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Notations and Abbreviations 

FFT Fast Fourier Transform 

 

GPS 

 

API 

Global Positioning System 

 

Application Programming Interface 

 

IoT Internet of Things 

  

Contextlogger3 Context logger application built on top of Funf framework. 

Developed in Aalto University for recording context spe-

cific data from Android devices. 

Funf framework Open Sensing Framework for mobile devices maintained 

by Behavio (http://www.behav.io/). The core concept is to 

provide an open source, reusable set of functionalities en-

abling the collection, uploading and configuration of a 

wide range of data signals accessible via mobile phones. 

NCSS Statistical software for analyzing data 

Instance of data 

 

Activity-specific dataset collected by one test subject by 

tagging start and end markers for one activity. Instances 

are divided into shorter batches of data. 

Batch of data A ten-second dataset consisting of 500 consecutive accel-

erometer readings 
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1 Introduction 

Smartphones and similar mobile devices have become a ubiquitous part of modern eve-

ryday life. First the cell phone which became an omnipresent gadget inside people’s pock-

ets but evolution was fast. Ever increasing number of features induced a transformation 

process: The device we had at first considered “just a phone” was suddenly becoming 

much more. It was not just for phone calls anymore. A legendary game ‘Snake’ along 

with many others came out and SMS’s started flying around. There were early versions 

of mobile calendars and notepads, but usability was limited because of small screen and 

numpad interface. When the devices with large touch screens started to roll out it was 

time for a revolution – the smartphone revolution. 

Big touch screen, computer-like operating system, various sensors and endless number of 

both manufacturer and user developed applications are able to deliver almost desktop 

computer level user experience. Many applications, such as calendar and e-mail, can in 

fact be synchronized with their desktop counterparts. User interface is tilted so that “down 

is always down”, no matter which way the user holds the device. With few swipes of a 

finger people can share their pictures, activities and locations in social media. Designated 

applications make it ridiculously easy to keep track on performed sports activities while 

plotting jogging routes on a map can happen automatically. 

What lies behind of smartphone’s impressive capabilities is, besides the ever increasing 

amount of raw computing power, a number of built-in sensors. Smartphone is a self-sens-

ing gadget aware of its surroundings. For example, tilting the user interface based on how 

the user holds the phone is possible because of acceleration sensors sensing the earth’s 

pull. The phone is aware of its orientation towards earth. 
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Accelerometer is the single most important sensor from this thesis’ point of view, but 

there are some other potentially useful sensors for activity recognition. Magnetic field 

sensor is one, but GPS locator could be even more interesting. Besides providing the 

location information, GPS data would also provide a straightforward way to use velocity 

in the analysis. Knowing the velocity would, at least intuitively, be very helpful with some 

modes of transportation. Even though we accessed accelerometer data, it was not possible 

to calculate velocity from it because we would, for example, need to know the initial 

velocity in the beginning of the data – we will come back to this in the discussion. 

Despite the potentially better activity recognition when combining accelerometer data 

with GPS, we wanted to only use accelerometer for couple of reasons. First, it is possible 

to maintain better privacy level when the location information is not revealed. We wanted 

to figure out how reliable recognition can be achieved without revealing the location. 

Second, GPS would need a direct access to satellites via open sky whereas accelerometer 

is useful also in tunnels and indoors. We wanted a robust method which could possibly 

be used in subway and indoors. 

We collected data from nine test subjects who each used their own device. For a time 

span of few days the test subjects let the device know when they started and stopped 

certain activities, such as walking, so it was later possible to catch these instances of data 

by querying the user-added “timeline tags”. For collecting the data we used Contextlog-

ger3 (Chaudhary, 2013; Mannonen et al., 2013), a software developed in Aalto University 

basing on Android-compatible Funf-framework (Aharony et al., 2011). 

Data contained three dimensional (x, y, z) accelerometer readings at a rate of 50 readings 

per second. We cut the recorded instances to 500-reading batches and calculated certain 

descriptive statistical numbers to represent the batches in clustering. For analyzing the 

data we used NCSS. We explored different algorithms and different parameters with an 

objective to find such multivariate method which could be used to identify different 

modes of transportation. 
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1.1 Motivation 

Quantified self is a buzzword or – some say – even a movement (Swan, 2013) to incor-

porate technology for acquiring data of a person’s daily life. People use various data col-

lecting devices to measure and self-monitor their activities and use this data in life log-

ging, body hacking and self-quantifying. There are special devices and wearable sensors 

for data collecting, but data can also be collected by using general devices such as 

smartphones. Using smartphones is attractive because then there would be no need to 

carry extra devices. 

If it is possible to create a model which can accurately give interpretations about current 

mode of transportation, it would become fairly easy to collect big data of transportation 

habits of individuals or groups of people. Most smartphones can collect at least: Accel-

erometer data, GPS-data, magnetic field data, cell tower ID, camera data, microphone 

data and software logs. Accelerometer and GPS are likely two of the most potential sen-

sors from the transportation mode recognition point of view. If the task can be accom-

plished without GPS, the method would be more robust and better privacy level could be 

maintained. Recognizing the mode of transportation by using cell phone data is a research 

problem that both universities research and firms are trying to solve. For example Google 

has rolled out an activity recognition API for Android devices in 2015. 

1.2 Research Questions 

The purpose of this thesis was to explore whether it is possible to use multivariate analysis 

for identifying the mode of transportation when only cell phone acceleration data is avail-

able. Many similar studies have been conducted previously, but methods for recognition 

as well as activities to be recognized vary from one study to the next. Many studies also 

have a strictly defined setup where test subjects wear specific sensors on specific body 

parts.  

Using GPS data could make the task easier because it makes it possible to know the ve-

locity of the phone and location data can be used to narrow down the possible transpor-

tation modes. We sought to recognize these modes based on accelerometer only which 
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would be more robust method because it would also work without connection to satellites 

and would also ensure the privacy for users. 

The main research objective was to build a framework based on multivariate clustering 

which would separate data from transportation mode specific origins into their own 

groups. It was also studied what kind of matters should be taken into consideration when 

collecting the data for this type of model. 

1.3 Structure of the Thesis 

The structure of the thesis is as follows. Chapter 2 covers the background research for the 

thesis. Chapter 3 describes the data collecting process and the methods used when pre-

processing the data for multivariate analysis. Chapter 4 presents the research results. The 

results section is divided into two halves. First, various clustering methods are applied to 

a subset of collected data and then, in the second part, the best method is applied to the 

full data set. Chapter 5 presents the conclusions and discusses difficulties faced when 

building the transport recognition framework. Furthermore, propositions for similar fu-

ture studies are presented. 
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2 Literature Review 

In recent years, people have become increasingly interested in collecting and analyzing 

numerical data about their daily activities. The continually growing computational capac-

ity of devices and growing capacity of network bandwidth along with explosively grow-

ing number of sensors connected to Internet have created a new emerging ecosystem: 

Internet of Things or IoT. This IoT has been an important enabler to what is referred even 

as Quantified Self movement where people incorporate technology to collect and analyze 

various data about their daily activities. (Atzori et al., 2010; Swan, 2013, 2012) 

Accelerometer data has previously been used in various studies to activity recognition. 

