ≤ p(U − U)
δl ≤ p

l ≥ ln(p)
ln(δ)

.

(41)

l is now needed path length for wanted precision.

O(M l) = O(M
ln(p)
ln(δ) ) = O(mN

ln(p)
ln(δ) ) (42)

Note that examining all branches to length l does not guarantee convergence
of the bounds. There might be open branches which could offer an equi-
librium solution, if they would be further examined. However, we need to
examine paths up to length l, if we want to ensure convergence in precision p
in case there is only one branch left. Bounding the complexity of strategies
or switching to ε-equilibria could offer possibilities for more strict conditions.

There really are some cases where the algorithm really converges to one
solution. It is the most obvious case if we found an equilibrium path which
gives the minimax payoff for every player. Another case is when all the open
branches could give the payoff which equal best found punishment payoff
in selected precision. This it is common especially if all the open branches
are children of the current best solution. In this case, we do not know only
the punishment payoff in selected precision, but also the first actions of the
optimal punishment path. Although, it is seems likely that we have found
the best paths, it is possible that the path would be different if there would
not be a limit for complexity.

Figure 12 shows computational complexity with respect to different variables.
Figures are computed directly from Formula 42 and with following param-
eters: N = 2, m = 2, p = 10−5 and δ = 0.4. Only one variable varies in
figures. Exponential growth appears linear graph with logarithmic y-axis.
We see that the work grows exponentially as function of the number of play-
ers, linearly with respect computing precision (note logarithmic scale also
in x-axis). Increasing number of strategies for player affects only polynomi-
ally. The most dramatic is the growth when the discount factor grows. This
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is because we examine paths from start and with high discount factor, the
most of value comes from far the future. The paths needed are very long and
the computing work increases over exponentially towards infinity when the
discount factor grows to one.

5.5 Empirical performance analysis

There is no analytical worst case running time, but we can analyze algorithms
performance with a random set of games. Each test set consists of 300 matrix
games and the payoffs are chosen randomly between 1-10. The exception
is is test set analyzing effect of the number of players, which is extremely
hard to compute and consists of only 30 entries. The number of players is
two, the number of strategies for each player is also two and the discount
factor for each player is 0.4. The algorithm stops when precision 10−5 is
reached. One of these variables is varied, and the performance is compared
with theoretical upper bounds. The algorithm has a limit for the number of
examined branches, which is set to 104. There is also some other conditions
for the premature stop of the algorithm, but they are rare and they do not
affect too much to averages. The average number of branches are presented
in Figures 12 and the data used for computation is in Figure 14. The effects
of different variables are explained in next subsections. A variable may affect
the number of branches and the work of the average branch. Those are
analyzed separately.

Altogether 930 example games are generated for the data set and general
results are presented in Table 3. We see that 76.9% of games are solved in a
sense that bounds are converged in selected precision. In 9% the algorithm is
stopped, before founding solution and 14% stops because there are no more
branches to examine. In some cases there the reason may be a rounding error
or another numerical error, but the mostly this happens because there are
no pure strategy equilibria in a game. This means that the algorithm solves
almost 90% of the games in test sets.

Table 2 presents number of games in each category (Section 3.2). We see that
the solution is the stage-game Nash equilibrium in 37% of cases (Category
A). No equilibrium solution is found in 14% of games (Category D). In 60% of
games repeating minimax-actions is an equilibrium strategy, if the discount
factor is sufficiently high (Category B). In 40% of games high discount factors
may lead to extremely long computation time (Category C).
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Category N Freq.
A 344 37.0%
B 561 60.3%
C 369 39.7%
D 131 14.1%

Table 2: The number of games in each category

Reason of stop N Freq.
Solution found: bounds
are converged and only one
branch is left for each player

414 44.5%

Other/Unknown 0 0%
Data structure B full 11 1.2%
Data structure P full 0 0%
Bounds converged, but sev-
eral branches left

301 32.4%

Max number of branches
searched

73 7.9%

No branches left in B 131 14.1%

Table 3: Frequencies of algorithm stop conditions
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5.5.1 The effect of discount factor

The algorithm handle even large discount factor much better than one could
expect by theoretical analysis of the problem. If the largest of unequal dis-
count factors is below 0.5 the convergence is quick as seen in Figure 12.
There is clear step in complexity when discount factor 0.5 is exceed, but
the growth is not dramatic. However, Figure 13 tells, that the percentage
of solved games drops from 90% to only a bit over 50% when the largest
discount factor in game grows from 0.4 to 0.9.

