
Aalto University

School of Science

Degree Programme in Engineering Physics and Mathematics

Vesa Husgafvel

Polyhedral Analysis of
Up-peak Traffic Patterns in
Elevator Dispatching Problem

The document can be stored and made available to the public on the open internet

pages of Aalto University. All other rights are reserved.

Master’s Thesis
Espoo, April 6, 2016

Supervisor: Professor Harri Ehtamo
Advisor: Mirko Ruokokoski M.Sc. (Tech.)

Aalto University
School of Science
Degree Programme in Engineering Physics and Mathematics

ABSTRACT OF
MASTER’S THESIS

Author: Vesa Husgafvel

Title:
Polyhedral Analysis of Up-peak Traffic Patterns in Elevator Dispatching Problem

Date: April 6, 2016 Pages: viii + 77

Major: Systems and Operations Research Code: Mat-2

Supervisor: Professor Harri Ehtamo

Advisor: Mirko Ruokokoski M.Sc. (Tech.)

Up-peak traffic is a common situation arising in elevator routing, where most
of the transportation requests given by passengers are directed from lower floors
to upper floors of a building. In this thesis, we examine three up-peak traffic
patterns that differ from each other with respect to the number of elevators or
the capacity of elevators. Analysis is based on a mixed-integer programming
formulation of the elevator dispatching problem (EDP).

Solutions of linear integer optimization problems span a convex hull, which is
called a polytope. By examining the structure of a polytope, it is possible to find
out special features of the problem to be studied. A central variable in description
of a polytope is dimension, which is defined as the number of affinely independent
vectors contained in a polytope. In this work, we determine the dimension of each
up-peak traffic pattern polytope to be studied, or in the case we are not able to
give an exact formula, we determine a lower and an upper bound for the value of
dimension. In addition, in each case we determine the number of feasible solutions
and the number of arcs in the reduced graph. Results relating to different patterns
are compared with each other and with polyhedral results of similar optimization
problems that appear in literature.

The obtained results of this work give new, fundamental knowledge of the polyhe-
dral structure of up-peak traffic patterns - a subject that has not been previously
studied. We believe that by combining our results with similar research results,
e.g., polyhedral results of down-peak traffic patterns, our knowledge of the ele-
vator dispatching problem deepens, which will help in designing of EDP solving
algorithms.

Keywords: Elevator dispatching, elevator routing, integer optimization,
up-peak traffic, polytope, polyhedral analysis

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Teknillisen fysiikan ja matematiikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Vesa Husgafvel

Työn nimi:
Ylösruuhkamuodostelmien polyhedraalianalyysi hissien reititysongelmassa

Päiväys: 6. huhtikuuta 2016 Sivumäärä: viii + 77

Pääaine: Systeemi- ja operaatiotutkimus Koodi: Mat-2

Valvoja: Professori Harri Ehtamo

Ohjaaja: Diplomi-insinööri Mirko Ruokokoski

Ylösruuhka on yleinen hissien reitityksessä esiintyvä tilanne, jossa suurin osa mat-
kustajien antamista siirtokutsuista kohdistuu rakennuksen alemmista kerroksis-
ta ylempiin kerroksiin. Tässä työssä tutkitaan kolmea ylösruuhkamuodostelmaa,
jotka eroavat toisistaan käytettävissä olevien hissien lukumäärän tai hissien kapa-
siteetin suhteen. Analyysi pohjautuu hissien reititysongelman (EDP) lineaariseen
sekalukuptimointiformulaatioon.

Lineaaristen kokonaislukuoptimointitehtävien ratkaisut virittävät konveksin kuo-
ren, jota sanotaan tehtävän polytoopiksi. Polytoopin rakennetta tutkimalla on
mahdollista selvittää tarkasteltavan tehtävän erityispiirteitä. Keskeinen polytoop-
pia kuvaava suure on dimensio, joka määritellään polytoopin sisältämien affiinisti
riippumattomien vektorien lukumääränä. Työssä määrätään kunkin tutkittavan
ylösruuhkamuodostelman polytoopin dimensio tai dimension arvolle määrätään
ala- ja yläraja. Lisäksi kussakin tapauksessa määrätään käypien ratkaisujen lu-
kumäärä sekä kaarien lukumäärä redusoidussa graafissa. Eri muodostelmiin liit-
tyviä tuloksia vertaillaan sekä keskenään että kirjallisuudessa esiintyvien saman-
kaltaisten optimointiongelmien polyhedraalitulosten kanssa.

Työssä saadut tulokset antavat uutta, perustavanlaatuista tietoa
ylösruuhkamuodostelmien polyhedraalirakenteesta - aiheesta jota ei ole ai-
emmin tutkittu. On uskottavaa että yhdistämällä saatuja tuloksia aiempien
tutkimustulosten (esim. alasruuhkamuodostelmia koskevien tulosten) kanssa,
hissien reititysongelman tuntemus paranee, mikä puolestaan edistää ratkaisual-
goritmien kehitystä.

Asiasanat: Hissien reititys, kokonaislukuoptimointi, ylösruuhka, poly-
tooppi, polyhedraalianalyysi

Kieli: Englanti

iii

Acknowledgements

First and foremost, I wish to thank my instructor Mirko Ruokokoski and my
supervisor Professor Harri Ehtamo for their guidance and patience during the
writing process. Additionally, I am grateful to Kimmo Berg for his comments
and suggestions for improvements regarding this thesis. I also want to express
my thanks to the Department of Mathematics and Systems Analysis for
letting me to work there for most of the time of my studies: if I had not had
an opportunity to study alongisde my job, this Master’s thesis would not be
completed yet.

