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As a part of planning an air mission, the trajectory of an air-to-ground (A/G) weapon must be

determined. In this thesis, the novel trajectory evaluation framework with which the best trajectory

can be identi�ed from a set of possible trajectories under uncertainty regarding the locations of

surface-to-air (S/A) threats is presented. The best trajectory is the trajectory which has the

highest survivability, i.e., the probability for the A/G weapon to traverse the trajectory without

being intercepted.

The trajectory evaluation framework relies on two new models introduced in this thesis which

together provide the survivability of a given trajectory. The spatial prediction model is used to build

a probability map for the location of an S/A threat based on Bayesian reasoning with geographical

data and knowledge about common tactical principles utilised in forming an air defence. The

Markov survivability model describes the process of intercepting an A/G weapon with the air

defence consisting of radar sensors and S/A weapons with an inhomogeneous continuous-time

Markov chain. Using the probability maps produced by the spatial prediction model, the Markov

survivability model produces the survivability of the trajectory, such that uncertainties regarding

the locations of the S/A threats are taken into account.

The Markov survivability model presented in this thesis is compared with existing reference sur-

vivability models through numerical experiments by replacing it in the framework with each of

the reference models. In the experiments, the survivabilities of di�erent trajectories obtained with

each model are evaluated and compared. The sensitivity of the models to uncertainty regarding

the locations of S/A threats is studied by varying sizes of areas in which it is believed that the

threats are located. The experiments imply that the novel framework gives intuitive results. In

addition, the Markov survivability model is less a�ected by imprecise information regarding the

locations of the S/A threats than the reference models.

Keywords: Air mission planning, inhomogeneous continuous-time Markov-chains,

geographic information science, probability map, radar
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Ilmaoperaation suunnitteluun sisältyy operaatiossa käytettävien ilmasta-maahan -aseiden reit-

tien valinta siten, että aseisiin kohdistuu ilmatorjunnasta mahdollisimman vähän uhkaa. Tässä

työssä esitellään uusi menetelmä, jolla arvioidaan ilmatorjunnan aiheuttamaa uhkaa annetulla

lentoradalla lentävään ilmasta-maahan -aseeseen, kun ilmatorjunnan tarkkaa ryhmitystä ei tiedetä.

Menetelmässä käytetään kahta tässä työssä kehitettyä mallia: ryhmityksen sijaintijakauman tuot-

tavaa mallia ja ilmasta-maahan -aseeseen annetulla lentoradalla kohdistuvan uhkan kertymistä

kuvaavaa mallia.

Ilmatorjunnan ryhmityksen sijaintijakauma määritetään Bayesiläisen päättelyn avulla käyttämällä

maantieteellisiä tietolähteitä ja tiedustelutietoa todennäköisistä ryhmitysalueista. Ilmasta-maahan

-aseeseen annetulla lentoradalla kohdistuva uhka arvioidaan jatkuva-aikaiseen Markov-ketjuun pe-

rustuvalla mallilla, joka kuvaa ilmatorjuntayksikön kykyä havaita ase, seurata asetta ja vaikut-

taa aseeseen. Sijaintijakaumaa hyödyntämällä Markov-malli tuottaa todennäköisyyden sille, että

yksi tai useampi ilmatorjunta-ase onnistuneesti torjuu ilmasta-maahan -aseen. Markov-mallin ja

samalla koko menetelmän tuottama lopputulos huomioi ilmatorjunnan ryhmitykseen liittyvän epä-

varmuuden.

Tässä työssä esiteltyä Markov-mallia verrataan numeerisin kokein kahteen ilmatorjuntaa kuvaavaan

referenssimalliin. Kokeissa verrataan kunkin mallin tuottamia ilmasta-maahan -aseeseen kohdistu-

via uhkia eri lentoradoilla kahdessa skenaariossa. Mallien alttiutta epätarkkuuksille sijaintitiedossa

tutkitaan varioimalla ilmatorjunnan ryhmitysalueen suuruutta ja tarkastelemalla, kuinka hyvin

mallit säilyttävät lentoratojen keskinäisen uhkajärjestyksen. Kokeiden tuloksena voidaan todeta,

että uuden menetelmän hyödyntämä Markov-malli yhtäältä tuottaa realistisia uhka-arvioita ja

toisaalta se on vähemmän altis epätarkkuuksille ilmatorjunnan ryhmityksen sijaintitiedossa verrat-

tuna referenssimalleihin.

Avainsanat: Ilmaoperaation suunnittelu, jatkuva-aikaiset Markov-ketjut, geoinformatiikka,

sijaintijakauma, tutka
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Chapter 1

Introduction

The identi�cation of the best possible trajectory for an air-to-ground (A/G) weapon

is an integral part of air mission planning (see, e.g., [6, 17]). The best trajectory is

such that the probability for the A/G weapon to traverse the entire length of the

trajectory without being intercepted by any surface-to-air (S/A) threats is greater

than with any other plausible trajectories. The locations of the S/A threats play

a central role in their capabilities to intercept the A/G weapon. Thus, knowledge

regarding the locations of the possible S/A threats is of utmost importance when de-

termining the best trajectory for the A/G weapon [6]. However, precise information

regarding these locations is seldom available. Therefore, such location uncertainty

should be treated when evaluating the alternative trajectories of the A/G weapon.

In this thesis, the novel trajectory evaluation framework for evaluating the trajec-

tories of A/G weapons under uncertainty regarding the locations of the S/A threats

is presented. The framework illustrated in Figure 1.1 consists of the spatial predic-

tion model and the Markov survivability model which are developed in this thesis

and used to produce a survivability measure for a given trajectory. The survivability

measure is the probability for the A/G weapon to traverse the trajectory without

being intercepted by S/A threats. Within the trajectory evaluation framework, the

spatial prediction model produces a probability map for each S/A threat. These

probability maps are then used by the Markov survivability model to provide the

survivabilities of feasible trajectories. Thus, using the framework, the best trajec-

tory is determined from the given set of the trajectories. The framework is used

in the planning of air missions when a choice between the multiple A/G weapon

trajectories is made to ensure the successful outcome of the air mission.

Threat inducing systems which are of interest when evaluating trajectories of

A/G weapons include S/A missiles and anti-aircraft cannons as well as aircraft
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Figure 1.1: The trajectory evaluation framework presented in this thesis.

tracking radars which are used in accordance with guided S/A missiles. With a

slight abuse of terminology, the term �S/A threat system� or simply �S/A threat� is

used throughout this thesis to refer to all of these di�erent types of threat causing

systems. These S/A threats are assumed to consist of a radar sensor which is used

as a part of the air defence and can be accompanied with an S/A weapon which

is used together with the radar sensor to intercept the A/G weapon. That is, an

aircraft tracking radar can exist by itself but an S/A weapon is always accompanied

by the radar sensor.

In this thesis, the S/A defence is assumed to consist of independent S/A threat

groups. An S/A threat group in turn comprises target acquisition radars, �re control

radars, and S/A weapons. For the S/A threat group to successfully intercept an

A/G weapon, the A/G weapon must �rst be detected and tracked by the S/A

threat group's target acquisition radars. These send their detection information to

a joint radar tracker which attempts to form a track of the A/G weapon based on

all of the detections achieved by the target acquisition radars. Once the tracker has

2



formed the track of the A/G weapon, it is passed over to the �re control radars.

Each �re control radar is linked to a single S/A weapon. In order to use the S/A

weapon to intercept the A/G weapon, the associated �re control radar must have

acquired the track of the A/G weapon. It is assumed that the �re control radar and

the S/A weapon are always co-located, and they are jointly referred to as an S/A

threat unit. Each �re control radar independently attempts to form the track of

the A/G weapon. These radars do not share detection information with each other.

Thus, each �re control radar must be able to detect and track the A/G weapon

independently in order for the associated S/A weapon to be used. When the �re

control radar successfully forms the track, the associated S/A weapon thereafter

attempts to intercept the A/G weapon, if the A/G weapon is in the range of the

S/A weapon.

The spatial prediction model developed in this thesis combines geographical and

intelligence information, and through Bayesian reasoning [32] it produces a proba-

bility map for an S/A threat, i.e., the probability for the S/A threat to be situated

at any given location. The probability map gives a distinct probability for the event

that the S/A threat system is located at any given location. In order to estimate

the locations of the S/A threat systems, methods for analysing the passability of the

terrain and the quality of alternative locations for S/A defence in terms of visibility

are developed. Intelligence information and knowledge about strategic principles

commonly used in planning air defence with di�erent types of S/A threat systems

are also taken into account. The intelligence information used by the spatial predic-

tion model concerns the capabilities of the S/A threats and areas in which the S/A

threats are believed to be located. Additionally, a novel method for reducing the

probability map to a discrete number of possible locations is presented. The prob-

ability map reduction method is applied to reduce the computational requirements

of the trajectory evaluation framework.

The Markov survivability model presented in this thesis is used to provide the

probability that an A/G weapon is tracked and intercepted. The A/G weapon is be-

ing tracked if the air defence has su�cient information regarding the A/G weapon's

movements for the use of the S/A weapons. The A/G weapon is intercepted if the

S/A weapon has been successfully utilised and the A/G weapon has been destroyed.

The Markov survivability model is based on a four state inhomogeneous continuous-

time Markov chain [9] (see also Appendix B). Each Markov chain which is used

while evaluating the survivability of a given trajectory describes a single S/A threat

unit's capability to intercept the A/G weapon. The �rst state of the Markov chain

3



is means the target acquisition radars of the S/A threat unit's threat group have

not yet been able to form the track of the A/G weapon. The target acquisition

radars might have detected the A/G weapon but not with su�cient regularity to

form the track. Once the S/A threat group's target acquisition radars successfully

form the track of the A/G weapon, the Markov chain advances to the second state

and the �re control radars commence trying to acquire a track. The third state of

the Markov chain is reached when the �re control radar associated with the S/A

threat unit which the Markov chain is describing successfully forms the track of the

A/G weapon. Finally, the fourth state is reached when the threat unit's weapon

intercepts the A/G weapon.

When evaluating a trajectory, all of the Markov chains of which each describes a

single S/A threat's capabilities to intercept the A/G weapon are solved as described

in Appendix B. The survivability of the trajectory is obtained by calculating the

probability that none of the Markov chains corresponding with the S/A threat units

are in the fourth state at the end of the trajectory. The transition rates between

the states of the Markov chain depend on parameters which are determined through

the expected time needed for a transition under optimal conditions. The optimal

conditions are the best possible detection capability for transitions corresponding

to the forming of a track and interception of the A/G weapon, and zero detection

capability for transitions corresponding to the loss of the track. The transition rates

also depend on the probability of detection by radar sensors.

If exact locations of S/A threats are known, the Markov survivability model

provides the survivabilities of alternative trajectories traversed by the A/G weapon.

Since the exact locations of the S/A threats are rarely known, the spatial prediction

model is used to estimate probability maps for the S/A threats. By using these

probability maps, the Markov survivability model generates the survivabilities of

the trajectories by taking into account uncertainties regarding the locations of the

S/A threats. These survivabilities are used to rank the trajectories into a priority

order and identify the best trajectory.

The Markov survivability model is compared with two reference survivability

models � the Erlandsson model [11] and the technical survivability model [34] �

through numerical experiments conducted in this thesis. The comparison is carried

out by evaluating trajectories with the trajectory evaluation framework and by re-

placing the Markov survivability model in the framework in turn with each of the

reference models. Similar to the Markov survivability model, the Erlandsson model

also relies on continuous-time Markov chains to estimate the survivability of an
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A/G weapon traversing its trajectory. In the Erlandsson model, each Markov chain

portrays a single S/A threat group's capability to intercept the A/G weapon. The

Erlandsson model was originally developed to calculate the survivability of trajec-

tories for aircraft and not A/G weapons as is the case with the Markov survivability

model. The Erlandsson model di�ers from the Markov survivability model also in

the manner in which state transition rates are de�ned. While the state transition

rates in the Markov survivability model are directly a�ected by the probability of

detection by radar sensors, the transition rates in the Erlandsson model are explic-

itly dependent on the location of the A/G weapon. The area around S/A threats is

classi�ed into sensor and weapon areas. Each target acquisition radar is assigned a

sensor area in which the radar is able to detect and track the A/G weapon. Each

S/A threat unit is associated with a weapon area in which the threat unit's �re

control radar is able to detect and track the A/G weapon and the S/A threat unit's

weapon is capable of intercepting the A/G weapon. The state transition rates are

varied depending on the areas in which the A/G weapon is located at a given time.

The survivability of a given trajectory is obtained by calculating the probability that

none of the Markov chains corresponding with the S/A threat groups are in the �nal

state representing the event that the A/G has been intercepted by the S/A threat

units at the end of the trajectory. Similar to the Markov survivability model, the

Erlandsson survivability model also uses the probability maps produced with the

spatial prediction model to take into account uncertainty regarding the locations of

the S/A threats.

The technical survivability model recognises that target acquisition radars oper-

ate in search mode and thus scan the surrounding airspace in an organised manner.

It follows that a target acquisition radar is directed in a given direction only at given

intervals. On the other hand, it is assumed that in order for a track to be formed,

the target acquisition radar must achieve a given number of successful detections

of an A/G weapon on consequent scans. Taking these two notions into account,

the technical survivability model provides the probability of successfully forming

the track of the A/G weapon by the target acquisition radar. After this, the model

calculates the probability whereby the �re control radar is able to obtain the track

of the A/G weapon and maintain this track for the duration required to aim, launch,

and guide the S/A weapon in order to intercept the A/G weapon. Combining these

probabilities, the technical survivability model gives the probability whereby an S/A

threat unit is capable of intercepting the A/G weapon at a given time. The surviv-

ability of a given trajectory is determined by calculating the probability that none of
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the S/A threat units are able to destroy the A/G weapon along the trajectory. The

probability maps produced by the spatial prediction model are used by the technical

survivability model to take into account uncertainty regarding the locations of the

S/A threats.

The novel trajectory evaluation framework presented in this thesis takes into

account geographical data and uncertainties regarding the locations of S/A threats

in more depth than any previously constructed models. The developed spatial pre-

diction model produces a probability map for the location of an S/A threat system

and takes into consideration requirements for its surrounding terrain set by charac-

teristics and principles governing the use of the S/A threat system. Existing spatial

models [17] describing possible locations of S/A threat systems have not taken into

account similar aspects and have been based on measurements from radar sensing

sensors on board an aircraft. With the probability map reduction method intro-

duced in this thesis, the processing of probability maps is performed signi�cantly

more e�ciently than would otherwise be possible.

Unlike previous introduced survivability models based on Markov chains [11, 12],

the Markov survivability model also takes into account the need to track an A/G

weapon with radar sensors before it can be intercepted and the theoretical capa-

bilities of the radars to detect the A/G weapon. These capabilities include the

directionality of the radar cross section of the A/G weapon which describes the

characteristics of the weapon in regard to the radar sensor's capability to detect it.

The trajectory evaluation framework also treats the uncertainty of S/A threat sys-

tems' locations which is described by probability maps constructed with the spatial

prediction model.

The rest of this thesis is structured as follows. Previous research related to

spatial analysis and S/A survivability modelling is discussed in Chapter 2. The

description of the problem of determining the best trajectory for an A/G weapon

which is solved by the framework presented in this thesis is given in Chapter 3.

The spatial prediction model and the Markov survivability model are introduced in

Chapter 4 and are followed by the presentation of reference survivability models in

Chapter 5. Chapter 6 provides the results of numerical experiments as well as the

comparison of the Markov survivability and the reference models. Finally, the thesis

is summarised and future research is discussed in Chapter 7.
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Chapter 2

Related research

Research into the evaluation of trajectories traversed by aerial devices has yielded

numerous di�erent approaches to the modelling of the survivability of a trajectory for

an aerial device and to the optimisation of the trajectory of the device to maximise its

survivability. The survivability of the trajectory for the aerial device is represented

with the probability that the device is able to traverse the trajectory unharmed. A

proposed straightforward approach is to de�ne high risk areas into which the device

must not navigate [31]. These no-�y zones represent areas in which it is likely for

the aerial device to be harmed, and it is assumed that outside these areas the device

can navigate with relatively high survivability. Another approach to evaluate the

threat caused to aerial devices is to de�ne a cost function for the route of the device

that is inversely proportional to the fourth power of the distance between the aerial

device and the S/A threat system [2, 27]. The relation of the cost function to the

fourth power of the distance is motivated by the relationship between the signal-to-

noise ratio achieved by radar sensors and the range of the target which the radar

is attempting to detect. A similar cost function has been proposed by Pachter and

Hebert [26]. They optimise routes for the aerial device with respect to the integral

of the cost function over the course of the trajectory and give an analytic solution

through the calculus of variations [22].

Radar detection is a stochastic process [25] and thus it is natural to address radar

tracking and ultimately the possible interception of the aerial device as stochastic

processes. A possible approach to modelling the stochasticity of radar detection and

aerial device survivability is to use Markov chains as the basis for the models [10].

Erlandsson [11] proposed a Markov chain model where the transition rates depend on

whether the aerial device is within a threshold distance from the S/A threat system

and takes into account the need for the threat system to detect and track the aerial

7



device before it can be engaged. Another approach proposed by Erlandsson [12] is

the use of a simpli�ed two-state Markov chain where the rates of transition decrease

either linearly or quadratically with the distance from the S/A threat system. The

new Markov survivability model used in the trajectory evaluation framework intro-

duced in this thesis builds on the models described here. However, in addition to

recognising the distinct stages of radar detection, the Markov survivability model

also strives to take into account the technical capabilities of the S/A threats.

A radar sensor's capability to detect and track an aerial device depends also

on the terrain and the orientation of the aerial device. The topography plays a

role since if the aerial device is shadowed by the terrain, the S/A threat system

cannot detect or track the device. For example, Zheng et al. [35] have shown how an

evolutionary algorithm can be used to plan a route that maximises the use of terrain

masking while simultaneously minimising the length of the route and maximising

the distance from known S/A threat system sites. The directionality of the radar's

capability to detect and track an aerial device, i.e., the radar cross section of the

device plays a key role and has been taken into account for example by Kabamba

et al. [21]. They recognised that the radar cross section of an aerial device is often

irregular, but for modelling purposes they used an ellipsoidal model for the radar

cross section. The radar cross sections used in the trajectory evaluation framework

are the actual measured radar cross sections of the A/G weapons being considered.

Thus, the route evaluations given by the framework are more accurate than those

calculated using ellipsoidal radar cross sections.

