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1 Introduction

Tracking systems are used to estimate the state of an airborne target. Mea-
surements of the position of the target are obtained using air surveillance
radars. The tracking system combines the measurements from the radars
and computes the state estimates in real time, including the position, the
speed, and/or the acceleration of the target, commonly employing Kalman
�lters [Blackman, 1986]. The estimates are computed based on assumptions,
or a priori information, on the measurement accuracy and the target dynam-
ics, such as the maximum acceleration.

Several di�erent approaches to performance assessment of tracking systems
have been developed, including Monte Carlo simulation models, analytic
models and error bounding techniques [Li and Bar-Shalom, 1994]. Monte
Carlo simulations are generally simple to implement but time consuming.
Analytic models rely on many assumptions and approximations, and their
usefulness depends on the particular application. The tightness of the theo-
retical bounds obtained with error bounding techniques is generally unknown.
They are also generally not applicable to speci�c scenarios [Blair and Miceli,
2012]. This thesis focuses on two particular models, the simulation model by
Pousi et al. [2014] and the analytic performance model by Blair and Miceli
[2012], both of which allow performance assessment in multisensor scenarios
with predetermined target trajectories.

Pousi et al. [2014] present a model for assessing the performance of a tracking
system as a part of performance assessment of air surveillance networks. A
Monte Carlo simulation model is used to predict the accuracy of the position
estimates in multisensor settings. The true trajectory of the target is �rst
generated. The measurements are generated by adding random errors to the
true position of the target. The mean squared errors of the state estimates
are obtained directly by comparing the estimates to the true state of the
target. Gating and track scoring are used in the simulations. Gating refers
to ignoring measurements that are far from the predicted position of the
target. This is done to avoid associating the target with measurements that
are originated from other sources. In track scoring the estimated track of
the target is given a numerical value (score) based on how accurate it is
considered. A track may be eliminated if the measurements are not received
at the expected rate and/or the measurements often lie outside the gate.

Blair and Miceli [2012] present a simpli�ed model for performance assessment
of a tracking system. The simpli�ed model is justi�ed by the need for, e.g.,
con�rmation of computer simulations and systems engineering of complex
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multisensor systems. This approach does not involve simulation, but the
mean squared errors of the state estimates are obtained without generating
observations. The model is based on steady-state considerations of an α-β
�lter, which result in analytic expressions for the bias and the variance, i.e.
the components of the mean squared error of the estimates. This model,
where the Kalman �lter of the tracking system is approximated by an α-β
�lter, is here referred to as the performance model.

Neither the simulation model nor the performance model necessarily produce
performance assessments that correspond to reality. No data on the true
performance of the tracking system exists, and gathering of such data may
be practically infeasible. In addition, the Kalman �lter used in the tracking
system may be tuned for monitoring di�erent types of targets in di�erent
situations as needed, and no single model will correspond to reality in all
scenarios.

In this thesis, the parameters of the performance model are tuned in order to
obtain results that are comparable with those given by the simulation model.
The method used to combine measurements from di�erent radars is modi�ed
to take into account the time di�erences between the measurements. Kalman
�lters with multiple kinematic models are considered by tuning the parame-
ters of the performance model separately for each type of target trajectory.
The type of the true trajectory is given as input to the performance model.
The parameter tuning is done manually with a small number of test scenarios
using the simulation results as a reference.

The modi�ed performance model and the simulation model are compared in
di�erent scenarios with di�erent target positions and radar con�gurations.
The parameters of the performance model are not further tuned for these
comparisons. An important motivation for the comparison is to determine
if computationally expensive simulations could be replaced by the use of a
faster method, at least in some scenarios. For this reason, the computation
times are also compared. A fast and reliable performance model could be
used in the design of an air surveillance network and optimization models
where a Monte Carlo simulation approach would be both unreliable and
computationally infeasible.

In literature, simulations of tracker models are commonly done in small num-
bers of chosen scenarios. The total number of performance evaluations done
in this thesis is considerably larger. This results from the large number of
target positions used in order to form graphical presentations of the perfor-
mance of tracking systems.



3

This thesis is organized as follows. Filters used for state estimation are brie�y
introduced in Section 2. The performance model and the simulation model
are described in Section 3. The modi�cations made to the performance model
are introduced in Section 4. The approach used to compare the models is
explained in Section 5. The process used to tune the parameters of the
performance model is explained in Section 6. The numerical and graphical
comparisons of the results provided by the models are presented in Section
7. The results and conclusions are summarized in Section 8.

2 Filters for State Estimation

The state of a target is commonly estimated using di�erent types of �lters
[Blackman, 1986]. As the radar measurements of the position of the target are
corrupted by noise, it is necessary to use assumptions and a priori knowledge
of the target dynamics to obtain accurate state estimates. The two �lters
explained here are the Kalman �lter and the α-β �lter.

2.1 Kalman Filtering

The Kalman �lter [Kalman, 1960] provides an optimal way to obtain state
estimates of the target using the obtained measurements and a kinematic
model of the target. Kalman �lters are used in the simulation model, and
the computations in the performance model are based on steady-state consid-
erations of a Kalman �lter. The following presentation is based on [Grewal
and Andrews, 2008] and [Särkkä, 2013].

Assume that the dynamics of the target can be described as a linear system
of the form

Xk+1 = FkXk + νk, (1)

νk ∼ N(0, Qk),

where Xk is the unknown state vector at time step k, Fk is the known tran-
sition matrix that de�nes the dynamics of the target and νk is the random
process noise with covariance matrix Qk. The process noise models the devi-
ations from the dynamics described by Fk. Assume that the measurements
can be modelled as

Yk = HkXk + wk, (2)

wk ∼ N(0, Rk),
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where Yk is the measurement vector at time step k, Hk is the observation
model and wk is measurement noise with known covariance matrix Rk. Start-
ing from the initial state estimate X0|0 and the initial error covariance matrix
P0|0, the following predictions and state estimates are computed recursively
as new measurements are obtained. Given the state estimate at time step
k − 1, the state prediction is given by

x̂k|k−1 = Fkx̂k−1|k−1. (3)

The error covariance matrix of the predicted state, denoted by Pk|k−1, is then

Pk|k−1 = FkPk−1|k−1F
T
k +Qk. (4)

When a new measurement Yk is received, the updated state estimate and its
covariance matrix are obtained recursively by

x̂k|k = x̂k|k−1 +Kk(Yk −Hkx̂k|k−1), (5)