During my studies, a huge source of strength and happiness for me has
been my friends, who were always ready to listen to my worries and support
me whenever I had a hard time. I sincerely thank them, especially Maiju,
for being my support all these years. Furthermore, special thanks go to my
fellow student Ville for his constant willingness to solve my equations, fix my
code, but for also being a guy with whom I could enjoy a pint or two.

Finally, I would like to thank my family for supporting me through life
and teaching me the values needed to succeed.

Espoo, April 6, 2016

Vesa Husgafvel

iv

Symbols and Abbreviations

Symbols

P The set of pickup vertices i, i = 1, . . . , n
A The set of arcs
Q The capacity of an elevator
D The set of delivery vertices n+ i, i = 1, . . . , n
T The set of origin depot vertices 2n+e, e ∈ {e1, . . . , el}
0 The common terminal depot vertex
+0 The common origin depot vertex
V The set of vertices, i.e., the union of P , D, T and {0}
xij The binary decision variable indicating whether arc

(i, j) is used or not
τij The travel time between vertices i and j
f(i) The floor of vertex i
d(i) The direction of vertex i
ti The time when an elevator starts service at vertex i
qi The load of an elevator when it leaves vertex i
γi The elapsed time at vertex i, i.e., the time difference

between current moment and the moment request was
given

ωi The number of passengers entering (exiting) the ele-
vator at vertex i

R The set of reversal arcs
O The set of arcs which violate service order constraints
X A forward path
A(X) The arc set of forward path X
X The family of all forwards paths
X ′ The family of extended forwards paths

v

EDPm
n,l The up-peak traffic problem of n requests and l ele-

vators whose capacity is m. Shorter notation EDPm
n

is used in the case l = n
Hm
n,l The set of solutions to EDPm

n,l projected onto to the
x-space

Gm
n,l The reduced graph of EDPm

n,l

Amn,l The set of arcs in Gm
n,l

PEDPm
n,l

The polytope of EDPm
n,l

PEDPm
n,l|x The polytope of EDPm

n,l restricted to the x-space

D − EDP∞n The down-peak traffic problem of n requests and n
elevators of infinite capacity

H∞D,n The set of solutions to D−EDP∞n projected onto the
x-space

G∞D,n The reduced graph of D − EDP∞n
A∞D,n The set of arcs in G∞D,n
PD−EDP∞

n
The polytope of D − EDP∞n

Abbreviations

(S1, S2) {(i, j) ∈ A : i ∈ S1, j ∈ S2}
(k, S) {(i, j) ∈ A : i ∈ {k}, j ∈ S}
x(S1, S2)

∑
(i,j)∈(S1,S2)

xij
Ω(S)

∑
i∈S qi

|S| The cardinality of set S
S V \ S

vi

Contents

Symbols and Abbreviations v

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 2
1.3 Structure . 3

2 Literature Review 4
2.1 Travelling Salesman Problem 4
2.2 Vehicle Routing Problem . 5
2.3 Pickup and Delivery Problem 6
2.4 Elevator Dispatching Problem 6

3 Polyhedral and Graph Theory 9
3.1 Polyhedral Theory . 9
3.2 Graph Theory . 13
3.3 Combinatorics . 14

3.3.1 Selections . 14
3.3.2 Principle of Inclusion and Exclusion 17
3.3.3 Stirling, Bell, and Lah Numbers 18

4 Integer Programming 22
4.1 Classification of Optimization Problems 22
4.2 Relaxations . 23
4.3 Modeling Techniques . 24

4.3.1 Related Variables . 24
4.3.2 Disjunctive Constraints 24
4.3.3 Degree and Subtour Elimination Constraints 25
4.3.4 Precedence Constraints 26
4.3.5 Strong Formulations 27

4.4 Polyhedral Combinatorics in Integer Programming 28

vii

4.4.1 Polyhedral Combinatorics in General 28
4.4.2 Symmetric Travelling Salesman Problem 29
4.4.3 Symmetric Travelling Salesman Problem with

Pickup and Delivery 31
4.5 Integer Programming Algorithms 33

4.5.1 Simplex Algorithm . 34
4.5.1.1 Basic Solutions 34
4.5.1.2 Reduced Costs 34
4.5.1.3 New Basic Solution 35
4.5.1.4 Degeneracy 36
4.5.1.5 Simplex Iteration 36

4.5.2 Branch and Bound Algorithm 37
4.5.2.1 Branch and Bound Iteration 38

4.5.3 Cutting Plane Method 38
4.5.3.1 Cutting Plane Iteration 39

5 Elevator Dispatching Problem (EDP) 40
5.1 Formulation . 40
5.2 Polyhedral Analysis . 45

6 EDP: Up-peak Traffic Pattern 49
6.1 General Assumptions . 49
6.2 Case 1: No Restrictions . 51

6.2.1 Assumptions . 51
6.2.2 Polyhedral Analysis . 52

6.3 Case 2: Restricted Capacity 55
6.3.1 Assumptions . 55
6.3.2 Polyhedral Analysis . 56

6.4 Case 3: Restricted Number of Elevators 59
6.4.1 Assumptions . 59
6.4.2 Polyhedral Analysis . 60

7 EDP: Down-peak Traffic Pattern 65
7.1 Assumptions . 65
7.2 Polyhedral Analysis . 66

8 Conclusions 69

A Proof of LP cut
TSPPD = LP sub

TSPPD 76

viii

Chapter 1

Introduction

1.1 Background

In modern times, when buildings are getting taller and taller, elevator routing
is a problem that is increasingly gaining attention. For example, the tallest
building in the world, Burj Khalifa, located in Dubai, Arab Emirates, has a
height of 828 meters and contains 154 floors that incorporate 57 elevators:
one can imagine how an inefficient elevator control system, in such a building,
might lead to passengers’ extremely long journey or waiting times.