Some studies have used specifically designed sensors attached on various body parts (Bao 

and Intille, 2004) and focus might then be more in gesture recognition. Bao and Intille 

used sensors located on the subjects’ hip, wrist, arm, ankle and thigh and achieved an 

overall 84.26% recognition rate on activities such as walking, running, reading, climbing 

stairs. 

Then there are also studies where only one single sensor is used for data collecting. This 

single sensor could be specifically designed accelerometer (Randell and Muller, 2000; 

Ravi et al., 2005) or it can be general device such as smartphone (Lee and Cho, 2011; 

Zhang et al., 2010). Bao and Intille achieved fairly good recognition with multiple sen-

sors, but good results have also been achieved by using a single sensor (Long et al., 2009). 

Long et al. used a single accelerometer attached to test subjects’ waists and achieved 

classification accuracy of about 80% when recognizing activities such walking, running, 

cycling, driving and sports. 

Specific wearable sensors are not necessarily needed for data collection. The fact that 

smartphones have become a device many carry with them throughout the day (Iftode et 
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al., 2004) and the fact that the smartphones have a number of sensors along with other 

means (e.g. software logs, microphone) for data collecting makes it fairly easy to collect 

plenty of data from either a single person’s or from a group’s daily activities by using the 

mobile device as a data collecting tool (Phithakkitnukoon et al., 2010). Obstacle is not 

the lack of infrastructure but rather the quality of the possibly noisy data and also privacy 

issues (Lane et al., 2010). Smartphones can even be used as a gesture based input device 

by waving them and interpreting the patterns from data created by built-in accelerometer 

(Ballagas et al., 2006). 

An interesting study from the viewpoint of this thesis was conducted by Kwapisz et al. 

(2011). The activities they tried to recognize were: walking, jogging, going upstairs, go-

ing downstairs, sitting and standing – not any motorized vehicles, but still somewhat sim-

ilar activities with our case. Kwapisz et al. used Android smartphones as data collecting 

tool instead of specific accelerometer sensors. Their test subjects carried the devices in 

their pockets and did not get any specific training on how to perform the activities. They 

simply carried the device in their pocket and acted naturally. Devices recorded 10 second 

batches which each had 200 readings in them. 

There are a number of studies where accelerometer data is used to recognize various ac-

tivities. Recognizing the mode of transportation is a common research problem (Reddy 

et al., 2010, 2008), but some studies also try to find ways to recognize various movement 

related bodily activities such as jogging, walking, climbing stairs etc. (Kwapisz et al., 

2011) or various daily activities such as dish washing, making bed etc. (Bouten et al., 

1997). 

Methods for recognition also vary from study to study. Multivariate analysis is used in 

some studies (Yi et al., 2005), but there are studies which utilize e.g. the Hidden Markov 

Model (He et al., 2007) or neuro-fuzzy classifiers (Yang et al., 2007). Data might also be 

preprocessed depending on the method used. For example some studies have used Fourier 

transformations for helping to catch repeating patterns from the data (Ward et al., 2006). 

A fine study about various data preprocessing techniques has been conducted by Figo et 

al. (2010). They suggest that for example mean, median, standard deviation, min and max 

are suit well for representing data in statistical analysis in this type of study. 
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Huynh and Schiele (2005) analyzed pre-recorded data by applying clustering analysis and 

evaluated the performance of individual features for activity recognition. Thus the study 

objectives were also quite similar to our case. However their data was somewhat different. 

Huynh and Schiele used the prerecorded data of roughly 200 minutes which had been 

recorded by two subjects unfamiliar with the researchers. The subjects had been given a 

script containing various activities which they performed. Data was collected with inte-

grated sensor board attached to the backpacks they were carrying. The setup which in-

cluded specifically designed sensor board and pre-defined script for subjects on how to 

perform the activities, created fairly strictly defined data collecting environment. We col-

lected data from the test subjects’ everyday life, so the environment in our case was more 

loosely defined, but in terms of methodologies the study was quite similar to our case. 

Huynh and Schiele also applied FFT for their data in preprocessing, which seems a good 

approach considering their fairly strictly prepared data collecting setup. 

When cell phone data is collected by humans, especially in an uncontrolled environment, 

the amount of noise varies depending on how the recorded activities are performed. Peo-

ple have individual habits to use their phones; some hold it in their pocket while others 

may place it on the dash board in a car, for instance. Noise can be reduced by training the 

test subjects to collect the data in some specific way. The more training and rules are 

given, the closer the data can get to what is defined to be ‘pure activity’. While for exam-

ple Huynh and Schiele had ready-made scripts for their test subjects there are also a num-

ber of studies with much more relaxed conditions (Bao and Intille, 2004). 

As mentioned in introduction, a smartphone is a device with a number of built-in sensors 

suitable for collecting various data and accelerometer is only one commonly used option. 

The GPS locator is often used for enhancing the recognition (Kantola et al., 2010). While 

it can enhance the accuracy of recognition, a GPS also has some downsides. First, it needs 

a direct access to satellites and second, it reveals the accurate location of the user. Having 

privacy from this kind of tracking is seen even as a basic human right by many (Beresford 

and Stajano, 2003). When using only accelerometer data, the exact location of user is not 

revealed and the analysis is based purely on movement which obviously increases pri-

vacy. 
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Organizing data into groups and creating taxonomies is a fundamental mode of learning 

and understanding. Clustering is one commonly used method for this type of data classi-

fication and it has been used in a variety of fields. Clustering is not one specific algorithm 

but rather a task to be accomplished and it can be achieved by a number of specific algo-

rithms such as K-means (Jain, 2010). Other commonly used clustering algorithms include 

the nearest neighbor method, the furthest neighbor method, the centroid method, the 

group average method and the Ward’s minimum average method. K-means is what is 

called a non-hierarchical method, whereas the rest of the methods are hierarchical meth-

ods. The main difference between these types is that non-hierarchical methods do not 

make any a priori assumptions about the number of clusters. 
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3 Data and Methods 

Based on the literature review and the available resources and competencies the following 

approach was chosen for the study. We would collect accelerometer data from a number 

of test subjects by equipping them with Android based smart devices with built-in accel-

erometers which would then be used to record the test subjects’ daily activities for a time 

span of few days. 

The test subjects were instructed to carry the devices just like they would do in everyday 

life. Only instruction given before the recording was how to use the context logger soft-

ware. 

We then applied various multivariate clustering methods on the collected data in order to 

form transportation mode based clusters. One of the study’s purposes was also trying to 

recognize possible problems in analyzing data originating from everyday context in con-

trary to more of a laboratory environment. Thus some human decision making was ap-

plied to evaluate the reliability of data before the actual clustering analysis.  

