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Testeissä algoritmit käyttäytyivät samankaltaisesti; suorituskyky heikkeni kun rajoit-

teita lisättiin, ja vastaavasti parani, kun esimerkiksi laskenta-aikaa lisättiin. Ant Colony
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Colony System testas med olika heuristiker och parameterinställningar, vilka vardera

inverkar p̊a myrornas beslutsprocess.

I kandidatarbetet visade det sig att algoritmerna beter sig p̊a ett likartat sätt;

algoritmernas prestanda minskade d̊a antalet begränsande ekvationer ökade. P̊a
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1 Introduction

Metaheuristics are a group of approximate algorithms that use some heuristic method in

a higher level framework that aims at effectively and efficiently exploring a search space.

The word metaheuristic comes from two Greek words. The word heuristic comes from

the word heuriskein that means ”to find”, while meta is Greek for ”beyond, in an upper

level”, Blum and Roli (2003). Osman and Laporte (1996) define metaheuristics as:

They[Metaheuristics] are designed to attack complex optimization problems

where classical heuristics and optimization methods have failed to be effective

and efficient. A metaheuristic is formally defined as an iterative generation

process which guides a subordinate heuristic by combining intelligently

different concepts for exploring and exploiting the search space, learning

strategies are used to structure information in order to find efficiently near-

optimal solutions.

Exploration is the act of expanding the searched solution space, while exploitation is

the act of using accumulated knowledge to select areas to explore next. Sometimes

diversification and intensification are used in stead; often with a bigger emphasis on

medium to long term strategies, Blum and Roli (2003). Metaheuristics are not problem

specific. http://www.metaheuristics.net (2012) declares that

A metaheuristic is a set of concepts that can be used to define heuristic

methods that can be applied to a wide set of different problems. In other

words, a metaheuristic can be seen as a general algorithmic framework

which can be applied to different optimization problems with relatively few

modifications to make them adapted to a specific problem.

Combinatorial optimization is a term denoting optimization problems where clear discrete

or combinatorial structures arise, Kreyszig (1999). Beasley (2012) claims that integer

programming nowadays is called combinatorial optimization, indicating that the number

of possible solutions increases very much (a combinatorial increase) as the problem size

increases. The objective for any optimization problem is to find the best solution for a

problem – the (globally) optimal solution. In combinatorial optimization problems, the

solution space is either a finite or a countably infinite discrete set.

Metaheuristics are used in combinatorial optimization problems to quickly produce good-

quality solutions. Many COPs are still not solved in reasonable time and require good

metaheuristic methods, Fidanova (2006). Very hard combinatorial optimization problems

belong to the time complexity class NP-hard, Blum and Roli (2003). These problems
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are not conceptually hard; the optimal solution can be found by enumeration. The

rapid increase in possible solutions when the problem size increases makes these problems

computationally hard.

NP-hard problems are at least as difficult to solve as NP-complete problems. NP-

completeness in turn means that it can be calculated by a nondeterministic Turing

machine in polynomial time. This means that such a problem could be calculated in with a

polynomial time bound if the program doing the calculations happens to ”guess”correctly,

Papadimitriou (1994). Nondeterministic Turing machines do not however describe a

realistic computation model. Instead, most of the time a NP-complete problem will be

solved in a time that does not appear to be polynomially bounded.

This thesis investigates an ant colony optimization algorithm and a simulated annealing

algorithm using the zero-one multidimensional knapsack problem (MKP), which is a NP-

hard problem. This thesis stresses algorithm presentation. Tests on the performance of

the algorithms are done at the end of the paper.

This thesis is limited to analysis of discrete solution space (search space) problems.

Hybridization approaches to metaheuristics are not investigated.

2 Theory and background

In this section, the multidimensional knapsack problem is first presented in order to

describe the metaheuristics. Then the ACO algorithm and the SA algorithm solving this

problem are introduced.

2.1 Multidimensional knapsack problem

The multidimensional knapsack problem can be stated as

max
n∑
j=1

pjxj (1)

such that

m∑
j=1

rijxj ≤ ci, i = 1, ..,m (2)

xj ∈ {0, 1}, j = 1, .., n (3)

where the decision variable xj represents whether the jth item is included in the knapsack.
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Equation (1) is the objective function that represents how much the included items are of

worth. Equations (2) are the m constraints in the problem. ci is the capacity (budget) in

dimension i and rij is the resource consumption of item j in dimension i. In order words,

there are m constraints and n items. It is desired to maximize the sum of the profits pj

by including an optimal subset of the n items into the knapsack. Equation (2) states that

the summed weights rij of the items should not exceed any of the constraints.

