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1 Introduction and motivation

Consider a situation of choosing between cars. You have certain qualities
that are important to you, for example spaciousness, color, fuel consumption
and acceleration. It is a fairly believable assumption that the value of color
would be independent of all the other criteria, but are not the ecological
cars usually smaller and have relatively lower acceleration than cars with
larger fuel consumption? Using for example the weighted arithmetic mean
to calculate comparable values for different cars might provide misleading
preference order, since the effect of criteria interaction is neglected.

The objective of this thesis is to introduce two different functions that are able
to take criteria interaction into account: the discrete Choquet Integral and
Multilinear forms. Both of these functions provide capabilities to model the
preferences of the decision maker in a more flexible way, when the evaluation
criteria should not be assumed to be independent.

Let us next introduce the concept of aggregation functions. Let X = X1 ×
...×Xn be a set of potential alternatives, where each alternative is described
by a vector of n attributes (criteria), x := (x1, ..., xn). The decision maker
(later DM) is supposed to have a preference over X.

In decision theory there is a wide range of methods to find out what the
preferences of the DM are and how the DM values alternatives compared to
other alternatives. Quite often a lot of time and effort is put into finding good
and reliable ways to express these preference relations and finding numerical
values of attributes i (i.e. finding a value function ui(xi)). Mathematically dif-
ferent preference relations (preferable, less preferable and equally preferred)
are presented with “�”, “�” and “∼” respectively. In order to actually utilize
this information, we need an aggregation function F to aggregate attribute-
specific values into one single numeric value to represent the DM’s preference
relations so that

x � y ⇔ F (u1(x1), ..., un(xn)) ≥ F (u1(y1), ..., un(yn)),

where ui : Xi → S, i = 1, ..., n and S is a scale, often the closed interval [0,1].
To simplify the notation of aggregation functions, let us from now on denote
the aggregated value for alternative x with F (x) := F (u1(x1), ..., un(xn)).

Traditionally, effort put into this phase of decision making is smaller and
usually only most basic aggregation functions are used. The most common
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aggregation function is the weighted arithmetic mean (WAM):

WAM(x) =
n∑
i=1

wiui(xi). (1)

Nevertheless, it can easily be shown by simple examples, that it fails to
represent more complex, yet intuitive preference relations.

In Section 2 we represent the Choquet integral and discuss its qualities and
possible modifications, and in Section 3 similar introduction to Multilinear
forms is conducted. In the qualitative comparison in Section 4 differences and
similarities of these methods are discussed, and conclusions are presented in
Section 5.
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2 The discrete Choquet integral

2.1 History

The evolution of the Choquet integral started in the 1950’s with the Theory
of capacities by Choquet [1954]. Its development towards a useful tool for
multi-criteria decision making started in 1970’s, when the concept of fuzzy
integrals and fuzzy measures was proposed by Sugeno [1974]. The special
feature of fuzzy integrals is that with them it is possible to model the in-
teraction between criteria, namely redundancy and synergy (negative and
positive interaction, respectively).

Later the Choquet integral was discussed with respect to fuzzy measures
by Murofushi and Sugeno [1989], which has later on led to Choquet integral
being called a fuzzy integral and capacity being called a fuzzy measure. Usage
of the Choquet integral in the field of decision making did start only in the end
of 1980’s for decisions under uncertainty and in the beginning of the 1990’s
for multi-criteria decision aid. A snapshot of the evolution of the Choquet
integral and its usage is provided by Grabisch and Labreuche [2010].

2.2 Introduction

In decision making we often encounter situations where we are no longer able
to represent the preferences of the decision maker with the most basic and
widely used aggregation functions such as the weighted arithmetic mean. In
these situations we want to find more general aggregation functions to use.
Let us illustrate this kind of a situation with a simple example presented by
Grabisch and Labreuche [2010]:

Let a, b, c be three alternatives that are evaluated on two criteria as follows:

u1(a) = 0.4, u2(a) = 0.4

u1(b) = 0, u2(b) = 1

u1(c) = 1, u2(c) = 0

The scores u for each alternative and criteria are given in [0,1]. Suppose
the DM says that a � b ∼ c. Let us find weights w1 and w2 so that this
preference relation can be presented with values calculated with the WAM
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WAM(x) = w1u1(x) + w2u2(x). We get the following:

b ∼ c ⇔ w1 = w2

a � b ⇔ 0.4w1 + 0.4w2 > w2

this leads to 0.8w2 > w2, which is impossible.

As we see with this example, the WAM fails to represent the preferences of a
DM who prefers more balanced alternatives to those that are fully satisfactory
on one criterion but fail totally on the other. It is important to understand,
that this situation is in no way hypothetical but something that can be a
part of a real-life decision problem.

We will later learn that the weighted arithmetic mean can be seen as a
special case of the Choquet integral, when certain assumptions regarding
the weighting coefficients are made. In the example we assumed that the
criteria fulfilled alone were as valuable as criteria fulfilled simultaneously. In
order to overrule that assumption and enable modeling interaction between
criteria, let us define a new weight w12 to represent the importance of both
criteria being satisfied simultaneously. As the situation where both criteria
are evaluated as 1 must be the most desirable one in this case, we can choose
w12 = 1 and scale other weights accordingly without loss of generality. This
gives the alternative a value 0.4 in the example. On the other hand, criteria
satisfied alone are not as attractive to the DM as criteria satisfied together
(as defined earlier) and the weights w1 and w2 should be chosen accordingly.
In the example situation all weights that satisfy w1 = w2 < 0.4 are adequate
to represent the preferences of the DM.

The alternatives in the example above are chosen so, that they fit perfectly
to the problem. To give a wider perspective of the situation, Grabisch and
Labreuche [2010] introduce a situation with a fourth alternative d, which is
evaluated on the same criteria:

u1(d) = 0.2, and u2(d) = 0.8.

DMs preferences with the four alternatives are a � d � b ∼ c. Now the alter-
native is partially satisfied on both criteria but not as balanced as alternative
a.

To calculate the value for alternative d in the same manner as earlier for
other alternatives, let us assume that the total value of d can be calculated
as a sum of two fictitious alternatives, d′ and d′′, that are defined by:

u1(d
′) = 0.2, and u2(d

′) = 0.2

u1(d
′′) = 0, and u2(d

′′) = 0.6
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Now the overall score for d can be calculated as a sum of the scores of
alternatives d′ and d′′. If we for example chose that w1 = w2 = 0.3 and
w12 = 1, the alternatives would get following scores:

F (a) = 0.4

F (b) = 0.3

F (c) = 0.3

F (d) = 1 · 0.2 + 0.3 · 0.6 = 0.38

which satisfies the preferences of the DM.

Basically what we used here is the Choquet integral. To define the general
form of the Choquet integral, we shall first define the capacity and its gene-
ralization game for a set N :

Definition 2.1.

1. A function ν : 2N → R is a game if it satisfies ν(∅) = 0

2. A game µ which satisfies µ(A) ≤ µ(B) whenever A ⊆ B (monotonicity)
is called a capacity. The capacity is normalized if in addition µ(N) = 1.

Definition 2.2. Consider f : N → R+. The Choquet integral of f with
respect to a capacity µ is given by

Cµ(f) :=
n∑
i=1

[fσ(i) − fσ(i−1)]µ({σ(i), . . . , σ(n)}), (2)

where fi stands for f(i), σ is a permutation on N such that fσ(1) ≤ · · · ≤ fσ(n)
and fσ(0) := 0 (Grabisch [1996]).