High discount factor forces us to examine paths further to ensure selected
precision. On the other hand, the high discount factor allows players really
execute more complex temporary structures. We see in Figure 15 that the
optimal punishments really tend to be more complex punishment and even
punishment strategies with dozens of actions are possible. The complexity
is measured by minimum number of states in automata, which execute the
punishment strategy for every player.

5.5.2 The effect of computing precision

One of the largest surprises is that selected precision does not affect much
the algorithm performance. Figure 12 seems about constant difficulty in
contrast to expected exponential growth. The most likely explanation is that
the games typically are either easy or very exhaustive as we see in Figure 14.
In easy games, the solution is found quickly regardless the precision and in
exhaustive games the solution is not found at all and search is cut. Thus,
the graph gives more information about the fraction of difficult and easy
cases than the real effect of computing precision. The low precision let us
quit computation, when we found just one, often simple, solution with a low
payoff. That is why the solutions are often less complex. This is seen in
Figure 15.

5.5.3 The effect of number of players

The empirical relationship between the number of players and the computa-
tion work cannot be studied well. We see in Figure 12 that only four players
is enough to increase the average branch number over the stopping condition.
With 2− 4 players computing work seems to grow faster than exponentially
(convex line in logarithmic a graph). Actually, Figure 13 tells that no games
with 5 player are solved successfully.
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The algorithm can solve games with arbitrary many players, but curse of
dimensionality makes the task very time consuming. The number of players
has an exponential relationship to the needed branches and possibly an ex-
ponential relationship to time needed for one branch. This would mean total
time O(cN

2
). Furthermore, it is possible that complexity of the punishment

with many players tends to be high. This question cannot be studied well
with current algorithms and computing capacity.

5.5.4 The effect of number of strategies for each player

The effect of varying number of strategies corresponds well the expectation:
the polynomial growth in Figure 12. The fraction of solved games decreases
naturally when the average computation task goes harder (Figure 13). Figure
16 shows the computation time instead of the number of branches. Now, the
differences in average time for a branch become visible. Median computation
time as function of the number of strategies seems to be exponential although
the average time and the number of the branches grows only polynomially.
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Figure 12: Theoretical bounds for number of branches versus pratical per-
formance of the algorithm
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Share of solved games
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Figure 13: Percentage of succesfully solved games in test set
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Number of examined branches in every game of test set
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Figure 14: The number of branches and stopping reasons for all 930 games
in tests. This data is used for computing means and medians for Figure 12.
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Complexity of found punishments path
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Figure 15: Histrograms presenteing total number of actions in best found
punishment paths. Corresponds the minimun size of automata, which is
needed to implement all punishments of a game.
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Average computation times
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Figure 16: Mean and median computation times in test games
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5.5.5 Computation time of a branch

The computation work of a branch is hard to analyze theoretically. Figure
17 shows computation times of all branches (n = 383056) in data set, where
the discount factor varies and number of players two and their strategies are
also two. The x-axis tells the length of a path. We see clearly a few games
where computing time grows almost linearly in the figure. Because both axes
are logarithmic, a linear line in the figure corresponds polynomial growth in
computation times. The lines in the figure are not perfectly straight, but
the growth rate is higher than polynomial. The reason for this is unclear.
The possible explanation is that the computing just goes slower when there
is lack of memory, but it is also possible that some steps in the algorithm
take exponential time when the path length is high.