MKP is a generalization of the knapsack problem, where there are multiple constraints on

each item that can be added to the knapsack. It is a resource allocation problem, where

there is a set of items, each item with its unique resource consumption and profit. The

objective is to maximize the sum of the profits of the included items without violating

the resource constraints. MKP appears as a subproblem in many other COPs, including

the vehicle routing problem and the generalized assignment problem, Fidanova (2006).

MKP sees direct use in cargo loading problems, cutting stock problems, budget control,

bin packing and financial management. MKP belongs to the complexity class NP-hard.

2.2 Ant Colony System

Ant Colony Optimization is an umbrella term for a range of metaheuristics using a

population of simple agents (ants) and state transition rules governed partially by a

priori heuristic information and partially by a learning component, the pheromone trail.

The differences between the different Ant Colony Optimization metaheuristics are mainly

found in how these pheromone trails are updated. Ant Colony System (ACS) was

presented in Gambarella and Dorigo (1996) and has become one of the most widely

used Ant Colony Optimization metaheuristics.

In order to use ACS to solve a COP it is necessary to describe the problem using a graph,

since ACO algorithms solve problems by using artificial ants that construct solutions by

traversing graph arcs. A graph may map any sort of relation between two or more objects.

The objects are often referred to as vertices (or nodes) and the relations between the

objects as edges. A graph is considered directed if every edge e(i, j) contains a direction

from its ”initial point” i to its ”terminal point” j, Kreyszig (1999). Directed edges are

sometimes referred to as arcs. Figure (1) depicts a simple directed graph.

In order to map MKP to a graph it is necessary to decide which parts of MKP correspond

to nodes and arcs. In this thesis every item is mapped as a node and arcs fully connect

nodes. A fully connected arc means that after selecting an item i, the next selected node

might be j if there are enough resources and item j has not yet been chosen, Fidanova

(2006). In this case the edge e(i, j) can be traversed. A path through the graph coincides

then with a feasible solution to the COP.

Additionally, it is necessary to create a heuristic value function for the ants. This will
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Figure 1: A directed graph with 3 vertices and 4 edges. The set of vertices V = {A,B,C}. The

set of edges E = {(A,B), (A,C), (B,C), (C,A)}

help the ants navigate in the graph. In this manner, the heuristic may be thought of

as being a map or compass for the ants. It is the heuristic’s task to steer the ant in

the approximate right direction. In MKP this should mean something like ”it is good to

include items that take little space and are of high value”. In the heuristic value function,

higher values are more desirable than lower values.

2.2.1 State transition

In ACS the rule according to which ants move is called the pseudo-random proportional

action choice rule or the state transition rule. This rule has a certain fixed probability of

choosing the next item greedily, i.e. the item that according to the available information

seems to be the best item to add to the knapsack. If the greedy alternative is not chosen,

the probability of choosing any other feasible item is proportional to the value of the arc

from the previously added item to this item. The state transition rule for ant k proceeding

from node r to node s can be stated as

s =

 arg max
z∈Jk(r)

{[τ(r, z)][η(r, z)]β} if q ≤ q0

S otherwise
(4)

where Jk(r) is the set of allowed nodes from node r, η is the heuristic value function

from the current node r to node z, τ(r, z) is the pheromone trail from node r to node

z and β is a coefficient that weights the importance of heuristic value function. q is a

random variable drawn from a uniform distribution U(0, 1). With a probability q0 the

best perceived value is chosen, otherwise the next node is chosen according to another

decision rule S.

The pheromone trail can be viewed as the collective memory of all agents. In ACS every

trail has at least a pheromone trail level of τ0. Higher pheromone trail levels mean that
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at least at some point during the course of the algorithm, this particular arc has been a

part of the best solution found so far.