3.1 Overview of the Data Collecting System 

Basically all smartphones have a built-in accelerometer. It was therefore possible to equip 

a number of test subjects with smartphones which they carried for a time span of few days 

and logged various daily activities. To record the data we used context logger application 

– a software designed in Aalto University and designed for this purpose.  

By using the context logger, the test subjects were able to place tags in timeline so it 

would later be possible to catch the accelerometer data of specific activities from the data. 

For example, a test subject could have tagged that they were travelling in the bus between 
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time stamps A and B and that they were walking between the time stamps C and D. The 

same data collecting framework, and the same data was used also in some other studies 

besides this thesis. Because of this the data also contains some tags not related to trans-

portation activities. An example of the collected data from one person is in Figure 1. 

 

Figure 1: An example of data collected 

 

3.2 Preparing the Data for Multivariate Analysis 

The data was first collected into device specific databases. These databases then needed 

to be extracted from the devices to a form where the actual multivariate analysis could be 

performed in NCSS. 

The collected data was in an encrypted form and the first step in extracting the data was 

to decode the encryption and to parse separate database files into single csv-files. For this 

we used python scripts provided by Funf framework (Aharony et al., 2011). The data 

consisted of accelerometer readings in three orthogonal dimensions (x, y and z) which 

were collected around 50 times per second. 

The next step in preparing the data was to arrange the readings to correct order in timeline, 

which they were not in the original database files. It was also necessary to scrap all the 
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excess data not related to transportational activities. This arranging and scrapping was 

done by using SQL queries in MS Access. 

Because of statistical nature of the study we decided to use batches of exact 500 consec-

utive readings (around 10 seconds measured in time) for the multivariate analysis. 

Batches were collected randomly by using the following guidelines: 

 The same readings were never used in two or more batches. 

 Because of the limitations set by the devices there were some gaps in the data 

which were rejected from the batches. 

 The very beginning and very end of collected data sets were rejected because of 

high accelerations caused by using the device when placing start and stop tags for 

the activities. 

 When the recorded activity had some obvious impairment, the data was not used. 

Reasoning for all this type of scrapping is discussed in chapter 3.4 Characterizing 

the Collected Data. 

Data contained acceleration readings in three dimensions: X, Y and Z. For the analysis 

the vector sum of these was calculated as 

𝑆𝑈𝑀 =  √𝑋2 + 𝑌2 + 𝑍2. (1) 

 

3.3 Clustering Method 

Clustering is a multivariate method for grouping a set of data into clusters which have 

more similar properties within each other than to those of other clusters. Clustering anal-

ysis is not a specific algorithm, but, rather, a general task to be solved and it can be 

achieved by various algorithms. The task was to form transportation specific clusters so 

that walking would end up having its own cluster, car its own cluster and bus its own 

cluster. Some data from also few other modes of transportation was available and it was 

analyzed, but not as systemically as walk, bus and car data. 

Clustering algorithms can further be divided into hierarchical and non-hierarchical cate-

gories. In hierarchical clustering each measurement point forms its own cluster in the 
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beginning and these clusters are combined step-by-step until a satisfactory result is 

achieved. Hierarchical methods rely on human decision making and work well when there 

is not information available about the final number of clusters. 

3.3.1 Hierarchical Methods 

In this thesis we compared five different hierarchical methods for recognition: Nearest 

Neighbor Method (4.1.1), Furthest Neighbor Method (4.1.2), Centroid Method (4.1.3), 

Group Average Method (4.1.4) and Ward’s Minimum Average Method (4.1.5). The task 

was to group n observations into g groups. 

A pivotal part of hierarchical methods is called dendrogram, which is a tree-like graph 

where stem is in one side of the graph (in this thesis right) and branches in the other side 

(in this thesis left). When moving from left to right the observations are annexed one by 

one into larger groups. The length of a single branch describes how much it differs from 

the other branches. 

In all hierarchical methods the basic principle is the same, and only certain variables differ 

between the methods (see Error! Reference source not found. for the list of variables). 

Method Variables 

Nearest Neighbor Method αk = αl = 1/2, β = 0, γ = 1/2 

Furthest Neighbor Method αk = αl = 1/2, β = 0, γ = -1/2 

Centroid Method αk = nk/nr , αl = nl/nr , β = - αk αl , γ = 0 

Group Average Method αk = nk/nr , αl = nl/nr , β = 0, γ = 0 

Ward’s Minimum Average Method αk = (nk+ns)/(nr+ns), αl = (nl+ns)/(nr+ns), β 

= -ns/(nr+ns), γ = 0 

Table 1: Variables used for calculating new distance matrix depend on the method used 

 

The basic algorithm can be presented as follows: 

1) Start from the initial clustering Cn in which each observation forms its own cluster 

and form the corresponding distance matrix. 

2) Form new clustering Cj based on the previous clustering Cj-1 by annexing the two 

currently closest groups while other groups are unaffected. 

3) Form the corresponding distance matrix. 
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4) Repeat steps 2 and 3 until a satisfactory result is achieved. 

The distance matrix is formed as follows. Let groups k and l be the closest with the dis-

tance dkl between them. We then assume that group k has nk members and group l has nl 

members. New distance matrix can be formed as 

𝑑𝑟𝑠
2 = 𝛼𝑘𝑑𝑘𝑠

2 + 𝛼𝑙𝑑𝑙𝑠
2 + 𝛽𝑑𝑘𝑙

2 + 𝛾|𝑑𝑘𝑠
2 − 𝑑𝑙𝑠

2 | (2) 

 

The same equation can be applied to all hierarchical methods used and only the variables 

αk, αl, β and γ (see Error! Reference source not found.) depend on the method used. 

When evaluating mathematical performance, the cophenetic correlation coefficient can 

be used as a metric. Cophenetic correlation coefficient is Pearson product-moment corre-

lation between the real distances of observations and distances of grouping method spe-

cific distances. The bigger the cophenetic correlation values the better. 

Another useful value to evaluate mathematical performance of clustering is delta coeffi-

cient (see equation 3). 

𝛥𝑎 = [
∑ |𝑑𝑘𝑙− 𝑑𝑘𝑙

∗|
1
𝑎𝑛

𝑘<𝑙

∑ (𝑑𝑘𝑙
∗)

1
𝑎𝑛

𝑘<𝑙

]

𝑎

 (3) 

 

Where a = ½ or a = 1 depending on which delta value is calculated. dkl is the original 

distance between the two points and dkl
* is Euclidian distance between same points after 

the clustering. The smaller the delta values the better the clustering. 

We used NCSS software to perform iterations. NCSS also provided the dendrogram 

graphs which are presented in the results section. Dendrogram is a tree diagram where 

the “leaves” represent the observed data which is then merged into branches based on the 

similarity of the observations. 



14 

 

Evaluating the results provided by different methods needs also some human reasoning, 

because the methods do not have any knowledge about the real origin of various obser-

vations. Cophenetic correlation and delta values can be used for evaluating only the math-

ematical performance. 

3.3.2 K-means 

The non-hierarchical method used for clustering in this thesis is called k-means first de-

veloped by J.A. Hartigan and M.A. Wong of Yale University (Hartigan and Wong, 1979). 