Pk|k = (I −KkHk)Pk|k−1, (6)

where the innovation covariance Sk and the Kalman gain Kk are de�ned as

Sk = HkPk|k−1H
T
k +Rk, (7)

Kk = Pk|k−1H
T
k S
−1
k . (8)

2.2 α-β Filter

The α-β �lter uses a simple model to estimate the position and velocity of
the target [Blair and Miceli, 2012]. The model can be de�ned with the state
and measurement equations of (1) and (2) by de�ning

Xk =

[
xk
vk

]
, (9)

Fk =

[
1 T
0 1

]
, (10)

Qk = σ2
ν

[
T 3

3
T 2

2
T 2

2
T

]
, (11)

Hk =
[
1 0

]
, (12)

Rk = σ2
w, (13)

where T is the sampling period, σ2
w is the measurement noise variance and

σ2
νT describes the expected deviations from the linear motion. The process
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noise covariance matrix Qk results from the Continuous White Noise Accel-
eration model. In [Bar-Shalom et al., 2002] it is suggested that as a guideline
for choosing σ2

ν ,
√
σ2
νT should be of the order of the change in the velocity

over one sampling period.

If the measurement rate is constant and νk and wk are stationary processes,
the α-β �lter is equivalent to the Kalman �lter in steady state. When the
process noise covariance matrix is chosen as in (12), the steady state Kalman
gains are

Kk =
[
α β

T
,
]

(14)

where α and β are parameters of the �lter that are given by ([Blair and
Miceli, 2012])

Γ2 =
σ2
νT

3

σ2
w

, (15)

µ =
1

3
+

√
1

12
+

4

Γ2
, (16)

α = β
√
µ (17)

β =
12

6(µ+
√
µ) + 1

. (18)

3 Models of Tracking Systems

The simulation model and the performance model are introduced in this
section. The �ow graph in Figure 1 illustrates the di�erences between the
simulation and performance model approaches. In the simulation approach,
the performance of the tracking system is assessed by comparing the state
estimates to the true state of the target [Pousi et al., 2014]. The root mean
squared errors are obtained by averaging over a large number of simulations.
The performance model gives theoretical RMSEs [Blair and Miceli, 2012].
As there are no random components in the performance model, it is enough
to compute the RMSEs once for a given scenario.

The methods for combining the measurements from di�erent radars (i.e.,
sensor fusion) in the two models are di�erent, as illustrated in Figure 2.
These sensor fusion methods are treated in detail in [Mitchell, 2012]. The
performance model considers separate α-β �lters that output independent
position estimates. The position estimates are fused using linear squares
estimation weighted by the error covariance matrices of the α-β �lters. The
simulation model uses measurement level fusion, i.e. all the measurements
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from the radars are �ltered by a single �lter with a varying time interval T .
Some di�erences between the results produced by the models can be expected
due to the di�erences in the sensor fusion methods.

Performance model

Radar configuration

Run 1

Trajectory

Simulation model

Run 2 Run R

Measurements 2Measurements 1 Measurements R

...

...

State estimates 1 State estimates R

Per-simulation RMS error R

...

Per-simulation RMS error 2

RMSE estimate

...

Average

State estimates 2

Per-simulation RMS error 1

Figure 1: A �ow graph of the simulation and performance model approaches.

Radar 1 Radar 2 Radar N...

Track fusion

...

Target

Measurements

Track estimate

State estimates

α-β filter 2 α-β filter Nα-β filter 1

(a) Track Fusion

Radar 1 Radar 2 Radar N...

Target

Measurements

Track estimate

Kalman filter

(b) Measurement level fusion

Figure 2: Flow graphs of sensor fusion using track fusion and measurement
level fusion.
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3.1 Simulation Model

The simulation model presented by Pousi et al. [2014] uses repeated Monte
Carlo simulations to assess the performance of a tracking system. The sim-
ulation model uses an IMM KF (Interacting Multiple Model Kalman Filter)
that combines di�erent kinematic models to account for di�erent types of
target movement. The kinematic models are weighted based on how closely
their estimates match the realized measurements, and on transition proba-
bilities between the kinematic models. These probabilities are contained in a
parameter called the model transition matrix. IMM Kalman �lters and the
related computations are treated in detail in [Bar-Shalom et al., 2002].

Two kinematic models are used in the IMM KF. Singer's model [Singer, 1970]
is used to account for targets with little to no maneuvering. In this kinematic
model, the acceleration is estimated in addition to position and velocity. A
parameter called the maneuver correlation time is used to describe the as-
sumptions on the changes in acceleration. A coordinated turn model [Li and
Jilkov, 2003] with a Wiener velocity model for altitude changes [Bar-Shalom
et al., 2002] is used to account for maneuvering targets. In the coordinated
turn model, the position and the velocity are estimated. Predictions are
made assuming a turn in the xy-plane with a �xed angular velocity and a
constant velocity in the altitude. The assumed steepness of the turn is given
as a predetermined parameter.

The simulation is carried out as follows. The measurement error variances
are given for each radar i=1...N in range (σ2

r,i), azimuth angle (σ2
az,i) and

elevation angle (σ2
el,i) in a planar grid. The true trajectory of the target is

generated as discrete points. The true state of the target between these points
is obtained using linear interpolation. The Kalman �lter is initialized with
the correct values for the position, velocity and acceleration of the target.
The times of the �rst measurements from the radars are randomized from
uniform distributions and further measurements are obtained at constant
time intervals. Measurements are generated by adding a random error to the
true position of the target using the error variances σ2

r,i, σ
2
az,i and σ

2
el,i.

A measurement is ignored if the di�erence between the predicted position of
the target and the measurement is too large. This is referred to as gating. If
the measurement is ignored, the state of the target at the next time step is
predicted using the standard Kalman prediction equations. The purpose
of gating is to avoid associating the target with observations originating
from other sources. An elliptic gate (e.g., Blackman [1986]) is used in the
simulation model. The orientation and the size of the gate are computed
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using a gate size parameter, the measurement error covariance matrices and
the error covariance matrix P of the Kalman �lter.

A track scoring system is used to determine if the tracking of the target should
be continued. Measurements that lie inside the gate increase the track score,
not exceeding a given maximum score. If no associated measurements are
received within a given time, the track score decreases. The tracking ends
when the track score is zero or negative.