The value τ(a, b)][η(a, b)]β is will henceforth be called the arc value for arc (a,b) (or

the value of the arc (a,b)) for the sake of simplicity. Here, η(a, b) is the heuristic value

function for the arc between node (item) a and node (item) b. As suggested by Fidanova

(2006) η(a, b) for the MKP might be

η1(a, b) = pb
( m∑
i=1

rib
ci

)−1
(5)

According to the Equation (5), the value is higher the higher the profit of including the

item is and lower the more space it requires. This can be seen since
rij
ci

is the ratio of the

available space that the item claims in dimension i. For example, if i = 2, j = 3, rij =

2, c2 = 5, then the ratio
rij
ci

can be interpreted as a statement that the proposed item 3

would claim 40% of the total available resource in period 2.

This heuristic is directly proportional to the profit of the item and inversely proportional

to the sum of the proportionalized weights of each restriction. This way, good items are

added to the knapsack, as discussed earlier. Figure (2) illustrates the calculation of a

single ant’s move from one node to another in the beginning of an algorithm run.

Another heuristic that would add items in the order of how much additional value they

contribute is tested too. This heuristic is

η2(a, b) = pb (6)

In Equation (4), if the random variable q > q0 the greedy alternative is not chosen and

instead the probability of choosing a particular arc (a,b) is proportional to the arc value

divided by the sum of all the values of the feasible arcs in the neighbourhood of node

a. The probability of ant k choosing arc (a,s) is positive if the arc (a,s) is a feasible arc;

otherwise it is equal to zero:

pk(r, s) =


[τ(r, s)][η(r, s)]β∑

z∈Jk(r)

[τ(r, z)][η(r, z)]β
if s ∈ Jk(r)

0 otherwise

(7)

here Jk is the set of feasible destinations for ant k; items that will not make the partial

solution violate any constraints should they be included in the partial solution created

by ant k.

The pseudo-proportional action choice rule promotes solutions in the proximity of the
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x1

x2

x3

x4

max 5x1 + 7x2 + x3 + 4x4 = 5

2x1 + 3x2 + 3x3 + x4 = 2 ≤ 7

3x1 + x2 + 2x3 + 5x4 = 3 ≤ 9

q0 = 0.9, τi,j = 0.5
arc value: 0.5 · 7 ·

( 3
7
· 1
9

)−1 ≈ 6.485

probability: 0.9+ 0.1 · 6.485
9.979

≈ 0.965

arc value: 0.5 · 1 ·
( 4
7
· 2

9

)−1 = 0.63

probability: 0.1 · 0.63
9.979

≈ 0.006

arc value: 0.5 · 4 ·
( 1
7
· 5
9

)−1 ≈ 2.864

probability: 0.1 · 2.864
9.979

≈ 0.029

Figure 2: State transition from node x1. The problem has two constraints. The arc values are

calculated from x1 using Equation (4) with β = 1. The actual probabilities for the arcs to be

chosen are calculated with Equations (4) and (7). Arc (x1,x2) has the highest arc value and will

be automatically chosen with a probability of q0 = 0.9. Otherwise, the probability of choosing

a node is proportional to the arc value divided by the sum of the arc values.

greedy alternative. The ant relies on the collective memory and chooses the arc with the

maximum arc value with probability slightly higher than q0.

If there are no elevated pheromone trail levels in the neighbourhood of the ant, its choice

will mainly be influenced by the greedy alternative, having a probability of q0 or higher of

being chosen. This is the case in the beginning of any ACS algorithm and in cases where

the ant has ended up in a rural location in the state space either through initiation or by

choosing the location through the pseudo-proportional action choice rule.
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2.2.2 Iteration

ACS algorithms can coarsely be said to consist of two loops and a pheromone update is

applied in the last stage of both iterations. The outer loop runs until a stopping criterion

is encountered. The inner loop iterates a solution construction procedure for every ant in

the population. Stopping criterions for the outer loop might be a set number of iterations,

closeness to the optimal solution (if information is available) or exceeding a time limit.

In the inner loop solutions are constructed for each ant, one ant at a time, using the state

transition rule presented in the previous chapter. Each time after an ant has constructed

its complete solution, the pheromone trail of the solution (i.e. for every arc in the solution)

is decreased by formula:

τr,s = (1− ρ)τr,s + ρτ0 (8)

where ρ is between 0 and 1. Equation (8) says that the value of pheromone trail is updated

to become a value between its old value and the initial pheromone level. ρ determines

how much of the trail is dissipated; ρ = 1 means that the trail forgets all its pheromone

and is reinitialized to its initial value τ0. The trail dissipation is part of the metaheuristics

exploration policy. Decreasing this value means that this trail has a lower chance of being

selected in the future. Figure (3) illustrates the local pheromone update procedure with

an example.