Non-hierarchical clustering consists of the following parts: 

1) Choose the number of clusters g. 

2) Form the initial clusters by attaching each observation to some cluster. 

3) Increase the homogeneity of clusters by moving observations between the clus-

ters. 

4) Iterate phase 3 until it is no longer possible to increasing the homogeneity. 

Again as with the hierarchical methods, NCSS could be used for all time consuming iter-

ation work. 

NCSS lets the user choose the following options in k-means: 

 Minimum and maximum number of clusters sets the range of clusters to try, alt-

hough k-means algorithm finds a cluster configuration for a fixed number of clus-

ters. 

 Reported clusters specify the number of clusters in the final solution. 

 Random starts sets the amount of initial configurations to try. The k-means algo-

rithm finds a local optimum so larger amount of random starts helps to find global 

optimum. 

 Max iterations specifies the maximum number of retries before the algorithm is 

aborted. 

 Percent missing option specifies the percentage of missing values allowed before 

an observation is skipped. 
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3.4 Characterizing the Collected Data 

There were nine test subjects who each had their own device for data collecting. The test 

subjects carried the devices for 1-3 days, varying from person to person, and recorded 

their daily activities by using specifically designed context logger software (Chaudhary, 

2013; Mannonen et al., 2013). Same data was also used for other studies and contained 

also non-transportation based activity tags. All subjects still had at least one instance of 

transportation based data recorded. 

In this thesis walk, bus and car were in spotlight because most of the transportation based 

recordings originated from those activities but all transportation related data was still 

picked for analysis. 

It turned out that some of the data was corrupted and had to be abandoned. Still, more 

than enough was available for the purpose of this thesis. Corrupted data is discussed and 

corrections/improvements for further context logger and/or mode of transportation re-

search are suggested. It was fairly easy to identify the corrupted data and to avoid it in 

analysis. This, however, caused some extra manual work in the form of evaluating the 

validity of data before performing the actual analysis. 

Few days of data from each subject was separated into instances of walking, driving a 

car, travelling by bus and also to few other transportation related activities. Because the 

activities were from subjects’ everyday life, they were of varying lengths. Because the 

approach based on statistical analysis, the recordings were chopped into exact 500-read-

ing batches to keep them commensurate. A context logger was set to collect at maximum 

possible frequency, around 50 readings/second, and thus each batch was around 10 sec-

onds measured in time. Around 10 second time frame was seen suitable in the light of 

similar previous research, for example Kwapisz et al. (2011). 

Data was named in the following format: <subject> - <activity> - <instance> - <batch> 

so for example a notation G-Bus-1-02 indicates that the dataset in question is second batch 

from subject G first bus instance and B-Walk-2-05 is fifth batch from subject B second 

walk instance. If the whole instance is referred to, then the batch number is simply left 

out from the end, for example, G-Bus-1. The following chapters describe the collected 

data subject by subject. 
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Coincidentally most of the corrupted data seemed to originate from the devices A-E 

whereas the data collected from the devices’ F-I seemed to be mainly legitimate. When 

the data is introduced in alphabetical order it might at first look like barely any legitimate 

data was available. While the amount of corrupted data was unfortunate, we still had 

plenty of legitimate data available. 

3.4.1 Subject A 

Subject A had 1 instance of bus data, 4 instances of walk data and 2 instances of cycling 

data. Unfortunately all walk data and all cycling data was corrupted. An example of cor-

rupted cycling data can be seen in the figure below (Figure 2). Bus data from A still 

seemed to be fine so it was chopped into 4 batches which was maximum amount possible 

for this rather short instance. 

Bus data was the last one recorded by A so it is possible that old or incompatible version 

of Android and context logger versions were used for the first activities and the version 

was updated before recording the bus instance. Please note that, unlike in the rest of the 

figures, in Figure 2 all acceleration components (X, Y and Z) are presented because this 

better illustrates the problem with the data. Single components had acceleration profiles 

too cyclic to be credible. We had seen similar phenomenon happening with test data when 

the old version of context logger was used. Later in the thesis only acceleration SUM 

vector is presented unless there is some specific reason to demonstrate separate compo-

nents. 
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Figure 2: Subject A's cycling data showed constant acceleration to certain directions and also too 

regular rhythm to be trusted. Similar problem was also found in A’s walk data. 

 

3.4.2 Subject B 

Subject B had 1 instance of car data and three instances of walk data. B-walk-2 and B-

walk-3 likely had actual walk data only at the beginning of the instances and superfluous 

ambient data at the end. It is possible that the subject forgot to put closing tag at the end 

of these walk instances. 

Everything except ambience at the end of instances was chopped into batches and used 

in analysis. Ambient data from the end of these instances was obviously left out. An ex-

ample of B-walk data can be seen in the Figure 3. 
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Figure 3: B-Walk-3 had fairly clear superfluous ambience at the end 

 

B-Car-1 was fairly long (around 45 minutes) and interestingly had more intense acceler-

ations towards the end. Although the B-Car-1 was not perfectly homogeneous from be-

ginning till the end, there was no obvious reason for leaving parts of it out. It could for 

example be that first two thirds of the data was from low traffic highways and last third 

was from heavier traffic (Figure 4). 
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Figure 4: B-Car-1 contained more intense acceleration readings towards the end 

 

3.4.3 Subject C 

Subject C had only one very long (over 5 hours) bus data. The whole 5 hours was fairly 

homogenous with fairly low accelerations throughout the data which suggests it might 

really be one really long bus trip. Unfortunately this data seemed to have similar constant 

acceleration than that of subject A and had therefore be discarded from the analysis. As 

with ‘A’ it is likely that the subject C had an old version of the context logger. 

3.4.4 Subject D 

Subject D had recorded a great number of different transportation activities; in total 4 bus 

instances, 2 metro instances and 15 walk instances. Unfortunately it was very obvious 

that all of D data was corrupted in a similar way than that of subject C and A cases. See 

figure below (Figure 5). 
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Figure 5: Subject D data had faulty constant acceleration readings 

 

Although faulty, the data still nicely illustrates heavy accelerations at the beginning and 

end of data. These heavy accelerations were likely caused by the person using the device 

to start and stop recordings. Similar phenomenon was seen in many other instances too. 

Beginnings and ends of data sets were avoided with all subjects because of the very same 

reason. 

3.4.5 Subject E 

Subject E had a good number of instances from multiple activities: 4 bus, 9 walk, 2 car 

and even 1 train. Unfortunately the device E did not seem to provide as solid data as other 

devices. E had a lot more gaps in the middle of data which resulted in a situation where 

it was not possible to collect as many batches as from other subject’s data. Some instances 

did not actually have any readings in them. However it was still possible to collect mul-

tiple batches from E-Bus-3, E-Walk-6 and E-Train-1. Gaps with the device E were likely 

a result of context logger software configured to save battery and not record all the time. 
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3.4.6 Subject F 

Subject F had a great number of good quality data; in total 3 bus, 26 walk, 4 car and even 

1 cycling, 2 taxi, 2 tram and 2 ski data. Cycling data was too short to collect any 500 

reading batches from, but otherwise there were no evident reasons to discard any of the 

data. To avoid bias towards F not all of the data from this subject was used in final anal-

ysis. 