Models studying the threat in�icted on aerial devices traversing trajectories in

the vicinity of S/A threat systems often assume that the locations of the threat

systems are known. However, this is usually not the case and there is almost al-

ways at least some uncertainty in the location of the S/A threat systems. Jun and

D'Andrea [20] discuss how the path of an unmanned aerial vehicle can be optimised

based on a probability map generated from radar sensing sensor readings and a

Bayesian survivability model. The uncertainty involving the locations of the S/A

threat systems has also been studied by Erlandsson [11] by assuming a two dimen-

sional Gaussian probability density function for the threat systems' locations and

by utilising Monte Carlo simulation methods [23]. A di�erent perspective to the

modelling of uncertainty regarding the positions of S/A threat systems is to cate-

gorise each location in the area into a discrete number of classes, each representing

a di�erent degree of threat [4]. The probability of being intercepted in any given

location depends on the degree of threat assigned to the location in question.

8



Hespanha et. al [17] demonstrate how a probability map of S/A threat systems'

locations can be built with noisy radar sensing sensors. They use Bayesian reasoning

to build the probability map for the radars. The spatial prediction model developed

in this thesis is similar to Hespanha et. al's model in many ways. Both models strive

to estimate the locations of S/A threat systems and both models apply Bayesian

reasoning. However, the data utilised is di�erent. Hespanha et. al use noisy data

from radar sensing sensors while the spatial prediction model uses geographical

and intelligence information to form the probability map. The probability map

generated with the spatial prediction model could be used as the a priori probability

distribution in methods such as Hespanha et. al's.

The spatial prediction model presented in this thesis can be described as spatial

analysis. Spatial analysis, see e.g., [24], is the analysis and extraction of knowledge

from spatial data. Spatial data is information where geographic location and time

play a vital role. Spatial data links descriptive properties, attributes, or events to a

geographical location or point in time [14]. In the spatial prediction model presented

in this thesis, spatial data such as elevation, tree height and land cover data is used

to calculate a probability map for the location of S/A threat systems.

Similar spatial analysis has been applied in many di�erent �elds of research, e.g.,

to predict the locations of future events or estimate characteristics of certain geo-

graphical areas by using geographical data. For instance, landslide hazard prediction

by geographic analysis methods has been studied [7]. Spatial analysis has also been

applied to predict the locations of archeological sites [13] and species distribution [1].

However, in all of these applications there is prior data available and as such they

all apply inductive reasoning such as regression analysis to obtain results.

Turning to the analysis of S/A threat systems siting, studies concerning how

one should place air defence missile batteries exist [3, 16]. The problem of �nding

the best possible location for an air defence missile battery, taking into account the

terrain, visibility, and other tactical properties that a�ect the e�ciency of the defence

battery, is referred to as the missile siting problem. Even though the perspective into

the problem is opposite between the missile siting problem and the task of estimating

the locations of enemy S/A threat systems, these two problems are essentially quite

similar. In both problems, it is necessary to obtain knowledge about whether it

is possible for an S/A threat system to operate at a location and whether there is

su�cient visibility from the location in question.

In addition to addressing the missile siting problem, Franklin et al. [16] take

an extensive look at line of sight algorithms and their performance. In particular,
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Franklin et al. study viewshed and visibility index algorithms. Viewshed is the

surface area, which is visible from any certain vantage point and the visibility index

is a value that can be calculated for any point on a surface, and tells how good the

visibility is from that location [16]. In addition to exact algorithms, Franklin et al.

also present many interesting approximative algorithms that can be used to speed

up calculations. Methods inspired by the work of Franklin et. al. are used in the

spatial prediction model to determine the visibility from a given location.

To summarise, the trajectory evaluation framework presented in this thesis builds

on previous Markov chain models and takes into account the technical capabilities

of S/A threats with more precision than earlier models. Unlike previous survivabil-

ity models based on Markov chains, the new Markov survivability model presented

in this thesis takes into account the directional radar cross-section and topological

restrictions in the operation of S/A threats. Furthermore, the trajectory evaluation

framework utilises methods from the realm of spatial analysis to estimate the un-

known locations of the S/A threats. Earlier published models which strive to build

a probability map for the S/A threats utilise data from radar detector sensors, while

the new spatial prediction model introduced in this thesis uses geographical data to

enhance existing intelligence information regarding the locations of the S/A threats.
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Chapter 3

Trajectory planning problem

The trajectory planning problem discussed in this thesis is the problem faced in A/G

air mission planning, when one must decide on a single trajectory out of many pos-

sible alternatives, to be used by an A/G weapon during the mission. The outcome

which the spatial prediction model and the Markov survivability model together

attempt to achieve is the successful identi�cation of the best possible trajectories of

A/G weapons with respect to the risk of being intercepted by an S/A threat. The

best trajectory is the trajectory with the highest survivability, i.e., the highest prob-

ability for the A/G weapon to successfully traverse the entire trajectory unharmed.

The survivability of the trajectory is dependent on the whereabouts of S/A threat

systems and on the S/A threat systems' technical capabilities to detect and inter-

cept the A/G weapon. The real world problem setting including the aforementioned

dependencies and associated uncertainties, as well as the principles utilised in the

spatial prediction and Markov survivability models to take into account these un-

certainties, are discussed in this chapter.

3.1 Real world problem setting

In the trajectory planning problem, the ultimate objective is to deliver an A/G

weapon through enemy defences to a given target location. A variety of di�erent

trajectories are given as alternatives and the task is to choose the trajectory along

which the A/G weapon has the highest probability of reaching the target unharmed.

The target is protected by a defence which consists of threat systems. Sometimes

the exact locations of threat systems are known, but in many cases this is not the

case. In such instances, all available intelligence information regarding the threat

systems and the terrain should be taken into account to estimate the threat systems'
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locations. Threat systems can be characterised as sensors and weapons [28]. Slightly

simplifying, the role of the sensors is to instruct and aim the weapon so that the

weapon can successfully intercept the A/G weapon.

Sensors are used in di�erent roles as either target acquisition sensors or �re

control sensors [34]. In some instances, a single sensor can have several of the

mentioned roles simultaneously. The target acquisition sensors are sensors that

search the surrounding airspace for targets. Once a target acquisition has detected

a possible target it attempts to form a track, i.e., gather information regarding

the location, velocity, and heading of the target. The track formed by the target

acquisition sensor is not accurate enough to be used directly with an S/A weapon

to intercept the weapon and a �re control sensor is used to form a more accurate

track. The �re control sensor is a sensor which is dedicated to forming an accurate

track of the target, which can be used by the S/A weapon to intercept the target.

The process during which threat is induced onto the A/G weapon can be de-

scribed with a chain of events that begins from the �rst detection of the A/G weapon

by the early warning sensors and terminates once an S/A threat unit has successfully

intercepted the A/G weapon. The chain of events can be portrayed with six discrete

phases [34]. In the �rst phase, the early warning sensors detect the A/G weapon

and alert the S/A defence to intercept it. In the second phase, the target acquisition

sensors acquire a track for the A/G weapon. After this in the third phase, the target

acquisition sensors pass the track of the A/G weapon over to the �re control sensor.

The fourth phase consists of the �re control sensor acquiring a track of the A/G

weapon, and in the �fth phase the actual S/A weapon is �red. Finally, in phase six,

the A/G weapon is intercepted by the S/A weapon.

Sensors might be able to communicate detection information to one another, and

thus a track can be formed based on detections made by several di�erent sensors.

With such a sensor network, a track can be formed even though no single sensor is

constantly capable of detecting the target. Such sensor networks are often used in

air surveillance systems [34].

Sensors can be characterised based on the technique used to detect targets into

optical, infrared, and radar sensors [28]. Optical sensors use visible light to detect

and locate targets. Optical sensors include electro-optical sensors which utilise the

visible spectrum of electromagnetic radiation and the human eye. Optical sensors are

intuitive in a sense that the capability to detect a target by such a sensor is similar

to a person's capability of seeing the target. As such, optical sensors' shortcomings

include deteriorating capabilities when faced with limited visibility which can be
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due to smoke, fog, or clouds, and limited detection capability in the lack of light,

e.g., during the night. Infrared sensors are electro-optic sensors which rely on the

infrared spectrum of electromagnetic radiation. Infrared sensors share some of the

shortcomings of optical sensors but since an infrared sensor detects heat from the

source, the infrared sensor might be able to spot a target more easily and does not

depend on lighting conditions. Radar sensors depend on electromagnetic radiation

with longer wavelengths to detect targets. The capabilities of radar sensors to detect

targets are not as much a�ected by visibility limitations as optical and infrared

sensors. However, radar senors must be accompanied with an arti�cial radiation

source, i.e., a transmitter.

Sensors and weapons can either be stationary or set on a mobile platform [28].

Mobile platforms are either wheel-, track-, or foot-based. Depending on the propul-

sion system of a platform, i.e., wheels, tracks, or foot, the platform can have di�er-

ent passability in di�erent terrains. A platform on wheels, for instance, can travel

quickly on roads but poorly in forests, whereas tracked vehicles cannot travel as fast

on roads but can travel in a wider range of terrain including forests.

When considering the problem of evaluating A/G trajectories in a real world

setting, there are numerous uncertainties which are di�cult, and in some cases

impossible to eliminate. These include uncertainties regarding the positioning of the

S/A threats, the technical capabilities of the S/A threats, and weather conditions

which can a�ect the S/A threats' abilities to detect and intercept the A/G weapon.

In addition to these uncertainties, there are human aspects which can have an e�ect

on an S/A threat's capability to operate e�ciently as many S/A threat systems rely

on a human operator.

3.2 Modelling assumptions and simpli�cations

In this thesis, the task of evaluating trajectories of an A/G weapon when faced

with uncertainties mentioned above is tackled by combining two separate models.

The spatial prediction model addresses the uncertainties regarding the positioning

of S/A threats by forming a probability map for the threats, and the Markov sur-

vivability model with the help of the probability map determines the probability for

an A/G weapon to successfully traverse a trajectory without being harmed by any

S/A threats. The survivability model strives to take into account the uncertainties

concerning the technical capabilities of the S/A threats by treating track formation

and interception as Poisson processes, see e.g., [32]. The intensity parameters of the
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Poisson process depend on technical parameters of the S/A threat, characteristics of

the A/G weapon and the geometry between the S/A threat and the A/G weapon.

Only radar sensors are considered.

In the spatial prediction model, it is argued that the location of an S/A threat

system can be estimated based on three distinct observations. The �rst observation

is based on the fact that di�erent types of threat systems are regularly operated and

situated with di�erent principles [3]. Some systems might be used for close range

air defence, while others might be situated further away from the actual target

which they are defending. This and all available intelligence information is taken

into account in the grouping index (GI). The grouping index describes how well a

certain location is situated regarding the target which the air defence is protecting.

The assumed threat bearing and the common tactical principles for how the speci�c

threat system is used are also taken into account. This grouping index is used as

the a priori distribution for the location of an S/A threat system.

Second, it is unlikely for a threat system to be located in an area from which it

is impossible for it to operate. For example, wetlands are areas in which it may be

impossible for a threat system to operate. Such impossible areas may account for a

great portion of the entire area under observation. Further, if it is assumed that the

adversary has a �nite amount of time to form their air defence, and thus it might

be impossible for the threat systems to reach certain locations. These observations

are described with the passability index (PI). The passability index is used as the

likelihood that a threat system is capable of navigating to and operating from a

given location.

The third observation regards the visibility from possible threat systems' loca-

tions. For an S/A threat system to operate properly, it must have su�cient visibility

to detect and engage the target. The visibility from each location is described with

the visibility index (V I). It is argued that it is more likely for an air defence system

to be located at a location with good visibility than at a location with bad visibility.

The visibility index is used as the likelihood that there is su�cient visibility from

a given location for an S/A threat system to operate e�ciently. Combining these

observations the spatial prediction model gives a probability map for an S/A threat

from which the probability whereby the S/A threat is located a given location is

read.

The spatial prediction model uses geographical data from three di�erent sources:

a digital elevation model provided by the National Land Survey of Finland, the

CORINE Land Cover 2006 material generated by the Finnish Environment Institute,
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and a dataset consisting of the height of the forest cover. All of the data is in raster

form. This means that the datasets have been discretised into pixels and each pixel

is given a certain value. The pixel size for all of the datasets is 25 metres.

The CORINE Land Cover 2006 (CLC2006) is a dataset that consists of infor-

mation concerning the nature and usage of land areas. In the CLC2006, each pixel

is categorised into one of the 44 di�erent land cover categories supported by the

CLC2006. The digital elevation model and the forest cover height data sets are

simply rasters that contain one integer for each pixel indicating the average height

above sea level or forest cover height, depending on the data set in question.

In the Markov survivability model, the basic unit in an air defence system is an

S/A threat group. The S/A threat group consists of one or more target acquisition

radars and S/A threat units. The target acquisition radars and the S/A threat

units can be situated at any distance from each other or at the same location on

the same platform. The S/A threat unit consists of an S/A weapon itself and a

�re control sensor. The target acquisition radars are capable of acquiring a track

that can be passed on to the threat unit, but the S/A threat unit cannot intercept

the A/G weapon solely based on the track formed by the target acquisition radar,

and it must track the target with its own �re control radar as well. The target

acquisition radars in the S/A threat group share information about detections with

each other. Thus, the track which is passed on to the S/A threat units can be

acquired through information gathered from all the target acquisition radars within

the group. However, the �re control radars do not share detection information and

each �re control radar must track the target independently for the associated S/A

threat to be able to intercept the A/G weapon. In reality, an air defence system

would also include one or more early warning sensors, which are the �rst to detect

an incoming threat and alert the rest of the air defence system to act on the threat.

In the Markov survivability model discussed in this thesis, it is assumed that the

early warning sensors have already detected the A/G weapon and the S/A threat

groups are aware of the incoming A/G weapon.

The Markov survivability model uses the probability of detection as a measure of

S/A threats' capability to detect the A/G weapon. Due to interference by stochastic

noise, radar detection is a stochastic process and the probability that an S/A threat

is able to detect an A/G weapon in a given location and orientation is calculated as

shown in Appendix A.

The Markov survivability model strives to determine the survivability of an A/G

weapon �ying a given trajectory in an area in�uenced by short- and medium-range
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S/A threats. The survivability of the A/G weapon on the given trajectory is de�ned

to be the probability whereby the weapon is able to traverse the trajectory and reach

its target unharmed. The model determines the kill-probability whereby the A/G

weapon will not be able to traverse the trajectory and reach its target unharmed,

and the survivability of the weapon is then calculated as the complement of the

kill-probability.
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Chapter 4

Trajectory evaluation framework

The trajectory evaluation framework proposed in this thesis is used to solve the

trajectory planning problem. The trajectory evaluation framework takes as inputs

intelligence information regarding the threat systems in the area, information about

the terrain, characteristics of the A/G weapon and a set of trajectories which are to

be evaluated. The framework then determines the survivability of each trajectory.

The survivabilities of the trajectories can then be used to determine the trajectory

with which the A/G weapon would have the highest probability of reaching its

target. The framework can be separated into two distinct phases, each of which

are completed by separate models. First, a probability map of each S/A threat is

formed with the spatial prediction model. These probability maps are then used

by the Markov survivability model to determine the survivability of each trajectory.

In this chapter, the details of both the spatial prediction model and the Markov

survivability model are discussed.

In the forthcoming text, the separate threat groups are referred to with super-

script k = 1...N , where N is the total amount of threat groups. The individual

target acquisition radars are referred to with subscript i = 1...nk, where nk is the

amount of target acquisition radars in threat group k. Similarly, the threat units in

a threat group are referred to using subscript j = 1...mk, where mk is the amount

of threat units in threat group k. In Chapter 4.1, the spatial prediction model is

discussed by only referring to S/A threat systems with subscripts i, i.e., target ac-

quisition radars. Exacly the same logic applies to S/A threat units which would be

referred to with subscripts j. The term S/A threat system is a generic term and it

is used to refer to both target acquisition radars and S/A threat units.
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4.1 Spatial prediction model

In order to form the probability map of an S/A threat system, the Bayes' rule is

used:

P (A|B) =
P (B|A)P (A)

P (B)
, (4.1)

where A and B are events, P (A) is the a priori probability, P (B|A) is the likelihood

function and P (A|B) is the a posteriori probability.

In the spatial prediction model, the a priori distribution for the location of the

S/A threat system i of threat group k is represented by the grouping index, i.e.,

P (Xk
i = x, Y k

i = y) = GIki (x, y). The grouping index gives the a priori probability

that the threat system is situated at a location with coordinates (x, y). Here Xk
i = x

and Y k
i = y depict the events that the longitude and latitude coordinates of the S/A

threat system i of threat group k are x and y.

The S/A threat system is not situated at a location from which it does not have

su�cient visibility to operate e�ciently or a location to which it is impossible for

it to navigate in a given time frame. The likelihood that a given location can be

reached by the threat system in a given time is described with the passability index

denoted by PIki (x, y). The likelihood that there is su�cient visibility for the threat

system to operate at a given location is described with the visibility index denoted

by V Iki (x, y). This is written as

P (Passki |Xk
i = x, Y k

i = y) = PIki (x, y),

P (V isibki |Xk
i = x, Y k

i = y) = V Iki (x, y),

for the S/A threat system i of threat group k, where Pass represents the event

that the threat system is situated at a location to which it is possible for the threat

system to navigate in the given time frame. In turn, V isib depicts the event that

the threat system is situated at a location from which there is su�cient visibility

for the threat system to operate e�ciently.

Based on Bayes' rule (4.1), the posterior distribution for the location of the S/A

threat system i of threat group k is

P (Xk
i = x, Y k

i = y|Passki , V isibki ) ∝ P (Passki , V isib
k
i |Xk

i = x, Y k
i = y)P (Xk

i = x, Y k
i = y),

(4.2)

where P (Xk
i = x, Y k

i = y) is the a priori probability map of the S/A threat, i.e.,
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the grouping index GIki (x, y). Equation (4.2) gives the probability for the threat

system i to be located at coordinates (x, y), given that it is possible for the threat

system to navigate to the location and there is su�cient visibility from the location

for a threat system to operate e�ciently.

By making the assumption that the events Passki and V isib
k
i are conditionally

independent when conditioned with the location of the threat system, the expression

for the posterior distribution is simpli�ed. Since the two events are conditionally

independent, their joint conditional probability is calculated as the product of the

two individual conditional probabilities. By substituting the individual conditional

probabilities with the respective indices, the posterior distribution (4.2) is

P (Xk
i = x, Y k

i = y|Passki , V isibki )

∝ P (Passki |Xk
i = x, Y k

i = y)P (V isibki |Xk
i = x, Y k

i = y)P (Xk
i = x, Y k

i = y)

= PIki (x, y)V Iki (x, y)GIki (x, y).

This posterior distribution is the probability map for a single threat system,

which is produced by the spatial prediction model. In short, the probability map

for threat system i of threat group k is denoted with

P k
L,i(x, y) = PIki (x, y)V Iki (x, y)GIki (x, y). (4.3)

The probability map P k
L,i(x, y) gives the probability for the threat system i of threat

group k to be located at any given location (x, y).