Once all ants have constructed their solutions, the pheromone trail of the best solution is

reinforced. The reinforced trail is chosen either from the current iteration or from entire

run of the algorithm. Since MKP is a maximization problem this rule can be written as

τr,s = (1− α)τr,s + αFbest (9)

where Fbest is this best solution found. If the problem is a minimization problem, Fbest

can be replaced by 1/Fbest, Fidanova (2006). Reinforcement of the best found solution

has been used in the ACS algorithm tested in this paper. Figure (4) exemplifies the global

pheromone update procedure.

The pseudocode of ant colony system for the multidimensional knapsack problem is in

Algorithm 1. Montemanni et al. (2004) provide a similar pseudocode for the vehicle

routing problem.
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x1

x2

x3

x4

x5

4
0

60

4
0

60

6
0

A
τ0 = 0.5

ρ = 0.95

x1

x2

x3

x4

x5
3.475

3
.4
7
5

0.
5

B

τ1,3 = 0.05 · τ1,3 + 0.95 · τ0

= 0.05 · 60 + 0.95 · 0.5 = 3.475

τ3,2 = 0.05 · τ3,2 + 0.95 · τ0

= 0.05 · 60 + 0.95 · 0.5 = 3.475

τ2,5 = 0.05 · τ2,5 + 0.95 · τ0

= 0.05 · 0.5 + 0.95 · 0.5 = 0.5

Figure 3: An illustration of the local pheromone updating rule. Subfigure A depicts the

pheromone trails that are not equal to their initial value τ0. In subfigure B, an ant has

constructed a solution (x1,x3,x2,x5). The pheromone trails are update according to Equation (8)

with ρ = 0.95. The pheromone trail on arc (x2,x5) remains unchanged since it did not have an

elevated pheromone trail level.
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x1 x3

x2 x4

x5

6
0

40

40

4
0

60

6
0

p1 = 20; p2 = 30; p3 = 40; p4 = 10; p5 = 50;

α = 0.6; ρ = 0.95; τ0 = 0.5;

A

x1 x3

x2 x4

x5

3.475

3
.4
7
5

0.5

objective function: 40 + 20 + 30 + 10 = 100

B

x1 x3

x2 x4

x5

3
.4
7
5

0
.5

3.475

objective function: 30 + 50 + 20 + 40 = 140

C

x1 x3

x2 x4

x5

3
.4
7
5 40

40

4
0

3.475

5
8
.0
8
5

0.5

5
6
.3

58.085

D

τ2,5 = 0.6 · τ2,5 + 0.4 · 140 = 0.6 · 3.475 + 0.4 · 140 = 58.085 = τ1,3

τ5,1 = 0.6 · τ5,1 + 0.4 · 140 = 0.6 · 0.5 + 0.4 · 140 = 56.3
E

Figure 4: An example of the global pheromone update rule. Subfigure A depicts the pheromone

trails between the five nodes that are not equal to the initial value τ0 = 0.5 in the beginning. In

subfigure B, an ant has constructed a solution (x3,x1,x2,x4) of the value 100 and the pheromone

trails are updated locally. In subfigure C, another ant constructs a solution (x2,x5,x1,x3) of the

value 140 and pheromones are updated locally again. In subfigure D, the best pheromone trail

(in subfigure C) is reinforced according to Equation (9) with α = 0.4. These global pheromone

trail update calculations are presented at E.
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BestCost := ∞;

for each arc (i,j) do
τi,j = τ0;

end

while computation time < computation limit do

for k := 1 to m do

while Ant k has not completed its solution do
Select new item j; Update the trail level τi,j (Equation (8));

end

Cost := Cost of current solution;

if Cost < BestCost then
BestCost = Cost;

BestSol = current solution;

end

end

for each move (i,j) in solution BestSol do
Update the trail level τi,j (Equation (9));

end

end

return BestSol,BestCost
Algorithm 1: Pseudocode for the ant colony system algorithm.
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2.3 Simulated Annealing

Simulated Annealing (SA) is memoryless metaheuristic that continuously improves one

solution in generations. The next generation is accepted if it gives a better solution than

the previous accepted solution. Solutions that decrease the value of the objective function

are accepted with a certain probability. This probability is dependant on a temperature

control parameter and the probability usually decreases towards the end of the algorithm.