Some of the data from F was a bit questionable while not being decisively corrupted. 

About the first half of the walk instances were fairly non homogenous. This probably 

should not result into direct discarding of all F-walk data. It however gives a hint that 

possibly not all the data within one instance is from uniform activity. This is not a problem 

in a situation where the person is indeed walking for the whole length of the recorded 

instance. Maybe he has only changed the walking rhythm. Non-homogenous data, how-

ever, can be seen as a problem if the person performs completely non-walking-related 

actions such as stands still in red lights or in a crowd. The problem is that there is no way 

to tell what they were really doing. Main guideline was to discard only obviously faulty 

data and in general to trust what the persons have logged. 

F-Ski-2 is really interesting data (Figure 6). It takes place shortly after the much longer 

F-Ski-1, which seems fairly homogenous and credible data. F-Ski-2 in contrary has very 

unique acceleration pattern not seen in any other data. Its location in timeline and the 

pattern suggest that it might be for example one ski down the hill. Perhaps the test subject 

wanted to test out what kind of acceleration pattern this would result to. Skiing was not 

one of the key activities to be recognized, but some batches were still collected from F-

Ski-1 to compare them with similar walk data. F-Ski-2 was not used in analysis as there 

would be no way to recognize it by using the approach used in this thesis and by using 10 

second time frames. 

While having similarities with the walk instances, F-Ski-1 on the other hand had more 

complex rhythm (see for example F-Ski-1-05 in Figure 7). If the task was trying to sepa-

rate walk data from ski data – or perhaps different kinds of walk and ski styles – FFT and 

switching into frequency domain would probably come in handy. 
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Figure 6: F-Ski-2 had really interesting shape. It might be faulty data or perhaps the test subject 

wanted to try what kind of acceleration pattern would be the result of some specific kind of skiing 

activity - perhaps skiing down the hill 

 

 
Figure 7: F-Ski-1 was somewhat similar with walk instances but with a bit more complex rhythm. 
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3.4.7 Subject G 

Subject G had collected 9 instances of car data and 6 instances of walk data which was 

quite a lot when compared to other subjects. As with subject F not all available data was 

used in the analysis to avoid bias. Car data was chopped into 10 batches and walk data 

into 20 batches. 

Device G seemed to have a unique property of recording couple of zero acceleration read-

ings right after the start of tagged instances. This is merely a curiosity more than anything 

since as stated before beginnings and ends of instances were avoided in any case. 

3.4.8 Subject H 

Subject H had collected 1 instance of bus data and 4 instances of walk data. The collected 

data was in parts questionable because of non-homogeneity issues. Because of non-ho-

mogeneity some human decision making was needed to evaluate what should end up in 

analysis. Especially questionable were H-Walk-3 (Figure 8) and similar H-Walk-4 which 

were not used as it was really hard to say what parts the data were actual walk data. 

Clearly there were parts when the subject had been standing still. The non-homogeneity 

of H-walk-data suggests that he/she had collected the walk data in more relaxed condi-

tions compared to other subjects. Perhaps H-walk-data included activities such as going 

out with a dog. 
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Figure 8: H-Walk-3 is an example of a non-homogeneous data where parts of the data are probably 

relevant but clearly there are parts which are not from "standard walking activity" 

 

H-Bus-1 and H-Walk-1 were also somewhat non-homogeneous, but it was still possible 

to recognize main trend from them and collect the batches only from those parts. 

H-Walk-2 was very homogeneous but also very short data and maximum amount of two 

batches was collected from that. 

3.4.9 Subject I 

Subject I had 2 bus and 2 walk data. All instances were credible, but not perfectly ho-

mogenous. As with all the subjects, only data that was obviously faulty was rejected and 

there was no reason why any major parts of I’s data should be left out. All the data was 

chopped into batches for further analysis. We were aware – as with other subjects as well 

– that this kind of non-homogeneous data could, for example, originate from person using 

the device while recording data. But if there were no evident reason to reject something, 

we did not do so. Unless there were something like constant acceleration to certain direc-

tions, such as with ‘A’ and ‘D’, or sections of negligible acceleration while the person 

was walking, such as with H, everything was accepted to the analysis. The assumption 

was that the person had simply recorded the data in varying conditions. Perhaps part of 
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the bus data was while the bus was stopped and perhaps part of the walk data was from 

walking in a crowd. 

Trouble when deciding which data should be included in analysis can be well demon-

strated by looking at I-walk-1 which is presented In Figure 9. Purest walk data can be 

found in the middle of this instance whereas the beginning of the data was more non-

homogeneous. After the row 4800 walking clearly ends and last acceleration spikes prob-

ably relate to picking up the device and ending the recording. Data from the beginning 

till the stoppage was chopped into I-Walk-1-01 - I-walk-1-09 although not all of it was 

homogeneous. 

 

Figure 9: Roughly first 4800 readings of I-walk-1 data are probably actual walk data and 

accelerations at the very end represent activities needed to end the recording 

 

Let’s take a closer look to the collected batches. In the following two figures we present 

I-Walk-1-08 (Figure 10) and I-Walk-1-09 (Figure 11). These two batches very clearly 

demonstrate a rhythm typical to walking which was seen in most of the collected walk 

data. The latter of the two has typical walking rhythm in the beginning of the batch, but 

then fades into something more incoherent – similar to what the beginning of I-Walk-1 

looked like. It looks as if the regular rhythm of the steps stops around row 160 and while 

the movement continues, it is not regular walking anymore. 
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Figure 10: I-Walk-1-08 clearly demonstrates the rhythm typical for all walking data collected 

 

 
Figure 11: I-Walk-1-09 has typical walking data rhythm in the beginnning but transforms into some-

thing less coherent towards the end 
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3.4.10 Overview of the Clustered Data 

For the final analysis data was picked from different subjects and from different instances 

as evenly as possible. From those subjects where less data was available more was used 

and from those who had collected plenty, not everything was used. 

Main activities to be recognized were: walk, bus and car. Most of the collected batches 

thus originated from those instances. However since there was some data available also 

other transportation related activities some batches were also collected from: ski, tram, 

train and taxi instances. Batches used in final analysis are distributed as presented in Fig-

ure 12 (by test subject) and Figure 13 (by activity). 

 

Figure 12: Final analysis data by subject 
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Figure 13: Final analysis data by activity 
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4 Results 

The results section is organized under two main headings: “Optimal Clustering Method 

and Parameters” (4.1) and “Applying the K-means ” (4.2). In chapter 4.1 six different 

clustering methods were tested for partial data with different parameters. The aim was to 

find a method which would suit well for the type of data we had collected. In section 4.2 

the best method was applied for full data. Clustering method cannot take pure accelerom-

eter readings as an input so we calculated certain statistical variables to represent each of 

the 500-reading batches. Statistical variables used were: mean, median, maximum, mini-

mum and standard deviation. 