The mean squared error for the position estimates in a given coordinate is
obtained as follows:

p = coordinate of interest (x, y, or z)

r = simulation run index (1...R)

kmax,r = number of measurements in simulation r

xp,r(k) = true position of the target in coordinate p at step k in run r

x̂p,r(k) = the estimated position in coordinate p at step k in run r

MSEp,r =
1

kmax,r − k0

k=kmax,r∑
k=k0

(x̂p,r(k)− xp,r(k))2, (19)

where k0 is chosen to be large enough so that the tracker has mostly forgot-
ten the initial state. The RMS error in the xy-plane and altitude are then
obtained as

R = number of simulations

RMSExy =
1

R

R∑
r=1

√
MSEx,r +MSEy,r, (20)

RMSEalt =
1

R

R∑
r=1

√
MSEz,r. (21)

The parameters of the simulation model can be adjusted for tracking di�erent
types of targets. To summarize, these parameters are the the process noise
variances in Singer's model and the coordinated turn model, the maneuver
correlation time in Singer's model, the assumed steepness of the turn in the
coordinated turn model, the gate size parameter, and the model transition
matrix in the IMM KF.
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3.2 Performance Model

3.2.1 Single-Sensor Case

The model presented by Blair and Miceli [2012] uses known analytic formulas
for steady state errors in α-β �lters. First assume that an α-β �lter is used to
track the target in a single coordinate using a single radar. The mean squared
error of the estimates in steady state is decomposed into sensor noise only
(SNO) covariance Sαβk|k and bias Bαβ

k|k, that is

MSE = Sαβk|k +Bαβ
k|k(B

αβ
k|k)

T . (22)

When there is no acceleration, the errors of the estimates result from the
measurement errors. When the target is accelerating, the errors of the esti-
mates result from both the measurement errors and the bias. It was shown
in [Blair, 1992] that the SNO error covariance matrix of an α-β �lter is

Sαβk|k =
σ2
w

α(4− 2α− β)

[
2α2 + β(2− 3α) β

T
(2α− β)

β
T

(2α− β) 2β2

T 2

]
, (23)

where α and β are the parameters of the �lter, T is the time interval between
measurements and σ2

w is the variance of the measurement errors in the coor-
dinate in which the target is being tracked. The steady-state bias resulting
from acceleration is

Bαβ
k|k =

[
(1− α)T

2

β

(α
β
− 0.5)T

]
Ak, (24)

where Ak is the acceleration in the coordinate of interest at time step k. The
SNO covariance of m-step prediction errors is given by

Sαβk+m|k = F (m)Sαβk|kF (m)T , (25)

where

F (m) =

[
1 mT
0 1

]
. (26)

It can be shown that the bias of an m-step prediction is

Bαβ
k+m|k =

[
(1− α + (α− 0.5β)m+ 0.5βm2)T

2

β

(α + (m− 0.5)β)T
β

]
Ak. (27)

Thus, the m-step prediction MSE can be obtained as

MSE(m) = Sαβk+m|k +Bαβ
k+m|k(B

αβ
k+m|k)

T . (28)
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When the MSE is needed in several dimensions, the same equations can
be used by replacing the matrices with block diagonal matrices, each block
representing one of the coordinates. The measurement errors are generally
de�ned in terms of range, azimuth angle, and elevation angle, and the pro-
cess noise is de�ned in the xyz-frame. Thus, the acceleration of the target
Ak, measurement error σ

2
w and process noise variance σ2

ν are converted to a
common frame.

3.2.2 Multisensor Case

When multiple radars are used, the mean squared error of the state esti-
mates is obtained using the following approach, also presented in [Blair and
Miceli, 2012]. Each radar i=1...N is assumed to use a separate α-β �lter,
producing N tracks. Each �lter only uses the measurements obtained by the
corresponding radar. The errors in the estimated tracks are assumed to be
independent. The fusion of the tracks is treated as a linear least squares
estimation problem. The estimates from the �lters are weighted using the
track covariance matrices P i

k|k from each �lter. The SNO covariance of the
fused track is then found to be

Sfk|k = P f
k|k

[
N∑
i=1

(M i
k)
T (P i

k|k)
−1Sik|k(P

i
k|k)
−1M i

k

]
(P f

k|k)
T , (29)

where Sik|k is the SNO covariance as derived in (23) andM i
k denotes a rotation

matrix from the common xyz-frame to the local frame, which is aligned with
the vector pointing from the radar to the target.

The process noise variance is obtained in the local frame of the radar i at
time k using [Wasserman, 2010]w2

r,i

w2
u,i

w2
v,i

 = M i
k

w2
x 0 0

0 w2
y 0

0 0 w2
z

 (M i
k)
T , (30)

where r, u, and v refer to the coordinates of the local frame. As the mea-
surement error variances are de�ned in radians squared, they are converted
to meters in the local cartesian frame byσ2

r

σ2
u

σ2
v

 =

σ2
range

d2σ2
φ

d2σ2
θ

 , (31)
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where d is the euclidean distance between the radar and the target. The bias
of the fused track is given by

Bf
k|k = P f

k|k

[
N∑
i=1

(M i
k)
T (P i

k|k)
−1Bi

k|k

]
. (32)

where Bi
k|k is the bias as in (24). For a steady state α-β �lter the error

covariance is

P i
k|k = σ2

w

[
α β

T
β
T

β(2α−β)
2(1−α)T 2

]
. (33)

This error covariance matrix is derived based on the assumption of stationary
measurement noise and process noise. It does not depend on the realized
measurements. In the three-dimensional case, Equations (29), (32) and (33)
are used with Sik|k representing a block diagonal matrix of the SNO covariance

matrices in the local coordinates, computed with Equation (23), and Bi
k|k

representing a column vector of the biases in the local frame, computed using
Equation (24). The mean squared errors are then obtained as the diagonal
elements of the matrix

MSE = Sfk|k +Bf
k|k(B

f
k|k)

T . (34)

The formulas presented so far allow assessment of the tracking system at a
single point with a given target acceleration. To obtain meaningful measures
of accuracy in a given trajectory, the RMSEs are averaged over discrete
points. Assuming that the trajectory is discretized at constant time intervals,
the average planar RMSE and the average altitude RMSE are computed as

RMSExy =
1

K

K∑
k=0

√
(MSEx(x(k∆t), A(k∆t)) +MSEy(x(k∆t), A(k∆t)),

(35)

RMSEalt =
1

K

K∑
k=0

√
MSEz(x(k∆t), A(k∆t)), (36)

whereMSEx,MSEy andMSEz refer to the diagonal elements of the steady-
state error covariance matrix (34) obtained using the 3x1 true position vector
x and the 3x1 acceleration vector A at time k∆t, where ∆t is the sampling
interval of the discretized trajectory.