Selecting these moves allows SA to escape local minima. The probability of selecting a

move that decreases the value of the objective function from solution s to solution s′ is

commonly defined as a Boltzmann distribution

p = e(f(s
′)−f(s))/t (10)

where f is the objective function and t is the temperature parameter. Here t should be

of the order of the maximum difference between neighbouring solutions, Qian and Ding

(2007).

A flowchart describing the simulated annealing algorithm is presented in Appendix A. In

this algorithm, the temperature is decreased at each iteration by multiplication with the

temperature control parameter α. α should therefore be between 0 and 1. In the tests

α = 0.85. The execution continues until a low enough temperature ε is reached. ε = 10−5

in the tests. In SA, M is the Markov-chain length that describes how many state changes

are made at each temperature, Qian and Ding (2007). During the state change a new

random item is included in the knapsack.

In case the solution became infeasible, one of the included items will be randomly dropped

from the knapsack. This continues until a feasible solution has been found. Once a

feasible solution has been found (either by dropping or including an item any way), the

current solution’s objective function value is compared against the accepted solution’s

objective function value. If the current solution is better than the accepted solution it

will become the new accepted solution. Otherwise it will be accepted with the probability

in Equation (10).

The temperature control loop is restarted by an outer loop, until enough time has passed

since the beginning of the execution. In the tests this time has been between one second

and 5 minutes. Iteration continues from the previous accepted solution upon restart. In

this manner, the cooldown schedule of the SA algorithm in this paper can be thought of

as dynamic.
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3 Performance Tests

ACS and SA algorithms were tested by comparing their performance in MKP when run

on different execution times. Performance dependence on the number of selectable items

n, the number of constraints m and on the ”easiness” of the problem; the tightness ratio

α were tested. The tightness ratio is determined by

α =
ci∑n
j=1 rij

,∀i (11)

where ci is the resource constraint in dimension i and rij is the resource consumption of

item j in dimension i. The tightness ratio was equal for every dimension i in the test

problems. The tightness ratio can be though of as the coefficient that the sum of the

item weights must be multiplied by to be the constraint limit in any dimension. In the

test cases the tightness ratio is equal in all m dimensions. A tightness ratio of 1 means

that all items will fit the knapsack and a tightness ratio of 0 means that no items will fit

into the knapsack. Neither of these are interesting scenarios.

All the test instances were fetched from the OR library, Chu and Beasley (1998). Each test

scenario is measured in groups of five similar problems that have the same n, m, run time

and α, except for the aspect to be tested. The performance is normalized against either

the optimal Integer Programming solution or the relaxed Linear Programming solution.

The overall performance of the algorithm is given as a percentage. It is calculated by

running each test case five times and calculating the average of each test case’s best

performance.

It is also tested if setting the pheromone trail τb,a to the same level as τa,b for any pair

of items a and b during all pheromone changes, has an affect on the results. MKP is an

unordered problem, meaning that it doesn’t affect the goodness of a solution if an item

has been added at a later point than another; they are both in the knapsack. Thus it

might be in the interest of better solutions to have a symmetric pheromone update policy.

All tests were concluded on a Pentium T4400 2.2GHz computer running MATLAB 2009

on Windows 7. The computer has 4GB RAM.

3.1 Time Dependency

Time dependency of the ACS and simulated annealing algorithms were examined on 5

problems, each with 250 items, 10 constraints and a tightness ratio of 0.50. The tests

were performed with 1, 10, 30, 120 and 300 second execution times and the best results

from the five runs were included in the statistics. As for ACS, different parameters,

pheromone update rules and heuristics were tested. The goal was to find any particular
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patterns where the algorithms performed exceptionally well, or very poorly.

Table 1: The average of the best performances at different execution times compared to the

integer programming optimal solution.