In order to simplify further notations, let us from now on refer to values of
capacity µ(A) as weights for set A and the Choquet integral for alternative
x as Cµ(x).

2.3 Graphical interpretation

To better understand the idea underlying the Choquet integral, let us de-
monstrate graphically a situation with an alternative being evaluated w.r.t
three criteria. Consider an alternative a that has been given the following
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Kuva 1: Graphical example of the Choquet integral with three criteria.

scores:

u1(a) = 0.2

u2(a) = 0.9

u3(a) = 0.6

The scores are illustrated in Figure 1. The weights assigned for sets of cri-
teria (i.e. capacity) are marked with µ({A}) where A is the set of criteria
considered. The Choquet integral for the alternative a can be calculated with
the Definition 2.2:

Cµ(u) =
3∑
i=1

[uσ(i) − uσ(i−1)]µ({σ(i), . . . , σ(n)})

= (u1 − u0)µ({1, 2, 3}) + (u2 − u1)µ({2, 3}) + (u3 − u2)µ({2})
= 0.2µ({1, 2, 3}) + 0.4µ({2, 3}) + 0.3µ({2}).

As an example, let us assign example weights for the three criteria and calcu-
late the value for alternative a. The same weights will be used later to illustra-
te also other qualities of the Choquet integral.

Example 2.1. Assume that all criteria satisfied separately are of the same
value, but that criteria 1 and 2 have synergy on each other and criteria 2 and
3 have redundancy on each other. Criteria 1 and 3 do not interact. These
assumptions can be satisfied, for example, with the following weights:
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µ({1}) = µ({2}) = µ({3}) = 0.3

µ({1, 2}) = 0.75

µ({2, 3}) = 0.55

µ({1, 3}) = 0.6

µ({1, 2, 3}) = 1.

Note that µ({1, 2}) > µ({1}) + µ({2}) = 0.6 which represents the synergy
the criteria have on each other. Respectively µ({2, 3}) < 0.6 to represent the
redundancy.

With these weights the Choquet integral for alternative a is

Cµ(a) = 0.2 · 1 + 0.4 · 0.55 + 0.3 · 0.3 = 0.51.

The effects of redundancy and synergy are easier to notice when another
alternative b is introduced. Choose b so that it is given following scores:

u1(b) = 0.9

u2(b) = 0.6

u3(b) = 0.2

Note that the scores are exactly the same as with the alternative a except
for different criteria. The Choquet integral for alternative b is

Cµ(b) = 0.2 · 1 + 0.4 · 0.75 + 0.3 · 0.3 = 0.59

which is higher than that of alternative a, even though the separate criteria
were evaluated to be equally important (µ({1}) = µ({2}) = µ({3}) = 0.3)
and the absolute values of the scores were same for both alternatives. The
difference in values of alternatives is explained by the synergy and redun-
dancy between criteria: for alternative b the positively interacting criteria
1 and 2 had higher scores than those of alternative a and simultaneously
the criterion 3 was rated lower for alternative b than for alternative a. Even
though criterion 3 alone was evaluated equally important as criteria 1 and
2, the negative effect it has on criterion 2 makes it less important than the
other two criteria.

2.4 Special cases

We have now introduced an aggregation function, that is more general than
the weighted arithmetic mean, but with the cost of exponentially growing
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amount of weights (2n-2) to determine. As defining 2n-2 coefficients gets la-
borious when the number of criteria n increases, reducing the complexity of
the model gets desirable. By making some simplifying assumptions about the
capacity to be defined, we can efficiently reduce the amount of weights that
must be determined separately, and even achieve some well-known aggrega-
tion functions.

The most extreme variations of the Choquet integral are minimum and maxi-
mum and also the most common aggregation function, the weighted arith-
metic mean, can be derived from the Choquet integral. Another interesting
special case of the Choquet integral is the Ordered Weighted Average (OWA).
A short discussion of these special cases and easing the determination of ca-
pacity is presented next.

Minimum and maximum

The most extreme functionality of the Choquet integral is achieved, when we
define µ(A) = 0 for all A ( N and µ(N) = 1. Choquet integral defined with
these weights narrows down to the minimum function. On the other hand, if
we define capacity such that µ(A) = 1 for all A 6= ∅ and µ(∅) = 0, we get the
maximum function. Practically this means, that for an alternative x and all
possible capacities µ the following holds:

min(x) ≤ Cµ(x) ≤ max(x).

This kind of aggregation functions are called averaging aggregation functions.
In the Example 2.1 both alternatives would get value 0.2 when using the
minimum function and value 0.9 when using the maximum function.

k-additive capacities and the weighted arithmetic mean

A capacity is additive, if for all disjoint sets A,B ⊆ N , we have µ(A ∪
B) = µ(A) + µ(B). In the case of an additive capacity, the Choquet integral
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collapses into the weighted arithmetic mean: (2) can be written as

Cµ(f) =
n∑
i=1

[fσ(i) − fσ(i−1)]µ({σ(i), . . . , σ(n)})

=
n∑
i=1

{
[fσ(i) − fσ(i−1)]

n∑
j=i

µ({σ(j)})

}

=
n∑
i=1

{
fσ(i)

n∑
j=i

µ({σ(j)})− fσ(i−1)
n∑
j=i

µ({σ(j)})

}

=
n∑
i=1

{
fσ(i)

n∑
j=i

µ({σ(j)})− fσ(i−1)
n∑

j=i−1

µ({σ(j)}) + fσ(i−1)µ({σ(i− 1)})

}

=
n∑
i=1

{
fσ(i)

n∑
j=i

µ({σ(j)})− fσ(i−1)
n∑

j=i−1

µ({σ(j)})

}
︸ ︷︷ ︸

Telescoping sum

+
n∑
i=1

fσ(i−1)µ({σ(i− 1)})

= fσ(n)µ({σ(n)})− fσ(0)
n∑
j=0

µ({σ(j)}) + fσ(0)µ({σ(0)}) +
n−1∑
i=1

fσ(i)µ({σ(i)})

fσ(0) = 0 by definition, and thus we get

Cµ(f) =
n∑
i=1

fσ(i)µ({σ(i)})

the order of terms is irrelevant in a sum, thus this brings us to

Cµ(f) =
n∑
i=1

µ({i})fi

which is the weighted arithmetic mean.

From this we see that, with the assumption of additivity of the capacity,
the interaction between criteria disappears. Nevertheless, the interaction of
criteria is a desirable quality in some situations, as we discovered earlier.
Consider a situation with a large number of criteria of which some have
redundancy and some have synergy on each other. Because of the interaction,
the WAM does not manage to represent the situation in a desirable way, but
as the amount of weights to be defined is large, using the original form of
Choquet integral is extremely laborious.

The key question is, whether we can somehow ease defining the capacity by
making simplifying assumptions but still preserve some of the interaction
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in the system. Is it necessary to assume that there is significant interaction
between sets of m criteria or can we consider that the capacity for larger sets
is in fact additive?