In the most basic form, an elevator group in a building consists of ca-
pacitated single-deck elevators, such that each elevator shaft contains one
elevator. In high-rise buildings elevators are usually divided into groups and
each elevator group is controlled individually. Traditionally, a passenger calls
an elevator at her arrival floor by pressing either an up or down button, in-
dicating the desired direction of travel, after which she gives the destination
floor inside the elevator. A more sophisticated alternative for calling an
elevator is a destination control system, in which up and down buttons are
replaced with keypads. By using the keypad, a passenger makes a transporta-
tion request by giving her destination floor to the device, before entering the
elevator. After the transportation request is processed, the device guides the
passenger to the right elevator - by processing we refer to the time that it
takes from the control system to evaluate which elevator is optimal to serve
this particular request. There is also a system where the serving elevator is
announced later, e.g., KL 118 in Kuala Lumpur, Malaysia. The time spent
on processing should be short, typically less than half a second, because if
CPU time is long, the situation could have changed so much that the solution
is already outdated. In addition, it is uncomfortable for the passenger if she
has to wait for a long time before even knowing, which elevator is going to

1

CHAPTER 1. INTRODUCTION 2

serve her.
Since new requests are received with varying time-intervals1, elevator

routing is also a dynamic problem. A common way to handle this kind of task
is to consider it as a snapshot problem: each moment defines a static problem,
which is then solved whenever a new request arrives and/or a certain amount
of time has passed. In addition to the dynamic nature of the problem, ele-
vator routing contains a degree of stochasticity, since each (transportation)
request can be viewed as a 3-dimensional random vector, whose components
are arrival time, arrival floor, and destination floor of the request.

Elevator routing is a complicated task, which requires simultaneous fulfill-
ment of several conditions in order to be efficient, practical, and comfortable
way to transport people. Naturally, elevators have certain capacity restric-
tions, and journey times of the passengers cannot be arbitrarily long but
some other constraints must be satisfied as well. For example, a common
principle is that passengers who are travelling upwards are not guided to
elevators that are going downwards, and vice versa. Partially due to the
complexity of the problem, it took a long time before a formulation in which
all constraints are given in exact mathematical form, was presented in [28]
by Ruokokoski et al. In Ruokokoski et al. [29] computational experiments
are performed to demonstrate the goodness of this formulation compared to
traditional methods that use collective control principle together with other
heuristic rules.

1.2 Objectives

In this paper, we define the elevator dispatching problem (EDP) and, based
on [28], formulate it as a snapshot mixed integer linear program. The readers
who are not yet familiar with the terminology, a mixed integer linear program
refers to an optimization problem in which objective function and constraints
are given in a linear form, such that some of the decision variables are re-
quired to be integers. In our formulation, we assume that the elevators are
administered by a destination control system, and that each elevator shaft
contains only one single-deck elevator. Furthermore, the stochastic nature of
the problem will not be considered.

Linear constraints of the EDP formulation form a structure called a poly-
tope. The main purpose of this paper is to analyze this polytope and its
properties. Due to the complexity of the problem, the structure of the poly-
tope is very challenging to study, so most of the analysis is restricted to two
special cases, an up-peak traffic pattern and a down-peak traffic pattern. An

1Alexandris [1] showed that arrival process follows a Poisson process.

CHAPTER 1. INTRODUCTION 3

up-peak traffic pattern is a situation in which most or all of the passengers
travel from the lobby to the upper floors of the building; down-peak traffic
is the opposite situation. A typical example of up-peak traffic is the morn-
ing peak, when people come to work and they must travel upwards in order
to get to their offices; similarly, at the end of the day, a down-peak occurs
when people are travelling to the lobby to exit the building. Ruokokoski et
al. [28] presented some polyhedral results of one down-peak traffic pattern,
but the polyhedral structure of up-peak traffic patterns has not earlier been
studied at all. Our aim is to fill in this gap by studying separately three up-
peak traffic patterns, where each pattern arises from a different assumption
on the number of elevators or their capacity. Although up-peak and down-
peak traffic patterns are more or less opposite situations, their polyhedral
structures are surprisingly different. In order to see these differences, we also
present the main polyhedral results of the down-peak traffic pattern studied
by Ruokokoski et al. [28].

1.3 Structure

The rest of this thesis is structured as follows: in Chapter 2 we conduct
a short literature review in the elevator dispatching problem and introduce
some other integer programming problems that are strongly related to el-
evator routing. In Chapter 3 we present the main concepts of polyhedral
and graph theory and derive some combinatorial results that are needed in
later chapters. Chapter 4 considers linear and integer linear programming
on a general level: we talk about relaxations, modeling techniques, and the
role of polyhedral combinatorics in the field of our study. In that chapter,
we also describe some of the most common integer programming algorithms.
Chapters 5, 6, and 7 focus entirely on the elevator dispatching problem. The
notation of the chapters relating to the EDP is tried to kept as similar as
possible as that in [28]. Chapter 8 summarizes the main results of our study.