Row Algorithm 1 s 10 s 30 s 120 s 300 s

1 Ant Colony System,

symmetric, ρ = 0.95, q0 = 0.9, η1 0.9669 0.9710 0.9766 0.9769 0.9809

2 Ant Colony System,

asymmetric, ρ = 0.95, q0 = 0.9, η1 0.9663 0.9727 0.9728 0.9788 0.9788

3 Ant Colony System,

symmetric, ρ = 0.9, q0 = 0.8, η1 0.9676 0.9672 0.9725 0.9739 0.9756

4 Ant Colony System,

asymmetric, ρ = 0.9, q0 = 0.8, η1 0.9626 0.9705 0.9750 0.9760 0.9763

5 Ant Colony System,

symmetric, ρ = 0.5, q0 = 0.1, η2 0.8803 0.8708 0.8961 0.8939 0.8944

6 Ant Colony System,

asymmetric, ρ = 0.5, q0 = 0.1, η2 0.8785 0.8710 0.8931 0.8957 0.8990

7 Simulated Annealing, M = n 0.8791 0.8822 0.8848 0.8903 0.8935

Comparing the performance of row 1 and 2, row 3 and 4, row 5 and 6 in Table 1 with each

other, it appears that whether the pheromone update rule is applied symmetrically or not

does not affect the result very much. Both symmetric and asymmetric versions achieve

results of the same order. It seems as if the symmetric variant attains slightly better

solutions at a one second execution time. This advantage largely seems to disappear at

ten seconds. The effect of the different heuristic and parameter changes on the other hand

significantly impact the overall closeness to the integer programming global minimum. It

appears as if η2-algorithms (rows 5-6) stagnate around 0.90, however η1-algorithms reach

results as high as 0.98 (rows 1-4). In comparison, the results for the SA algorithm on row

7 are in the range 0.88-0.89.

A higher pheromone trail evaporation (ρ) coupled with a higher susceptibility of choosing

the greedy alternative (q0) on rows 1 and 2 outperform the lower counterparts on rows 3

and 4. Higher values of q0 and ρ contribute to a higher exploration effect, since pheromone

trail information about the greedy alternative is (with a high probability) quickly used

away. This would cause a smaller stagnation effect in the results.

Overall, it seems as if the performance of the algorithms are not particularly sensitive to

increases in computation time in the time scale between 1 and 300 seconds. The largest

performance improvements are found in row 6 with ACS algorithm with the heuristic value
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function η2, improving its result from 10 s to 300 s by 2.8 percentage points. The random

factor is quite visible in rows 5 and 6 as the ACS algorithms degrade in performance from

their 1 second run to their 10 second run.

3.2 Dependency on items

These tests were concluded with a 120 s execution time, 10 constraints and a tightness

ratio of 0.5, with problems with either 100, 250 or 500 items.

Table 2: The average of the best performances with different numbers of items compared to

the linear programming relaxed optimal solution.

Algorithm n = 100 n = 250 n = 500

Ant Colony System,

symmetric, ρ = 0.95, q0 = 0.9, η1 0.9807 0.9741 0.9817

Ant Colony System,

symmetric, ρ = 0.9, q0 = 0.8, η1 0.9765 0.9721 0.9775

Ant Colony System,

symmetric, ρ = 0.5, q0 = 0.1, η2 0.9081 0.8869 0.8821

Ant Colony System,

asymmetric, ρ = 0.5, q0 = 0.1, η2 0.9099 0.8887 0.8813

Simulated Annealing, M = n 0.9058 0.8864 0.8739

Looking at Table 2 it appears as if ACS heuristic η1 does not degrade in performance

when the number of items increases. Heuristic η2-algorithms on rows 3 and 4 and the SA

algorithm see slight improvements in performance as the number of items decrease. The

performance of the heuristic η2-algorithms are quite similar to the simulated annealing

algorithm’s result. Higher ρ and q0 values give better results even in this test. Overall

the number of items does not affect the performance of any algorithm very strongly.

3.3 Dependency on constraints

Tests on performance changes with different number of constraints are carried out with

a 120 s execution time, 250 items, and a tightness ratio of 0.50.

Looking at Table 3, it is obvious that all algorithms perform worse as the number of

constraints increases. ACS η1-algorithms and the SA are affected more strongly than the

ACS η2 algorithms. The symmetric ACS η2-algorithm had the smallest degradation and

improvement in performance. The ACS η1-algorithm on row 1 came very close to the
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Table 3: The average of the best performances with different number of constraints compared

to the linear programming relaxed optimal solution.