For this we introduce the concept of k-additivity proposed by Grabisch [1997].
What k-additivity basically means, is that interaction between criteria can
occur only in sets of at most k criteria. As we have seen, the WAM is 1-
additive, meaning that interaction can only occur in sets of 1 criteria (which
is no interaction). In order to define k-additivity, the concept of Möbius trans-
form for a game is introduced:

Definition 2.3. Let ν be a game on N . The Möbius transform of ν, mν , is

mν(A) =
∑
B⊆A

(−1)|A\B|ν(B), ∀A ⊆ N.

The Möbius transform is an alternative way to represent the capacity and
the capacity ν can be recovered from its Möbius transform:

ν(A) =
∑
B⊆A

mν(B), ∀A ⊆ N (3)

For the Möbius transformation monotonicity and boundary conditions of the
capacity are formulated respectively as (Beliakov et al. [2008])∑

B⊆A|i∈B

mµ(B) ≥ 0, ∀A ⊆ N and ∀i ∈ A

mµ(∅) = 0∑
A⊆N

mµ(A) = 1

Definition 2.4. A capacity is k-additive if its Möbius transform mµ satisfies
mµ = 0 for all A ⊆ N such that |A| > k, and there exists A ⊆ N , |A| = k
such mµ 6= 0.

In case of k-additive capacities for n criteria,
∑k

i=1

(
n
i

)
coefficients need to

be determined separately and the rest can be calculated from their Möbius
transformations by using the inverse transform (3).

Example 2.2. Let us calculate the Möbius transform for the capacity µ
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defined in Example 2.1.

mµ({1}) = (−1)|{1}|µ(∅) + (−1)|∅|µ({i})
= −1 · 0 + 1 · 0.3 = 0.3

mµ({2}) = 0.3

mµ({3}) = 0.3

mµ({1, 2}) = −0.3− 0.3 + 0.75 = 0.15

mµ({2, 3}) = −0.3− 0.3 + 0.0.55 = −0.05
mµ({1, 3}) = −0.3− 0.3 + 0.6 = 0

mµ({1, 2, 3}) = 0.3 + 0.3 + 0.3− 0.55− 0.6− 0.75 + 1 = 0.

From these values we notice, that the capacity in the example is in fact 2-
additive. Another interesting quality of the Möbius transform is, that the
transformations for sets of one criterion is equal to the value of capacity
for that criterion. Capacity was defined in such way, that criteria 1 and 2
had synergy and criteria 2 and 3 redundancy whereas criteria 1 and 3 had
no interaction. These interactions can also be interpreted from the Möbius
transform; positive value for mµ({1, 2}), negative value for mµ({2, 3}) and
zero for mµ({1, 3}).

Symmetric capacities and the Ordered Weighted Average

A capacity is symmetric if and only if for any subsets A,B, |A| = |B|
implies that µ(A) = µ(B). Let us denote µi = µ(A) when |A| = i. Thus
µ({σ(i), . . . , σ(n)}) can be marked simply as µn−i+1. With this in mind, the
Choquet integral (2) can be expressed as follows

Cµ(f) =
n∑
i=1

[fσ(i) − fσ(i−1)]µn−i+1

=
n∑
i=1

fσ(i)µn−i+1 −
n∑
i=1

fσ(i−1)µn−i+1

since fσ(0) is defined as zero, the first term of the latter sum is zero. On the
other hand, as the value of capacity of an empty set is also zero, i.e. µ0 = 0



12

we get

Cµ(f) =
n∑
i=1

fσ(i)µn−i+1 −
n∑
i=2

fσ(i−1)µn−i+1 + fσ(n+1−1)µn−n−1+1

=
n∑
i=1

fσ(i)µn−i+1 −
n+1∑
i=2

fσ(i−1)µn−i+1

=
n∑
i=1

fσ(i)µn−i+1 −
n∑
i=1

fσ(i)µn−i

Cµ(f) =
n∑
i=1

(µn−i+1 − µn−i)fσ(i), (4)

which is better known as the OWA operator or the ordered weighted average.
OWA operators are not as widely known and as much used as the arithmetic
mean.

OWA operators are useful in situations where there are criteria used to eva-
luate the alternatives, but the DM does not value one criteria to another;
only the relative order of magnitude matters. An example of usage of OWA
operators is, when the performance of an athlete, for example a ski jumper, is
evaluated w.r.t. evaluations from multiple referees. The opinion of a specific
referee is not more important than that of another, but usually the extreme
values are left out from evaluation to avoid distortion.

Example 2.3. Consider the evaluation situation of the style of a ski jumper
with nine referees. The scores for the ski jumpers are achieved when the
highest and the lowest scores given by referees are left out and then an
average is taken from the rest. The performances are evaluated in [0,20]. In
order to represent this with Choquet integral we need a symmetric capacity
denoted as µi where i is the cardinality of the set of criteria. For simplicity
we define µn−i+1 − µn−i = ωi, and the equation (4) can be written as

Cµ(f) =
n∑
i=1

ωifσ(i) =: OWA(f),

where ωi are the coefficients for the OWA operator and they satisfy
∑

i ωi = 1.
The desired score aggregation is achieved with coefficients ω1 = ω9 = 0 and
ωi =

1
7
when i ∈ {2...8}.

The capacity with which this is achieved is represented in Figure 2.
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If a ski jumper was given for example evaluations (15, 12, 16, 18, 18, 17, 16, 14, 19)
the value of this Choquet integral would be

Cµ = 0 · 12 + 1

7
· 14 + 1

7
· 15 + 1

7
· 16 + 1

7
· 16 + 1

7
· 17 + 1

7
· 18 + 1

7
· 18 + 0 · 19

≈ 16.29.

2.5 Indices and interpretation of the capacity

In addition to the exponentially growing amount of weights, another problem
occurs with the Choquet integral: interpretation of capacities. Compared for
example to the WAM, the weights for criteria do no longer directly represent
the importance of that criterion as the criterion might be redundant or have
notable synergy to other criteria. In this section we learn two indices, the
importance index and the interaction index, that help us better understand
and interpret the capacities. In addition, the concept of orness is presented.
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The importance index

With Choquet integral, a numerical value to represent the importance of a
criterion comes in need, as the weight assigned for the criterion itself no lon-
ger perfectly describes the significance of the criterion (compare with the
situation of the weighted arithmetic mean). In other words, we are interested
in knowing, how large is the effect when criterion i is added to some coa-
lition A of criteria. The Shapley importance index (Shapley [1952]) can be
calculated to tell the relative importance of the criterion among criteria:

φi(µ) =
∑

A⊆N\{i}

|A|!(n− |A| − 1)!

n!︸ ︷︷ ︸
Normalization factor

(µ(A ∪ {i})− µ(A)). (5)

Basically this is the average weight of criterion i over all possible profiles in
[0,1]n.

In Section 2.3 we assigned example weights for a three criteria system. Let
us now use the same capacity and calculate the importance index for each
criteria. The weights were assigned in following manner:

µ({1}) = µ({2}) = µ({3}) = 0.3

µ({1, 2}) = 0.75

µ({2, 3}) = 0.55

µ({1, 3}) = 0.6

µ({1, 2, 3}) = 1

µ({∅}) = 0

The important indices can be calculated for each criterion with the equation
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(5):

φ1(µ) =
∑

A⊆{1,2}

|A|!(3− |A| − 1)!

3!
(µ(A ∪ {1})− µ(A))

=
|∅|!(3− |∅| − 1)!

3!
(µ({1})− µ(∅))

+
|{2}|!(3− |{2}| − 1)!