Chapter 2

Literature Review

2.1 Travelling Salesman Problem

One of the most studied problems in the field of optimization is the travelling
salesman problem (TSP). In the TSP, a salesman must travel through a list
of cities such that each city gets visited exactly once, and finally return to
the origin city. The question is, which route minimizes the travelling costs.
Although the problem is simple to describe, it is very difficult to solve.

The origins of the TSP are not known, but the first mathematical formu-
lation was presented by W.R. Hamilton and Thomas Kirkman in the 1800s.
In the 1950s, the problem grew in popularity among scientific circles, when
George Dantzig, Delbert Ray Fulkerson, and Selmer M. Johnson expressed
the TSP as an integer linear program and solved a large instance of the
problem at that time by using the cutting plane method [8]. 1

Many different forms of the TSP have been studied during the decades.
In the symmetric travelling salesman problem (sTSP) the travelling costs
between each two cities are the same regardless the direction of travel. In
contrast, in the asymmetric travelling salesman problem (aTSP), the trav-
elling cost depends on the direction, which is often the situation when we
consider the prices of flight tickets. If more than one salesman can visit cities,
the problem is known as multi travelling salesman problem (mTSP). In the
mTSP we can, e.g., set a minimum or maximum number of cities, in which
one salesman can visit. A comprehensive presentation of different TSP vari-
ations can be found in the work ”The Traveling Salesman Problem and Its
Variations” [14].

1The cutting plane method is introduced in Section 4.5.

4

CHAPTER 2. LITERATURE REVIEW 5

2.2 Vehicle Routing Problem

The vehicle routing problem (VRP) is a generalization of the TSP with the
following setup: there are a number of vehicles available, which must deliver
goods to a list of customers, each of them having a certain demand. The
goods to be delivered are assumed to be of the same product. By requiring
that each vehicle must start and end their route at a depot, the objective
is to find a set of routes satisfying customers’ demands, such that the total
route cost is minimized. It is also usually assumed that splitting a customer’s
delivery is not possible, i.e., each customer must be visited by exactly one
vehicle. The first VRP formulation was made by Dantzig and Ramser [9] in
order to optimize the costs of petrol deliveries.

The problem described above is the VRP in its very basic form. As in the
case of the TSP, there are numerous variations of the VRP and no consensus
exists how to classify them. Pisinger and Ropke [26] propose a classification
into five different categories:

1. Vehicle routing problem with time windows (VRPTW). In this variant
the customers are associated with time windows within which the visits
must be made. A typical example of the VRPTW is pizza delivery, in
which the maximum delivery time is often fixed to 30-60 minutes.

2. Capacitated vehicle routing problem (CVRP). In the CVRP each ve-
hicle has limited capacity. Some CVRPs can also have restrictions
relating to route lenghts or route durations.

3. Multi-depot vehicle routing problem (MDVRP). The MDVRP contains
multiple depots from which vehicles can start their routes.

4. Site-dependent vehicle routing problem (SDVRP). In this variant it is
stipulated that certain customers can only be served by certain vehicles.

5. Open vehicle routing problem (OVRP). In the OVRP it is not required
that vehicles must return to the depot.

The TSP and VRP are similar problems, but the latter incorporates a wider
variety of problems; indeed, the VRP of m uncapacitated vehicles can be
identified with the mTSP. In certain fields, such as in the logistics industry,
transportation optimization can significantly lower the total costs, and as a
result, the VRP has been a hot research topic for the past 50 years. Liter-
ature reviews on the VRP have been conducted, inter alia, by Laporte and
Norbert [20] and Laporte and Osman [21]. The recent developments and
publications regarding the subject are covered by Kumar and Panneerseel-
vam [19].

CHAPTER 2. LITERATURE REVIEW 6

2.3 Pickup and Delivery Problem

In the vehicle routing problem it was assumed that vehicles start their routes
from the depot, after which they can deliver the goods by driving straight
to the customers. If the goods to be delivered are not in stock, it requires
that vehicles must first leave the depot, pick up the goods from somewhere,
and then drive back to the depot before the VRP model can be applied. In
such cases, it would be more efficient if the goods could be delivered to the
customers straight from the pickup places.

In the pickup and delivery problem (PDP) each transportation request
comprises a pickup place and a destination: a vehicle must first pick up the
goods and then drive them to the destination. We require that vehicles must
start and end their routes at the depot. The VRP can be considered as
a special case of the PDP, in which all pickup places locate at the depot.
The objective in the PDP is to divide the transportation requests between
vehicles so that the total costs will be minimized.

As in the case of the TSP and the VRP, there are also several extensions
for the PDP. E.g., Savelsberg and Sol [30] presented the general pickup and
delivery problem (GPDP), which consists of a set of depots and allows the
vehicles to start or end their routes at any of them. Cortes et al. [6] in-
troduced and formulated another variant known as the pickup and delivery
problem with transfers (PDPT), in which transferring loads between vehicles
is allowed. In the case when the ”goods” to be delivered are people, the PDP
is called the dial-a-ride problem (DARP). The DARPs usually incorporate
restrictions on the passengers pickup and delivery times. Additionally, the
transportation time of a single passenger is required to stay below a certain
maximum limit. A typical example of the DARP is a door-to-door trans-
portation of elderly or disabled people.

2.4 Elevator Dispatching Problem

The elevator dispatching problem (EDP) is a dial-a-ride problem, in which
a set of passengers have to be picked up from their arrival floors and trans-
ported to their destination floors, so that a given objective function is mini-
mized and a set of constraints are satisfied. Usually, these constraints relate
to travel time, capacity of elevators and service order of passengers. Their
point is to guarantee that all passengers are delivered to their destination
floors as efficiently as possible.