Partial data which was used in 4.1 consisted of 5 bus data from subject I (1-5), 5 bus data 

from H (6-10), 4 walk data from I (11-14) and 5 walk data from H (16-19). Distance 

method used was Euclidean distance and suitable cluster cutoff value was determined “on 

the fly” based on what the dendrogram looked like in each case. 

4.1 Optimal Clustering Method and Parameters 

4.1.1 Single Linkage (Nearest Neighbor) 

With nearest neighbor clustering the optimal cutoff-value appeared to be little bit above 

0,6. When for example 0,65 was used the dendrogram looked as presented in Figure 14. 
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Figure 14: Nearest Neighbor clustering perfectly separated the walk data from bus data with cutoff 

value 0,65 

 

The method seemed to cluster walk data and bus data from both subjects perfectly. It can 

also be noted that with suitable smaller cutoff value it would have been possible to cluster 

also the bus data from each subject into their own clusters (see dendrogram below), but 

the walk data was very solidly in its own cluster which also seemed to be a very solid 

general finding when experimenting with different kinds of data and with different kinds 

of methods. 
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Figure 15: With smaller cutoff-value the nearest neighbor method separated walk data into its own 

cluster and bus data from two different test subjects into their own clusters. 

 

As explained in chapter 3.3.1 Cophenetic Correlation and Delta-values can be used to 

assess the performance of clustering. The larger the cophenetic correlation the better and 

the smaller the delta values the better. However the values only tell a tale about the “math-

ematical performance” and do not consider which cluster the data points actually belong 

into in reality. That must be evaluated by human judgment. The values were as presented 

in Table 2. 

Cophenetic Correlation 0,794 

Delta (0,5) 1,103 

Delta (1,0) 1,437 

Table 2: Cophenetic Correlation and Delta values for Nearest Neighbor Method 
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4.1.2 Complete Linkage (Furthest neighbor) 

With the furthest neighbor method there was not any cutoff value which would correctly 

cluster the data. Bus data from person I formed its own cluster but the problem was that 

person I “bus cluster” tended to be closer to I & H “walk cluster” than person H “bus 

cluster”. With cutoff of 1,2 bus data are clustered into their own clusters per person and 

walk datas from both persons form a single walk cluster. When cutoff of 1,5 was used the 

bus data from I formed the cluster with all walk data and subject H bus data formed its 

own cluster. See the following two figures (Figure 16) and (Figure 17). 

 

Figure 16: Problem with Furthest Neighbor Method was that significant driver in forming the clus-

ters was test subject and not the mode of transportation. 
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Figure 17: With smaller cutoff value it is possible to force formation of two clusters but then subject 

I bus data gets mixed with the "walk cluster" 

 

Cophenetic correlation and delta values for furthest neighbor method are presented in 

Table 3. 

 

Cophenetic Correlation 0,868 

Delta (0,5) 0,290 

Delta (1,0) 0,376 
Table 3: Cophenetic Correlation and Delta values for Furthest Neighbor Method 

 

4.1.3 Centroid Method 

With centroid method it was impossible to find any cutoff value which would lead into 

one bus data cluster. A fairly good result could be achieved with cutoff value 1,0. Then 

the walk data formed its own cluster and the bus data from I and from H formed their own 

clusters. Now the subject’s H bus cluster was not merged to one as with was the case with 

previous methods. In addition to that, one specific walk data (row 1) from person I also 
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tended to slip out from the “walk cluster”, but was still classified as walk even with quite 

small cutoff values. See the image below: 

 

Figure 18: Centroid Method had same problem with Furthest Neighbor Method - a significant driver 

in forming the clusters was test subject and not the mode of transportation. 

 

Cophenetic correlation and delta values for centroid method are presented in Table 4. 

 

Cophenetic Correlation 0,779 

Delta (0,5) 0,464 

Delta (1,0) 0,612 
Table 4: Cophenetic Correlation and Delta values for Centroid Method 

 

4.1.4 Group Average Method 

Using group average provided results which were very similar to those of furthest neigh-

bor method, but were slightly better in the light of cophenetic correlation and delta values. 

Below is the dendrogram with cutoff value 1,0 which forms three clusters: All walk data, 

I bus data, and H bus data. 
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Figure 19: Test subject instead of transportation mode was a significant driver in forming the clusters 

also in the case of Group Average Method 

 

Cophenetic correlation and Delta values for group average method are in Table 5. 

 

 

Cophenetic Correlation 0,875 

Delta (0,5) 0,213 

Delta (1,0) 0,291 
Table 5: Cophenetic Correlation and Delta values for Group Average Method 

 

4.1.5 Ward’s Minimum Average Method 

Ward’s minimum average method formed really clear bus and walk clusters, but was not 

as good in the light of cophenetic correlation for which the values bigger than 0,75 are 

generally seen as good. Cutoff value 8,0 provides the following dendrogram (Figure 20) 

with bus and walk data in their own clusters. 
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Figure 20: Ward's Minimum Average Method perfectly separated the walk data from bus data - a 

similar result than that of Nearest Neighbor method. 

 

Cophenetic correlation and Delta values for Ward’s minimum average method are pre-

sented in Table 6. 

Cophenetic Correlation 0,640 

Delta (0,5) 0,867 

Delta (1,0) 0,879 

Table 6: Cophenetic Correlation and Delta values for Ward's Minimum Average method 

 

4.1.6 Overview of the Hierarchical Method Results 

The nearest neighbor method seemed to perform best of the hierarchical methods. It sep-

arated the walk data perfectly from bus data and could actually also separate the two 

different test subjects’ bus data from each other with suitable cutoff value. However it 

must be noted that Delta values of nearest neighbor method were the largest of the five, 
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which suggests its mathematical performance could have been better. Cophenetic corre-

lation value was however above 0,75 which can be usually seen as good. 

Ward’s minimum average method performed very similarly but cophenetic correlation 

was below 0,75. Furthest neighbor method, centroid method and group average method 

all had trouble clustering the batches by activity and they tended to rather cluster it by 

subject. 

The comparision of different methods (Table 7) shows that the nearest neighbor method 

performed best followed closely by Ward’s minimum average method. 

 Cophenetic 

Correlation 

Delta 

(0,5) 

Delta 

(1,0) 

Clustering Success 

Nearest Neigh-

bor 

0,794 1,103 1,437 Perfect 

Furthest 

Neighbor 

0,868 0,290 0,376 Major driver was subject and 

not activity 

Centroid 

Method 

0,779 0,464 0,612 Major driver was subject and 

not activity 

Group Average 

Method 

0,875 0,213 0,291 Major driver was subject and 

not activity 

Ward’s Mini-

mum Average 

Method 

0,640 0,867 0,879 Perfect 

Table 7: Comparision of different hierarchical methods 

 

4.1.7 K-means 

K-means differs from all previous methods by being non-hierarchical. Knowledge about 

the amount of clusters can now be assumed before the analysis. Thus the result plots are 

presented in different format and there are no more dendrograms. Because of this the K-

means results are not fully comparable to the previously used hierarchical methods. 