3!
(µ({1, 2})− µ({2}))

+
|{3}|!(3− |{3}| − 1)!

3!
(µ({1, 3})− µ({3}))

+
|{2, 3}|!(3− |{2, 3}| − 1)!

3!
(µ({1, 2, 3})− µ({2, 3}))

=
0!(3− 0− 1)!

6
(0.3− 0) +

1!(3− 1− 1)!

6
(0.75− 0.3))

+
1!(3− 1− 1)!

6
(0.6− 0.3) +

2!(3− 2− 1)!

6
(1− 0.55)

=
2

6
· 0.3 + 1

6
· 0.45 + 1

6
· 0.3 + 2

6
· 0.45

=0.375.

When the indices for criteria 2 and 3 are calculated in the same manner, the
following values are achieved:

φ2 = 0.35

φ3 = 0.275

From these values we can see that even though the separate criteria were
evaluated equally important (all given the same weight 0.3), because of the
positive interaction between criteria 1 and 2 and the negative interaction
between criteria 2 and 3, the actual importance of criteria is different. The
criterion 1 having no negative interactions has the highest relative importance
whereas the criterion 3 that had negative interaction with criterion 2 has the
lowest relative importance.

The interaction index

Since the Choquet integral is able to model interaction between criteria, we
are also interested in knowing how two criteria interact. To represent the
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synergy or redundancy between criteria, we can calculate the interaction
index discussed by Grabisch and Labreuche [2010]:

I{i,j}(µ) =
∑

A⊆N\{i,j}

|A|!(n− |A| − 2)!

(n− 1)!
δA{i,j}(µ) (6)

where

δA{i,j}(µ) : = δAij(µ)− δAi (µ)− δAj (µ)
= µ(A ∪ {i, j})− µ(A ∪ {i})− µ(A ∪ {j}) + µ(A).

In Example 2.1 the weights were assigned so, that there was synergy between
criteria 1 and 2, redundancy between criteria 2 and 3, and no interaction
between criteria 1 and 3. By calculating the interaction indices we can prove
that these weights actually do satisfy the assumptions regarding interaction.
With equation (6), the following interaction indices are achieved:

I{1,2}(µ) = 0.15

I{2,3}(µ) = −0.05
I{1,3}(µ) = 0

The positive value of I{1,2} indicates synergy between criteria 1 and 2, whereas
the negative values of interaction index indicate redundancy.

An interesting connection with the Möbius transform introduced in Section
2.4 is discovered when the interaction indices are compared to the Möbius
transform of the capacity calculated in Example 2.2. We notice the Möbius
transform for sets of two criteria is equal to the interaction indices calculated
above. The reason to this is actually the 2-additivity of our example as for 2-
additive capacities the following holds: ∀A ⊆ N , |A| = 2 we have IA = mµ(A)
(Grabisch and Labreuche [2010]).

Orness

Orness is an index to describe an averaging aggregation function. As we have
earlier learned, an averaging aggregation function is such, that it always
valuates alternatives higher than or equal to minimum function but lower
than or equal to maximum function. Practically orness gives values in [0,1]
and the value represents how close the aggregation function is to maximum.
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Orness of the minimum is 0 and the maximum 1. The orness of an aggregation
function F is defined as

orness(F ) :=
F −min

max−min
,

where F is the expected value of F in [0,1]n. The expected values of min and
max are

min =
1

n+ 1

max =
n

n+ 1

and thus we can express orness as

orness(F ) = − 1

n− 1
+
n+ 1

n− 1
F .

As Choquet integral is an averaging aggregation function, its orness can be
calculated (Marichal [2004]) as:

orness(Cµ) :=
1

n− 1

n−1∑
t=1

1(
n
t

) ∑
T⊆N
|T |=t

µ(T ).

Earlier in Example 2.1 we assigned example weights for a Choquet integral of
three criteria. The orness of it calculated with this formula is orness(Cµ) ≈
0.47 which indicates a slightly intolerant DM. Aggregation functions with
orness < 0.5 fit for intolerant DMs who demand that most criteria are satis-
fied. Aggregation functions with orness > 0.5 on the contrary represent the
preferences of a more tolerant DM.

Usage

With these indices we can better understand and describe our models and
explain the behavior of the DM but in addition they can also be used in
model construction. Defining the capacity to meet the DMs preferences is a
complicated task, and it often is not possible to directly set weights for sets
of criteria so, that they would actually model the DMs preferences. These
indices help giving the mathematical form to the verbal statements given by
the DM.
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In situations where relatively large set of criteria is taken into account and
a need to model the interactions between these criteria occurs, 2-additivity
offers an alternative to extremely complicated models with large number of
coefficients. As learned earlier, the interaction index has a connection to 2-
additive capacities and therefore it can be used to ease the determination of
weights for the Choquet integral.

2.6 In short

The Choquet integral provides an adaptable way to construct an aggregation
function for different situations and different kinds of decision makers. As a
downside for flexibility, the number of coefficients to be determined grows
exponentially and the interpretation of these coefficients gets more complica-
ted.

We have learned that with certain assumptions regarding the capacity, the
Choquet integral can be reduced to more simple aggregation functions such
as the weighted arithmetic mean and the ordered weighted average. Concept
of k-additive capacities was introduced to offer a compromise between the
difficulty of determining the coefficients and complexity of the model. Es-
pecially 2-additive capacities were found sensible, as information of desired
criteria interaction could be utilized in capacity determination.

Even with simplified capacities the interpretation of coefficients is not as
straight-forward as it is for example with the weighted arithmetic mean. Ne-
vertheless, the importance and interaction of criteria can be presented with
different indices to ease the interpretation of capacity and the aggregation
function. Also the fundamental nature of aggregation functions can be desc-
ribed with different kinds of indices, of which we have discussed the concept
of orness. Orness can be calculated for averaging aggregation functions and
it describes how similar the function is to the maximum -function.
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3 Multilinear forms

3.1 History

Multilinear forms were originally introduced by Owen [1972] as the multili-
near extension (MLE), and they were used to help compute values of large,
n-person games ν (see Definition 2.1). The connections between games and
their multilinear extension enabled using the MLE to observe certain proper-
ties of games.

Zeleny [1982] discussed the usage of the multilinear forms among other func-
tions in the field of utility measurement in multiple criteria decision making
problems, pointing out the complexity and increasing number of scaling cons-
tants (later: weights) when the number of attributes increases. Concentrating
on Multi-attribute utility theory (MAUT), focus was set more on verifying
the independence conditions required and methods for weight determination
than the features and selection of aggregation functions. However, Zeleny
[1982] and Von Winterfeldt and Edwards [1986] pointed out that using mul-
tilinear forms required looser independence conditions than, for example, the
most commonly used aggregation function, the arithmetic mean, as the in-
teraction between attributes could be modeled.

The usage of multilinear forms in the field of decision making with mul-
tiple objectives was discussed by Keeney and Raiffa [1993], also showing how
weighting coefficients could be evaluated from the evaluations of the decision
maker.

3.2 Introduction

Multilinear functions are functions that are linear with respect to each se-
parate variable, but might contain terms with products of variables, e.g. for
example f(x, y) = x + y + xy is a multilinear function whereas f(x, y) =
x+ y + x2 is not.

Multilinear forms, also referred to as multilinear extension (MLE, Grabisch
et al. [2009]) and multilinear model (Zeleny [1982]) can be used for value de-
termination in decision making problems.