Different forms of the EDP appear in the literature, although elevator
routing has historically gained relatively little attention compared to other

CHAPTER 2. LITERATURE REVIEW 7

similar problems, such as the VRP. Elevator routing that is based on a des-
tination control system, is one of the most common variants and also the
variant, which we chose for our study. Routing an elevator in a conventional
system is difficult as the destinations of passengers are not known in advance.
In addition to Ruokokoski et al. [28, 29], destination control systems have
been studied by, e.g., Koehler and Ottiger [18] and Tanaka et al. [33].

In some works relating to the EDP it has been assumed that elevator
shafts contain more than one car per shaft. If the cars are attached together,
passengers at consecutive floors can be served simultaneously, and if the cars
are separate, they can move independently as long as collisions are avoided.
The former case is known as the multi-deck EDP[16, 32] and the latter as
the multi-car EDP [17].

In terms of solving the EDP, most of the research is based on heuris-
tic methods such as artificial intelligence [31], neural networks [23], or local
search [22], whereas exact algorithms have been considered only in few ar-
ticles [15, 28, 33]. The reason for popularity of heuristic methods is due to
the complexity of the EDP, the real-time requirement that requests must be
responded very quickly but also the lack of a proper mathematical formu-
lation: as mentioned in Chapter 1, the first - and so far only - a complete
mathematical formulation for the EDP is provided by Ruokokoski et al. [28].

The relationship between the TSP, VRP, PDP, DARP, and EDP is illus-
trated in Figure 2.1.

CHAPTER 2. LITERATURE REVIEW 8

PDP

TSP

V RP

DARP

EDP

Figure 2.1: A Venn diagram representing the relationship between the TSP,
VRP, PDP, DARP, and EDP, where each class refers to the problem in its
basic form.

Chapter 3

Polyhedral and Graph Theory

3.1 Polyhedral Theory

A linear combination of vectors xi ∈ Rn, i = 1, . . . ,m, is a weighted sum

λ1x1 + · · ·+ λmxm, (3.1)

where λi ∈ R, i = 1, . . . ,m. If
∑m

i=1 λi = 1, the linear combination is called
affine. A set S is affine if for each x,y ∈ S, it follows that λx+(1−λ)y ∈ S.
From this definition it follows that affine sets are either lines or (hyper)planes.
The set of all affine combinations of elements of S ⊂ Rn form the affine hull
of S, which is denoted by aff(S). Clearly, for any affine set S, aff(S) = S.

A set of vectors {x1, . . . ,xm} is called linearly independent, if none of the
vectors can be represented as a linear combination of others. Formally,

λ1x1 + · · ·+ λmxm = 0⇒ λi = 0 ∀i = 1, . . . ,m. (3.2)

Vectors {x0,x1, . . . ,xm} are affinely independent if x1 − x0, . . . ,xm − x0 are
linearly independent. Linearly independent vectors are always affinely inde-
pendent, but (in general) not vice versa. If S is a set, which contains k + 1
but not k + 2 affinely independent vectors, we say that the dimension of S,
dim(S), is k.

When the linear combination (3.1) satisfies conditions
∑m

i=1 λi = 1 and
λi ≥ 0, ∀i ∈ {1, . . . ,m}, it is called a convex combination. A set S is convex
if for each x,y ∈ S, and λ ∈ [0, 1], it follows that λx + (1 − λ)y ∈ S. All
points in a convex set can be represented as a convex combination of the
other points. Geometrically convexity means that the segment joining any
two points of a convex set lies entirely within that set. The convex hull of
an set S, conv(S), is the smallest convex set containing S. If S is convex,
conv(S) = S.

9

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 10

Convexity plays a central role in linear optimization problems, in which
the feasible region of solutions is always of the same form: it consists of the
intersection of finitely many hyperplanes. Let us give the following definition.

Definition 1. A set P ⊂ Rn is a polyhedron if it can be represented as the
intersection of finitely many half-spaces, i.e.

P = {x ∈ Rn|Ax ≤ b} ,A ∈ Rm×n,b ∈ Rm (3.3)

If a polyhedron is bounded, meaning that it fits inside a ball of finite
radius, then the polyhedron is called a polytope1 From the point of view
of this study, all interesting polyhedra are bounded, and for this reason,
forthcoming definitions will be based on polytopes. It is relatively easy to
show that each polytope is a convex set [3]. A less trivial fact relates to the
”corners” of a polytope. In order to state this result, we first need to define,
what a corner means.

Definition 2. Let P be a polytope. A vector x ∈ P is an extreme point of
P if there are no vectors y, z ∈ P , y, z 6= x, and a scalar λ ∈ [0, 1], such that
x = λy + (1− λ)z.

Next result shows that a polytope is uniquely determined by its extreme
points.

Theorem 1. Let X be the set of extreme points of a non-empty polytope
P . Then conv(X) = P .

Proof. See [3].

If all the extreme points of P are integers, we say that P is an integral
polytope. If the extreme points are binary valued, P is a 0-1-polytope.