Figures 18 and 19 presents roughly the average computing time with the
different number of players and strategies. The problem is that the path
length has a significant factor and there a plane fitted to data points. We see
that computation time increases linearly with the number of players, which
means that empirical computation time (N of branches x Average branch
time) increases about exponentially, while both factors increases about ex-
ponentially. Figure 19 predicts at least worse than polynomial performance
when paths are short and number of strategies increases. Surprisingly, the
average computation time seems to decrease when path length increases, but
this must be a bias related the fact, that longer paths are examined only in a
biased subset of games. Polynomial performance would make sense because
the number of actions on a game increases polynomially when the number
of strategies grow. Apparently there are some harder steps in the algorithm,
which worsens the performance at least with short paths.

51



Computation times for all computed branches

Figure 17: Computation times for branches in a test set with variable dicount
factors. N=383 056.
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Average computation time for a branch
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Figure 18: Average computation time for a brach in function of the number
of players and the path length.
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Average computation time for a branch
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Figure 19: Average computation time for a brach in function of the number
of strategies for each player and the path length.
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6 Conclusions

This study examines pure-strategy equilibria in repeated games and presents
an algorithm for computing the extremal solutions. The matrix games are
divided into four categories. In some class the solutions are simple and in
others they may be extremely complicated. The problem is formulated as an
optimization problem and solved by an algorithm which applies the branch-
and-bound idea. The algorithm returns bounds for extremal equilibrium
solutions for each player. Also the best-found equilibrium path is returned
for each player.

The algorithm restricts on strategies, which are representable as a finite au-
tomata. There are equilibrium strategies, which are not, but there is no
practical method for implementing strategies of this kind. Therefore, it is a
sound restriction to examine just finite strategies. Another common way to
bypass problems related to infinitely complex equilibrium solutions is to ap-
proximate solutions with the ε-equilibria. The set of ε-equilibria also contains
new solutions, which are not ε-approximations of any pure Nash equilibrium.

The numerical experiments show that the extremal equilibrium is very un-
stable related to the discount factor. The increase in the discount factor
can lead either increase or decrease in the extremal equilibrium payoff. This
phenomenon has an unintuitive influence: an equilibrium path may cease to
be an equilibrium if the discount factor increases a bit [Berg, 2013].

6.1 Further research

There are many theoretical questions, which are without an proper answer.
The most fundamental is conditions when the punishments are finitely com-
plex. Also, the convergence conditions of the algorithm are not solved in
this study. The algorithm performance could also be improved by a branch-
selection heuristic, but this is still a minor question without proper converging
conditions and speeds.

In wider perspective, this study tackles the fundamental question about ex-
tremal punishments. The theory of the repeated games leans on idea optimal
punishments, which can be used as a threat. This study suggests that the ex-
tremal equilibria may be uncomputable or unimplementable is some games.
On the other hand, this study proves that it is possible to find even compli-
cated punishment strategies, if they are representable as a finite automata.
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A Summary of the notation

players i ∈ N={1,..,n}
action set ai ∈ Ai

action profile a ∈ A
opponents action profile a−i ∈ A−i = ×j 6=iAi, j ∈ N

payoff (from action profile) ui(a)
maximum payoff vi
minimax payoff vi

minimax action profile ai
best deviation payoff v∗i (a) = max

ai∈Ai
ui(a)

best deviation action profile a∗i
k length history Ak = ×kA

set of all histories A =
⋃∞
k=0A

k, A0 = {∅}
path p = ×kA

path length |p|
path from j:th action pj

j first actions of p pj
first action of p f(p)
pure strategy σki : Ak → Ai

strategy profile σ = (σ1, ..., σn)
average payoff Ui(σ)
discount factor δi

punishment payoff v−i
branch b = ×i∈NAki

parent of branch b par(b)
bounds for payoff from b lb(b), ub(b)

continuation payoff vi
minimal continuation payoff coni
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