Definition 3.1. Consider alternative x = (x1, x2, ..., xn) evaluated with res-
pect to n attributes, and monotone increasing single attribute utility func-
tions ui : N → R+. The total value of alternative x given by the Multilinear
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form MLE(x) with respect to weighting coefficients λA is

MLE(x) :=
∑
A⊆N

λA
∏
i∈A

ui(xi), (7)

which is equivalent to

MLE(x) =
n∑
i=1

λiui(xi) +
n∑
i=1

∑
j>i

λijui(xi)uj(xj)

+
n∑
i=1

∑
j>i

∑
k>j

λijkui(xi)uj(xj)uk(xk)

+ · · ·+ λ123···nu1(x1)u2(x2) · · ·un(xn).

For simplification here we assume that single attribute utility functions ui :
N → [0, 1] and MLE(x) : [0, 1]n → [0, 1], and that all the functions are
monotone increasing with respect to each variable. Zero denotes the lowest,
and one the highest level of preference. These requirements set constraints
the values that can be set to weights λA, when the function is utilized in
decision making problems. More of how these weights can be evaluated from
evaluations by the DM was presented by Keeney and Raiffa [1993].

When the MLE is applied to three criteria situation, the effect of weights λ
is easier to interpret:

MLE(x1, x2, x3) =λ1u1(x1) + λ2u2(x2) + λ3u3(x3)

+ λ12u1(x1)u2(x2)

+ λ13u1(x1)u3(x3)

+ λ23u2(x2)u3(x3)

+ λ123u1(x1)u2(x2)u3(x3).

Since we demand that each criterion is evaluated so, that a bigger value is
always more desirable than a smaller value, we notice that λ1, λ2, λ3 ≥ 0,
but the sign for other weights can, at least in theory, also be negative. Next
we present an example to examine closer how the weighting coefficients of
product terms reflect the preferences of the DM.

Example 3.1. Consider a situation with a decision maker who prefers al-
ternatives with balanced attribute values, for example with alternatives a, b
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and c evaluated as

u1(a) = 0.4, u2(a) = 0.4

u1(b) = 0, u2(b) = 1

u1(c) = 1, u2(c) = 0

the DM considers a � b ∼ c. Earlier we have shown that the basic weighted
arithmetic mean fails to represent the preference relations of the DM, but
can we find such weights λ that the multilinear form represents the DM’s
preferences? Assume single criteria utility functions here are linear, namely
ui(x) = x.

The multilinear form for two criteria is

MLE(x1, x2) = λ1x1 + λ2x2 + λ12x1x2.

Because b ∼ c we get λ1 = λ2 = MLE(b) = MLE(c). With this in mind, for
alternative a � b we demand that

MLE(a) = λ10.4 + λ20.4 + λ120.16

= λ10.8 + λ120.16 > MLE(b) = λ1

⇒ λ1 < λ120.8.

When we also demand that MLE(1, 1) = 1, we get λ1 + λ2 + λ12 = 1 and
the inequality results in λ1 < 0.30769. For example with λ1 = λ2 = 0.25 and
λ12 = 0.5 the alternatives get the following values:

MLE(a) = 0.28

MLE(b) = 0.25

MLE(c) = 0.25

which match the preference order defined by the decision maker.

In the example we had a situation where the criteria had positive interaction
and the value of simultaneously satisfied criteria was greater than the value
of criteria satisfied separately. In case of synergy within A we notice that the
weight λA was positive thus giving the product term a positive effect on total
score. If we consider a situation of redundancy and negatively interacting
criteria, we notice that the desired effect on total values is achieved when the
weight for the product term is set negative.
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3.3 Special cases

Using multilinear forms enable modeling more complex preference relations
since with them it is possible to evaluate situations, where the criteria ha-
ve synergy or redundancy on each other. Using MLE however requires the
determination of exponentially growing number of weights (2n − 2), but the
complexity of the model can be reduced with simplifying assumptions regar-
ding the weights.

In this section we consider two special cases of multilinear forms: the weigh-
ted arithmetic mean and the multiplicative model, and what kind of assump-
tions regarding weighting coefficients reduce the MLE to these aggregation
functions.

Weighted arithmetic mean

WAM (1) is achieved from MLE (7), when weights for sets of criteria of car-
dinality 1 sum up to 1, and all other weights are set to zero. As in multilinear
forms the effect of criteria interaction is created by the product terms of mul-
tiple criteria values, setting only weights λi non-zero, disables the possibility
for criteria interaction.

Multiplicative model

The multiplicative model, also known as log additive model (Zeleny [1982]),
reduces the amount of weights by redefining interaction terms weights λA
with weights for individual criteria λi scaled with a constant k ∈ R to the
power of the cardinality of interaction:

λA = k|A|−1
∏
i∈A

λi.

For three criteria the multiplicative model can be written as

u(x1, x2, x3) =λ1u1(x1) + λ2u2(x2) + λ3u3(x3)

+ kλ1λ2u1(x1)u2(x2)

+ kλ1λ3u1(x1)u3(x3)

+ kλ2λ3u2(x2)u3(x3)

+ k2λ1λ2λ3u1(x1)u2(x2)u3(x3).



23

This reduces the amount of weights to n + 1 but simultaneously constrains
the interaction that can be modeled with it (Von Winterfeldt and Edwards
[1986]). Observe that in a situation of only two criteria, the multiplicati-
ve model is exactly the same as the corresponding multilinear form with
λ12 = kλ1λ2. Possible values for k are determined by the boundary and mon-
otonicity conditions defined.

3.4 Interpretation of the weights

In decision making problems the weights are derived from evaluations of a
DM, but can these weights be given any interpretation, for example to reflect
the DM’s attitudes towards criteria? Next we discuss the weights’ connection
to the Möbius transform of a game.

Connection to Möbius transform and capacity

It has been proved by Grabisch et al. [2009] that the constants λ in Definition
3.1 can be expressed as the Möbius transform of a game ν and thus the MLE
can be rewritten as

MLEν(x) =
∑
A⊆N

mν(A)
∏
i∈A

ui(xi), (8)

where mν(A) is the Möbius transform of ν(A).

Proposition 3.1. Let ui : N → [0, 1]. If the game ν is a capacity (Definition
2.1), the Multilinear extension MLEν(x) is monotone increasing.

Todistus. MLE(x) is monotone increasing if and only if for each ui, ∂MLE
∂ui
≥ 0.

The partial derivative of (8) with respect to ui is

∂MLE
∂ui

= mµ(i) +
∑
A⊆N
i∈A

mµ(A)
∏

j∈A\{i}

uj(xj), (9)

which is constant with respect to variable ui.

The monotonicity condition for the Möbius transform of the capacity is, as
presented in Section 2.4:∑

A⊆B|i∈A

mµ(A) ≥ 0, ∀B ⊆ N and ∀i ∈ B.
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Let us first consider the monotonicity of the MLE on the vertices of the
[0, 1]n space. Assume B ⊆ N so, that i ∈ B and each j 6= i, j ∈ B gets value
uj(xj) = 1 and all j /∈ B get value uj(xj) = 0. The partial derivate (9) is
reduced to

∂MLE
∂ui

=
∑
A⊆B
i∈A

mµ(A),

which is greater or equal to zero because of the monotonicity condition of the
capacity → MLE is monotone increasing in the vertices of the [0, 1]n space.