To summarize, the use of the performance model requires values for the time
intervals between the measurements Ti, the process noise variances w

2
x, w

2
y,
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and w2
z , the measurement noise variances σ

2
range,i, σ

2
φ,i, and σ

2
θ,i, and the target

acceleration Ak. If prediction errors are needed, the prediction time steps mi

need to be set.

4 Improvements to the Performance Model

The original performance model by Blair and Miceli [2012] is modi�ed for use
in scenarios where the time di�erences between the measurements and the use
of multiple kinematic models has to be taken into account. The modi�cations
are based on adjustments to the parameters of the performance model.

4.1 Correction for Asynchronous Radars

In the performance model, the accuracy of the track is computed using the
errors of the state estimates from each �lter (Equations (29) and (32)). As
the errors of the state estimates are computed for the update phase of the
Kalman �lter, this fusion model corresponds to a scenario where all radars
are synchronized and have the same measurement rate. If the measurement
rates di�er, or the radars are not synchronized, this approach underestimates
the true error.

To correct for this, the prediction errors of the α-β �lters (28) are used
instead of the errors of the estimates (22). In [Blair and Miceli, 2012], it
is noted that if the track fusion requires prediction, the prediction errors
could be used instead of the estimation errors. It seems that this approach
has not been applied in the literature. In the correction suggested here, the
prediction errors are used to compensate for the time di�erences between the
measurements in measurement level sensor fusion.

The prediction time in the performance model (mT in Equation (28)) is
computed for each radar. Assuming that a new measurement from radar j is
received at time t, the expected time between t and the latest measurement
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from radar i is obtained as follows:

t = current time

j = radar making the measurement at time t

ui = time when radar i last made a measurement

Ti = time interval between measurements for radar i

I = number of radars

E(t− ui) = E(t− ui|i = j)P (i = j) + E(t− ui|i 6= j)P (i 6= j) (37)

= E(t− ui|i 6= j)P (i 6= j) (38)

=
Ti
2

(
1−

1
Ti∑I
k=1

1
Tk

)
. (39)

The expected time interval (39) is converted to a fractional number of time
steps by

mi =
E(t− ui)

Ti
(40)

=
1

2

(
1−

1
Ti∑I
k=1

1
Tk

)
. (41)

Thus, the number of time steps given by (41) is used in place ofm in the equa-
tions for prediction covariance (25) and prediction bias (27). The weighting
matrices are obtained with equations (4) and (33) using the corresponding
time interval miTi.

Note that this correction does not give the exact expected value of the RMSE,
which would require computing the expected value of (34) over m. However,
it will be shown in Section 7 that the correction of Equation 41 gives more
reasonable results than the original performance model.

4.2 Combining Multiple Kinematic Models

In the simulation model, the IMM Kalman �lter uses two kinematic models:
one for little to no maneuvering (Singer's model) and one for coordinated
turns (coordinated turn with Wiener velocity model for altitude changes).
When the IMM Kalman �lter determines that the target is �ying along a
straight-line trajectory, Singer's model is used. When the IMM Kalman
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�lter determines that the target is maneuvering, a combination of the Singer
model and the coordinated turn model is used.

The use of multiple kinematic models is taken into account by choosing the
parameters of the performance model based on the true trajectory. The true
trajectory type (straight-line/circular and the steepness of the turn) is given
to the performance model as a parameter. Note that no attempt is made to
model the weighting the IMM Kalman �lter uses for the kinematic models.
In the literature, the Hybrid Conditional Averaging method is used for such
models [Li and Bar-Shalom, 1994]. However, this would make the compu-
tations considerably more complex and increase the computation times. In
addition, it is not clear if this approach would work in multisensor scenarios.

The result of using multiple kinematic models is that the tracking error is
smaller than when using either of the models alone. The kinematic model for
coordinated turns is very speci�c, whereas Singer's model is a more general
purpose kinematic model. Thus, the error of the estimates is the smallest
when the target performs a coordinated turn and the true angular velocity
equals the assumed angular velocity. The performance model, on the con-
trary, predicts that the error of the estimates increases when the acceleration
is not zero. Thus, the performance model needs to be modi�ed in order to
make meaningful comparisons with the simulation model.

When the true trajectory is a straight line, the performance model is used
as described in Section 3.2. When the true trajectory is circular, the follow-
ing correction is made to the acceleration given to the performance model
(Equations (24) and (27)).

ACk =

Ax,kAy,k
Az,k

 = 9.81(gassumed − gtrue)
Ak
|Ak|

, (42)

where ACk is the corrected acceleration at time k, Ak is the true 3x1 acceler-
ation vector and gassumed and gtrue are the assumed and true absolute values
of the accelerations in g-force units. This forces the performance model to
give the smallest error when the true acceleration of the target equals the
assumed acceleration.
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5 Performance Assessment of Tracking Systems

In this thesis, the performance of a tracking system is assessed based on the
root mean squared errors of the position estimates of the target. A good
understanding of the performance is gained by using su�ciently di�erent
trajectories and target types. Two types of target trajectories are used in the
performance assessments: a straight-line trajectory with constant velocity,
and a circular trajectory with a turn of 1080 degrees at constant angular
velocity. The steepness of the turn and the altitude of the target is �xed
for each scenario. The true trajectory is generated as discrete points with a
discretization time step of one second.

The parameters of the simulation model and the performance model describe
the assumptions on the target dynamics. If the tracking system is well tuned,
the assumed maneuvering matches the true maneuvering of the target. How-
ever, performance assessments for poorly tuned tracking systems may also
be of interest. The parameters are considered given for the simulation model
and are not modi�ed. Suitable parameters for the performance model are
found as described in Section 6.

As the tracking accuracy depends on relative positions of the radars and
the target, a large number possible target positions are considered. In each
scenario, the map is divided into 20 km x 20 km cells. For each cell and
each radar, the three measurement noise variances (for range, azimuth angle
and elevation angle) and the time interval between the measurements are
given. The target is placed at the center of the grid cell, from which it moves
according to the predetermined trajectory. The performance model or the
simulation model is run and an estimate of the tracking error is obtained
for each cell. Not every radar is able to obtain measurements from every
position of the target. Thus, the number of radars that can be used varies.