A polytope comprises elements of different dimensionality. To see, what
this means, consider a polytope P defined by (3.3). A valid inequality for P
is a linear inequality d′x ≤ e, where d, e ∈ Rn, if all points of P satisfy that
inequality. A valid inequality d′x ≤ e is supporting if for some point x0 ∈ P
it holds d′x0 = e. A set F ⊂ P whose points satisfy this equality, i.e.,

F = {x ∈ P |d′x0 = e}, (3.4)

is called a face of P ; we say that F is induced by the supporting inequality
d′x ≤ e. One should note that P itself is a face of P , because 0′x ≤ 0 is a
supporting inequality for any polytope. A 0-dimensional face of P is called a

1A reader should note that different definitions of a polytope appear in literature. In
this work, we stick with the given definition.

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 11

vertex, whereas a 1-dimensional face is known as an edge. Suppose now that
P is a k-polytope, i.e., the dimension of P is k. Then a (k − 1)-dimensional
face, (k − 1)-face, is called a facet.

An inequality a′ix ≤ bi in the system Ax ≤ b is called an implicit equality
if all feasible solutions of Ax ≤ b satisfy a′ix = bi. The subsystem of
all implicit equalities is denoted by (A=,b=). The rank of A=, rank(A=),
indicates the number of linearly independent rows or columns in A=. Next
theorem shows how dim(P) depends on the implicit equalities of P .

Theorem 2. Let P = {x ∈ Rn|Ax ≤ b} be a non-empty polyhedron. Then

dim(P) = n− rank(A=) (3.5)

Proof. See [7].

When A is large in size, it may be difficult to determine or even estimate
the dimension of P just by trying to find as many affinely independent solu-
tions as possible. All implicit equalities are not usually known, so calculating
rank(A=,b=) is not possible either. We can, however, create a subsystem
of (A=,b=), say (A=

S ,b
=
S), by choosing all known implicit equalities. Since

(A=
S ,b

=
S) ⊂ (A=,b=), it holds that rank(A=

S) ≤ rank(A=). Now by using
Theorem 2, one gets an upper bound for the dimension of P :

dim(P) ≤ n− rank(A=
S) (3.6)

If we can now find n − rank(A=
S) + 1 affinely independent solutions for P ,

the obtained upper bound is strict. Unfortunately, showing a set of vectors
affinely or linearly independent is very difficult in general. For this reason,
the proving is often based on the specific structure of the constraint matrix
to be studied. In our study, the following proposition is found useful:

Proposition 1. Let {x1, . . . ,xm} be a set of n−vectors, n ≥ m, and de-
note the ith entry of xj by xji . If there exists a sequence of ordered pairs
(i1, j1), . . . , (im, jm), ik ∈ {1, . . . , n}, jk ∈ {1, . . . ,m} such that for each
k = 1, . . . ,m

1) xjkik 6= 0, and

2) xjik = 0 ∀j /∈ {j1, . . . , jk},
then x1, . . . ,xm are linearly independent.

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 12

Proof. It is obvious that if xj1 , . . . ,xjm are linearly independent, then
x1, . . . ,xm are also linearly independent. Consider a linear combination
λ1x

j1 + · · ·+ λmxjm for which it holds that
∑m

k=1 λkx
jk = 0. Now,(m∑

k=1

λkx
jk

)
i=i1

=
m∑
k=1

λkx
jk
i1

= λ1x
j1
i1

+
m∑
k=2

λk xjki1︸︷︷︸
=0 by 2)

= λ1x
j1
i1

= 0.

But since xj1i1 6= 0 by the first assumption, λ1 must be 0. Similarly,(m∑
k=1

λkx
jk

)
i=i2

=
m∑
k=1

λkx
jk
i2

= λ1x
j1
i2

+ λ2x
j2
i2

+
m∑
k=2

λkx
jk
i2

= λ2x
j2
i2

= 0

implies that λ2 = 0. By continuing the process, one obtains λ1 = · · · = λm =
0, which shows that xj1 , . . . ,xjm are linearly independent.

For example, if a matrix is defined by

A =

0 1 2 3
0 1 2 0
4 1 2 3
0 1 0 0

 ,
we can show that its columns are linearly independent by choosing (i1, j1) =
(4, 2), (i2, j2) = (2, 3), (i3, j3) = (1, 4), (i4, j4) = (3, 1), and then applying
Proposition 1. Another useful way to determine the rank of a matrix is given
by Proposition 2.

Proposition 2. Let Ax = b be a system of linear equations a′ix = bi, where
A ∈ Rm×n, x ∈ Rn, b ∈ Rm, and n > m. If Ax = b has a solution, and
there exists vectors xi ∈ Rn, i = 1, . . . ,m, such that a′kx

i = bk ∀k 6= i but
a′ix

i 6= bi, then rank(A) = m.

Proof. We show first that vectors [a′i,−bi], i = 1, . . . ,m, are linearly indepen-
dent. Assume, by contradiction, that this is not true, in which case one of the
vectors can be represented as a linear combination of the others. Formally,
for some k ∈ {1, . . . ,m} ∃ λ ∈ Rm−1 such that

[a′k,−bk] =
∑

i∈{1,...,m}:i 6=k

[a′i,−bi]λi.

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 13

By taking the dot product with a vector [xk
′
, 1], we obtain

[a′k,−bk] · [xk
′
, 1] =

∑
i∈{1,...,m}:i 6=k

[a′i,−bi] · [xk
′
, 1]λi

⇔ a′kx
k − bk =

∑
i∈{1,...,m}:i 6=k

(a′ix
k − bi︸ ︷︷ ︸
=0

)λi = 0

⇔ a′kx
k = bk,

which is a contradiction. Hence, [a′i,−bi], i = 1, . . . ,m, are linearly indepen-
dent and rank([A,−b]) = m. But since Ax = b has a solution, vector b can
be represented as a linear combination of the columns of A, in which case
rank([A,−b]) = rank(A) = m, and the claim follows.