4.1.1 Indices

Passability index (PI)

In the spatial prediction model, terrain passability plays an important role in esti-

mating the location of a threat system. If it is not possible for the threat system

to operate at a certain location or it is impossible for a threat system to navigate

to a location, there is zero probability for the threat system to be there. Also, if it

is impossible for a threat system to travel to a certain location within a given time

frame, the threat system will have zero probability of being located at the given site.

Thus, the passability index is set to be one if the time needed to travel to the site
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is less than or equal to the time constraint and zero otherwise, i.e.,

PIki (x, y) =

{
1 if tkmin,i(x, y) ≤ tmax

0 otherwise
, (4.4)

where tmax is the time constraint set for forming the air defence and tkmin,i(x, y) is

the traversal time to location (x, y) for threat system i of threat group k.

In order to calculate the time needed to navigate from a known depot, i.e.,

the starting place from which S/A threat systems move to their positions, to any

given location, a grid graph G(V,E) that consists of vertices V and edges E is

built. Vertices V correspond to each possible location (x, y) and edges E resemble

a transition from a certain location to another adjacent location ((x1, y1), (x2, y2)).

Each vertex is connected to all of its eight neighbors with an edge. By default, the

graph coincides with the rasterisation of the digital elevation model and CLC2006

dataset. It is assumed that each vertex is located at the center of each pixel. The

cost of each edge corresponds to the time consumed in the transition. Thus, the

cost c of traversing the edge between the two vertices is calculated as follows:

c =
δ/2

v
+
δ/2

v′
=
δ(v + v′)

2vv′
, (4.5)

where δ refers to distance between the two neighbouring vertices (x1, y1) and (x2, y2).

The variables v and v′ are the velocities at which a threat system is capable of

navigating at locations (x1, y1) and (x2, y2).

It is assumed that the threat systems spread out from a given number n > 0 of

depots for which the locations are known. The minimal time tmin(x, y) needed for the

traversal from the depot(s) to each location in the area is calculated with Dijkstra's

algorithm [8] using the grid graph G(V,E) where the edge costs are determined with

Equation (4.5).

One way of estimating the velocities v, by which the di�erent systems can nav-

igate in di�erent terrains, is based on the use of the coe�cients of deceleration as

proposed by Hofmann et al. [18]. The coe�cients of deceleration used in the model

are coe�cients corresponding to the slope and the nature of the terrain. These are

referred to as the slope and terrain coe�cients.

The slope coe�cient is calculated by using the digital elevation model and the

terrain coe�cients are determined by using the CLC2006 data. The velocity v(x, y)

at which a threat system is able to navigate is calculated as the product of the
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maximum velocity of an S/A threat system and the two deceleration coe�cients,

v(x, y) = vmax × Cslope(x, y)× Cterrain(x, y), (4.6)

where vmax is the maximum velocity at which a threat system can navigate in any

terrain, Cslope is the slope coe�cient, and Cterrain is the terrain coe�cient. Both

the slope coe�cient and the terrain coe�cient have values in the range C ∈ [0, 1].

Thus, the velocity v(x, y) calculated for a threat system at each location (x, y)

ultimately evaluates to the range [0, vmax]. If either coe�cient is valued at C = 0, it

is impossible for a threat system to function or navigate at that location. Velocities

determined with Equation (4.6) are substituted in Equation (4.5) to determine the

edge costs when building the grid graph whereby the minimal traversal times are to

be calculated.

The logical premises for the slope coe�cient are quite obvious � if the terrain

has a su�ciently large gradient, it is hard or impossible for any threat system to

operate or navigate there. The greater the gradient, the smaller the slope coe�cient

becomes, symbolising the terrain becoming harder and harder to traverse. Details

regarding the calculation of the slope coe�cient are given in Appendix C.

The evaluation of the terrain coe�cient is simply a question of determining a

single coe�cient of deceleration for each of the di�erent land cover categories in the

CLC2006 dataset. This should be done separately for each di�erent threat system

type.

Visibility index (V I)

One of the main factors in the terrain that a�ects an S/A threat systems' operating

capabilities at any location is the visibility. An S/A threat system requires good

visibility to operate. In order to engage targets, a threat system must have a direct

line of sight to them. In the calculation of the line of sight, the curvature of the

Earth, as well as the terrain and the tree height are taken into account. It is also

assumed that light travels in a straight line.

In the spatial prediction model, it is assumed that S/A threat systems have a

higher probability of being situated at locations from which they have good visibility

than in locations with poor visibility. As a measure of visibility, the model uses the

mean maximum distance from which an object moving at a given altitude can be

sighted. The model is given the principal threat bearing and the width of the

observation sector. This sector is then divided into a given amount of sub-sectors,
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and the maximum distance to which there is visibility at a given height is calculated

in each sub-sector. Finally, when this maximum distance has been calculated for

each sub-sector, the arithmetic mean is calculated over all of these. This mean is

�nally used as the measure of visibility.

The mean of the maximum distances µmax(x, y) to which there is visibility for a

given altitude htrgt in the S subsectors is computed as

µmax(x, y) =

∑
θ∈Θ

(maxl∈{R|hmin((x,y),θ,l)≤htrgt} l)

S
, (4.7)

where Θ is the set of directions corresponding to all S subsectors for which the

maximum distance with visibility is computed, and hmin((x, y), θ, l) is the minimum

altitude to which there is visibility from coordinates (x, y) in direction θ and distance

l. Finally, the mean maximum distances are normalised to the range [0, 1], which

provides the visibility index for threat system i of threat group k

V Iki (x, y) =
µkmax,i(x, y)

max
(x′,y′)

µkmax,i(x
′, y′)

. (4.8)

The minimum altitude hmin((x, y), θ, l) to which there is visibility from a given

location (x, y), direction θ and distance l needs to be determined. The minimum

altitude to which there is visibility depends on the elevation pro�le of the terrain

in the direction θ with distances less than or equal to l. Speci�cally, the minimum

altitude to which there is visibility depends on the maximum value of the tangent

of the angle between the horizontal axis and a straight line to the surface of the

elevation pro�le with distances less than or equal to l, i.e.,

hmin((x, y), θ, l) = lτmax((x, y), θ, l), (4.9)

where l is the distance under observation, θ the direction in which the observer is

observing, (x, y) the coordinates of the observer, and τmax is the maximum value of

the tangent τ with all distances between 0 and l. Therefore,

τmax((x, y), θ, l) = max
r∈(0,l]

(
h((x, y), θ, r)

r
), (4.10)

where h((x, y), θ, r) is the height of the elevation pro�le at distance r and direction

θ from the observer situated at location (x, y).

In the terrain elevation pro�le, the horizontal axis is by default set to be the
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sea level and thus due to the Earth's curvature the horizontal axis is curved instead

of straight. Because of this, the terrain elevation pro�le cannot directly be used

together with Equation (4.9) to determine the minimum altitude to which there

is visibility, but the elevation pro�le �rst must be transformed to counteract the

Earth's curvature. The line of sight from the observer to the horizon, which is a

straight line, is chosen to be the horizontal axis. The height di�erence between the

line of sight to the horizon and the terrain must be determined. To determine this,

the distance of the horizon is �rst calculated. The geometric setup is portrayed in

Figure 4.1. As seen in Figure 4.1, the line of sight from the observer to the horizon

l

R

∆h

Figure 4.1: Geometry of calculating the distance of the horizon.

is actually a tangent of the Earth. Thus, there is a straight angle between the radius

(R) and the line of sight to the horizon (lhor) and Pythagoras' theorem is used to

calculate the distance to the horizon, i.e.,

R2 + l2hor = (∆h+R)2 = ∆h2 + 2∆hR +R2,

l2hor = ∆h2 + 2∆hR,

lhor =
√

∆h2 + 2∆hR. (4.11)

On the other hand, the ∆h in Figure 4.1 can also be interpreted as the change of

elevation caused by the curvature of Earth. Solving ∆h from Equation (4.11):

∆h(l∗) =
√
R2 + l∗2 −R, (4.12)

where l∗ is the distance from the horizon and R is the radius of the Earth. Equa-
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Figure 4.2: Elevation pro�le, h refers to elevation from sea level l refers to the
distance from the observer.

tion (4.12) is written as the function of the distance from the observer as

∆h(l) =
√
R2 + (l − lhor)2 −R, (4.13)

where lhor is the distance of the horizon from the observer assuming no obstructions

and is calculated with Equation (4.11). By subtracting the height di�erence ∆h

given by Equation (4.13) from the original elevation pro�le the elevation pro�le is

transformed to take into account the Earth's curvature. Together with this trans-

formed elevation pro�le Equation (4.9) is used to determine the minimum altitude

to which there is visibility from any given location, direction and distance. This

result is then used to calculate the visibility index with Equations (4.7) and (4.8).

The process of transforming the elevation pro�le and determining the minimum

altitude to which there is visibility is demonstrated through a short example. Fig-

ure 4.2 illustrates a possible elevation pro�le. In Figure 4.2, the horizontal axis is

set to equal the sea level. Due to the curvature of the Earth, this axis is actually
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curved. To counteract this, the horizontal axis is chosen to be the observer's line of

sight to the horizon, which is a straight line. To do this, the distance to the horizon

is �rst calculated. In the example, it is presumed that the observer is observing

from a height of hobv = 3 m and that the Earth's radius is R = 6371 km. With

Equation (4.11), the distance to the horizon is calculated to be lhor = 6183 m. With

Equation (4.13), all of the elevations in Figure 4.2 are transformed to be relative

to the observer's line of sight to the horizon, instead of the sea level. The result is

shown in Figure 4.3.
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Figure 4.3: Elevation pro�le relative to the observer's line of sight to the horizon, h
refers to elevation from to the observer's line of sight to the horizon and l refers to
the distance from the observer.

The elevation pro�le relative to the observer's line of sight to the horizon (blue)

and the minimum altitude (hmin) required for the line of sight from the observer

(red) are shown in Figure 4.4. From this �gure, one can evaluate whether an object

is visible to the observer � if the object is above the minimum altitude (red line), the

object is visible. The black solid line in Figure 4.4 is a line marking the altitude of

80 metres above sea level. From the �gure, one can read the maximum distance to
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which the observer can see objects travelling at 80 metres above sea level by �nding

the intersection of the minimum altitude line and the 80 metres above sea level line.

The observer can see objects travelling at an altitude of 80 metres from a distance

of 6700 metres.
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Figure 4.4: Minimum visible height from point l = 0, h = 0, where h refers to
elevation from to the observer's line of sight to the horizon and l refers to the
distance from the observer. The blue line corresponds to the elevation pro�le, the
red line is the minimum altitude to which the observer has visibility and the black
line represents the altitude of 80 metres above sea level.

Grouping index (GI)

In the spatial prediction model, the grouping index is by default de�ned to be a two

dimensional multivariate normal distribution in the polar coordinate system with

the target which the air defence is protecting in the origin. One of the dimensions for

the multivariate normal distribution is the distance r from the target and the other

dimension is the bearing ω from the target. The mean and variance of the distance

from the target are de�ned by the common tactical principles used when forming an
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air defence with the type of threat system in question. The mean of the bearing is

de�ned by the direction from which an attack is being anticipated. The variance of

the bearing corresponds with the width of the sector for which the defence is being

formed. The polar coordinate multivariate normal distribution is then transformed

to the Cartesian coordinate system, which gives the grouping index

GIki (x, y) =
1

2πσrσω
exp

(
−1

2

[
(
√

(x− x0)2 + (y − y0)2 − µr)2

σ2
r

+
(arctan(x−x0

y−y0 )− µω)2

σ2
ω

])
,

(4.14)

where µr and σr are the mean and standard deviation of the distance from the target,

µω and σω are the mean and standard deviation of the bearing from the target, and

(x0, y0) are the coordinates of the target.

Figure 4.5 shows the multivariate normal distribution in the polar coordinate

system (Fig. 4.5a) and the corresponding augmented multivariate normal distribu-

tion in Cartesian coordinates (Fig. 4.5b). In Figure 4.5, the mean of the distance

from the target which is being defended is 1500 metres and the distance's standard

deviation is 500 metres. The direction from which the attack is anticipated from

is 45 degrees while the width of the sector for which the defence is formed is 120

degrees. The location of the target which is being protected is marked with a red

cross in Figure 4.5b.

4.1.2 Probability map reduction

The probability map P k
L,i(x, y) calculated with Equation (4.3) gives the probability

for an S/A threat system to be located at coordinates (x, y). Since the possible

coordinates of the threat system are discretised, the probability map is in essence a

two dimensional discrete probability distribution. In many applications, it may be

necessary to study each possible location separately and perform di�erent operations

for each possible coordinate. Such operations and examinations can be done with

reasonable computational resources for small probability maps, but as the number of

possible locations grows this becomes increasingly di�cult and costly. To overcome

this, a method for choosing a reasonable amount of discrete locations and assigning

probabilities for them in a manner that preserves with su�cient accuracy the char-

acteristics of the original probability map is presented. The characteristic that is the

most important to preserve with respect to survivability models described in this
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Figure 4.5: Multivariate normal distributions from which the grouping index is
formed. The target which is being protected is marked with a red cross in Fig-
ure 4.5b.

thesis is the expected probability of detection of an A/G weapon in the airspace near

the area described by the probability map. The probability map reduction method

presented here is based on a clustering algorithm called k-means clustering [33].

The probability map reduction method should organise all possible locations

into a chosen amount κ of di�erent sets S = {S1, S2, S3, ..., Sκ} so that the reduced

probability map includes a discrete location from each of these sets and preserves

the expected probability of detection by the S/A threat system whose whereabouts

the probability map describes. Without probability map reduction, each area would

be given an equal amount of attention resourcewise although it would be smarter

to spend more time studying areas in where it is more likely for the S/A threat

system to be located and less time studying expanses where it is less likely for

the S/A threat system to be located. The k-means clustering algorithm tends to

produce equisized clusters, and thus the clusters and reduced locations will be more

densely distributed in areas with highly probable locations for S/A threat systems

and sparsely in areas which are unlikely to host an S/A threat system. Since each

reduced location is given equal attention in regard to computational resources, the

goal of allocating more resources to areas with a higher probability of having S/A

threat systems present is achieved. On the other hand, the less likely areas are not

completely forgotten but are merely taken into account more crudely.

At the beginning of the k-means probability map reduction method, the κ single
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most probable locations {(x1, y1), (x2, y2), ..., (xκ, yκ)} are chosen as the initial κ

means and are referred to as the corresponding sets' prototypes. After this, the

k-means probability map reduction method proceeds by repeating the following two

steps until it converges on a collection of sets S = {S1, S2, ..., Sκ}.

Assignment step

Each possible location (x, y) is assigned to such a set Sι that the euclidian

distance between the location and the set's prototype is minimised, i.e.,

Sι = {(x, y) : (x− xι)2 + (y − yι)2 ≤ (x− x)2 + (y − y)2 ∀, 1 ≤  ≤ κ}.

Update step

The prototype of each set Sι is updated to be situated at the expected location

(xι, yι) of an S/A threat system in the set, given that the threat system is in

the set Sι, i.e.,

xι =

 ∑
(x,y)∈Sι

P k
L,i(x, y)

−1 ∑
(x,y)∈Sι

xP k
L,i(x, y)

yι =

 ∑
(x,y)∈Sι

P k
L,i(x, y)

−1 ∑
(x,y)∈Sι

yP k
L,i(x, y),

where P k
L,i(x, y) is the probability map which is being reduced.

Once the collection of sets S has converged and the sets do not change between

iterations, the repetition of the steps is ceased, and the sets Sι are set as the �nal

clusters. The most probable location is chosen from each set to be the reduced

location corresponding to that set. The event that a certain location in a set is

chosen as the reduced location, i.e., it is the most probable location in the set, implies

that the location in question is the best case location regarding the capabilities of

an S/A threat system located there. This is because for a location to be given a

high probability by the spatial prediction model, the location must be reachable in

terms of the terrain, there must be good visibility from the location, and the location

must be in unison with common tactical principles linked with the threat system in

question.

Each reduced location is given a probability which is equal to the probability for

the S/A threat system being located in any of the associated set's locations. This
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is calculated as

P k
L,reduced,i(xι, yι) =

∑
(x,y)∈Sι

P k
L,i(x, y). (4.15)

To summarise, before the probability map reduction the probability map P k
L,i

of threat system i in threat group k was two dimensional discrete probability dis-

tribution and thus any numerical computations would have been laboursome. By

reducing the probability map to κ distinct possible locations, any computations have

been eased signi�cantly while preserving the characteristics of the probability map.

4.2 Markov survivability model

The survivability model presented in this thesis is called the Markov survivability

model, which is based on an inhomogenous continuous-time Markov chain that has

four possible states. Markov chains are described in more detail in Appendix B. The

Markov chain used in the model is portrayed in Figure 4.6. The model strives to

determine the probability by which each threat unit j is capable of intercepting the

A/G weapon before it reaches its target. In the Markov survivability model, each

Markov chain represents the capability of a single threat unit j to detect, track and

engage the A/G weapon. The transition rates of a single Markov chain depend on

the particular S/A threat group's k target acquisition radars' i = 1...nk capability

to detect and track the A/G weapon, the capability to detect and track the A/G

weapon by the �re control radar of the speci�c threat unit j, and the kinematic

capabilities of the S/A threat unit's j weapon. The model takes into account the

directional radar cross section of the A/G weapon and any possible shadows cast by

the terrain.

The Markov chain upon which the Markov survivability model is based has

four states: �Undetected�, �Tracked�, �Locked�, and �Hit�. The state probabilities,

i.e., the probabilities with which the Markov chain is in each state at time t are

depicted with P k
undetect,j(t), P

k
track,j(t), P

k
lock,j(t) and P

k
hit,j(t), respectively. When the

threat unit j is in the �Undetected� state, the target acquisition radars i = 1...nk

in the threat unit's S/A threat group k have not detected the A/G weapon with

su�cient accuracy to form a track. The target acquisition radars i = 1...nk might

have achieved isolated detections of the A/G weapon but not enough to infer any

valuable knowledge about the A/G weapon. Once the state transitions to �Tracked�,

the group's target acquisition radars have obtained enough detections of the A/G

weapon to form a track. In the Markov survivability model, the track is passed over
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Figure 4.6: The continuous-time Markov chain used in the Markov survivability
model where P k

D,TAR depicts the probability that one or numerous target acquisition
radars i = 1...nk in threat group k are capable of detecting the A/G weapon at
time t and P k

D,j is the probability that threat unit j of threat group k is capable of
detecting the A/G weapon at time t.

to the threat units instantaneously once it has been formed. Once the �Locked�

state has been reached, the �re control radar of the threat unit has achieved a track

on the A/G weapon. Only this track obtained by the �re control radar can be used

to guide the S/A threat's weapon, and thus it is a requirement for the interception

of the A/G weapon. Once the �re control track has been acquired, the weapon of

the S/A threat unit in question instantaneously begins attempting to intercept the

A/G weapon. The �nal state �Hit� is such that once it has been reached the S/A

threat unit has successfully intercepted the A/G weapon. This state is an absorbing

state and thus once it is reached, the system will never leave the state. Note, that

each Markov chain describes a single S/A threat unit j and thus mk separate chains

are used to describe each S/A threat group k.