To summarize, for each scenario the target altitude, the true trajectory type
(g-force of the turn or no turn), the assumed maneuvering (aggressive or
slow), and the radar con�guration are �xed. The simulation model and the
performance model are then run for a large number of target positions in a
grid.



16

6 Parameter Tuning

The parameters of the performance model are tuned to obtain results that
are comparable to those given by the simulation model. This is necessary,
as the objective is to compare the models, not the particular �lter designs.
The parameters of the simulation model are considered given and are not
modi�ed. The simulation model uses large values for the parameters related
to maneuvering, described in Section 3.1, when it is assumed that an ag-
gressively maneuvering target is being tracked. When it is assumed that the
target maneuvers slowly, low values are used for the parameters.

The parameters of the performance model that are being tuned are the pro-
cess noise variances w2

x, w
2
y, and w

2
z . The possible scenarios are divided into

four categories based on the type of the true trajectory and the assumed
maneuvering of the target. One parameter set, comprising w2

x, w
2
y, and w

2
z ,

is tuned for each scenario type. The parameter sets and the corresponding
scenario types considered are summarized in Table 1.

Parameter set True trajectory type Assumed maneuvering
1 Straight Slow
2 Straight Aggressive
3 Circular Slow
4 Circular Aggressive

Table 1: The parameter sets tuned for the performance model.

The turn parameter of the performance model gassumed (in Equation (42))
is set to the same value as in the simulation model in parameter sets 3 and
4. For slowly maneuvering targets, this value is 2 g, and for large assumed
accelerations the value is 6 g. The scenarios used to tune the parameters are
summarized in Table 2.

Parameter
set

True trajectory
type

Assumed
maneuvering

Target
altitude

1 Straight Slow 4000 m
2 Straight Aggressive 10 000 m
3 Circular (4 g) Slow 1000 m
4 Circular (7 g) Aggressive 10 000 m

Table 2: The scenarios used to tune the parameters. A single radar is used
in each scenario.
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The parameters are tuned by hand, while comparing the results given by
the performance model and the simulation model. The RMSEs given by the
models are made to match adequately both near and far from the radar. No
attempt was made to do this formally. A formal treatment would require a
measure of similarity between the results given by the models.

Gating and track scoring are not modelled explicitly in the performance
model. However, they are implicitly contained in the parameters of the
performance model, as the parameter tuning is done using the simulation
results as a reference.

7 Comparisons of the Results

The simulation model and the performance model with modi�cations de-
scribed in Section 4 are compared in six di�erent scenarios. The parameters
of the performance model are tuned as described in Section 6. First, an ex-
ample scenario is shown with a single radar and a straight-line trajectory.
The models are then compared in multisensor scenarios with di�erent target
types. The scenarios used for the comparisons are summarized in Table 3.
The assumed maneuvering determines if large or small values are used for
the parameters of the simulation model, and if the parameter sets 1 and 3 or
the parameter sets 2 and 4 are used in the performance model (see Table 1).

Scenario no. Trajectory type Target altitude
Assumed

maneuvering
No. of
radars

1 Straight 4000 m Slow 1
2 Straight 10 000 m Slow 4
3 Circular (3 g) 4000 m Slow 4
4 Straight 1000 m Aggressive 4
5 Circular (9 g) 4000 m Aggressive 4
6 Circular (6 g) 4000 m Slow 4

Table 3: A summary of the scenarios used to compare the models.

The measurement error variances are considered to be approximately con-
stant in each trajectory. This decreases the computation times for both
models, as the covariance matrices of the measurement errors are not ro-
tated for each time step. For the straight-line trajectories, the performance
model is only run once at the starting point in each grid cell. For the cir-
cular trajectories, the performance model is run at di�erent points along a
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half-circle, as the errors only depend on the squared accelerations in each
coordinate. In each scenario, the simulation model is run repeatedly until
5000 position estimates are obtained in each grid cell. This allows for visual
comparisons of the results with mostly negligible Monte Carlo error.

7.1 Scenario 1: A Simple Single-Radar Scenario

The performance model and the simulation model are �rst compared in a
simple single-radar scenario. A simple scenario is used to see to what degree
the models match when it is not necessary to model sensor fusion or bias
due to acceleration. Note that this is also one of the scenarios used for
tuning the parameters. The altitude of the target is 4000 meters and the
parameters of the simulation model and the performance model are set for
slowly maneuvering targets.
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Figure 3: Average planar and altitude RMSEs of the position estimates given
by the two models in Scenario 1.
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Figure 3 shows the RMSEs given by each model in plane and in altitude. The
radar is drawn as a circle. Areas where no measurements are received from are
drawn with diagonal stripes. It is seen that the RMSEs in plane and altitude
given by the models are very similar, considering that the measurement errors
and the measurement rates are di�erent in each grid cell.

7.2 Scenario 2: Multiple Radars

In this scenario the models are compared using multiple radars. The alti-
tude of the target is 10 000 meters. Four radars are used, and the target
moves at constant velocity. The parameters of the simulation model and the
performance model are set for slowly maneuvering targets.
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Figure 4: Average planar and altitude RMSEs of the position estimates given
by the two models in Scenario 2.
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Figure 4 shows the results given by the two models. The performance model
gives slightly more optimistic results, but the areas with low RMSE are
similar in shape.

The large RMSEs close to the radars are due to the inability of the radars
to measure the position of a high-altitude target that is directly, or almost
directly, above them. Figures 4(b) and 4(d) seem to contain some noise due
to Monte Carlo errors.

7.3 Scenario 3: A Slowly Maneuvering Target

In the third scenario, the models are compared when a maneuvering target
is being tracked. The correction for acceleration in Equation (42) is used,
unlike in the �rst two scenarios where there was no acceleration. The target
moves along a circular trajectory with an acceleration of 3 g at an altitude
of 4000 meters. The assumed acceleration in the simulation model and the
performance model is 2 g.

The results are shown in Figure 5. According to the performance model, the
errors are lowest near the radars, whereas the simulation model also gives
low errors in areas between the radars. The results of the simulation model
show a sharp change in the RMSE in the upper left corner (x, y) = (80 km,
120 km) in Figure 5(b). In Figure 5(a), the change in the RMSE given by
the performance model is more gradual.