3.2 Graph Theory

A directed graph, or simply a digraph, G = (V,A) is an ordered pair, where
V is a set of vertices and A is a set of arcs that are ordered pairs of elements
of V . An arc between vertices i and j is denoted by (i, j). If arcs are defined
as unordered pairs of V , then G is called an undirected graph. In such a case
we talk about edges instead of arcs, and they are denoted by E. An edge
between vertices i and j is denoted by {i, j}. A loop is an arc, which connects
a vertex to itself, i.e., a pair containing the same element twice. If a graph
contains no loops it is called a simple graph. A simple undirected graph in
which every pair of distinct vertices is connected by a unique arc is called a
complete undirected graph. A complete digraph is defined similarly with the
exception that it contains a unique pair of arcs for each pair of vertices, one
for both directions.

A walk in a graph is a sequence (v0, a1, v1, a2, . . . , an, vn), where ai, i =
1, . . . , n, is an arc connecting vi−1 and vi, respectively. If v0 = vn, then the
walk is called a cycle. A graph which contains no cycles is an acyclic graph.
A walk is called a path if all its vertices are distinct; a walk is called a trail if
all its arcs are distinct. If the first and the last vertices are the same, but all
other vertices are distinct, then a walk is a closed path, which is also known
as a circuit. If each vertex pair (vi−1, vi), i = 1, . . . , n, of a path is connected
by a unique arc in the underlying graph, then the path can be denoted by a
shorter notion (v0, v1, . . . , vn) without the possibility of a misunderstanding.
A graph is connected if for any v, q ∈ V there is an undirected walk from
v to q, i.e. a walk in which the directions of arcs are ignored. If there is a
walk between each pair of vertices, then the graph is strongly connected. An

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 14

acyclic connected, undirected graph is a tree. Different graphs are illustrated
in Figure 3.1.

Given a directed graph G = (V,A) and a set S ⊂ V , the cutset of S,
δ(S), contains arcs whose one endpoint belongs to S and the other one to S.
Formally,

δ(S) =
{

(i, j) ∈ A|i ∈ S, j /∈ S or i /∈ S, j ∈ S
}
. (3.7)

The set of arcs whose both endpoints lie in S is denoted by ρ(S), i.e.,

ρ(S) =
{

(i, j) ∈ A|i, j ∈ S
}
. (3.8)

These sets are also well-defined when G is an undirected graph: one simply
needs to replace (i, j) with {i, j}.

Denote the vertex set of G by v(G) and the arc set by α(G). A graph
H is a subgraph of G if v(H) ⊂ v(G) and α(H) ⊂ α(G). We say that H
is a vertex-induced subgraph of G if v(H) ⊂ v(G) and H contains all the
arcs of G whose both endpoints are in H, i.e. α(H) = {(i, j) ∈ α(G)|i ∈
v(H), j ∈ v(H)}. Similarly, H is an arc-induced subgraph if α(H) ⊂ α(G)
and H contains all the vertices, which are the endpoints of the arc set α(H),
i.e. v(H) = {i ∈ v(G)|α(H) ⊂ (i, v(G)) ∪ (v(G), i)}.

3.3 Combinatorics

3.3.1 Selections

The fundamentals of combinatorics relate to the question in how many ways
k objects can be selected from a set of n objects. To answer this question
properly, we must first define whether the order in which the objects are
selected is significant or not, and can the same object be selected more than
once. This leaves four cases to consider:

1. Order not significant and repetitions not allowed. Such a selection is
called a k-combination of an n-set.

2. Order not significant and repetitions allowed. Such a selection is called
a k-multicombination of an n-set.

3. Order significant and repetitions not allowed. Such a selection is called
a k-permutation of an n-set.

4. Order significant and repetitions allowed. Such a selection is called a
k-tuple of an n-set.

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 15

4

5

1

2

3

(a) A simple connected, undirected
graph

4

5

1

2

3

(b) A simple disconnected digraph

4

5

1

2

3

(c) A tree

4

5

1

2

3

(d) A strongly connected graph

Figure 3.1: Four different graphs defined over same vertex set
V = {1, . . . , 5}.

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 16

The next theorem answers our question in all four cases.

Theorem 3.

1. The number of k-combinations of an n-set is
(
n
k

)
:= n!

k!(n−k)! ,

where n! = n ∗ (n− 1) ∗ · · · ∗ 2 ∗ 1 is the factorial of n.

2. The number of k-multicombinations of an n-set is
(
n+k−1

k

)
.

3. The number of k-permutations of an n-set is n!
(n−k)! .

4. The number of k-tuples of an n-set is nk.

Proof. We prove the claims in order 4, 3, 1, and 2. The claim number 4
is obvious because the first object can be selected in n ways, the second
object can also be selected in n ways etc., leaving the number of k-tuples as
n ∗ · · · ∗ n︸ ︷︷ ︸

k times

= nk. When repetitions are not allowed but the order is significant,

the first object can be selected in n ways, the second object in n − 1 ways,
and the kth object in n−(k−1) ways. Hence, the number of k-permutations
is n ∗ (n − 1) ∗ · · · ∗ (n − (k − 1)) = n!/(n − k)!. Since selected k objects
arise from k! different orders, the number of k-combinations is obtained by
dividing the number of k-permutations by k!.