With test runs, the number of different transport methods was two (bus & walk) so the 

amount of reported clusters was set to two hoping that analysis would separate walk 

batches from bus batches. Random starts was set to 3, Max iterations was set to 25 and 
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Percent missing was set to 50. Minimum and maximum amount of clusters during the 

analysis was set to 2 and 5 respectively. Different options were experimented with but 

adjusting the parameters did not change the results considerably. The best result was 

found by using these values. 

Clustering with k-means worked really well. In the two clusters which were formed there 

was only one wrongly placed data point: row 12 – I-Walk-2-02 which ended up into bus 

data cluster. See for example Average vs. Std. deviation plot below (Figure 21). 

 

Figure 21: K-means clustering separated walk batches well from the bus batches. 
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4.2 Applying the K-means Method to All Data 

Non-hierarchical K-means method seemed to work particularly well for clustering the 

kind of data we had collected in the 19 batch test runs while nearest neighbor method 

seemed to be the best hierarchical method. 

The superiority of K-means became clear when it was compared to hierarchical methods 

with all collected batches. When the number of batches got high, it became impossible to 

find suitable cutoff value for getting any kind of satisfactory results with hierarchical 

methods. 

Regardless the cutoff value the analysis always seemed to give few really small, internally 

similar clusters and then one really big cluster containing almost all other batches. For 

example, applying the best combination of test runs – Nearest Neighbor method with a 

cutoff value 0,65 – results into three clusters: 

1) B-Walk-2-02 & B-Walk-2-04 

2) H-Walk-2-01 & H-Walk-2-02 

3) All the rest of batches 

Dendrogram with all available batches becomes fairly unreadable but is still presented in 

Figure 22 (Nearest Neighbor with cutoff value 0,65). 
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Figure 22: The nearest neighbor (which performed best of hierarchical methods in test runs) did not 

find a cutoff value for producing reasonable results. 

 

K-means seemed to provide sensible results even when the number of batches got higher. 

Note that we now had also few batches of ski, train, taxi and tram available and different 

amount of reported clusters were experimented with. For example using reported clusters 

of 4 resulted into clusters presented in Table 8. 

Table 8: Clusters formed by applying K-means to all data with 4 reported clusters 

Label Car Bus Walk Ski Tram Train Taxi Total 

“Walk/Ski” 5 3 34 3 1 - - 46 

“Motor” 2 6 - - 1 - 5 14 

“Motor” 76 75 5 - 10 6 7 179 

“Walk/Ski” - - 25 7 - - - 32 

Total 83 84 64 10 12 6 12 271 
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While clustering algorithm formed the groups, labeling them relied on human interpreta-

tion. Clusters 1 and 4 seemed to be walk and ski clusters with cluster 1 having some 

misplaced batches. Clusters 2 and 3 seemed to be motorized transportation clusters with 

cluster 3 some misplaced walk batches. 

In total 92,0% of all walk data were assigned to either cluster 1 or cluster 4. In total 95,2% 

of all car and bus data were assigned to either cluster 2 or cluster 3. On the other hand, 

nothing decisive could be said about separation of car and bus data. They seemed to be 

very much alike. 

The resulting graph can be presented by any of the statistical values used to represent the 

batches. In the figures below results are presented in a standard deviation vs. average plot 

(Figure 23) and min vs. max plots (Figure 24) which both present the separate clusters 

fairly well. 



42 

 

 

Figure 23: K-means clusters presented in a standard deviation vs. average graph 

 
    

Walk/Ski 
Motor 
Motor 
Walk/Ski 



43 

 

 
Figure 24: K-means clusters presented in min vs. max graph 

 

When k-means was applied to only walk, car and bus data, the result in Table 9 were 

obtained. Result was similar to what we got with all available data but cluster 2 was not 

as clearly “motor” cluster anymore. 

Label Car Bus Walk Total 

“Walk” 3 - 32 35 

~“Motor” 5 10 11 26 

“Motor” 75 74 2 151 

“Walk” - - 19 32 

Total 83 84 64 231 

Table 9: When only car, bus and walk data was analyzed, two walk-clusters, one motor-cluster and 

one mixed cluster with a motor bias were formed. 

 

 

Walk/Ski 
Motor 
Motor 
Walk/ski 
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When the number of reported clusters was dropped to three – we had three different 

modes of transportation after all – the result was one fairly clean “walk” cluster, one fairly 

clean “motor” cluster and one “motor” cluster with some walk data. This was to be ex-

pected, considering the other runs. 

Walk data always seemed to separate to its own cluster(s) but bus and car data were 

mixed. So what if we assumed that by using the chosen method and with the given data 

it is simply not possible to separate bus and car data? What if we set the reported clusters 

into just two – would one of them be “walk” and the other “motor”? Results are presented 

in the table below (Table 10). 

Label Car Bus Walk Total 

“Motor” 80 83 8 171 

“Walk” 3 1 56 60 

Total 83 84 64 231 

Table 10: When reported clusters is set to two one of them is very clearly walk cluster and the other 

fairly clearly "motor" cluster 

 

With two reported clusters one of them is very clearly (93,3%) walk cluster and other 

fairly clearly (95,3%) motor cluster while 87,5% of walk batches ends up into walk cluster 

and 97,6% of motor batches end up into motor cluster. 

These were fairly good percentages, given that we allowed the test subjects to collect the 

data freely and were not very selective when picking the data for the analysis. Only ob-

viously faulty data was discarded. Wrongly clustered walk batches possibly originated 

from situations where the subject has not been walking but instead stood, for example, in 

red lights. It is easy to believe that a person standing relatively still would produce similar 

acceleration profile to that of a person sitting in a car on straight road – at least now when 

relatively simple statistical numbers were used to describe the batches. 
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5 Discussion 

5.1 Conclusion 

The main objective of this thesis was to create a multivariate model which would separate 

different transportation modes into their own clusters based on accelerometer data col-

lected from cell phones carried by test subjects. The collected accelerometer data was cut 

down to 500-reading batches which were then described with batch-specific statistical 

values: Mean, median, minimum, maximum and standard deviation. Various clustering 

algorithms were applied to the batches which were represented by statistical values listed 

above. 

A non-hierarchical K-means method was especially well suited for our case. K-means 

performed well in the test runs and it also needs less human decision making than hierar-

chical methods. When applying K-means to all collected batches, batches originating 

from walking activity clearly formed its own cluster(s) and batches originating from mo-

torized vehicles (bus, car) formed its own cluster(s). However, it was not possible to sep-

arate car data from bus data by using the selected approach. 

It was also found out that using the data originating from loosely defined data collecting 

framework (i.e. letting the test subjects carry and use the data collecting devices just like 

they would do in everyday life) is problematic from the activity recognition perspective.  