As can be seen in Figure 4.6, in addition to the constant state transition rate

parameters λU,T , λT,U , λT,L, λL,T , the transition rates also depend on the range

dependent transition rate parameter λL,H(r) and time dependent variables. Thus,

the Markov chains are inhomogeneous continuous-time Markov chains. The time

dependent variables which the Markov chain depends upon are the combined ex-

pected probability of detection of the kth S/A threat group's target acquisition

radars i = 1...nk P
k
D,TAR(t), and the probability of detection of the jth threat unit's

�re control radar P k
D,j(t). The constant state transition parameters λU,T and λT,L

can be interpreted as the reciprocals of the average time needed by a target acqui-

sition radar i and S/A threat unit j to form a track for the A/G weapon assuming

each are capable of detecting the A/G weapon with probability PD = 1. Similarly,
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the constant parameters λT,U and λL,T can be interpreted as the reciprocals of the

average time it takes for a track to be lost by a target acquisition radar i and S/A

threat unit j assuming they cannot detect the A/G weapon, i.e., PD = 0. With the

range dependent transition rate parameter λL,H(r), the model strives to take into

account the range and kinematic capabilities of the weapon of the S/A threat unit

j. The range dependent parameter is de�ned

λL,H(r) =

{
λconstL,H if r ≤ Rmax

0 otherwise
, (4.16)

where λconstL,H is the average time needed for the S/A threat unit j to intercept the

A/G weapon while it is in the e�ective slant range of the threat unit's weapon, and

Rmax is the maximum range at which the threat unit's weapon can engage targets.

The target acquisition radars' i = 1...nk combined expected probability of detection

P k
D,TAR(t) and the S/A threat unit's j probability of detection P k

D,j(t) are determined

based on probabilities calculated as described in Appendix A.

The combined expected probability of detection of the S/A threat group's k

target acquisition radars P k
D,TAR(t) gives the probability that one or more of the

S/A threat group's target acquisition radars i = 1...nk are able to detect the A/G

weapon at a given time t. The probability that a single S/A threat system at a

given location (x′, y′) can detect an A/G weapon located at coordinates (x, y, z)

and with heading φ, pitch angle θ, and roll angle ψ is P (x′,y′)
D (x, y, z, φ, θ, ψ) and is

calculated with Equation (A.18). The probability of detection is dependent also on

the orientation of the A/G weapon as the radar cross section changes depending on

which part of the A/G weapon is facing the radar. Given a known probability map

P k
L,i(x

′, y′) determined with Equation (4.3) for the ith target acquisition radar in

S/A threat group k, the expected probability of detection for the ith radar is

E
[
P k
D,i(x, y, z, φ, θ, ψ)

]
=
∑

(x′,y′)

P k
L,i(x

′, y′)P
(x′,y′)
D (x, y, z, φ, θ, ψ). (4.17)

Further, the combined expected probability of detection for the S/A threat group's

k target acquisition radars i = 1...nk is calculated as

P k
D,TAR(t) = P k

D,TAR(x, y, z, φ, θ, ψ) = 1−
nk∏
i=1

(
1− E

[
P k
D,i(x, y, z, φ, θ, ψ)

])
, (4.18)

where subscript i refers to the target acquisition radars in S/A threat group k, and
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(x, y, z, φ, θ, ψ) are the A/G weapon's coordinates and orientation at time t.

In order to take into account the uncertainty regarding the location of the S/A

threat unit j, the probability of successful interception of the A/G weapon by the

S/A threat unit j, i.e., P k
hit,j, must be determined from every possible threat unit's

location (x′, y′). When evaluating the probability of interception from a certain

location (x′, y′), the jth S/A threat unit's probability of detection P k
D,j(t) is simply

the probability that the S/A threat unit j is capable of detecting the A/G weapon

which is at coordinates (x, y, z) with orientation (φ, θ, ψ) at time t, i.e.,

P k
D,j(t) = P k

D,j(x, y, z, φ, θ, ψ) = P
(x′,y′)
D (x, y, z, φ, θ, ψ), (4.19)

in which (x′, y′) are the coordinates of the S/A threat unit under inspection. This

is calculated with Equation (A.18).

The probability of S/A threat unit j located at a certain location (x, y) success-

fully intercepting the A/G weapon at some point during the trajectory )P k
hit,j(x, y)

is determined by solving the di�erential equation given by Equation (B.3). The

di�erential equation is numerically solved by using MATLAB's ode45 solver. The

probability of successful interception is the probability that the Markov chain is

in state �Hit" at the end of the trajectory. Note, that the probability of being

in state �Hit" or any other state at a given time t can also be determined from

Equation (B.3). The probabilities of successful interception by S/A threat unit j in

alternative locations are combined to form an expected probability of interception

for the threat unit j as

E
[
P k
hit,j

]
=
∑
(x,y)

P k
L,j(x, y)P k

hit,j(x, y), (4.20)

where P k
L,j(x, y) is determined with Equation (4.3) and gives the probability for the

jth threat unit in the S/A threat group k to be located at location (x, y). The �nal

probability whereby the A/G weapon is intercepted by any S/A threat unit j in any

threat group k is determined by calculating the probability that one or more threat

units are capable of intercepting the A/G weapon, i.e.,

Pkill = 1−
N∏
k=1

mk∏
j=1

(
1− E

[
P k
hit,j

])
. (4.21)

Recall that N is the amount of S/A threat groups the air defence consists of and mk

is the number of S/A threat units in threat group k. Furthermore, the survivability
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of the trajectory is determined with

Psurv = 1− Pkill, (4.22)

where Pkill is calculated with Equation (4.21).

As noted earlier, the probabilities of being in any state of a single Markov chain

at time t is determined in an identical manner. The expected probability of being

in the given state is calculated by modifying Equation (4.20) appropriately by ex-

changing the probabilities P k
hit,j with P

k
undetect,j or P

k
track,j etc. These expected state

probabilities can for instance be used to determine the probabilities that no S/A

threat unit has been able to intercept the A/G weapon but one or more threat units

have been able to track the A/G with their independent radars.

In the situation in which the exact positions of the S/A threat systems are known

the trajectory evaluation framework is used in the same manner as presented above.

Then the probability maps of the S/A threat systems are reduced to maps that have

value 1 in the location at which the S/A threat system is located and 0 elsewhere.

The Markov survivability model takes into account the topographical features

of the surrounding terrain as well as the height of possible tree cover. These are

taken into consideration during the evaluation of the probabilities of detection PD
used in Equations 4.17 and 4.19. If there is a visual obstruction between the S/A

threat system and the A/G weapon, the S/A threat system cannot detect the A/G

weapon and the probability of detection is zero.

To summarise, the �rst step in the trajectory evaluation is to determine a proba-

bility map for each S/A threat system, see Equation (4.3). Next, the expected prob-

abilities of detection by target acquisition radars i = 1...nk are determined at every

point of the trajectory for each S/A threat group k with Equation (4.17). Then,

the Markov chain is evaluated by solving the di�erential Equation (B.3) for each

possible location of each S/A threat unit j. The expected probabilities of successful

interception are then determined with Equation (4.20) for each S/A threat unit j,

and then the probability of one or more S/A threat units successfully intercept-

ing the A/G weapon is calculated with Equation (4.21). Finally, the survivability

of each trajectory is determined with Equation (4.22). The survivabilities of the

trajectories are then compared and the trajectory with the highest survivability is

identi�ed as the best trajectory regarding the A/G weapon's survivability.
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Chapter 5

Reference survivability models

The Markov survivability model introduced in Chapter 4 is veri�ed to ensure that the

model indeed portrays the accumulation of risk while an A/G weapon is traversing a

given trajectory. This is done by comparing the survivability along the trajectories

based on the Markov model with the survivabilities based on two reference models.

The �rst of the reference models is a survivability model introduced by Erlandson

and Niklasson [11]. The model relies on Markov chains to determine the survivability

of A/G weapons. This model is referred to as the Erlandsson model. The second

model aspires to capture the technical aspects of how a radar system acquires and

maintains a track of a target [34]. The second model is referred to as the technical

survivability model.

5.1 Erlandsson model

The Erlandsson model relies on �ve state continuous-time Markov chains to deter-

mine the likelihood of an A/G weapon being able to safely traverse the trajectory

and reach its target, i.e., its survivability. The capabilities of the S/A threat groups

are studied with N separate Markov chains. The Erlandsson model assigns a sensor

area for each target acquisition radar i and a threat area for each threat unit j in

S/A threat group k. The sensor areas represent areas in which the target acquisition

radars i = 1...nk are capable of detecting and tracking the A/G weapon, and the

threat areas represent areas in which the S/A threat units j = 1...mk can detect

and track the A/G weapon with their �re control radars and are also capable of

engaging the A/G weapon with their weapons. The Erlandsson model does not take

into account the directional dependency of the A/G weapon's radar cross section or

the possible shadows caused by the terrain, as the radars' and weapons' capabilities
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to detect, track, and engage the A/G weapon are assumed to be constant within

each sensor and threat area.

The Erlandsson model uses continuous-time Markov chains with �ve states to

describe the capabilities of S/A threat groups k = 1...N . It is assumed that the

transitions between states are Poisson processes. Markov chains are described in

more detail in Appendix B. The states are �Undetected�, �Detected�, �Tracked�,

�Engaged�, and �Hit�. The transition rates between the states depend on which

sensor and/or threat areas the A/G weapon is located in, if any. The Markov chain

which is used is shown in Figure 5.1, with the positive non-zero transition rates in

each di�erent area depicted with arrows between the states.

While being in the �Undetected� state the S/A threat group k has not yet de-

tected the A/G weapon. The �Detected� state is a state where the threat group's

target acquisition radars i = 1...nk have detected the A/G weapon but not with

su�cient accuracy to form a track. Once in the �Tracked� state the S/A threat

group's target acquisition radars i = 1...nk have acquired su�cient knowledge on

the whereabouts of the A/G weapon to form a track. The track can then be handed

over to the threat units j = 1...mk. After the track formed by the target acquisition

radars i = 1...nk has been forwarded to the threat units j = 1...mk, the �re control

radars of the threat units try to obtain their own tracks of the A/G weapon which

could be used by their weapons. Once this track has been formed by a threat unit j

in the S/A threat group, the state of the S/A threat group k advances to �Engaged�.

Finally, the state of the threat group k is changed to �Hit� once a threat unit j from

the group has succeeded in engaging the A/G weapon and the A/G weapon has

been intercepted.

The transition rates between states depend in what area or which di�erent areas

the A/G weapon is located in at any given time. Examples of transition rates

between di�erent states when the A/G weapon is outside all of the sensor and threat

areas and when the A/G weapon is in exactly one sensor or threat area are given

in Table 5.1. The values of state transition rates are calculated by �rst determining

the mean time needed for a given transition and then calculating the reciprocal of

these mean times. The mean time needed for a given transition is determined with

the help of experts.

In many cases, the A/G weapon is in the sensor or threat areas of several di�er-

ent target acquisition radars i and threat units j of the same S/A threat group k

simultaneously. In such cases, the state transition rates are calculated based on the

transition rates of the individual sensor and threat areas. The combined transition
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Figure 5.1: The Markov chain used in the Erlandsson model, with arrows depicting
positive non-zero transition rates between states in given areas.

Table 5.1: State transition rates used by Erlandsson [11].

λU,D λD,U λD,T λT,D λT,E λE,T λE,H
Outside 0 0.2 0 0.2 0 1 0
Sensor area 0.4 0.1 0.3 0.1 0 1 0
Threat area 0 0.2 0 0.2 0.2 0.1 0.3

rates are calculated in a slightly di�erent manner depending on the transition in

question. In the case that two or more sensor areas are overlapping, the Erlandsson

model assumes that each radar independently strives to detect and track the A/G

weapon, and the Markov chain transitions to the next state once the �rst sensor

has detected the A/G weapon or acquired a track, depending on the state transi-

tion under inspection. Thus, the transitions from �Undetected� to �Detected� and

from �Detected� to �Tracked� are viewed as sums of multiple independent Poisson

processes. The transition rate of the combined Poisson process is calculated as the
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sum of the transition rates of the independent Poisson processes, i.e.,

λCombU,D =

nk∑
i=1

λiU,D (5.1)

λCombD,T =

nk∑
i=1

λiD,T , (5.2)

where λiU,D and λiD,T are the transition rates from states �Undetected� to �Detected�

and �Detected� to �Tracked� in the ith individual sensor area respectively. The

derivation of transition rates for the opposite transitions, i.e., transitions from states

�Detected� to �Undetected� and from �Tracked� to �Detected�, is inspired by relia-

bility theory and the overlapping areas are described as parallel components such

that each component has an exponentially distributed life time. In other words, in

order for a state transition to happen each of the target acquisition radars i = 1...nk

and threat units j = 1...mk in the vicinity must have lost track of the A/G weapon.

From reliability theory it is known that with two parallel components the Poisson

process parameter λ describing the reliability of the complete system is determined

with

1

λ1,2
=

1

λ1
+

1

λ2
− 1

λ1 + λ2
, (5.3)

where λ1 and λ2 are the Poisson process parameters of each individual component.

As there are often more than two sensor or threat areas overlapped, Equation (5.3)

is inadequate for determining the �nal transition rate. If there are more than two

overlapped areas, the �nal transition rates are calculated by starting with the tran-

sition rate due to one sensor or threat area, and adding areas and sensors which are

taken into account one at a time. Given a set S of sensor and threat areas for which

the transition rates λSD,U and λST,D are known, the transition rates for the set of areas

S ∪ {i}, which is achieved by adding a sensor area i to the set S, are determined

with

1

λ
S∪{i}
D,U

=
1

λSD,U
+

1

λiD,U
− 1

λSD,U + λiD,U
(5.4)

1

λ
S∪{i}
T,D

=
1

λST,D
+

1

λiT,D
− 1

λST,D + λiT,D
. (5.5)

Threat areas j = 1...mk are treated in exactly the same manner as sensor areas i =

1...nk in Equations (5.4) and (5.5) when taking them into account in the transition
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rates λCombD,U and λCombT,D .

Overlapping threat areas and corresponding transition rates from state �Tracked�

to �Engaged�, from �Engaged� to �Hit�, and from �Engaged� to �Tracked� are deter-

mined in a di�erent manner than the transition rates discussed earlier. Erlandsson

argues that the decision of engaging the A/G weapon is made by the enemy com-

mander. Thus, the number of threat areas that overlap on the given location does

not explicitly have any e�ect on the decision. In the Erlandsson model, the transi-

tion rates used for the aforementioned transitions are chosen to be the worst case

rates chosen from all overlapping areas, i.e.,

λCombT,E = max
j=1...mk

λjT,E (5.6)

λCombE,H = max
j=1...mk

λjE,H (5.7)

λCombE,T = min
j=1...mk

λjE,T , (5.8)

where λjT,E, λ
j
E,H , and λ

j
E,T are the transition rates between states �Tracked�, �En-

gaged�, and �Hit� in each individual overlapping threat area. The transition rate

away from the state �Hit� is always zero and this is an absorbing state.

It remains to determine the size of the sensor and threat areas. Erlandsson does

not specify any method on how the sizes of the di�erent areas should be determined.

In this thesis, the size of the sensor and threat areas are determined by the radar's

capability to detect the A/G weapon and the range Rmax of the weapon of the S/A

threat unit j. The maximum range at which a radar can detect the A/G weapon is

solved from Equation (A.8):

ρmax = 4

√
PtGtGrλ2στnp

(4π)3LskT0F SNRmin

, (5.9)

where SNRmin is the minimum signal-to-noise ratio at which it has been determined

the radar can with a given certainty detect the A/G weapon. To calculate this, a

threshold probability of detection PD,min must be chosen. With the chosen threshold

probability of detection, the minimum detectable signal-to-noise ratio is determined

by using Equation (A.18). The maximum range ρmax calculated for a target acqui-

sition radar i with Equation (5.9) is used as the radius of the corresponding sensor

area. The radius of a threat area is chosen to be either the range Rmax of the S/A

threat's weapon or the maximum range ρmax of the associated �re control radar,

which ever is smaller.
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When uncertainty concerning the location of the sensors and weapons is taken

into consideration, the expected values of the state transition rates for individual

sensor and weapon areas are used to determine the combined state transition rates

λCombU,D , λCombD,T , etc. For example, consider a target acquisition radar i for which

based on the probability map calculated for the radar it is determined that with

probability p the A/G weapon is in the target acquisition radar's sensor area. Then,

the resulting transition rate is calculated as

λ = pλsensor + (1− p)λout, (5.10)

where λsensor is the transition rate for the single target acquisition radar i when the

A/G weapon is inside the sensor area and λout is the transition rate when the A/G

weapon is outside the sensor area.

This method for determining the transition rate λ under uncertainty regarding

the locations of S/A threats is illustrated with an example portrayed in Figure 5.2.

In the example, the probability map consists of three alternative locations for the

S/A threat (x1, y1), (x2, y2) and (x3, y3). The S/A threat is located at each of the

locations with probabilities PL(x1, y1) = 1/4, PL(x2, y2) = 1/4 and PL(x3, y3) = 1/2.

Three separate positions are considered for the A/G weapon, these are denoted with

A, B and C. The maximum range of the S/A threat is denoted with ρmax. In position

A, the probability whereby the A/G weapon is inside the threat's sensor area is

p(A) = 0, thus based on Equation (5.10) the transition rate is λ = λout. In position

B, the probability of being inside the sensor area is p(B) = 3/4. Thus, in this case

the transition rate would be λ = 3/4 λsensor + 1/4 λout. Finally, in position C, the

probability p(C) is 1/4, and thus the transition rate is λ = 1/4 λsensor + 3/4 λout.