In general, the RMSEs given by the models are similar both near and far from
the radars, and neither model seems to be obviously better than the other.
This suggests that the correction of Equation (42) can be used in scenarios
where a slowly maneuvering target is assumed, and the true acceleration is
close to 4 g, the value that was used when tuning the parameters.
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Figure 5: Average planar and altitude RMSEs of the position estimates given
by the two models in Scenario 3.

7.4 Scenario 4: Aggressive Assumed Maneuvering

The motivation of the fourth scenario is to determine if the results are still
comparable when the parameters of the models are set for tracking aggres-
sively maneuvering targets. The target moves along a straight-line trajectory
at an altitude of 1000 meters.

The results are shown in Figure 6. The performance model predicts smaller
errors in altitude between the radars than the simulation model, as seen in
Figures 6(c) and 6(d). The performance model also predicts slightly smaller
2D RMSEs near the radars. In general, the di�erences are small in both
planar and altitude RMSE. Thus, the performance model can be used when
aggressive maneuvering is assumed and the true trajectory is a straight line.
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Figure 6: Average planar and altitude RMSEs of the position estimates given
by the two models in Scenario 4.
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Figure 7: RMSEs given by the performance model in Scenario 4 when run
without the correction explained in Section 4.1.
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Figure 7 shows that the performance model fails to predict the planar errors
with multiple radars if the time correction explained in Section 4.1 is not used.
The planar errors are undersestimated where measurements are received from
multiple radars. The RMSEs in altitude are also underestimated, although
in a less obvious way.

7.5 Scenario 5: An Aggressively Maneuvering Target

The purpose of the �fth scenario is to determine if the correction to the accel-
eration in Equation 42 can be used with parameter settings for aggressively
maneuvering targets. The target moves along a circular trajectory with an
acceleration of 9 g at an altitude of 4000 meters.
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Figure 8: Average planar and altitude RMSEs of the position estimates given
by the two models in Scenario 5.
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The results are shown in Figure 8. The models seem to agree about the
errors in altitude. The planar errors are clearly di�erent, but still of the
same order of magnitude. The simulation model gives small planar errors
in areas where only one radar is used at (100 km, 100 km), (340 km, 160
km) and (300 km, 400 km) in Figure 8(b). This is not necessarily wrong,
as more data does not necessarily improve the estimates when the tracking
system is tuned for aggressively maneuvering targets (as noted in [Blair and
Bar-Shalom, 1996]). However, in a well tuned system the errors should be
smaller where more measurements are available. Thus, the results given by
the performance model seem more reasonable.

For comparison, Figure 9 shows the results given by the performance model
when the correction explained in Section 4.1 is not used. The 2D RMSE is
underestimated when multiple radars are used.
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Figure 9: RMSEs given by the performance model in Scenario 5 when run
without the correction explained in Section 4.1.

7.6 Scenario 6: A Poorly Tuned Tracking System

In the sixth scenario the parameters of the simulation model and the perfor-
mance model are suited for slowly maneuvering targets, but an aggressively
maneuvering target is being tracked. Thus, the parameters are poorly suited
for tracking this type of target. Results from such scenarios do not reveal
typical performance of the tracking system, but can be used for, e.g., risk
analyses. The true acceleration of the target is 6 g, while the assumed accel-
eration in the simulation model and the performance model is 2 g.
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The results are shown in Figure 10. The shapes of the areas with small errors
given by the models are di�erent. The performance model gives small planar
errors in areas where only one radar is used, which is especially noticeable
at the upper and lower parts of Figure 10(a). The planar errors given by the
simulation model seem more realistic than those given by the performance
model.

The di�erences in the RMSEs may be related to gating and track scoring.
In the simulation model, the tracking is stopped before the errors of the
estimates become too large, as the large errors in the estimates result in
measurements that lie outside the gate.
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Figure 10: Average planar and altitude RMSEs of the position estimates
given by the two models in Scenario 6.
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7.7 Numerical Comparisons

The computation times and the di�erences in the results given by the sim-
ulation model and the performance model are summarized in Table 4. The
absolute di�erences between the RMSEs given by the models are averaged
over the grid in each scenario.

Scenario
no.

Comp. time
(perf. model)

Comp. time
(sim. model)

Avg. abs. di�.
in 2D RMSE

Avg. abs. di�.
in alt RMSE

1 0.4 s 268.4 s 47.9 m 133.1 m
2 1.4 s 2187.3 s 51.1 m 154.2 m
3 7.3 s 1978.1 s 79.2 m 134.1 m
4 1.1 s 1430.2 s 59.3 m 209.1 m
5 4.4 s 2098.2 s 256.9 m 181.7 m
6 6.0 s 2905.7 s 654.5 m 245.1 m

Table 4: The computation times and the average absolute di�erences between
the RMSEs given by the models.

The computation times in each scenario mostly depend on the number of
cells in the grid and the type of the true trajectory. The performance model
is especially fast in the scenarios with straight-line trajectories (1, 2, and
4), as it is only necessary to run the performance model at a single point.
When a circular trajectory is used, the computation times of the performance
model are several times longer, although still considerably shorter than the
simulation model. The computation times of the simulation model naturally
depend on the number of simulations. According to the simulation results
presented in Sections 7.1-7.6, these computation times seem to be enough for
creating useful visualizations with little noise caused by Monte Carlo errors.

The di�erences between the 2D RMSEs given by the models depend heavily
on the particular scenario, whereas the di�erences in the altitude RMSEs
remain remarkably constant. This may be related to the constancy of the
altitude of the target, and that the elevation angles between the target and
the radars have little variation throughout the map, whereas the azimuth
angles have large variations. It appears that the di�erences between the 2D
RMSEs are larger when aggressively maneuvering targets are being tracked.
The di�erences in the altitudes of the targets (10 000 meters in Scenario 2,
and 1000 meters in Scenario 4) do not seem to cause signi�cant di�erences
between the results given by the models.
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8 Summary

The performance model and the simulation model of a tracking system were
compared. Modi�cations to a performance model of a tracking system were
suggested for use in performance assessments where asynchronous radars
and the use of multiple kinematic models have to be taken into account. The
parameters of the performance model were tuned by using the results given
by the simulation model as a reference. The modi�ed performance model
and the simulation model were compared in six chosen scenarios using the
RMSEs of the position estimates given by each model.