Next consider the partial derivative (9) in (0, 1)n. Weierstrass theorem states
that a continuous function attains its maximum and minimum values in a
closed bounded interval. Since the partial derivative (9) is continuous and
attains only non-negative values at the boundaries of the [0, 1]n space, the
only possibility for the partial derivative to be negative within the interval
is if its gradient is zero at some point within the open interval (0, 1)n. The
gradient is zero if and only if at some point x the partial derivatives of (9)
w.r.t. every variable uj are zero. The partial derivative of (9) is

∂

∂uj

∂MLE
∂ui

= mµ({i, j}) +
∑
A⊆N
i,j∈A

mµ(A)
∏

k∈A\{i,j}

uk(xk),

which is constant w.r.t uj and thus (9) attains its minimum and maximum
values at the boundaries of the interval ⇒ MLE is monotone increasing in
[0, 1]n.

Since the weighting coefficients of the MLE can be expressed with a capacity,
it is possible to evaluate the criteria with the Importance index and the
Interaction index presented in Section 2.5.

3.5 In short

We have here introduced the multilinear form, the multilinear aggregation
function that can be utilized in decision making problems. With multilinear
forms it is possible to evaluate alternatives with respect to nonindependent
criteria, but when the dimension of the problem increases, using Multilinear
forms gets more difficult due to the growing number of weights to be determi-
ned. We also introduced some simple ways to reduce the number of weights
with the cost of the flexibility of the model and even the weighted arithmetic
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mean was achieved. The multiplicative model reduces the amount of weights
to n+ 1 without completely removing the possibility for criteria interaction.

It was established that the MLE has a connection to games and certain as-
sumptions regarding monotonicity and boundary conditions can be achieved
when the weights coincide with the Möbius transform of a capacity.
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4 Comparison

In Sections 2 and 3 we introduced two different aggregation functions that
were both able to model criteria interaction, thus providing a possibility
to model more demanding preference relations. Even though these two met-
hods have evolved separately and from different premises, several connections
between them can be found.

In this section we study similarities and differences between these methods
and how are the decisions are affected by the selection between these aggre-
gation functions.

4.1 Mathematical connection

It was proved by Grabisch et al. [2009] that an equivalent expression to the
Choquet integral (2) is

Cµ(x) =
∑
A⊆N

mµ(A)min
i∈A
{ui(xi)}, (10)

which is the same form as the MLE in (8), except that the product operator
is replaced with a minimum operator. Basically, both aggregation functions
can be expressed with respect to the same capacity, but when do these two
functions actually coincide?

Earlier we have noticed that the MLE reduces to the weighted arithmetic
mean when

∑n
i m

µ(i) = 1 and mµ(A) = 0 for all A such that |A| > 1. The
minimum of a single value is the same as the product of a single value, thus
the Choquet integral and MLE reduce to the same WAM.

We notice that the two functions also coincide when ui(xi) ∈ {0, 1} since
the product of zeros and ones is always equal to the minimum of the factors
of the product. On the other hand min{xi} =

∏
i xi also when at most one

factor has a value in (0,1) while others are in {0, 1}. Basically we notice that
the two aggregation functions coincide on the edges of the [0, 1]n value space.
Let us next demonstrate this graphically in a simple two-criteria situation.

4.2 Graphical connection

Since both the Choquet integral and MLE can be expressed in terms of the
Möbius transform of the capacity, it is intuitive to compare these two when
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same weighting coefficients are used for both methods.

First consider a 2-criteria situation with weights mµ({x1}) = mµ({x2}) = 1
and mµ({x1, x2}) = −1. The Choquet integral with these weights is reduced
to the maximum function, as discussed earlier in Section 2.4. The value sur-
face for the Choquet integral is drawn in Figure 3a and contour lines for
values Cµ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} are drawn in Figure 3c. Corresponding
representations for the multilinear form are in Figures 3b and 3d. We notice
that because of the multi-linearity of the MLE, the value surface is smooth
unlike that of the Choquet.

(a) The Choquet integral values for x1, x2 (b) The MLE values for x1, x2

(c) Contour plot for the Choquet integral (d) Contour plot for the MLE

Kuva 3: Values given by the Choquet integral and the MLE in 2-criteria
situation with weights mµ({x1}) = mµ({x2}) = 1 and mµ({x1, x2}) = −1.

As earlier speculated from the mathematical equations, we can indeed notice
that the two functions give the same values at the borders of the value sur-
face. But how do the values of the functions change if we have criteria that
have positive effect on each other? Let us, for example, choose the following
weights: mµ({x1}) = 0.2,mµ({x2}) = 0.3 and mµ({x1, x2}) = 0.5. The value
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surfaces and contour plots for the functions are shown in Figure 4.

(a) The Choquet integral values for x1, x2 (b) The MLE values for x1, x2

(c) Contour plot for the Choquet integral (d) Contour plot for the MLE

Kuva 4: Values given by the Choquet integral and the MLE in 2-criteria
situation with weights mµ({x1}) = 0.2,mµ({x2}) = 0.3 and mµ({x1, x2}) =
0.5.

Since the Choquet integral is an averaging aggregation function, its value is
always between the maximum and the minimum of the scores of the criteria
resulting that if x1 = ... = xn the Choquet integral always gets value C(x) =
x1. The value surface in 2-criteria situation consists of two planes that connect
at x1 = x2: the line where the value surface is continuous, but differentiable
only if the Choquet integral is also a weighted arithmetic mean.

We perceive that unlike the value surface of the Choquet integral, that of
the MLE is smooth and differentiable in the defined space, which in some
applications might prove to be a useful quality. The contour lines are not
linear, but the curvature is restricted by the multi-linearity of the MLE. In
Figure 5 we have the value surface from Figure 4b with value lines on the
surface to emphasize how the value increases with respect to the criterion x1
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when the score for criteria x2 is held constant (x2 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}).
Because of the multi-linearity of the function, the value in these situations
increases linearly, but as the criteria have synergy on each other, the value
increases with greater rate with larger values of x2.

Kuva 5: The MLE value surface.

4.3 Effects of aggregation function selection on decision
guidelines

Since the contours for the Choquet integrals are piecewise linear but those of
the MLE are curved (excluding the WAM), it is possible to find a preference
relation that we can represent with the MLE but not with the Choquet in-
tegral and vice versa. In this section we examine an example of one of these
situations, and consider whether the differences actually matter in real life
applications.

Consider a situation with three alternatives, a, b and c evaluated on two
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criteria:

u1(a) = 0, u2(a) = 0.9025

u1(b) = 0.5, u2(b) = 0.795

u1(c) = 0.67, u2(c) = 0.7045

None of the alternatives is dominated by other alternatives based on their
scores. Consider DM with preference order a ∼ c � b. With MLE this pre-
ference relation is achieved, yet with only a slight numerical difference, with
weights mµ({x1}) = mµ({x2}) = 1 and mµ({x1, x2}) = −1 resulting in fol-
lowing values for alternatives:

MLEµ(a) = 0.9025

MLEµ(b) = 0.8975

MLEµ(c) = 0.9025

The Choquet integral with the same weights on the contrary evaluates alter-
natives as follows:

Cµ(a) = 0.9025

Cµ(b) = 0.7950

Cµ(c) = 0.7045

which does not at all reflect the preference order of the DM.