When evaluating the possible trajectories of an A/G weapon, a continuous-time

Markov chain is evaluated over the course of the trajectory for each S/A threat

group k by solving the di�erential equation given by Equation (B.3). Solving the

di�erential equation results in probabilities for being in each of the states �Unde-

tected�, �Detected�, �Tracked�, �Engaged�, and �Hit� at any given time t. For each

of these S/A threat groups k, the �nal probability of successful interception P k
hit

is determined by reading the probability of being in state �Hit� at the end of the

trajectory. The probability that one or more S/A threat groups are successful in

intercepting the A/G weapon is calculated as

Pkill = 1−
N∏
k=1

(1− P k
hit), (5.11)
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(x1,y1) (x2,y2)

(x3,y3)

PL(x3,y3) = 1/2

PL(x1,y1) = 1/4 PL(x2,y2) = 1/4

A B C

ρmax

Figure 5.2: The example with which the calculation of transition rate λ under
uncertainty is demonstrated.

in which P k
hit is the probability whereby the kth S/A threat group successfully in-

tercepts the A/G weapon, i.e., the probability that the group k is in state �Hit� at

the end of the A/G weapon's trajectory.

The �nal survivability Psurv of the A/G weapon is determined by calculating

the complement probability of the event that one or more of the S/A threat groups

successfully intercept the A/G weapon, i.e.,

Psurv = 1− Pkill, (5.12)

As mentioned earlier, solving the di�erential equation (B.3) produces the prob-

abilities for the S/A threat group k to be in each of the states at any given time

t, i.e., the state probabilities. The state probabilities of each of the k = 1...N S/A

threat groups are combined to determine the probabilities that one or more threat

groups k have successfully intercepted the A/G weapon, i.e., Pkill(t). Additionally

probabilities that, for instance, one or more S/A threat groups k have advanced to

state �Engaged" but no S/A threat group k has yet successfully intercepted the A/G

weapon can be calculated.
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In the special case that exact locations for the S/A threat systems are known, the

probability maps used to determine the state transition rates of single S/A threat

systems in Equation (5.10) are simpli�ed to equal one in the location where the S/A

is located and zero elsewhere.

With the exception of probability maps used with the Erlandsson survivability

model, it does not take into account any topological features of the surrounding

terrain or the tree cover height. Due to this feature, the Erlandsson model might

give relatively small survivabilities for trajectories which use shadows cast by the

terrain to evade the S/A threat systems.

5.2 Technical model

The technical survivability model strives to take into account the technical aspects

and requirements for detections needed to form and maintain a track of an A/G

weapon by a radar sensor [34]. Similar to the other models discussed in this thesis,

the technical survivability model also distinguishes target acquisition, �re control

track formation and track maintenance while intercepting the A/G weapon as the

distinct stages of the process leading from the �rst detection of the A/G weapon to

its successful interception. Unlike in the other models discussed in this thesis, track

formation is not assumed to be a Poisson process but instead a Bernoulli process

which lasts a predetermined length of time and for which the outcome probabilities

depend on the probabilities of detection by the radars under consideration. As

the outcome probabilities of the successful track formation processes depend on the

detection probabilities of the radars, the model takes into account the directional

dependencies of the A/G weapon's radar cross section as well as any possible shadows

cast by the terrain. Unlike the other survivability models studied in this thesis which

are time-continuous, the technical survivability model addresses time in discrete time

steps. The time discretisation step size is denoted by ∆t.

In order to determine the probability of the A/G weapon's successful intercep-

tion by the S/A defence, the technical survivability model separately calculates two

distinct probabilities each of whom describes the probability of success in di�er-

ent stages of the process of intercepting the A/G weapon. The probabilities which

are calculated are the probability of a track successfully being formed by the tar-

get acquisition radars i = 1...nk of each threat group k denoted by (P k
TA) and the

probability that the �re control radar of each threat unit j = 1...mk is capable of

maintaining the track long enough to successfully intercept the A/G weapon with
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the S/A threat unit's weapon denoted by (P k
TM,j). The probability that a single

chain of events which begins from the �rst detection by the target acquisition radars

i = 1...nk of threat group k leads to the S/A threat unit j successfully intercepting

the A/G weapon is calculated as

P k
intrcpt,j = P k

TA × P k
TM,j × Pmissile, (5.13)

where Pmissile is the probability that an S/A threat successfully intercepts the A/G

weapon, given that the A/G weapon has been successfully tracked by the target

acquisition radars and the �re control radar of the S/A threat unit is capable of

maintaining the track for a su�cient length of time.

The technical survivability model assumes that when in search mode, the radar

sensors scan the airspace around them in an organised fashion. The scan time Tscan
is the time in which the searching radar scans the entire search area. Thus, the

interval at which the radar is capable of detecting the A/G weapon is Tscan. It is

assumed that in order for the target acquisition radar i to achieve a track of the A/G

weapon, it must detect the A/G weapon on Ntrack subsequent scans. The probability

that the radar sensor successfully detects the A/G weapon on any single attempt is

determined as described in Appendix A. The process of forming a track of the A/G

weapon by a searching target acquisition radar i is portrayed in Figure 5.3. In order

for the target acquisition radar i to obtain a track of the A/G weapon at time t, the

�rst detection of the A/G weapon must be achieved at time t− (Ntrack − 1)Tscan.

In order to take into consideration the uncertainty regarding the locations of the

target acquisition radar i, the probability of successfully forming a track of the A/G

weapon at time t is �rst determined for every possible location (x, y) of the target

acquisition radar i. The probability that the target acquisition radar i at location

(x, y) achieves a track of the A/G weapon at time t, i.e., it detects the A/G weapon

for the �rst time at time t− (Ntrack−1)Tscan and is consequently able to successfully

detect the A/G weapon on N subsequent scans, is calculated with

P
(x,y)
track (t) =

∆t

Tscan

Ntrack∏
n=1

P
(x,y)
D (tn), (5.14)

in which ∆t is the time discretisation step and P (x,y)
D (tn) is the probability that the

target acquisition radar located at (x, y) is able to detect the A/G weapon at time tn
(see Equation (A.18)). The probability that the searching target acquisition radar

is scanning in the direction of the A/G weapon at times t− (n− 1)Tscan is ∆t/Tscan.
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Given the time t when the track is successfully formed, the times tn at which the

target acquisition radar must have detected the A/G weapon to form the track are

tn = t− (Ntrack − n)Tscan, (5.15)

where Ntrack is the amount of number of detections needed to form a track. The

...
PD,TAR(t1) PD,TAR(t2) PD,TAR(t3) PD,TAR(t4) PD,TAR(tN)

Tscan Tscan Tscan

∆t

Figure 5.3: The process of forming a track of the A/G weapon by a target acquisition
radar.

probabilities of successfully forming a track from the di�erent possible locations are

then combined with the probability map P k
L,i(x, y) calculated with Equation (4.3)

to form the expected probability of successfully forming a track for the target ac-

quisition radar i at time t:

E
[
P k
track,i(t)

]
=
∑
(x,y)

P k
L,i(x, y)P

(x,y)
track (t), (5.16)

where the superscript i refers to the ith target acquisition radar in a given S/A

threat group k. Further, the probability that one or more target acquisition radars

in the S/A threat group k successfully achieve a track of the A/G weapon at time

t is determined by

P k
TA(t) = 1−

nk∏
i=1

(
1− E

[
P k
track,i(t)

])
, (5.17)

in which nk is the number of target acquisition radars in the given S/A threat group

k.

Once the target acquisition radars have achieved the track of the A/G weapon,

the track is handed over to the threat units j = 1...mk of the S/A threat group k.

The �re control radars of the threat units operate with a di�erent principle than

the searching target acquisition radars. Once the track has been handed over to an

S/A threat unit j, the threat unit's �re control radar proceeds to concentrate all of

its e�orts to detect the A/G weapon at the location determined by the track it was

given. The frequency at which the �re control radar attempts to detect the A/G
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weapon is referred to as the pulse repetition frequency PRF . The interval between

two detection attempts is referred to as the pulse repetition time PRT = PRF−1. In

order to maintain the track, the �re control radar must successfully detect the A/G

weapon at least once during each track maintenance period Tmaint. Thus, the �re

control radar has M = PRF × Tmaint attempts during each maintenance period to

detect the A/G weapon before the track is lost. Furthermore, the track must often

be maintained for a period longer than the maintenance period Tmaint in order to

successfully intercept the A/G weapon. This period during which the A/G weapon

must be tracked corresponds to the time taken to acquire the track by the �re control

radar, the time needed to aim the S/A threat's weapon, and the �ight time of the

missile or other A/G weapon used to intercept the A/G weapon, all combined. This

time period is denoted by Ttrack.

To take in consideration uncertainties concerning the location of an S/A threat

unit j, the probability of successfully maintaining the track for the complete required

period of Ttrack is calculated for every possible location (x, y) of the S/A threat

unit j. First, the probability of successfully maintaining the track for a single track

maintenance period Tmaint is determined. The probability that a track is maintained

for the duration of the track maintenance period beginning at time t by a �re control

radar located at coordinates (x, y) is calculated as

P
(x,y)
maint(t) = 1−

M∏
m=1

(
1− P (x,y)

D (tm)
)
, (5.18)

in which tm is the time of the mth attempt to detect the A/G weapon, i.e., tm =

t + (m − 1)PRT , and P (x,y)
D (tm) is calculated with Equation (A.18). Furthermore,

the probability that a �re control radar at location (x, y) is able to maintain the

track for the whole period of length Ttrack starting at time t is determined by

P
(x,y)
TM (t) =

K∏
κ=1

P
(x,y)
maint(tκ), (5.19)

where Pmaint is calculated with Equation (5.18), K is the number of track mainte-

nance periods that are included in the time period Ttrack, and tκ refers to the time

at which the κth track maintenance period begins, i.e., tκ = t+ (κ− 1)Tmaint. Now

the expected probability of S/A threat unit j of S/A threat group k successfully
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maintaining the track of the A/G weapon is calculated with

E
[
P k
TM,j(t)

]
=
∑
(x,y)

P k
L,j(x, y)P

(x,y)
TM (t), (5.20)

where probability map P k
L,j(x, y) gives the probability that S/A threat unit j is

located at location (x, y) and is calculated with Equation (4.3).

By substituting Equations (5.17) and (5.20) into Equation (5.13), the probability

that the single chain of events leads to the S/A threat unit j successfully intercepting

the A/G weapon at time t is

P k
intrcpt,j(t) = P k

TA(t− Ttrack)× E
[
P k
TM,j(t− Ttrack)

]
× Pmissile, (5.21)

where Pmissile is the probability that the S/A weapon is successful in intercepting the

A/G weapon assuming that the target acquisition radars i = 1...nk have successfully

formed the track of the A/G weapon and the �re control radar of the �re control

unit j has been able to maintain the track for the time needed for the S/A weapon

to intercept the A/G weapon. Equation (5.21) describes the probability that the

given threat unit j succeeds in intercepting the A/G weapon at time t assuming

that the threat unit has not intercepted the A/G weapon at an earlier point in time.

The probability for the given threat unit j to intercept the A/G weapon speci�cally

at time t is calculated by

P k
hit,j(t) = P k

intrcpt,j(t)×
t−1∏
n=1

(
1− P k

intrcpt,j(n)
)
. (5.22)

Using Equation (5.22), the probability that the A/G weapon is intercepted by S/A

threat unit j of S/A threat group k at any point on the trajectory is determined

with

P k
hit,j = 1−

Ntrajectory∏
t=1

P k
hit,j(t), (5.23)

where Ntrajectory is the number of time discretisation steps needed to traverse the

entire trajectory.

With Equation (5.23), the probability that the A/G weapon is intercepted on

the given trajectory by any of the S/A threat units j = 1...mk of any of the S/A
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threat groups k = 1...N is determined with

Pkill = 1−
N∏
k=1

mk∏
j=1

(
1− P k

hit,j

)
, (5.24)

where N is the number of S/A threat groups and mk is the quantity of S/A threat

units in threat group k. Finally, the survivability of the trajectory is determined

with

Psurv = 1− Pkill, (5.25)

where Pkill is calculated with Equation (5.24).

In case the exact locations of S/A threat systems are known, the technical sur-

vivability model is used in a similar fashion, only the probability maps P k
L,i and P

k
L,j

di�er. If the exact locations of the S/A threat systems are known, the probabil-

ity maps used in Equations (5.16) and (5.20) are simpli�ed so that the probability

map equals one at the location in which the S/A threat system is located and zero

elsewhere.

The technical survivability model takes into account the topological features of

terrain and possible tree cover in a similar way as the Markov survivability model.

In addition to the probability map, any possible topological features and tree cover

are taken into account in the calculation of the probabilities of detection P (x,y)
D (t)

used in Equations (5.18) and (5.14) so that if there are visual obstructions due to

the terrain or the trees, the probability of detection is zero.
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Chapter 6

Numerical experiments

In this chapter, the trajectory evaluation framework introduced in Chapter 4 is

tested to ensure results given by the framework in whole and its parts alone produce

reasonable outcomes. In Chapter 6.1, the spatial prediction model is tested with a

case set in the area surrounding Otaniemi in Espoo, Finland. A probability map

is produced for a single S/A threat system and the probability map is inspected

to ensure that it is reasonable and coincides with reality. Next, the probability

map reduction method presented in Chapter 4.1.2 is inspected with two test cases

in Chapter 6.2. The aim is to prove that the probability map reduction method

preserves the characteristics which are important related to the survivability of tra-

jectories re�ected by the original probability map, i.e., the expected probabilities of

detection. In Chapters 6.3.1 and 6.3.2, the Markov survivability model is compared

with the reference survivability models. The models are compared with respect to

the consistency of their results versus the results of other models, and the results are

also evaluated with intuition and common sense. In Chapter 6.3.1, the robustness

of the models in respect to uncertainty regarding the locations of S/A threat sys-

tems is inspected with the aim to show that the Markov model handles uncertainty

well. Here the robustness of the models portrays the models' abilty to preserve

the threat ordering of trajectories based while degree of uncertainty regarding the

locations of S/A threats is varied. The survivabilities of drastically di�erent tra-

jectories provided by the Markov survivability model and the reference models are

studied in Chapter 6.3.2. The purpose of Chapter 6.3.2 is to show that the Markov

survivability model gives reasonable results even with extreme trajectories.
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6.1 Illustration of spatial prediction model

The usage of the spatial prediction model is demonstrated with an example scenario,

for which data sets are shown in Figure 6.1. The direction from which an attack is

anticipated is north. In order to form the probability map, the passability, visibility,

(a) Map of the area. (b) Digital elevation model.

(c) CORINE land cover 2006. (d) Forest cover height

Figure 6.1: Data sets used in the spatial prediction model.

and grouping indices are calculated for each location. These indices are calculated

with Equations (4.4), (4.8) and (4.14), respectively. The intermediate results needed

to determine the indices, i.e., the slope angle and coe�cient, the velocity at which

an S/A threat can traverse the terrain, the time needed to reach any given location,

and average visibility from any given location are shown in Figures 6.2, 6.3, 6.4, and

6.5.

The passability, visibility, and grouping indices are shown in Figure 6.6. The
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(a) Slope angle in degrees (φ).
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(b) Slope coe�cient (Cslope).

Figure 6.2: Slope angle and coe�cient for the area of the example scenario with
parameters Φlow = 10◦ and Φhigh = 20◦.
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Figure 6.3: Velocity at which it is possible to traverse the terrain (km/h).

passability index (Fig. 6.6a) is given the value 1 for all locations that can be reached

without crossing water. This is because all such locations in the area of the example

scenario can be reached in a reasonable amount of time. If the area was larger, some

areas might possibly be discarded, i.e., the passability index would be zero, since it

would be impossible for threat systems to reach them in the given time frame.

Looking at the visibility index (Fig. 6.6b), one notices that the visibility index is
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Figure 6.4: Time needed to navigate to any certain location in hours. The depot
from which the threat systems spread out is marked with a red cross.
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Figure 6.5: Average visibility in metres to an altitude of 150 metres above sea level
when facing north in a 120 degree wide sector.

close to 1 at large expanses such as the bay in the area of the example scenario. The

visibility index value decreases when the northern shore of the bay is approached.

This is because in the example scenario the direction from which an attack is being

anticipated is north and as the northern shore is approached the visibility north
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deteriorates. The visibility index is also greater in areas that are higher than the

surrounding terrain and which do not have a lot of tree coverage. This is logical

since from such locations the visibility is generally good.

The grouping index is portrayed in Figure 6.6c. The target which is being de-

fended is marked with a red cross.
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(a) The passability index.
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(b) The visibility index.
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(c) The grouping index.

Figure 6.6: Di�erent indices from which the probability map is formed.

The resulting probability map is shown in Figure 6.7. Again, the target which

is being defended is marked with a red cross. Re�ecting on the actual terrain, the

resulting probability map seems plausible. The locations where a high probability

is given for the threat system to be situated are mostly locations with little or no

tree coverage and often on top of hills.

An actual view from a location where the probability map gives a relatively high

probability for a threat system to be located is shown in Figure 6.8. The view

is facing north from the location marked with a red circle in Figure 6.7. As the

photograph in Figure 6.8 is taken from a car, it is safe to say that the location is

easily accessible. The visibility from the given location is also excellent, which is
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Figure 6.7: The probability map.

Figure 6.8: View from a highly probable location (source: Google Maps).

seen from Figure 6.8. The location in question should be a good location for the

S/A threat system to operate, and thus it should be a location where it should be

expected that such a threat system could be stationed.

Further, the probability map reduction method is used to reduce the probability
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map shown in Figure 6.7 to 20 discrete locations. The �rst six repetitions of the

Assignment and Update steps in the execution of the probability map reduction

method described in Chapter 4.1.2 with the probability map from the example

scenario are shown in Figure 6.9. The black dots indicate the positions of the set

prototypes at the beginning of each repetition and the red crosses mark the new

positions of the set prototypes into which they are moved in the Update step.

Figure 6.9: The �rst six repetitions of the Assignment and Update steps in the
execution of the probability map reduction method.

The �nal converged collection of sets, corresponding set prototypes and �nal re-

duced locations for the example execution of the algorithm are shown in Figure 6.10.

The black dots in Figure 6.10 represent the �nal set prototypes of the converged sets,

and the red crosses mark the reduced locations used as the reduced probability map.

Figure 6.10 implies that the resulting probability map is reasonable. The areas in

which the probability map gives a zero probability for an S/A threat unit to be

located are areas which are covered by water, i.e., in this case part of the Baltic

Sea. Thus, it would be impossible for the S/A threat systems in question to operate

there. As noted earlier with Figures 6.7 and 6.8, the areas which are highlighted

as likely locations are mostly locations with higher altitude than the surrounding

terrain and little or no tree cover. The reduced probability map highlights these

same areas with the �nal reduced probability map locations.
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Figure 6.10: The �nal converged locations sets, corresponding set prototypes and
�nal reduced probability map locations.