The results given by the models were found to be similar in most scenarios.
The di�erences were larger in scenarios with an aggressively maneuvering tar-
get. The largest di�erences were found in a scenario where the parameters of
the models were chosen poorly for the particular target. When the correction
for asynchronous radars was not used, the errors given by the performance
model appeared to be too small where multiple radars were used. The perfor-
mance model was found to be signi�cantly faster than the simulation model
in all scenarios. Typical computation times of the performance model seem
to be less than 10 seconds. The di�erences in the computation times were the
largest in scenarios where the target moved along a straight-line trajectory.

According to the comparisons, the models give similar altitude RMSEs in all
scenarios. The 2D RMSEs are similar at least when straight-line trajectories
are used. If the simulation model was considered more reliable, it could be
used only in the scenarios where the performance model is known to give
di�erent results. Thus, it would be possible to choose the model depending
on the scenario to speed up the computations.

The correction made for asynchronous radars is intuitive and works reason-
ably well according to the comparisons. However, further studies would be
needed to draw general conclusions about how well this correction works.
As the α-β �lter in the performance model and the IMM Kalman �lter in
the simulation model are quite di�erent, it is possible that the correction
for asynchronous radars also corrects for the di�erences between the �lters.
Further comparisons could be made using a simulation model that uses an
α-β �lter without gating or track scoring.

The correction made for the accelerations during coordinated turns was nec-
essary to obtain results that are comparable with those given by the simu-
lation model. As the correction is made speci�cally for coordinated turns,
the performance model may not give reasonable results for arbitrary target
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trajectories. This would require modelling the way the IMM Kalman �lter
weighs the di�erent kinematic models.

In the comparisons made in this thesis, the errors of the position estimates
were considered. In practice, it is not necessarily clear how the performance
of a tracking system should be measured. In some applications, it is of im-
portance to assess the accuracy of the predicted positions rather than the
estimated positions, or a combination of the two [Blackman, 1986]. The
performance model could be used for such applications by adjusting the pre-
diction time in the equations of the RMSEs. If the RMSEs of the velocity
estimates were needed, the equations are presented in [Blair and Miceli, 2012].

Further research is required for modelling gating and track scoring. A more
accurate model of the IMM Kalman �lter, or another Kalman �lter with
multiple kinematic models, might result in RMSEs that are closer to the
simulation results. For maneuvers with low accelerations, it could be useful to
consider an interpolation between the RMSEs of the straight-line trajectory
and the circular trajectory given by the performance model.

The performance model uses a very simple method to transform the mea-
surement errors from spherical coordinates to cartesian coordinates. The
results might be more realistic if a di�erent transformation was used to take
into account the nonlinear relationship of the coordinate systems. Several
transforms have been suggested in the literature, e.g., the unscented trans-
form [Julier and Uhlmann, 2004] and the Gauss-Hermite transforms [Ito and
Xiong, 2000]. Taking into account the possibility of missing measurements
might be useful for performance assessments in di�cult conditions, as has
been done in studies of error bounding techniques, such as [Farina et al.,
2002]. For the performance model to be a useful alternative for simulation,
the possible improvements should not cause an exceedingly large increase in
the computational cost.
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A Summary in Finnish

Seurantalaskin yhdistää ilmavalvontatutkien tekemät mittaukset lentävän
kohteen paikasta ja estimoi kohteen tilan, joka voi sisältää kohteen paikan,
nopeuden ja/tai kiihtyvyyden. Estimointi suoritetaan tavallisesti hyödyntä-
mällä Kalman-suotimia, jotka perustuvat oletuksiin kohteen liikehdinnästä
sekä mittausvirheiden suuruuksista.

Seurantalaskimen malleja käytetään ilmavalvontajärjestelmien suoritusky-
vyn arviointiin. Tässä työssä keskitytään kahteen kirjallisuudesta löytyvään
malliin, Monte Carlo -simulointimalliin [Pousi ym. 2014] ja suorituskykymal-
liin [Blair & Miceli 2012], jotka perustuvat Kalman-suodinten käyttöön. Si-
mulointimallin etuja ovat helppo muokattavuus erilaisia tilanteita varten sekä
melko vähäiset oletukset seurantalaskimen toiminnasta. Simulointi kuitenkin
vaatii usein pitkiä laskenta-aikoja, koska se perustuu satunnaishavaintojen
generointiin. Tarkkojen suorituskykyarvioiden saaminen vaatii useita simu-
laatioita, joista saadaan keskiarvoistamalla lopullinen virhearvio. Suoritus-
kykymalli ei perustu satunnaishavaintojen generointiin, vaan se on täysin
deterministinen. Suorituskykymallin etuna ovat siten nopeat laskenta-ajat.
Malli perustuu kuitenkin erilaisiin yksinkertaistuksiin, eikä sen soveltuvuutta
erilaisiin tarkasteluihin ole tutkittu kattavasti.

Kandidaatintyön tavoitteena on muokata suorituskykymallia siten, että sitä
voidaan käyttää samanlaisiin suorituskykyarviointeihin kuin simulointimal-
lia. Lisäksi malleja vertaillaan erilaisilla lentoradoilla ja tutkakon�guraatioil-
la, jolloin saadaan käsitys mallien eroista. Simulointimallia ei muokata, vaan
sitä käytetään vertailukohtana. Malleja vertaillaan graa�sesti sekä numee-
risesti. Graa�sissa esityksissä ilmavalvontatutkat sijoitetaan kartalle ja ku-
kin kartan piste väritetään sen mukaan, kuinka tarkasti kyseisessä paikassa
sijaitsevaa kohdetta voidaan seurata. Numeerisissa vertailuissa verrataan si-
mulointimallin ja suorituskykymallin laskenta-aikoja sekä virhearvioiden ero-
tuksia. Suuret erot mallien antamissa tuloksissa viittaisivat jommankumman
mallin epätarkkuuteen.

Suorituskykymalli mahdollistaa huomattavasti aiempaa nopeamman suori-
tuskykyarviointeihin liittyvän laskennan. Nopeaa suorituskykyarviointia voi-
daan hyödyntää esimerkiksi ilmavalvontajärjestelmän suunnittelussa sekä osa-
na siihen liittyviä optimointiongelmia.