Test subjects could well have their own ideas about what walking actually is and what is 

travelling by bus/car. For one person only uninterrupted long walk outside is walking 

while the other could tag any “pedestrian activity” as walking. Data tagged as walking 

could therefore contain e.g. window shopping or standing still on the red light. 
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Similarly, travelling by bus or car could contain data originating from various conditions. 

Some of the data can be from heavy traffic and some from a highway with little traffic. 

Some of the data was likely collected while the person was actually using the phone which 

can create different acceleration profile compared to having the phone in their pocket etc. 

Regardless of the loose setting, walk data seemed to be so fundamentally different that it 

could be easily separated from car and bus data. This is somewhat intuitive result. Even 

with simple statistical numbers describing the collected batches, much higher accelera-

tions with much higher variance are associated with walking than with sitting in a car. 

Accelerations related to driving a car are relatively low and relatively long-lasting with 

low variance, for example when the road is curving. If the person, on the other hand, is 

walking, every step while the phone is in their pocket can probably create accelerations 

that only rally driver could match. 

5.2 Reliability and Validity of the Research 

The data was collected from the nine different test subjects as in previous studies. How-

ever, it was unfortunate that a lot of the collected data had to be discarded before the 

actual analysis and from two test subjects all data was corrupted. 

The nature of the study was experimental and exploratory. At first we only had vision 

about collecting cell phone accelerometer data with Contextlogger3 and then, by using 

multivariate methods we would recognize the modes of transportation. Other than that we 

had no clear vision about the final setup. We looked for hints from the literature and 

experimented with our own test data which we collected on-the-fly while developing the 

data collecting setup at the same time. 

Exploring with test data was fun and exciting, but once the decision needed to be made 

on how to collect the real data, it was like closing a door with no certainty on whether we 

have made the right choices. Once the real data had been collected and processed for 

NCSS, it would have been very burdensome to go back in square one if that would have 

been needed. 
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Various decisions needed to be made and it felt difficult to start narrowing down degrees 

of freedom one by one while the suitability of the selected approach was still uncertain. 

For example the following decisions needed to be made: 

 What type of sensors are used: Data can be collected by using e.g. cell phones and 

tablets, but also by designated accelerometer or other sensors. 

 How the sensors are placed: Test subject can be instructed to carry the device in 

some specific way, such as in pocket or in backpack, or they can be allowed to 

carry the device freely. 

 How well the subjects are trained for data collecting and how strictly the activities 

are defined: Test subjects can be allowed to act freely or they can be instructed to, 

for example, collect walking data only when they are not in a crowd which might 

disrupt their walking activity. Similarly for a car activity: It can be defined on 

what kind of roads they can collect the car data, are they allowed to collect data 

in traffic etc. In this study we didn’t have any restrictions for the subjects. They 

simply performed their daily routines and used the context logger to log what they 

did. 

 What methods are used for recognition: In this study we used multivariate meth-

ods, but there are also other possibilities, such as Hidden Markov Model or other 

machine learning models. 

 How long are the analyzed datasets: 1 second, 10 seconds, a minute, or something 

else? 

 What statistical numbers should be the inputs for clustering: If clustering method 

is used, it must be decided how the datasets are presented – clustering cannot take 

in pure accelerometer readings. We used simple statistical numbers: min, max, 

median, average, and standard deviation to represent the batches. 

 Should there be some more advanced preprocessing of the data before clustering: 

We experimented a little with FFT, which did not provide much more information 

about the data. In our case only walk and ski data seemed to have specific rhythm. 

Different combinations of these options lead to different results. There are combinations 

which provide very good results and some combinations do not provide any meaningful 

results. There were so many options that it was impossible to try everything with every-

thing. We experimented and made decisions one by one based on what seemed to work. 
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If something had been chosen differently in early phases of the study, rest of the decisions 

could have taken very different route. 

Based on the resources and competences available we decided to use cell phones for col-

lecting the data and multivariate methods to later classify it. Same data was used also in 

other studies, and thus we allowed the subjects to carry the devices as casually as they 

would in everyday life. Experimenting with the setup suggested that the interesting phe-

nomenon happened within the seconds’ time frame so we decided to collect data at high 

intensity (50 readings/second) and use rather short time frame for batches (10 seconds). 

To represent the collected batches we used basic statistical numbers (min, max, median, 

average and standard deviation) which seemed to provide satisfactory results with our 

data. There could be some more elegant options available if, for example, the data col-

lecting setup also was more strictly defined. We experimented with FFT, but its benefits 

would likely come out only when data is collected through a strictly defined setup. There 

are various clustering options to choose from; for us K-means seemed to provide the best 

results. 

Better recognition results would probably have been observed had the data collecting 

framework been set up more strictly. If the aim had been to create as good of a model as 

possible it would be crucial to very strictly define what kind of data we want from differ-

ent modes of transportation – where do we want the “center of a cluster” to be. 

5.3 Suggestions for Future Research 

We only used accelerometer data while the devices could have provided more. Especially 

GPS-data could be very helpful by providing an easy way to use velocity to enhance 

clustering accuracy. In theory, it is possible to get velocity also without GPS by integrat-

ing the acceleration data, but it was not possible in practice, because we would need to 

know instance-specific initial velocity v0. Even if we could assume it zero, technical lim-

itations, in the form of gaps in the data, would still be a problem. Calculating velocity 

from acceleration data would also be very sensitive to systematic errors. Even slight ac-

celeration bias to one direction would eventually accumulate into significant (and faulty) 

velocity to that direction. 
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The collected data was also used in other studies so large part of total available data was 

actually not from transportational activities. The data was collected during a time frame 

of few days (there was slight person to person variance) while the test subjects performed 

normal daily activities and chores. There were some cases where a subject had forgot to 

mark the beginning or the end of an activity. We eliminated these cases through human 

judgement before clustering. We had not restricted the use of devices in any way so it is 

likely that some of the data was collected while the device was in normal use. This obvi-

ously would lead different acceleration profile compared to having the device in the 

pocket. A loose setup was acceptable, and to a degree even desired, because one of the 

study objectives was to identify challenges with real unknown data from real everyday 

life. 

If the aim were to create as accurate recognition as possible, the data should be collected 

in shorter time frames and under stricter rules. Different modes of transportations and 

their characteristics should first be defined: In which proportions we want data from traf-

fic and from open road? Should “car in traffic” and “car on open road” actually be differ-

ent clusters? What is walking inside of a bus? Is the person allowed to use the phone 

while collecting the data? After the archetype for each transportation mode is defined – 

once “the center of each cluster” is defined – the data should be collected in sharp, sys-

tematic and activity-oriented stints. 

We focused on comparing the performance of different clustering algorithms, but the fo-

cus could have been also on comparing other aspects. We could have chosen K-means at 

an early phase and focus on comparing different inputs for the clustering. We used mean, 

median, maximum, minimum and standard deviation to represent batches, but perhaps 

there are better and more sophisticated options available. For example, by analyzing the 

derivatives it would be possible to say how many times acceleration turns into decelera-

tion within one batch. Based on what most of the walk data looked like, this could actually 

turn a cell phone into moderately good pedometer. 
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