6.2 Veri�cation of probability map reduction

Reduced probability maps produced by the probability map reduction method pre-

sented in Chapter 4.1.2 must be veri�ed to make sure that they still approximate

the original probability maps regarding S/A threat systems' capabilities to detect

an A/G weapon with su�cient accuracy. To carry this out, the airspace around the

area described by the probability map is divided into a grid with horizontal edges

roughly one nautical mile and vertical edges roughly half a nautical mile long, and

the expected probability of detection is determined for an A/G weapon with di�er-

ent orientations in each grid based on the reduced probability maps with di�erent

cluster quantities. The cluster quantity corresponds with the number of possible dis-

crete locations into which the probability map is reduced. These expected detection

probabilities are compared with the expected probabilities of detection calculated

based on the original probability map.
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The expected probability of detection of an A/G weapon located at coordinates

(x, y, z), heading in direction φ with yaw angle θ and roll angle ψ is calculated with

E [PD(x, y, z, φ, θ, ψ)] =
∑

(x′,y′)

(
PL(x′, y′)P

(x′,y′)
D (x, y, z, φ, θ, ψ)

)
, (6.1)

where P (x′,y′)
D is the probability of detection for the A/G weapon by a sensor located

at coordinates (x′, y′) and is calculated with Equation (A.18) and PL(x′, y′) is the

probability map which is calculated with Equation (4.3). The probability of detec-

tion PD is dependent on all of the A/G weapon's six degrees of freedom because

the radar cross section of the A/G weapon changes depending on which part of the

weapon is facing the radar.

The di�erent orientations of the A/G weapon for which the probabilities of de-

tection are calculated at each grid location are shown in Figure 6.11. Di�erent grid

locations are marked in Figure 6.11 with dots, the left sub�gure views the grid from

above and the right sub�gure gives a horizontal view of the grid. The arrows in

the left sub�gure of Figure 6.11 depict the di�erent heading angles φ for which the

expected probabilities of detection are calculated. The right sub�gure of Figure 6.11

shows the di�erent pitch angles θ with which the expected detection probabilities

calculated based on the original and reduced probability map are compared. The

roll angle ψ is always set to be zero in the comparisons.

y

x

z

x

Figure 6.11: Di�erent orientations of the A/G weapon for which the probabilities of
detection are calculated in each grid.

The expected probability of detection (6.1) is calculated at each grid location

with each orientation of the A/G weapon based on the original probability map and

the reduced probability maps with alternative cluster quantities. The residuals of

the expected probability of detection caused by the use of the reduced probability

map are calculated as the di�erence between the expected probability of detection

based on the original probability map and the expected probability of detection
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based on the reduced probability maps. Di�erent metrics are calculated based on

the residuals, and these are shown in Figure 6.12 as a function of the cluster quantity

used in the probability map reduction. The cluster quantity is the number of areas

the original probability map is divided into, and thus also the amount of �nal reduced

probability map locations produced by the probability map reduction method. The

metrics are the mean of the residuals and the standard deviation of the residuals.
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Figure 6.12: Residual means and standard deviations of the expected probabilities
of detection based on the reduced probability map.

As seen from Figure 6.12, the mean of the residuals is close to zero even with very

small cluster quantities used in the probability map reduction. Thus, it can be said

that the approximated expected probabilities of detection are on average consistent

with the detection probabilities based on the original probability map even with very

few clusters being used in the reduction. However, with small cluster quantities there

is quite a lot of variance in the residuals, i.e., even though the approximated expected

detection probabilities are on average correct, individual approximated expected

probabilities deviate quite a lot from the expected probabilities of detection based

on the original probability map. As the number of clusters is increased, the variance

57



and thus also the standard deviation of the residuals decreases rapidly. Based on

these observations, it is reasonable to conclude that the probability map reduction

method presented in this thesis approximates the probability map su�ciently in

respect to the expected probabilities of detection when the cluster quantity is set to

be high enough.

6.3 Comparison of survivability models

The Markov survivability model presented in this thesis is veri�ed and compared

against the reference survivability models, i.e., the Erlandsson model and the tech-

nical survivability model. The models are compared by evaluating trajectories with

each of the survivability models in two di�erent scenarios and inspecting the accu-

mulation of risk in di�erent models. The survivabilities of the trajectories are set

in priority order, with the best trajectory corresponding to the trajectory with the

greatest survivability. These orderings of the trajectories based on the survivability

models are then compared with each other. The models are compared with each

other regarding the consistency of the results between the models and also in regard

to common sense and reality. Also, the models' robustness is tested in respect to the

amount of uncertainty regarding the locations of S/A threat systems in the area,

i.e., how well the model retains the ordering of trajectories based on the trajectories'

survivabilities when location uncertainty is varied. The �rst scenario is set around

Otaniemi in Espoo, Finland while the second scenario is set in the country around

and to the west of Hyvinkää, Finland.

In both scenarios, the S/A air defence strives to defend a single target. The S/A

air defence in each scenario consists of multiple S/A threat groups, each of which in

turn consists of four di�erent types of S/A threat systems: medium range S/A missile

systems, short range S/A missile systems, anti-aircraft guns and target acquisition

radars. The medium range S/A missile systems, the short range S/A missile systems

and the anti-aircraft guns are threat units and thus include in addition to the actual

S/A weapon a �re control radar. The ranges Rmax of the medium range S/A missile

systems, the short range S/A missile systems and the anti-aircraft guns are 15 km,

5 km and 7 km, respectively. In the example scenarios, the S/A threat units di�er

from each other only by the e�ective range of their weapons. In each of the radars,

the height of the radar hobv is 15 metres. The radio cross-section model used in

the example scenarios is a realistic model for an A/G weapon, with a mean radar

cross-section of about 5 m2 but a median radar cross-section of only about 0.1 m2.
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Thus, the radar cross-section of the A/G weapon is generally quite small. However,

it also has signi�cant �spikes�, corresponding to directions from which it is easy to

detect the A/G weapon.

A thorough listing of the parameters used in the example scenarios is given in

Tables 6.1, 6.2, and 6.3. The values of the state transition rates λ in Tables 6.1

and 6.2 can be thought of as the reciprocals of the actual times needed for the state

transfer in question. For example, if the time needed to form a track is on average

12 seconds, the state transition rate λU,T in the Markov survivability model is 1/12.

This corresponds to the parameters of the technical survivability model for which the

scan time Tscan is 6 seconds and the track criteria Ntrack is 2. Thus, the time needed

to form a track is 6 s × 2 = 12 s. Similarly, the average time taken to advance

from state �Undetected" to �Tracked" via the state �Detected" in the Erlandsson

survivability model is 6s+ 6 s = 12 s. The threshold probability of detection PD,min

is set to be 0.8 for the Erlandsson survivability model. This threshold is used in

calculating the radii ρmax of the sensor and threat areas with Equation (5.9).

Table 6.1: Parameters of the Markov survivability model used in the example sce-
narios.

λU,T λT,U λT,L λL,T λconstL,H

1/12 1/5 1/6 1 1/10

Table 6.2: Parameters of the Erlandsson model used in the example scenarios.

λU,D λD,U λD,T λT,D λT,E λE,T λE,H
Outside 0 1 0 1 0 1 0
Sensor area 1/6 0 1/6 0 0 1 0
Threat area 0 1 0 1 1/6 0 1/3

Table 6.3: Parameters of the technical model used in the example scenarios.

Time discretisation step (∆t) 1 s
Scan time (Tscan) 6 s
Track criteria (Ntrack) 2
Pulse repetition time (PRT ) 0.1 s
Maintenance period (Tmaint) 1 s

The accumulation of risk obtained with the survivability models is studied by

qualitative comparison of the threat pro�les of trajectories, i.e., the state proba-

bilities at given time t achieved when solving the di�erential equation (B.3). The
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trajectories are ordered based on the survivabilities determined with each surviv-

ability model. Then, these orderings are compared. Also, each model's sensitivity

to uncertainty regarding the position of the S/A threat systems, i.e., how well each

model preserves the ordering of the trajectories based on each trajectory's surviv-

ability, is inspected by �rst evaluating the trajectories based on exact locations

and gradually increasing the uncertainty of the S/A threat systems' positions while

evaluating each trajectory after every increment of the position uncertainty. The

uncertainty is increased by increasing the size of the area in which it is believed that

each S/A threat system is located. All of the trajectories studied in Chapters 6.3.1

and 6.3.2 are parabolic, i.e., air resistance is not taken into consideration. The hor-

izontal velocity of the A/G weapon is constant 350 m/s in every trajectory, and the

A/G weapon is initially in a purely horizontal motion.

6.3.1 Otaniemi scenario

The �rst example scenario is set around Otaniemi in Espoo, Finland. The air

defence consists of four S/A threat groups, all of whom include a target acquisition

radar. Additionally, two of the S/A threat groups include four anti-aircraft guns

and one of the groups contains four short range S/A missile systems. One S/A

threat group contains a medium range S/A missile system. The grouping areas of

the di�erent S/A threat systems in each threat group are portrayed in Figure 6.13.

The grouping area of an S/A threat is a geographic area in which it is thought that

the S/A threat system is located. In the examples, the grouping index of the spatial

prediction model is set to be two-dimensional normal distributions de�ned by the

grouping areas. The center of the grouping area corresponds to the expected value of

the a priori probability map, i.e., the grouping index in the spatial prediction model.

Similarly, the distance of the edges from the center of the grouping area corresponds

to one standard deviation in the grouping index of the spatial prediction model. The

relation between the grouping area of the S/A threat system, the expected location

of the S/A threat system and the standard deviations of the S/A threat system's

location are portrayed in Figure 6.14.

Three di�erent trajectories are evaluated with the Markov survivability model

and each of the reference models. The trajectories originate from an altitude of

about 10 kilometres and ultimately reach the target which is set in the middle of

Otaniemi in Espoo, Finland. The trajectories di�erentiate from each other only by

the direction from which they originate from. The �rst trajectory begins north-west

from Otaniemi, the second begins north from Otaniemi while the third begins from
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Figure 6.13: The grouping areas of the S/A threat systems.

the north-east of Otaniemi. The trajectories are shown in Figure 6.15.

The locations of the S/A threat systems are assumed unknown and thus prob-

ability maps determined with the spatial prediction model are used to determine

the survivabilities over each trajectory. The resulting probability maps and resem-

ble that of the probability map shown in Figure 6.7. The survivabilities of the

trajectories are given in Table 6.4.

Table 6.4: Survivabilities (Psurv) of the trajectories in the Otaniemi scenario.

Trajectory 1 Trajectory 2 Trajectory 3
Markov model 0.33 0.20 0.28
Erlandsson model 0.79 0.74 0.79
Technical model 0.18 0.16 0.02

As seen in Table 6.4, all models evaluate trajectory 1 to be the best trajectory,

i.e., the trajectory with the highest survivability. Both the Markov survivability

model and the Erlandsson model evaluate trajectory 3 to be the second safest tra-

jectory but the technical model evaluates trajectory 2 to be the second safest. All of
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Figure 6.14: The expected location of an S/A threat system, the standard deviations
of the S/A threat system's location and the grouping area of the S/A threat system.

the models give consistent results concerning which trajectory is the best, i.e., has

the highest survivability.

In order to study the accumulation of risk while traversing a trajectory, stacked

area graphs are drawn to illustrate the state probabilities at any given point in

time. Such stacked area graphs are shown for trajectory 1 in Figure 6.16. The

areas in Figure 6.16 correspond to the probability that at least one Markov chain

has reached the state resembled by the area while no Markov chains have reached a

�worse" state, i.e., a state further on in the chain. Each Markov chain corresponds

to either an S/A threat unit in the Markov survivability model and an S/A threat

group in the Erlandsson survivability model. Thus, the area corresponding to the

state �Hit" in Figure 6.16 corresponds to the probability that one or more S/A

threat units have been able to successfully intercept the A/G weapon, i.e., Pkill.

The probability of the A/G weapon being succesfully intercepted at a given time

based on the technical survivability model is portrayed by the Pkill curve in the

bottommost plot of Figure 6.16.

As is seen from Figure 6.16, the Markov survivability model is quickest to react to

the threat and the survivability, i.e., the complement probability of the probability

of at least one Markov chain being in state �Hit", begins to decrease after t = 10 s.

The reference models are slower to react to the S/A threat and both of them predict
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Figure 6.15: The trajectories under consideration. Trajectory 1 is marked with a
blue curve, trajectory 2 is marked with a red curve, and trajectory 3 is marked with
a black curve.

the survivability to begin decreasing after t = 20 s. Again, each of the models seems

to be consistent with each other in this example scenario. In each of the models the

probability of being intercepted by an S/A threat increases gradually towards the

end of the trajectory.

The models' sensitivity to uncertainty regarding the locations of the S/A threat

systems is studied by �rst evaluating the survivabilities of the trajectories based on

the known locations of the S/A threat systems. Then, the locations' uncertainties

are gradually increased until the a priori knowledge of the threat systems' where-

abouts is described by the grouping areas given in Figure 6.13. The uncertainty

increased by increasing the size of the grouping areas in which the threat systems

are believed to reside, starting from grouping areas of only the known exact loca-

tions and ending in the grouping areas depicted in Figure 6.13. The uncertainty

regarding the location is characterised with location uncertainty η. The grouping

area with location uncertainty η is determined with the known location of the S/A

63



0 5 10 15 20 25 30
0

0.5

1

P
ro

ba
bi

lit
y

 

 

0 5 10 15 20 25 30
0

0.5

1

P
ro

ba
bi

lit
y

 

 

Hit
Locked
Tracked
Undetected

Hit
Engaged
Tracked
Detected
Undetected

0 5 10 15 20 25 30
0

0.5

1

Time (s)

P
ro

ba
bi

lit
y

 

 

P
kill

Figure 6.16: Graphs of the state probabilities along trajectory 1 based on the Markov
survivability model, the Erlandsson model, and the technical model (top to bottom).

threat system and the original grouping area as shown in Figure 6.17. The location

uncertainty η = 0 depicts knowledge of exact locations and location uncertainty

η = 1 depicts grouping areas equal to those shown in Figure 6.13.

The known locations of the S/A threat systems are given in Figure 6.18. The

known locations are plausible locations in a sense that there is good visibility from

each location, each site is accessible by the threat systems and the locations are in

or very near to the grouping areas given in Figure 6.13.

The probability of the A/G weapon being intercepted on each trajectory Pkill,

i.e., 1 − Psurv, related to each trajectory is evaluated with location uncertainties η

ranging from 0 to 1. The survivabilities of the trajectories with di�erent location

uncertainties η are given in Figure 6.19. The Markov survivability model and the

Erlandsson model give relatively stable results even though the uncertainty regarding

the S/A threat systems' locations is increased, i.e., the ordering of the trajectories

based on their survivability does not often change. The results provided by the

technical model vary more than the results of the other models. The priority of the

64



ηD1

ηD2ηD3

ηD4

Grouping area with location uncertainty η 

Grouping area with location uncertainty η = 1 

Known location of S/A threat system 

Figure 6.17: The grouping area with location uncertainty η, where D1, D2, D3, and
D4 depict the distances from the known location of the S/A threat system to the
top right, bottom right, bottom left, and top left corners of the original grouping
area, respectively.

trajectories regarding their survivability changes multiple times during the course of

increasing the uncertainty when evaluating with the technical model while with the

Markov survivability model trajectory 1 remains the safest trajectory throughout

the process. Both the Markov survivability model and the Erlandsson model prove

to be robust regarding the amount of uncertainty as the ordering of trajectories

seldom change while the uncertainty is increased.

Based on the Otaniemi example scenario, the survivability models seem to be-

have consistently, i.e., all models evaluate trajectory 1 as the best, when uncertainty

regarding the locations of S/A threat systems is constant. However, once the un-

certainty is varied, di�erences between the two Markov chain based survivability

models and the technical survivability model become clear. The results of the tech-

nical survivability model prove to be unstable when the location uncertainty is varied

and thus the model would give di�erent results depending on how accurate infor-

mation regarding the locations of the S/A threat systems is available. Meanwhile,

the Markov chain based survivability models both produce relatively consistent sur-

vivabilities for the trajectories, which is seen in Figure 6.19. Based on the Otaniemi

example scenario not much can be said regarding the di�erences between the Markov

survivability model and the Erlandsson model. Both give similar results and are ro-

bust with respect to uncertainty regarding the locations of S/A threat units.
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Figure 6.18: The known locations with which the robustness of the survivability
models to uncertainty regarding the S/A threat systems' locations is studied.
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Figure 6.19: The probabilities Pkill of the trajectories with increasing uncertainty
regarding the locations of the S/A threat systems evaluated with the Markov sur-
vivability model, the Erlandsson model, and the technical model (top to bottom).
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6.3.2 Hyvinkää scenario

The second scenario in which the Markov survivability model is veri�ed is set in

and to the west of Hyvinkää, Finland. The air defence is set up in three tiers, each

of which is designated as an independent S/A threat group. The westernmost S/A

threat group consists of a target acquisition radar and four anti-aircraft guns. The

middle S/A threat group contains a target acquisition radar and four short range S/A

missile systems. The easternmost S/A threat group consists of a target acquisition

radar and two medium range S/A missile systems. The assumed grouping areas of

the S/A threat systems are portrayed in Figure 6.20.

Figure 6.20: The grouping areas of the S/A threat systems.

Trajectories under consideration travel from west to east but start from di�erent

altitudes. The �rst trajectory originates from an altitude of 15 kilometres, the

second starts from an altitude of 5 kilometres and the third begins from an altitude

of 500 metres. All of the trajectories originate from approximately 100 kilometres

west of the target.

Each trajectory is evaluated using the Markov survivability model and the ref-

erence models. Once again, the locations of the S/A threat systems are assumed
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to be unknown, and thus probability maps are determined for each threat system.

These probability maps are used as a basis for the trajectory evaluation. A com-

bined probability map similar to that related to the Hyvinkää scenario is given in

Figure 6.21. This map is a probability map which gives the probability that at least

one of many S/A threat systems in the area is located at any given location.

Figure 6.21: A combined probability map for S/A threat systems similar to that
used in the Hyvinkää scenario.

The survivabilities of theh trajectories are given in Table 6.5. The Markov sur-

vivability model estimates a high survivability for all trajectories while based the

reference models the survivabilities of each trajectory are low. Based on the Markov

model trajectory 1 is the best, while the technical model evaluates trajectory 3

to be preferrable. The Erlandsson model evaluates equal survivabilities for each

trajectory.

Table 6.5: Survivabilities (Psurv) of the trajectories in the Hyvinkää scenario.