The three alternatives are plotted in (x1, x2) space in Figure 6 with the
contour line of the earlier specified MLE. It is noteworthy that the three
alternatives are all above the line x1 = x2, and that it is impossible to draw
a straight line in such way, that it would go through both alternatives a and
c, and the alternative b would be beneath the line.

Earlier we noticed that only a slight difference between alternatives was pro-
vided by the MLE with the chosen weights. Let us next find such weights
for the Choquet integral that a ∼ c, and re-calculate the values of the alter-
natives. For clarity we use notation mµ({xi}) = wi, and w1,2 = 1− w1 − w2

results from the boundary conditions of the Choquet integral.

Cµ(a) = Cµ(c)

0.9025w2 = 0.67w1 + 0.7045w2 + (1− w1 − w2)0.67

0.9025w2 = 0.67w1 − 0.67w1 + 0.7045w2 +−0.67w2 + 0.67

w2 ≈ 0.7719.
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Kuva 6: Preference relation a ∼ c � b can be modeled with the MLE but not
with the Choquet integral.

Since for all alternatives u1 < u2, the weight w1 has no effect on the final
score of the alternatives:

Cµ(a) = 0.6966

Cµ(b) = 0.7277

Cµ(c) = 0.6966

and the Choquet integral gives the alternative b just a slightly better ranking
than the other two alternatives.

Based on this example we know, that it is indeed possible to find a situation
where using multilinear forms or the Choquet integral actually produce dif-
ferent preference relations even though the differences achieved were small.
On the other hand, using the same weights for both aggregation functions in
the example situation caused relatively large changes in score differences.

4.4 Qualitative comparison

The two aggregation functions that first did not seem too similar have proven
to, not only to be able to allow for interaction between criteria, but also to
produce rather similar decisions.



32

In decision making problems and related aggregation functions, the actual
numeric values for alternatives are not that significant but the relative dif-
ferences between the values of the alternatives. Saying that the value for
alternative a is 0.4 does not describe the alternative at all, but relative prefe-
rence is strongly influenced by values of other alternatives. Weather the value
for alternative b would be 0.2 or 0.9 has significant influence on the degree
of preference of alternative a.

It has been established, that both the Choquet integral and the MLE can be
expressed with the same weights that are the Möbius transform of a capacity.
Earlier in Section 2.5 we introduced the importance and interaction indices
for capacities and since the Möbius transforms can be transformed back to
capacity with the inverse transform (3), these indices are applicable to both
functions. However, it is noteworthy that even though the two aggregation
functions can be expressed with the same weighting coefficients, the same
preference order is not always achieved with such weights. An example of
such situation was presented in Section 4.3.

Both aggregation functions require determining an exponentially growing
number of weights, unless some special case is used. Using the multiplicati-
ve forms is an effective way to reduce the number of weights, which might
be desirable especially in situations with large number of criteria. For the
Choquet integral we represented the concept of the k-additivity, which re-
duced the number of weights by assuming the Möbius transforms for sets
larger than k would be zero. One could speculate if the same assumption for
the multilinear forms would as well result in a useful sub-model.
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5 Conclusion

The objective of this thesis was to comprehensively introduce two aggregation
functions, the Choquet integral and the Multilinear forms, and present how
these functions can be utilized in multi-criteria decision making problems.
Also a qualitative comparison between these two was conducted.

In Section 2 we introduced the Choquet integral, which is a more flexible
aggregation function, that is able to model the interaction between evalua-
tion criteria. As a downside for flexibility, the number of coefficients to be
determined grows exponentially when the amount of criteria grows, and thus
the interpretation of these coefficients gets more complicated.

The selection of weighting coefficients affects the flexibility of the model;
with certain assumptions regarding the capacity, and thus the coefficients,
the Choquet integral can be reduced to more simple aggregation functions
such as the weighted arithmetic mean and the ordered weighted average. The
sub-models represent a trade-off between the challenges of determining the
coefficients and complexity of the model. To offer a compromise between the
difficulty of determining the coefficients and complexity of the model, concept
of k-additive capacities was introduced, of which particularly 2-additive ca-
pacities have been found useful.

In Section 3 we introduced the multilinear form, an multilinear aggregation
function that can be utilized in decision making problems. Similarly as the
Choquet integral, also multilinear forms can be used to evaluate alternatives
with respect to nonindependent criteria. When the dimension of the problem
increases, the number of weighting coefficients grows, thus complicating the
model construction. Some simple ways to reduce the number of weights with
the cost of the flexibility of the model were introduced: with certain coef-
ficients the multilinear form collapses into the weighted arithmetic mean.
The multiplicative model reduces the amount of weights to n + 1 without
completely removing the possibility for criteria interaction.

Both these functions have different premises but are applicable in similar
situations; in Section 4 the differences and similarities of these functions were
discussed. The functions have a mathematical connection and it is possible to
use the same weighting coefficients with both functions. It is noteworthy, that
even with same weights, same preference relations are not always achieved
and thus aggregation function selection might affect the decisions.

Utilizing the Choquet integral and multilinear forms in multi-criteria decision
making problems eliminates the need for non-interacting evaluation criteria,
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thus providing a more flexible way to model the decision makers preferences.
As it is possible to represent slightly different preference relations with the
Choquet integral than the multilinear forms, and vice versa, it would be
interesting to, for example, conduct sensitivity analysis to research whether
the differences between these two functions have any significance in practice.
Probably the largest problem with these functions was the exponentially
growing number of weighting coefficients, thus making different sub-models
and special cases useful topics for future research.
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A Summary in Finnish

Monikriteeripäätöksenteossa eri päätösvaihtoehtoja vertaillaan useiden eri
kriteerien avulla, ja näiden perusteella pyritään määrittämään vaihtoehto-
jen välinen paremmuusjärjestys. Tällöin kysymykseksi nousevatkin eri tavat
kriteerien yhdistelyyn: millä menetelmällä saadaan laskettua vaihtoehdoille
vertailukelpoiset arvot, jotka kuvastavat päätöksentekijän preferenssejä?

Kriteerien saamien arvojen yhdistelyyn käytettävät funktiot, aggregaatio-
funktiot, ovat usein yksinkertaisia keskiarvofunktioita. Tyypillisesti päätök-
senteon ongelmissa käytetään paljon aikaa kriteeriarvojen määrittämiseen, ja
aggregaatiofunktiona päädytään käyttämään painotettua aritmeettista kes-
kiarvoa, joka onkin yleisimmin käytetty aggregaatiofunktio. Tällaisten funk-
tioiden käyttö kuitenkin edellyttää, että käytetyt arviointikriteerit ovat toi-
sistaan riippumattomia. Riippumattomien arviointikriteerien löytäminen on
usein vaikeaa, ellei jopa mahdotonta, ja virheellinen oletus riippumattomista
arviointikriteereistä saattaa johtaa tilanteeseen, jossa mallin antamat pää-
tössuositukset eivät vastaa päätöksentekijän preferenssejä.

Kriteeriarvojen yhdistämiseen käytettävän aggregaatiofunktion valinnalla on
mahdollista vaikuttaa mallin joustavuuteen ja ominaisuuksiin. Tämän kandi-
daatintyön tavoitteena oli esitellä kaksi erilaista aggregaatiofunktiota, Choquet-
integraali (Choquet integral) ja monilineaarinen malli (multilinear forms),
joiden käyttö ei vaadi riippumattomien arviointikriteerien käyttöä. Tällai-
set funktiot antavat joustavuutta päätöksenteon ongelmiin, sillä niillä on esi-
merkiksi mahdollista mallintaa tilanteita, joissa osa käytettävistä kriteereistä
ovat redundantteja.