Suorituskyvyn arviointiin liittyvässä laskennassa lentävälle kohteelle luodaan
joko suora tai kaartuva lentorata. Simulointimallissa kohteen todelliseen paik-
kaan lisätään satunnaista mittausvirhettä ja näin generoidut havainnot syö-
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tetään Kalman-suotimelle. Kalman-suodin tuottaa paikkaestimaatin, jonka
virhe saadaan vertaamalla sitä kohteen todelliseen paikkaan. Suorituskyky-
malli perustuu yksinkertaisen α-β-suotimen steady-state-tarkasteluihin. Mal-
lille syötetään kohteen paikka ja kiihtyvyys, jolloin saadaan arvio paikkaes-
timaatin virheestä.

Simulointimalli sisältää kaksi seurannassa käytettävää menetelmää, portituk-
sen ja radan pisteytyksen. Portituksella tarkoitetaan havaintojen jättämistä
huomiotta, jos ne ovat liian kaukana estimoidusta lentoradasta. Jos havain-
to jätetään huomiotta, kohteen uusi paikkaestimaatti muodostetaan ennus-
tamalla siten, että hyödynnetään aiempia havaintoja ja kohteen liikehdintä-
mallia. Portituksen tavoitteena on liittää kohteeseen vain ne havainnot, jotka
todella ovat peräisin kohteesta. Radan pisteytyksellä tarkoitetaan sitä, että
kohteen seuranta lopetetaan, jos kohteen paikasta ei saada riittävän usein
mittauksia tai jos ne jäävät liian usein portituksen vuoksi huomiotta. Näin
voidaan poistaa virheelliset lentoradat.

Simulointimallissa käytettävät oletukset kohteen liikehdinnästä ovat huomat-
tavan erilaisia suorituskykymallin oletuksiin nähden. Simulointimallissa käy-
tettävä IMM Kalman -suodin (Interacting Multiple Model Kalman �lter) si-
sältää kaksi liikehdintämallia. Toinen liikehdintämalli vastaa kohteen etene-
mistä vakiokiihtyvyydellä ja toinen kaartamista vakiokulmanopeudella. Näi-
tä liikehdintämalleja painotetaan sen mukaan, kuinka hyvin ne vastaavat ha-
vaintoja. Yksinkertaiseen α-β-suotimeen perustuvassa suorituskykymallissa
oletuksena on kohteen eteneminen vakionopeudella.

Osana kandidaatintyötä suorituskykymallin parametrit viritetään siten, että
ne voisivat vastata samankaltaisia oletuksia kohteen liikehdinnästä, kuin mitä
simulointimallissa on käytetty. Tämä tehdään säätämällä parametreja vali-
tuissa tapaustarkasteluissa siten, että suorituskykymalli tuottaa virhearvioita
jotka ovat samaa suuruusluokkaa kuin simulointimallin antamat virhearviot.
Alkuperäinen suorituskykymalli ei huomioi sitä, että eri tutkat tuottavat mit-
tauksia eri ajanhetkinä. Tästä seuraa paikkaestimaatin virheen aliarviointi.
Osana kandidaatintyötä suorituskykymallia muokataan siten, että mittaus-
ten väliajat otetaan huomioon. Suorituskykymallia muokataan lisäksi siten,
että se kykenee ottamaan huomioon usean liikehdintämallin käytön kohteen
seurannassa. Tällöin suorituskykymallille syötetään kohteen todellisen len-
toradan tyyppi. Yksinkertaistuksena eri liikehdintämallien painotusta siis ei
pyritä mallintamaan.

Suorituskykymallia ja simulointimallia vertailtiin kuudessa esimerkkitapauk-
sessa. Mallien antamat tulokset vastasivat toisiaan hyvin neljässä tapaukses-
sa, yhdessä kohtalaisesti ja yhdessä heikosti. Tulokset vaikuttivat vastaavan
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toisiaan hyvin suorien lentoratojen tapauksessa ja heikommin tapauksissa,
joissa kohde kaartaa. Kohteen lentokorkeuden ei havaittu aiheuttavan mer-
kittäviä eroja mallien antamien tulosten välille. Vertailuissa todettiin, että
suorituskykymallin antamat tulokset vastaavat simulointimallin antamia tu-
loksia huomattavasti paremmin, kun havaintojen eriaikaisuus huomioidaan
siten, että käytetään työssä esitettyä korjausta.

Suorituskykymallin todettiin olevan huomattavasti simulointimallia nopeam-
pi. Tarkastelluissa tapauksissa suorituskykymallin laskenta-aika oli noin 1-10
sekuntia eli alle 1 % simulointimallin käyttämästä laskenta-ajasta. Suoritus-
kykymallin laskenta-ajan todettiin riippuvan tutkittavan kartan koon lisäksi
lentoradan tyypistä. Laskenta on nopeinta suoraa lentorataa käytettäessä,
koska tehtyjen yksinkertaistusten vuoksi on riittävää käyttää suorituskyky-
mallia vain yksittäisessä lentoradan pisteessä. Kaartuvien lentoratojen ta-
pauksessa laskenta tulee suorittaa useissa lentoradan pisteissä.

Suorituskykymalliin esitetyt parannukset vaikuttavat mahdollistavan saman-
kaltaiset suorituskykytarkastelut, kuin mihin simulointimallia voidaan käyt-
tää. Parannusten toimivuudesta voitaisiin tehdä yleisempiä päätelmiä esi-
merkiksi soveltamalla niitä tilanteisiin, joissa simulointimalli vastaisi parem-
min suorituskykymallissa tehtyjä yksinkertaistuksia. Tällaisessa simulointi-
mallissa voitaisiin esimerkiksi olla käyttämättä portitusta ja radan pisteytys-
tä.

Jatkotutkimuksissa suorituskykymallia voitaisiin kehittää mallintamalla por-
tituksen ja radan pisteytyksen vaikutuksia paikkaestimaattien virheisiin. Usean
liikehdintämallin yhdistäminen voitaisiin pyrkiä mallintamaan tarkemmin ar-
vioimalla niiden painotusta IMM Kalman-suotimessa. Suorituskykymallissa
syntyy jonkin verran epätarkkuutta, joka liittyy mittausvirheiden muunta-
miseen koordinaatistosta toiseen. Kirjallisuudessa on esitetty lukuisia muun-
noksia, joita soveltamalla voitaisiin pyrkiä saamaan paremmin todellisuutta
vastaavia suorituskykyarvioita.
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