Trajectory 1 Trajectory 2 Trajectory 3
Markov model 0.98 0.82 0.88
Erlandsson model 0.00 0.00 0.00
Technical model 0.04 0.00 0.07

The survivabilities determined for the trajectories in the Hyvinkää scenario

demonstrate the shortcomings of the implementation of the Erlandsson model used

in the example scenarios. The sensor and threat areas used in the Erlandsson model

are cylinders with radius ρmax in 3-dimensional space. Thus, the implementation
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of the Erlandsson model gives low survivabilities for trajectories at high altitudes,

even though the trajectories are at the very limits of the S/A weapons' capabilities,

i.e., the S/A weapons' range Rmax. Similarly, the implementation of the Erlandsson

model used in this thesis also provides low survivabilities for the trajectories at very

low altitudes as the Erlandsson model does not take into account any shadows cast

by the terrain. Thus, the implementation of the Erlandsson model assumes the S/A

threat systems are able to detect, track and engage the A/G weapon even though

the systems would not have been able to detect the A/G weapon or the S/A weapon

would not be able to engage the A/G weapon in reality. The technical survivability

model gives lower survivabilities than the Markov survivability model, but distin-

guishes between the trajectories at extreme altitudes and the trajectory within the

range of the S/A threat systems. Trajectory 2, which is at an altitude at which

the S/A threats can intercept it throughout the trajectory is evaluated the lowest

survivability by both the Markov model and the technical model.

The accumulation of risk is studied using a stacked area graph in which the areas

correspond to state probabilities at any given time. Such a stacked area graph is

provided in Figure 6.22 for trajectory 2. The risk caused by the di�erent S/A threat

groups is seen in the graphs. The �rst S/A threat group is encountered around time

t = 100 s. At this point the Erlandsson model forecasts that the A/G weapon will

be intercepted almost certainly while the other models give a smaller probability of

interception at this point. The second S/A threat group is encountered at about

t = 200 s. The third S/A threat group can not be distinguished as clearly from

Figure 6.22, however the slight rise in probability of being in �Locked� state based

on the Markov model at time t = 250 s is due to this third threat group.

Unlike the Erlandsson model, the Markov survivability model and the technical

survivability model handle the range Rmax of the S/A weapons as the slant range

between the S/A weapon and the A/G weapon, i.e., the models takes into account

also the altitude di�erence. The Markov survivability model evaluates trajectory 1

to be the safest trajectory (see, Table 6.5). This is due to the maximum slant

range de�ned within the model for the S/A weapons (the largest possible range is

Rmax = 15 km) and the fact that the trajectory is at such a high altitude (starting at

15 km). Therefore, almost all of the S/A weapons are out of the range throughout the

trajectory. The survivability based on the technical survivability model di�ers from

the Markov survivability model's survivability mainly on how likely it determines for

the A/G weapon to be intercepted towards the end of its trajectory as is seen from

the steep rise of Pkill based on the technical model towards the end of the trajectory
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Figure 6.22: Graphs of the state probabilities along trajectory 2 based on the Markov
survivability model, the Erlandsson model, and the technical model (top to bottom).

in the bottommost plot of Figure 6.22. Based on the Markov survivability model the

A/G weapon is not as likely to be intercepted, even towards the end of its trajectory.

Based on the Hyvinkää scenario, the Markov survivability model is quite consis-

tent with the technical survivability model because were able to identify trajectory 2

as the worst trajectory, i.e., the trajectory with the lowest survivability. Trajectory 1

travels most of the distance at a high altitude and out of reach of all or most of

the S/A weapons. Onle at the �nal stages if trajectory 1 the A/G weapon descends

to altitudes at which more S/A weapons can engage it. The technical survivability

model seems to emphasise the last stages of the trajectory when the A/G weapon

descends towards its target more than the Markov survivability model. Thus, the

technical survivability model gives trajectory 3 a lower survivability than trajec-

tory 1. Compared with trajectory 2, both the Markov survivability model and the

technical survivability model evaluate trajectory 3 to be safer. This is consistent

with common sense, as A/G weapons on low-�ying trajectories should be harder

to detect and engage due to shadows cast by the terrain. The implementation of
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the Erlandsson survivability model used in this thesis fails to detect any di�erences

between any of the trajectories in the Hyvinkää example scenario.

The following concludes the numerical experiments section of this thesis. The

spatial prediction model was seen to produce reasonable probability maps for S/A

threats in Chapter 6.1, and the probability map reduction method was seen to pre-

serve the characteristics which are important related to the survivability of trajecto-

ries in Chapter 6.2. In Chapter 6.3, the Markov survivability model was compared

with the reference survivability models in regard to the consistency of survivabil-

ities and the robustness of the models with respect to the amount of uncertainty

regarding the locations of the S/A threat systems. The Markov survivability model

both gives intuitive results and is robust with respect to the amount of location un-

certainty. The robustness of the Markov model was shown in Chapter 6.3.1, where

both the Markov survivability model and the Erlandsson survivability model were

noted to be robust while the technical survivability model changed the ordering of

trajectories based on the survivability numerous times as the location uncertainty

was varied. In Chapter 6.3.2, the Erlandsson survivability model was found to pro-

duce results inconsistent with reality in extreme cases, and the implementation of

the Erlandsson model which was used was unable to distinguish between any of the

trajectories evaluated. The Markov survivability model and the technical survivabil-

ity model both produced results consistent with common sense and intuition. To

summarise, the trajectory evaluation framework is capable of evaluating trajectories

under uncertainty regarding the locations of S/A threat systems of which the air

defence consists of. Based on intelligence information regarding the locations and

capabilities of S/A threat systems, the trajectory evaluation framework is used to

determine the best trajectory from a set of alternative trajectories.
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Chapter 7

Summary and discussion

This thesis introduces the novel trajectory evaluation framework for comparing tra-

jectories of A/G weapons based on the risk of being intercepted with an S/A threat

system. The risk is due to adverse S/A threats which try to intercept the A/G

weapon. The framework is used to facilitate decision making regarding route plan-

ning for A/G missions by identifying the trajectory on which the probability for the

A/G weapon to be intercepted with the S/A threats is the smallest. The frame-

work consists of the spatial prediction model and the Markov survivability model

developed in this thesis.

The spatial prediction model is used to build a probability map for an S/A threat

system. Such a system is a target acquisition radar or an S/A threat unit which

consists of a radar and an S/A weapon. The probability map is constructed by

using geographical data and knowledge about common tactical principles applied in

forming air defence. The model is based on sound observations on the requirements

of the terrain where the S/A threat system is capable of operating e�ectively. It

also takes into account available intelligence information on the grouping of the S/A

threat systems and their capabilities. Thus, the resulting probability map concisely

describes the available information concerning the positioning of the S/A threat

system in any region. To the knowledge of the author, no similar spatial models

have been published prior to this thesis.

Probability maps produced by the spatial prediction model are used for estimat-

ing threat induced by a known amount of S/A threat systems in a given area onto an

A/G weapon which is the approach applied in the trajectory evaluation framework.

Results obtained with the model can also be used as an a priori estimate for the

locations of the S/A threat systems when building a probability map with data from

noisy radar sensing sensors [17].
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It should be noted that due to lack of data, the spatial prediction model does not

take into account buildings and their e�ect on the capability of S/A threat systems

to operate. Especially in populated areas, buildings can account for a great amount

of visual obstructions. Since the populated areas also often have less tree growth, the

model gives unrealistically great probabilities for S/A threat systems to be located

in the built areas. In reality, it might be impossible for the S/A threat systems to

operate with buildings in the immediate vicinity. Nevertheless, given data regarding

the dimensions and locations of the buildings the model could easily be extended to

take into account these buildings.

The Markov survivability model introduced in this thesis provides survivabilities

of A/G weapons' trajectories by taking into account the directional radar cross-

section of an A/G weapon and possible terrain shadow e�ects. Compared with

the implementation of the Erlandsson model [11] used in this thesis, the Markov

survivability model is more accurate, as the Erlandsson model does not treat the

directional radar cross-section and shadows cast by the terrain. As the technical

survivability model [34] is directly derived from technical requirements and work-

ing principles of radars and trackers, the relative survivabilities of the trajectories

obtained with it should be closest to reality. However, as demonstrated in Chap-

ter 6.3, these survivabilities are sensitive to uncertainties regarding the locations of

S/A threat systems. On the other hand, the Markov survivability is robust, i.e.,

the relative survivabilities of the trajectories do not change even though uncertainty

regarding the S/A threat systems' locations is varied. To summarise, the Markov

survivability model gives credible relative survivabilities while being immune to in-

creasing uncertainty regarding the locations of the threats.

Similar to the Erlandsson model, the Markov survivability model contains a set

of parameters. The parameters are state transition intensities which are derived

from the mean time needed for any given state transfer such as the time needed to

form a track. These in turn can be de�ned by experts. The technical survivability

model relies on more precise information regarding radars. This includes the track

criterion on how many detections must be achieved to form a track and the track

maintenance period during which at least one successful detection must be made

to maintain an earlier track. These parameters have a large e�ect on the results of

evaluations performed by the model. Furthermore, the Markov survivability model

and the Erlandsson model can be extended to take into account infrared and optical

sensors. The technical survivability model, on the other hand, is speci�cally derived

from radar sensors, and thus a completely separate model must be constructed to
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describe di�erent types of sensors.

The Markov and Erlandsson survivability models rely on continuous-time Markov

chains, and thus state probabilities are treated with di�erential equations. This can

be useful in future endeavours when optimising the trajectories of A/G weapons.

The same cannot be said of the technical survivability model in which the accumu-

lation of risk is not de�ned in a similar elegant manner.

The motivation behind this thesis was the need to evaluate the relative survivabil-

ities of alternative trajectories in situations where an A/G weapon traverses through

airspace controlled by adverse air defence and the exact locations of S/A threat sys-

tems are not known. With the novel trajectory evaluation framework introduced

in this thesis, the trajectories are evaluated which reveals the trajectory with the

greatest survivability. The Markov survivability model used in the framework is well

suitable for situations in which there is uncertainty regarding the locations of the

S/A threat systems. With the spatial prediction model, intelligence information on

the locations of the S/A threats is enhanced and probability maps that are applied

with the Markov survivability model are produced.

The trajectory evaluation framework extends and complements the tool called

Strike Aircraft Routing Software Suite presented in the master's thesis Military air-

craft routing with multi-objective network optimizations and simulation [28]. The

tool is used to create A/G mission scenarios that are analysed for determining op-

timal military aircraft routing. The spatial prediction and the Markov survivability

models are implemented as subprograms within the tool. With the framework, the

survivability of an A/G weapon can also be taken into account in military aircraft

routing analysis.

Future research dealing with the grouping of S/A threats should take into account

the interdependencies of the positioning of multiple S/A threat systems. In the

trajectory evaluation framework, it is assumed that the S/A threat systems are

located independently of each other. This assumption does not generally hold. The

relations between the multiple systems and the e�ect of these relations on probability

maps and trajectory evaluation should be studied. On the other hand, the Markov

survivability model is only capable of handling radar sensors. It could be augmented

to also treat di�erent types of sensors such as infrared and optical sensors. Such

sensors have a signi�cant role in short range air defence and thus should not be

disregarded.

Overall, the trajectory evaluation framework at hand is used to solve the tra-

jectory planning problem of A/G weapons by identifying the trajectory with the
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greatest survivability from a set of possible trajectories which penetrate into airspace

defended by adverse air defence. The next step would be to properly optimise the

trajectory of an A/G weapon using dynamic optimisation [5] or optimal control

theory [22]. The solution of such a trajectory planning problem would provide the

optimal trajectory which maximises the survivability of the A/G weapon.

75



Bibliography

[1] M. Austin. Spatial prediction of species distribution: an interface between

ecological theory and statistical modelling. Ecological modelling, 157(2):101�

118, 2002.

[2] R. Beard, T. McLain, M. Goodrich, and E. Anderson. Coordinated target

assignment and intercept for unmanned air vehicles. IEEE Transactions on

Robotics and Automation, 18(6):911�922, 2002.

[3] J. Benton and V. Subrahmanian. Using hybrid knowledge bases for missile siting

problems. In Proceedings of the Tenth Conference on Arti�cial Intelligence for

Applications, pages 141�148, 1994.

[4] J. Berger, A. Boukhtouta, A. Benmoussa, and O. Kettani. A new mixed-integer

linear programming model for rescue path planning in uncertain adversarial

environment. Computers & Operations Research, 39(12):3420�3430, 2012.

[5] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scienti�c,

2005.

[6] A. Boukhtouta, A. Bedrouni, J. Berger, F. Bouak, and A. Guitouni. A survey

of military planning systems. Technical report, Defense Research and Devel-

oopment Canada, 2004.

[7] A. Brenning. Spatial prediction models for landslide hazards: review, compar-

ison and evaluation. Natural Hazards and Earth System Science, 5(6):853�862,

2005.

[8] E. Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269�271, 1959.

[9] R. Durrett. Essentials of Stochastic Processes. Springer, 1999.

76



[10] T. Erlandsson. Route planning for air missions in hostile environments. The

Journal of Defense Modeling and Simulation: Applications, Methodology, Tech-

nology, 12(3):289�303, 2015.

[11] T. Erlandsson and L. Niklasson. Automatic evaluation of air mission routes

with respect to combat survival. Information Fusion, 20:88�98, 2014.

[12] T. Erlandsson and L. Niklasson. An air-to-ground combat survivability model.

The Journal of Defense Modeling and Simulation: Applications, Methodology,

Technology, 12(3):273�287, 2015.

[13] G. Espa, R. Benedetti, A. De Meo, U. Ricci, and S. Espa. Gis based models and

estimation methods for the probability of archaeological site location. Journal

of Cultural Heritage, 7(3):147�155, 2006.

[14] M. Fischer and J. Wang. Spatial data analysis: models, methods and techniques.

Springer Science & Business Media, 2011.

[15] M. Fleming and R. Ho�er. Machine processing of landsat mss data and dma

topographic data for forest cover type mapping. Technical report.

[16] W. Franklin, C. Ray, and S. Mehta. Geometric algorithms for siting of air

defense missile batteries. Technical report, Rensselaer Polytechnic Institute,

1994.

[17] J. Hespanha, H. Kizilocak, and Y. Ateskan. Probabilistic map building for

aircraft-tracking radars. In Proceedings of the American Control Conference,

pages 4381�4386, 2001.

[18] A. Hofmann, �. Ho²ková-Mayerová, V. Talhofer, and V. Kova°ík. Creation of

models for calculation of coe�cients of terrain passability. Quality & Quantity,

49(4):1679�1691, 2015.

[19] K. Jones. A comparison of algorithms used to compute hill slope as a property

of the dem. Computers & Geosciences, 24(4):315�323, 1998.

[20] M. Jun and R. D'Andrea. Path planning for unmanned aerial vehicles in un-

certain and adversarial environments. In Cooperative Control: Models, Appli-

cations and Algorithms, volume 1, pages 95�110. 2003.

77



[21] P. Kabamba, S. Meerkov, and F. Zeitz. Optimal path planning for unmanned

combat aerial vehicles to defeat radar tracking. Journal of Guidance, Control,

and Dynamics, 29(2):279�288, 2006.

[22] E. Kirk. Optimal Control Theory, An Introduction. Dover Publications, 1998.

[23] A. Law. Simulation Modeling & Analysis. McGraw-Hill, 1998.

[24] C. Lloyd. Spatial Data Analysis - An Introduction for GIS users. Oxford

University Press, 2010.

[25] J. Marcum. A statistical theory of target detection by pulsed radar. IRE

Transactions on Information Theory, 6(2):59�267, 1960.

[26] M. Pachter and J. Hebert. Optimal aircraft trajectories for radar exposure

minimization. In Proceedings of the 2001 American Control Conference, pages

2365�2369, 2001.

[27] Z. Peng, B. Li, X. Chen, and J. Wu. Online route planning for uav based

on model predictive control and particle swarm optimization algorithm. In

10th World Congress on Intelligent Control and Automation (WCICA), pages

397�401, 2012.

[28] H. Puustinen. Military aircraft routing with multi-objective network optimiza-

tion and simulation. Master's thesis, Aalto University, School of Science, 2013.

[29] M. Richards, J. Scheer, and W. Holm. Principles of Modern Radar, Volume I

- Basic Principles. SciTech Publishing, 2010.

[30] P. Ritter. A vector-based slope and aspect generation algorithm. Photogram-

metric Engineering and Remote Sensing, 53(8):1109�1111, 1987.

[31] V. Roberge, M. Tarbouchi, and G. Labonte. Comparison of parallel genetic

algorithm and particle swarm optimization for real-time uav path planning.

IEEE Transactions on Industrial Informatics, 9(1):132�141, 2013.

[32] R. Sheldon et al. A �rst course in probability. Pearson Prentice Hall, 9th

edition, 2014.

[33] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Elsevier, 2009.

[34] V. Väisänen to Riku Hyytiäinen. Memorandum. Ohjusilmatorjunnan

mallinnus, Nov 2015.

78



[35] C. Zheng, L. Li, F. Xu, F. Sun, and M. Ding. Evolutionary route planner for

unmanned air vehicles. IEEE Transactions on Robotics, 21(4):609�620, 2005.

79



Appendix A

Probability of detection (PD)

In each model discussed in this thesis, the capabilities of radar sensors to detect

an A/G weapon play a vital role. Radar sensors include all sensors that transmit

radio signals and by listening to the re�ections of the transmitted signals determine

whether there is a target in the vicinity. Only monostatic radars, i.e., radars in

which the transmitter and receiver are co-located are considered. The capability of

a sensor to detect the A/G weapon is measured with the probability of detection.

The probability of detection PD describes the probability whereby the sensor is able

to detect a target in a given location. This appendix is written with reference to

Principles of Modern Radar by M. Richards et. al. [29].

A radar sensor operates by transmitting short pulses of electromagnetic radiation

and by listening to possible re�ections or echoes from targets in the vicinity. The

basic working principle of radar sensors is portrayed in Figure A.1. For a target to

be successfully detected, the electromagnetic pulse radiated by the transmitter must

reach the target and the radiation re�ected from the target must reach the receiver

with su�cient intensity, so that it can be distinguished from static noise. The

di�erent stages of target detection with a radar sensor will be considered separately

in order to determine the performance capability of a radar sensor.

First, the incident power density at the target is determined. Given an isotropic

transmitter, i.e., a transmitter that radiates electromagnetic radiation homogenously

in all directions, the power density at distance R is

Qi =
Pt

4πR2
, (A.1)

where Pt is the power at which the radar is transmitting. This is because the power

at which the radar is transmitting is evenly spread out on the surface of a sphere of
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Figure A.1: The working principle of a radar sensor.

radius R. However, the electromagnetic radiation is usually directed to the assumed

direction of a target. This is done with an antenna which is modeled mathematically

by multiplying the Equation (A.1) with a transmitting gain coe�cient Gt. Thus,

the incident power density at the target is

Qi =
PtGt

4πR2
, (A.2)

where Pt is the power with which the radar is transmitting, Gt is the gain coe�cient

of the transmitting antenna and R is the distance of the target from the transmitter.