Sekä Choquet-integraali että monilineaarinen malli voidaan ajatella eräänlai-
siksi aritmeettisen keskiarvon laajennuksiksi. Tämä tarkoittaa, että sopivas-
ti valituilla painokertoimilla kumpikin funktioista palautuu aritmeettiseksi
painotetuksi keskiarvoksi. Toisaalta voidaan siis ajatella, että mikäli paino-
kerrointen määritys tehdään onnistuneesti, funktiot antavat vähintään yhtä
hyviä tuloksia kuin painotettu aritmeettinen keskiarvo. Kirjallisuuskatsauk-
sen lisäksi työssä vertailtiin ja esiteltiin funktioiden välisiä yhtäläisyyksiä ja
eroja laadullisella tasolla.

Vaikka Choquet-integraali ja monilineaarinen malli ovat lähteneet liikkeelle
varsin erilaisista lähtökohdista, on niiden perusajatus sama: sen lisäksi, että
määritellään painokertoimet kuvastamaan yksittäisten kriteerien tärkeyttä,
määritellään painokertoimet myös kaikille mahdollisille kriteerijoukoille. Yh-
täläistä funktioille on myös, että samoja painokertoimia on mahdollista käyt-
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tää mallin rakentamisessa valitusta funktiosta riippumatta. Yleisesti päätök-
senteon ongelmissa vaaditaan, että käytetty aggregaatiofunktio on monoto-
nisesti kasvava, mikä asettaa rajoitteita mallin parametrien määrittämiseen.
Choquet-integraali ja monilineaarinen malli ovat monotonisesti kasvavia, jos
painokertoimet määritetään kapasiteetin avulla (Capacity). Kapasiteetti on
monotoninen normalisoitu mitta.

Vaikka mallit voidaankin rakentaa samoja painokertoimia käyttämällä, funk-
tiovalinnalla on vaikutus saatuihin tuloksiin. Funktiot mallintavat kriteerien
välisen vuorovaikutuksen eri tavoin: Choquet-integraalissa vuorovaikutuster-
mit pohjautuvat minimioperaattoriin, kun taas monilineaarisissa malleissa
vuorovaikutus syntyy tulotermeistä. Tämän vuoksi niiden avulla on teoriassa
mahdollista mallintaa hieman erilaisia preferenssirelaatioita, mutta saatavat
erot ovat käytännön sovelluksissa varsin pieniä. Yksi tärkeä ero funktioiden
välillä on, että monilineaariset mallit ovat jatkuvia funktioita, toisin kuin
paloittain lineaarien Choquet-integraali.

Choquet-integraali ja monilineaarinen malli antavat joustavuutta ja helpotta-
vat päätösmallien rakentamista. Vastapainona funktioiden tarjoamiin hyötyi-
hin on, että määritettävien painokertoimien lukumäärä kasvaa eksponentiaa-
lisesti, kun käytettävien arviointikriteerien määrää kasvatetaan; kymmenen
päätöskriteerin tehtävässä määritettävänä on jo 1022 painokerrointa. Kertoi-
mien suuri määrä hankaloittaa mallien rakentamista, eikä kumpikaan funk-
tioista sellaisenaan ole aina paras mahdollinen valinta. Suuri parametrimäärä
tekee funktioista mahdottomia käyttää suurten päätösongelmien ratkaisemi-
sessa, mutta tekemällä erilaisia oletuksia määritettävistä painokertoimista on
mahdollista vähentää määritettävien kertoimien määrää. Esimerkiksi mini-
mi, maksimi ja, kuten todettu, painotettu aritmeettinen keskiarvo on mah-
dollista saavuttaa Choquet-integraalin erikoistapauksina. Mainitut funktiot
eivät kuitenkaan ole kovinkaan joustavia. Esimerkiksi painotettu aritmeetti-
nen keskiarvo saadaan olettamalla, että kriteerien välistä vuorovaikutusta ei
ole lainkaan. Parametrien määrää on mahdollista vähentää myös joustavam-
min, esimerkiksi olettamalla, että kriteerien välinen vuorovaikutus suurissa
kriteerijoukoissa ei ole merkittävää, tai määrittelemällä suurien kriteerijouk-
kojen painokertoimet yksittäisten kriteerien kertoimien avulla.

Mallit ja niiden käyttäytyminen pohjautuvat painokertoimien määrittämi-
seen; erilaisilla painokertoimilla mallit käyttäytyvät eri tavoin ja muodosta-
vat erilaisia päätösmalleja. Painotetun keskiarvon tapauksessa eri kriteerien
vaikutus ja tärkeys heijastuu suoraan kriteereille annetuista painokertoimis-
ta, mutta Choquet-integraalin ja monilineaarisen mallin kanssa eri kriteerien
painoarvot eivät enää suoraan kuvaa kriteerin painoarvoa mallissa. Kriteerien
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tärkeyden kuvaamiseen on olemassa erilaisia tärkeysmittoja, joista tässä työs-
sä esitellään Shapleyn indeksi (Shapley value, importance index). Shapleyn
indeksi on eräänlainen painokeskiarvo, jonka avulla on mahdollista arvioi-
da kriteerin kokonaisvaikutusta mallin käyttäytymiseen. Esimerkiksi kahden
osittain redundantin kriteerin Shapleyn indeksit ovat niiden painokertoimia
pienemmät, sillä negatiivinen vuorovaikutus heikentää niiden tärkeyttä mal-
lissa.

Choquet-integraalin ja monilineaarisen mallin tärkein ominaisuus on mahdol-
lisuus mallintaa kriteerien välistä vuorovaikutusta, joten parametrien ja siten
mallin arvioinnin kannalta myös vuorovaikutuksien tutkiminen on mielen-
kiintoista. Kahden kriteerin välisen vuorovaikutuksen voimakkuutta voidaan
kuvata vuorovaikutusindeksillä (interaction index). Positiivinen vuorovaiku-
tusindeksi kertoo, että kriteerien välillä on synergiaa, kun taas negatiivinen
indeksiarvo saadaan, kun kriteerit ovat osittain redundantteja.

Choquet-integraali ja monilineaariset mallit tarjoavat joustavuutta monikri-
teeripäätöksenteon ongelmiin, ja ovat siksi mielenkiintoinen tutkimuskohde.
Ne helpottavat käytettävien päätöskriteereiden valintaa, sillä niiden avul-
la pystytään mallintamaan myös toisistaan riippuvien kriteerien vaikutuk-
sia vaihtoehdon mielekkyyteen. Funktioiden käytön suurimpana haasteena
on kuitenkin kasvava painokertoimien määrä. Päätösongelmissa, joissa vaih-
toehtoja halutaan arvioida useiden eri kriteerien perusteella, painokertoimien
suuri määrä vaikeuttaa funktioiden hyödyntämistä. Tämän vuoksi erityises-
ti tehokkaat, mutta kuitenkin joustavat alimallit saattavat tulevaisuudessa
haastaa painotetun keskiarvon aseman aggregaatiofunktioiden joukossa.
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