Algorithm m = 5 m = 10 m = 30

Ant Colony System,

symmetric, ρ = 0.95, q0 = 0.9, η1 0.9895 0.9741 0.9669

Ant Colony System,

symmetric, ρ = 0.9, q0 = 0.8, η1 0.9822 0.9721 0.9629

Ant Colony System,

symmetric, ρ = 0.5, q0 = 0.1, η2 0.8880 0.8869 0.8837

Ant Colony System,

asymmetric, ρ = 0.5, q0 = 0.1, η2 0.8931 0.8887 0.8838

Simulated Annealing, M = n 0.8901 0.8864 0.8773

linear programming relaxed optimal solution. Higher ρ and q0 values still outperform

lower ones, as can be seen when comparing rows 1 and 2.

3.4 Tightness Ratio

Tests on how the tightness ratio affects performance were conducted by letting the number

of items stay at 250 and keeping the number of constraints at 10. The execution times

of the algorithms were 2 minutes.

Table 4: The average of the best performances at different levels of tightness ratio compared

to the linear programming relaxed optimal solution.

Algorithm α = 0.25 α = 0.50 α = 0.75

Ant Colony System,

symmetric, ρ = 0.95, q0 = 0.9, η1 0.9643 0.9741 0.9896

Ant Colony System,

symmetric, ρ = 0.9, q0 = 0.8, η1 0.9564 0.9721 0.9870

Ant Colony System,

symmetric, ρ = 0.5, q0 = 0.1, η2 0.8365 0.8869 0.9469

Ant Colony System,

asymmetric, ρ = 0.5, q0 = 0.1, η2 0.8318 0.8887 0.9460

Simulated Annealing, M = n 0.8348 0.8864 0.9005
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Looking at Table 4, it seems clear that the tightness ratio affects the algorithms quite

strongly. A lower tightness ratio means that fewer items fit into the knapsack, as there

are tighter resource constraints. Heuristic η1 (ACS algorithms on row 1 and 2 ) does not

degrade in performance as heavily as others when α decreases. These algorithms also

have improved performance as α approaches 1.

ACS heuristic η2 is the most affected by α, greatly improving its performance as α

increases. This might be accredited to ACO algorithms being constructive algorithms

in the manner that they continue building upon a solution until no more items fit into

the their partial solution. And then they start again from the bottom. It seems natural

that this sort of addition of items would enable good results when a majority of the items

fit into the knapsack.

Simulated annealing does not perform as well as the ACS algorithms when α = 0.75.

This could be accredited to SA being a trajectory method; improving a single existing

solution until the very end of the algorithm.
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4 Conclusions

In this thesis, a combinatorial optimization problem has been solved with two different

metaheuristics. ACS manages many simultaneous solutions that communicate indirectly,

while SA continuously improves its solution by manipulating a parameter called the

temperature. The manner in which these metaheuristics attack COPs varies quite much.

Application of an ACO algorithm on a COP requires mapping the problem into an

appropriate graph that allows the ants to build solutions by crossing arcs. A good heuristic

value function for the ants to exploit is also necessary. Application of simulated annealing

on the other hand requires a manner in which to manipulate a vector of binary values in

a manner appropriate to the COP.

During the tests ACS η1-algorithms dominated all other algorithms. Higher values in the

pheromone trail evaporation ρ and in the probability of choosing the greedy alternative

q0 gave even better results.

Finally the results for the ant colony system algorithm are heavily dependant on the

heuristic value function; it is important that a good heuristic value function is selected,

and that this behaves well with the parameter values in the algorithm (ρ,q0,...). No

algorithm was particularly dependant on how long the execution time was, so a parameter

optimization could be performed with a low execution time. Later on, execution time can

be increased if slightly better results are desired at the end of the run of the algorithm.
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A Simulated Annealing flowchart

w ← initial solution;
Set time limit;
Set iteration limit M

Select i randomly
from 1, 2, .., n

Set m = 0

Element xi = 1 in
initial solution w?

w′ ← w;
set xi = 0 in w′

yes

w′ ← w;
set xi = 1 in w′

no

is w′ infeasible?
yes

∆ = f (w′)− f (w)

no

∆ > 0 ?

w ← w′

generate

q ∈ [0, 1]

no

q < e∆/t ?
yes

yes

f (best) < f (w) ?

no

best = w

yes

m = m + 1

no

m ≤M ?
yes

t = αt

t > e ?
yes

time limit
exceeded?

no

no

return best solution

yes

no

time limit
exceeded?

Randomly select an
included item xk;
Set this item xk = 0
in w′

no

yes
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