The electromagnetic radiation incident on the target is either re�ected or ab-

sorbed by the target. The portion of the incident power which is re�ected is repre-

sented by the radar cross-section σ of the target. The target is modeled to be an

isotropic radiator radiating with power

Pre� = Qiσ, (A.3)

whereQi is the incident power density and is calculated with Equation (A.2). The re-

�ected power is calculated by substitutingQi in Equation (A.3) with Equation (A.2),

i.e.,

Pre� =
PtGtσ

4πR2
.

It is assumed that the re�ected power is radiated isotropically, and thus the re�ected
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power density incident at the radar receiver is

Qr =
Pre�

4πR2
=

PtGtσ

(4π)2R4
.

The power received by the receiver is calculated as

Pr =
Pre�Ae
4πR2

=
PtGtAeσ

(4π)2R4
, (A.4)

where Ae is the e�cient area of the receiver's antenna, i.e., the area of the antenna

on which re�ected radiation is incident to, taking into account possible ine�ciencies.

As shown in [29], the gain coe�cient G of an antenna is dependent of the e�cient

area Ae of the antenna with relation

G =
4πAe
λ2

, (A.5)

where λ is the wavelength of the electromagnetic radiation used. Solving the e�cient

area Ae from Equation (A.5) and substituting that into Equation (A.4), the power

received by the receiver is

Pr =
PtGtGrλ

2σ

(4π)3R4
, (A.6)

where Pt is the power with which the radar is transmitting, Gt is the gain coe�cient

of the transmitting antenna, Gr is the gain coe�cient of the receiving antenna, λ

is the wavelength at which the radar is transmitting, σ is the radar cross-section of

the target, and R is the distance of the target from the transmitter.

Up to this point all of the subsystems have been treated as ideal systems with

no losses. In reality, the power received by the receiver is less than what Equa-

tion (A.6) predicts. Losses which are taken into account often include losses in the

electrical components between the transmitter and the antenna, the attenuation of

the electromagnetic signal while propagating in the atmosphere, losses in the electri-

cal components connecting the antenna to the receiver, and losses related to signal

processing. These losses are modeled with the system loss coe�cient Ls. Taking

into account all losses in the system, the �nal power at which the re�ected signals

are observed is

Pr =
PtGtGrλ

2σ

(4π)3R4Ls
.

Ideally, a radar could detect all objects which are not shadowed by the terrain or

other obstructions. This is because even the weakest signals that are re�ected from
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objects very far away could, in an ideal system, be ampli�ed until they are large

enough to be registered. In practice, however, the signal is interfered by noise origi-

nating from di�erent sources, and weak signals might be very di�cult or impossible

to distinguish from the noise. Noise entering the antenna can originate from multiple

sources such as outer space, the sun, and the surface of the earth. However, it is of-

ten assumed that the thermal noise originating from electronical components within

the receiver dominates over the noise entering the receiver through the antenna [29].

Thermal noise is caused by the random movement of electrons in the electrical

components due to the ambient temperature in the receiver. Thermal noise can

be characterised as white noise and as such its power spectral density is uniform,

i.e., the noise power does not depend on the frequency or wave length at which the

noise is being observed. The observed thermal noise power depends on the ambient

temperature Ts of the receiver and the bandwidth B being observed, and is written

as

Pn = kTsB = kT0FB, (A.7)

where k is the Boltzmann constant, T0 is the standard temperature (290 K) and

F is the noise �gure of the receiver subsystem. The optimal bandwidth which

should be observed to maximise the resulting signal-to-noise ratio is approximately

the reciprocal of the pulse width τ [29], i.e., the length of the pulse sent by the

transmitted. The bandwidth in Equation (A.7) is substituted with B = 1/τ :

Pn =
kT0F

τ
.

The signal-to-noise ratio can now be calculated as the ratio of the received power

and the thermal noise power:

SNR =
PtGtGrλ

2στ

(4π)3R4LskT0F
.

When trying to determine whether there is a target in a given direction, it is com-

mon practice that multiple signal pulses are sent, and by combining the re�ected

signals of each of these pulses the likelihood that a target is in the given direction

is determined. It is assumed that the signals are combined through a process called

coherent integration, in which both the amplitude and phase of the signal are taken

into account. By combining the signals by coherent integration, the signal-to-noise
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ratio can be enhanced and the resulting signal-to-noise ratio is

SNRc(np) =
PtGtGrλ

2στnp
(4π)3R4LskT0F

, (A.8)

where Pt is the peak power at which the transmitter is transmitting, Gt is the gain of

the transmitting antenna, Gr is the gain of the receiving antenna, λ is the wavelength

whereby the transmitter is transmitting, σ is the radar cross-section of the target, τ

is the pulse width, np is the amount of pulses which are combined, R is the distance

at which the target is, Ls is the loss coe�cient of the complete system, k is the

Boltzmann constant, T0 is the standard temperature, and F is the noise �gure of

the receiver.

Thermal noise is stochastic in nature and as such the identi�cation of signals from

within the noise is not trivial. This is demonstrated in Figure A.2 in which thermal

noise is presented. The thermal noise is accompanied with signals with amplitude

0.8 V at bins 10, 20, 30, 40, 50, 60, 70, 80 and 90. A common scheme is to set a

threshold voltage, so that every time a signal voltage greater than the threshold is

observed at the sensor, a signal is interpreted as being present. A threshold voltage

is also presented in Figure A.2. Every bin where the signal peaks above the threshold

voltage is interpreted as containing a signal. However, due to the stochastic nature

of the noise, it is possible that the voltage which is observed exceeds the threshold

voltage even though there is no actual signal present. In Figure A.2, this is seen

in bin 8, where there is no actual signal present but nevertheless the thermal noise

voltage exceeds the threshold voltage. The probability of this happening is denoted

with the probability of false alarm PFA. On the other hand, it is possible that due to

the stochastic thermal noise, an actual signal that without noise would be identi�ed

does not cause a great enough voltage at the sensor to exceed the threshold and thus

goes unnoticed. This is seen in Figure A.2 at bins 50 and 90 where there is indeed a

signal present, but due to the thermal noise the measured voltage does not exceed

the threshold voltage. The probability that an actual signal caused by a target is

successfully identi�ed is denoted with the probability of detection PD.

Radar systems can be characterised as either coherent or noncoherent systems.

A noncoherent system only registers the amplitude of incoming signals and noise

while coherent systems register both the amplitude and phase of a signal. Thus, the

coherent systems e�ectively measure two components of a signal which are commonly

denoted by in-phase component I and quadrature component Q [29]. The resultant

voltage of a signal is v =
√
I2 +Q2. In thermal noise, both components of the
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Figure A.2: Thermal noise accompanied with signals of amplitude 0.8 V in bins 10,
20, 30, 40, 50, 60, 70, 80, and 90.

signal I and Q are approximately normally distributed. Thus, the resultant voltage

of thermal noise is stochastic and distributed according to the Rayleigh-distribution:

pn(v) =
v

σ2
n

exp (− v2

2σ2
n

), (A.9)

where σ2
n is the variance of the resultant voltage, i.e., the mean square noise volt-

age. The mean square noise voltage is proportional to the thermal noise power. A

probability density function for the measured voltage when there is only thermal

noise present is shown in Figure A.3a. With Equation (A.9), the probability of false

alarm PFA is calculated for any given threshold voltage VT :

PFA =

∞∫
VT

pn(v)dv = − exp (
V 2
T

2σ2
n

). (A.10)

Further, a minimum threshold voltage needed to achieve a probability of false alarm

PFA is determined by solving the threshold voltage VT from Equation (A.10). The

expression achieved for the threshold voltage needed to achieve a given probability

of false alarm is

VT =
√

2σ2
n ln (1/PFA). (A.11)

The threshold voltage for a false alarm rate of PFA = 10−2 is plotted in Figure A.3.

The shaded area to the right of the threshold voltage in Figure A.3a represents the

probability of a false alarm, i.e., a signal is thought to be present even though no

signal actually exists.

The resulting voltage that is achieved when thermal noise is accompanied with

a signal of voltage vs is represented with the Rician distribution [29]. The Rician
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Figure A.3: The probability density function of measured voltage with a) only
thermal noise and b) thermal noise and signal.

probability density function is

ps+n(v) =
v

σ2
n

exp (−v
2 + v2

s

2σ2
n

)I0(
vvs
σ2
n

), (A.12)

where I0 is the modi�ed Bessel function of the �rst kind and zero order. The

probability density function of the resultant voltage when the thermal noise with

mean square voltage (0.2 V)2 is accompanied with a signal of amplitude 0.8 V is given

in Figure A.3b. The shaded area to the right of the threshold voltage represents the

probability that the signal is detected. The probability of detection PD is calculated

by integrating the probability density function (A.12)

PD =

∞∫
VT

v

σ2
n

exp (−v
2 + v2

s

2σ2
n

)I0(
vvs
σ2
n

)dv, (A.13)

which is not easily accomplished analytically. However, it can be calculated using

86



the generalised Marcum Q-function which is de�ned as

QM(a, b) =

∞∫
b

1

aM−1
xM exp (−x

2 + a2

2
)IM−1(ax)dx, (A.14)

where IM−1 is the modi�ed Bessel function of the �rst kind and order M − 1.

Tools for the evaluation of the Marcum Q-function are readily available in most

numerical computing environments such as MATLAB. By substituting v = σnx in

Equation (A.13), the following form is achieved:

PD =

∞∫
VT /σn

x exp (−
x2 + ( vs

σn
)2

2
)I0(

xvs
σn

)dx. (A.15)

By comparing Equations (A.14) and (A.15), and by choosing a = vs/σn, b = VT/σn,

and M = 1 the probability of detection PD can be expressed with the Marcum

Q-function as

PD = Q1

(
vs
σn
,
VT
σn

)
. (A.16)

This can further be simpli�ed by noting that the square of the signal voltage is

proportional to the signal power received through the receiver, and the mean square

voltage of the thermal noise is similarly proportional to the thermal noise power,

i.e., vs/σn =
√
SNR. By substituting this and VT from Equation (A.11) into Equa-

tion (A.16), the probability of detection PD is written as

PD = Q1

(√
SNR,

√
2 ln (1/PFA)

)
, (A.17)

where SNR is the signal-to-noise ratio which is calculated with Equation (A.8) and

PFA is the probability of false alarm chosen by the radar operator. Probabilities

of detection calculated with Equation (A.17) using di�erent false alarm rates are

presented in Figure A.4.

The signal-to-noise ratio is dependent of the geometry between the sensor and

the target which the sensor is trying to detect as well as the target's orientation due

to the directional radar cross-section. Thus, the probability of detection depends

on the position of the sensor (x′, y′) as well as the location and orientation of the

target (x, y, z, φ, θ, ψ). Taking these into consideration, the probability of detection
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is written as

P
(x′,y′)
D (x, y, z, φ, θ, ψ) = Q1

(√
SNR(x′, y′, x, y, z, φ, θ, ψ),

√
2 ln (1/PFA)

)
, (A.18)

where x, y, and z depict the coordinates of the target and φ depicts the heading of

the target, θ depicts the pitch angle of the target, and ψ depicts the roll angle of

the target.
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Figure A.4: Probability of detection with di�erent rates of false alarm PFA.
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Appendix B

Continuous-time Markov chains

Two of the three survivability models discussed in this thesis are based on a class

of stochastic models called Markov chains. Markov chains can be used to model

�nite state space systems, where the future states of the system depend on the

current state and the rules governing the transitions from one state to another. The

future states of a system described with a Markov chain do not depend on states

visited prior to the current state, but only on the state which the system is in at

a given time. This �memorylessness� is called the Markov property. As Markov

chains are stochastic models, the evolution of the system's state is captured by

state probabilities which generally change over time. This appendix is written with

reference to Essentials of Stochastic Processes by R. Durrett [9].

Markov chains can be grouped into discrete-time and continuous-time Markov

chains. The models discussed in this thesis are based on continuous-time Markov

chains, which are characterised with a state transition rate matrix Λ and are visu-

alised as shown in Figure B.1. The state transition rate matrix Λ de�nes the Markov

chain explicitly and is written as

Λ =

−ν1 λ1,2 λ1,3

λ2,1 −ν2 λ2,3

λ3,1 λ3,2 −ν3

 ,
where λi,j is the transition rate from state i to state j and νi =

∑
j λi,j, i.e., the rate

at which the system leaves state i.

Given the knowledge that the system X is in the state i at time t, the probability

that the system is in some other state j after an in�nitesimal amount of time dt is
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Figure B.1: A generic continuous-time Markov chain with three states.

calculated from the state transition rate λi,j:

P (X(t+ dt) = j|X(t) = i) = λi,jdt.

Similarly, the probability that, given the knowledge of the system being in state i

at time t, the system is still in the same state i after time dt is determined with

P (X(t+ dt) = i|X(t) = i) = 1− νidt.

Consequently the evolution of the state probabilities pi(t) = P (X(t) = i) is described

with the di�erential equation

ṗ(t) = ΛTp(t), (B.1)

where p(t) is the state probability vector containing the probabilities that at time

t the system is in each of the di�erent states and Λ is the transition rate matrix

of the Markov chain. The transitions between the states can also be characterised

as Poisson processes and the time taken for the transition to happen is exponen-

tially distributed with parameter λi,j. This is particularly useful when estimating

parameters for models based on continuous-time Markov chains as the average time

τi,j needed for the transition from state i to state j is the reciprocal of the state

transition rate, i.e.,

τi,j =
1

λi,j
. (B.2)

Each element in the state probabilty vector p(t) corresponds to the probability

of being in each of the states of the Markov chain at time t. With reference to the

90



Markov survivability model, the elements of p(t) are the probabilities of an S/A

threat unit portrayed by the Markov chain being in each of the states �Undetected�,

�Tracked�, �Locked�, and �Hit" at time t. Similarly, in the Erlandsson survivability

model, the elements of the vector p(t) are the probabilities of S/A threat group

depicted by the Markov chain being in each of the states �Undetected�, �Detected�,

�Tracked�, �Engaged�, and �Hit� at time t.

Markov chains used in the Markov survivability model and the Erlandsson sur-

vivability model are inhomogenous time-continuous Markov chains. This means

that state transition rates are not time-invariant, but can vary in time. Thus, the

di�erential equation (B.1) is rewritten as

ṗ(t) = Λ(t)Tp(t). (B.3)
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Appendix C

Slope coe�cient (Cslope)

In the spatial prediction model, the slope coe�cient is de�ned as

Cslope(φ) =


1 if |φ| ≤ Φlow

Φhigh−|φ|
Φhigh−Φlow

if Φlow < |φ| ≤ Φhigh

0 if |φ| > Φhigh

, (C.1)

where the parameters Φlow and Φhigh represent the slope angle values at which it

begins to be hard for a threat system to operate and when it becomes impossible to

operate a threat system. Furthermore, φ depicts the terrain slope angle. It should

be noted that if the two parameters Φlow and Φhigh are set to be equal, the slope

coe�cient Cslope becomes a binary variable and evaluates to either 1 or 0.

Next, the terrain slope angle is calculated. As the digital elevation model used

in the spatial prediction model is in raster form, i.e., the data consists of pixels

of size d × d, the terrain slope angle is calculated for each pixel separately. To

do this, many known algorithms exist [19]. In the spatial prediction model, the

method introduced by Fleming and Ho�er [15] and further developed by Ritter [30]

is used. In this method, the terrain slope angle is calculated with each pixel's

normal vector, which in turn is calculated with the elevation values of the pixel's four

immediately adjacent pixels. The vectors are de�ned to be 3-dimensional and vector

r is represented by the triplet (i, j, k), where i is the displacement in x-coordinates,

j is the change in y-coordinates, and k represents the change in elevation. The

pixel of interest's neighboring pixels are indexed beginning from the pixel's western

neighbor and continuing clockwise P1, P2, P3 and P4 with elevations e1, e2, e3 and e4,

respectively.

The vectors that run through the pixel in the direction of x-axis and y-axis are

92



de�ned:

rx = (2d, 0, e3 − e1),

ry = (0, 2d, e2 − e4),

where d represents the width of one pixel. By taking the cross product of these

two vectors, a vector which is perpendicular to both of these vectors and thus the

normal vector of the pixel is obtained. That is

n = rx × ry

= (2d, 0, e3 − e1)× (0, 2d, e2 − e4)

= (−2d(e3 − e1),−2d(e2 − e4), 4d2).

The resulting normal vector is further simpli�ed by dividing each term by 2d, i.e.,

n = (e1 − e3, e4 − e2, 2d).

To calculate the slope of the vector n, the vector's horizontal and vertical compo-

nents need to be di�erentiated. The vertical component is simply the third value

of the triplet which represents the vector. The horizontal component, on the other

hand, is the sum of the two �rst values. Only the length of the horizontal component

is of interest. This is calculated with Pythagoras' theorem

|rh| =
√

(e1 − e3)2 + (e4 − e2)2.

Since the normal vector is perpendicular to the pixel of interest, the tangent of the

pixel's slope angle is the multiplicative inverse of the normal vector's slope angle's

tangent. Thus, the terrain slope angle is calculated with the inverse tangent function,

i.e.,

φ = arctan

√
(e1 − e3)2 + (e4 − e2)2

2d
.
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Appendix D

Terrain coe�cient (Cterrain)

The terrain coe�cients used in example scenarios discussed in this thesis are listed

in Table D.1.
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Table D.1: The terrain coe�cients (Cterrain) which are used in the example scenarios.

Description Cterrain

Continuous urban fabric 0.25
Discontinuous urban fabric 0.5
Industrial or commercial units 0.5
Road and rail networks and associated land 1
Port areas 0.75
Airports 1
Mineral extraction sites 0.0025
Cottage areas 0.125
Sport and leisure areas 0.125
Golf ranges 0.25
Track (horse racing) 0.25
Non-irrigated arable land (�elds) 0.25
Non-irrigated arable land (other) 0.025
Pastures 0.125
Broad-leaved forest (mineral soil) 0.0125
Broad-leaved forest (peat soil) 0.005
Coniferous forest (mineral soil) 0.0125
Coniferous forest (peat soil) 0.005
Coniferous forest (rock) 0.005
Mixed forest (mineral soil) 0.0075
Mixed forest (peat soil) 0.005
Mixed forest (rock) 0.0025
Transitional woodland shrub (canopy cover < 10%) 0.025
Transitional woodland shrub (canopy cover 10-30%, mineral soil) 0.0125
Transitional woodland shrub (canopy cover 10-30%, peat soil) 0.005
Transitional woodland shrub (canopy cover 10-30%, rock) 0.0075
Transitional woodland shrub (disused agricultural land) 0.025
Beaches, dunes, sands 0.125
Bare rocks 0.025
Wetlands 0
Water bodies 0
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