The claim number 2 is a bit trickier. Let xi ≥ 0, i = 1, . . . , n be the
number of times object i gets chosen. As k objects are selected in total,
it must hold that

∑n
i=1 xi = k, which means that the number of ways of

choosing n non-negative integers xi whose sum is k equals to the number of
k-multicombinations. Suppose next that we put n + k − 1 boxes in a row,
and we place a ball in n− 1 of them, such that each box can contain at most
one ball. Let x1 now denote the number of empty boxes before the first one
that contains a ball. Let xi, 2 ≤ i ≤ n − 1, be the number of empty boxes
between the (i− 1)st and ith balls, and xn the number of empty boxes after
the (n − 1)st ball. As n − 1 boxes out of n + k − 1 boxes contain a ball, it
must hold that

∑n
i=1 xi = (n + k − 1) − (n − 1) = k. The number of ways

to choose the boxes, where the balls are to be placed in, can be chosen by(
n+k−1
n−1

)
ways. Since(

n+ k − 1

n− 1

)
=

(n+ k − 1)!

(n− 1)!(n+ k − 1− (n− 1))!
=

(n+ k − 1)!

(n+ k − 1− k)!k!

=

(
n+ k − 1

k

)
,

the claim is proved.

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 17

3.3.2 Principle of Inclusion and Exclusion

Suppose we are given three finite sets A, B, and C, whose elements are
known, and we would like to know the number of the elements lying in the
union of the sets. Let the cardinality of a set, i.e., the number of the elements
in that set, be denoted by | · |. If the sets are disjoint, i.e., A∩B = A∩C =
B∩C = ∅, the cardinality of the union is simply |A∪B∪C| = |A|+ |B|+ |C|.
In general case this formula is not valid, because the elements in the sets
A∩B, A∩C, and B ∩C are counted twice. Hence, the cardinalities of these
sets must be subtracted from |A| + |B| + |C|. However, if A ∩ B ∩ C is not
empty, this subtraction results in that the elements in A∩B ∩C will not be
counted anymore. Hence, the cardinality of that set must be added after the
subtraction, which leads to a formula

|A∪B∪C| = |A|+ |B|+ |C|−|A∩B|−|A∩C|−|B∩C|+ |A∩B∩C|. (3.9)

The situation is illustrated in Figure 3.2.

A

B

C

A ∩B

A ∩ C

B ∩ C

A ∩B ∩ C

Figure 3.2: A Venn diagram of three intersecting sets.

If sets A, B, and C are denoted by A1, A2, and A3 the formula (3.9) can
be written in more compact form∣∣∣∣ 3⋃

i=1

Ai

∣∣∣∣ =
∑

∅6=J⊂{1,2,3}

(−1)|J |−1
∣∣∣∣⋂
j∈J

Aj

∣∣∣∣. (3.10)

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 18

The next theorem generalizes this result:

Theorem 4. Let (A1, . . . , An) be a family of subsets of X. Then the number
of elements lying in the union of Ai’s can be counted by the formula∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣ =
∑

∅6=J⊂{1,...,n}

(−1)|J |−1
∣∣∣∣⋂
j∈J

Aj

∣∣∣∣ (3.11)

Proof. The claim follows easily from the Binomial Theorem but since we do
not present it in this work, we skip the proof. See, e.g., [4].

3.3.3 Stirling, Bell, and Lah Numbers

Stirling numbers arise in several combinatorial problems. Two different sets
of numbers are named after James Stirling, who introduced them in the
18th century. The Stirling numbers of the first kind, s(n, k), are the integer
coefficients in the falling factorial expansion defined by

(x)n :=
n−1∏
k=0

(x− k) =
n∑
k=0

s(n, k)xk, (3.12)

where x ∈ R. The reason why these numbers play important role in com-
binatorics, is that the absolute value of s(n, k) represents the number of
permutations of n elements with k cycles. 2

In terms of this thesis, more interesting numbers are the Stirling numbers
of the second kind S(n, k), which indicate the number of ways to partition
a set of n objects into k non-empty subsets. This property makes them
extremely useful for our later purposes. It is quite straightforward to show
that S(n, k) can be characterized by the equation

n∑
k=0

S(n, k)(x)k = xn, (3.13)

where (x)k is the kth falling factorial of x ∈ R. By combining the character-
izations (3.12) and (3.13), we see a strong connection between the Stirling

2In combinatorics, a cycle means a subset of a permutation whose elements trade places
with one another. Due to technical reasons, we do not give a formal definition.

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 19

numbers of the first and second kind:

n∑
k=0

S(n, k)(x)k =
n∑
k=0

S(n, k)
k∑

m=0

s(k,m)xm = xn ∀x ∈ R

⇔
n∑
k=0

min{k,n−1}∑
m=0

S(n, k)s(k,m)xm +
(
S(n, n)s(n, n)− 1

)
xn = 0 ∀x ∈ R

⇒
n∑
k=0

S(n, k)s(k,m) = δnm, (3.14)

where δnm is the Kronecker delta, a function that takes the value of 1 if
n = m, and 0 otherwise.

Next, we will present an explicit formula for calculating the Stirling num-
bers of the second kind. We need the following proposition:

Proposition 3. The number of surjections from a set of n elements to a set
of k elements is given by

k∑
i=0

(−1)i
(
k

i

)
(k − i)n. (3.15)

Proof. Let X be the set of all mappings from N := {1, . . . , n} to {1, . . . , k}.
Clearly, |X| = kn. Define Ai, for each i ∈ {1, . . . , k}, to be the set of
mappings f for which i /∈ f(N). The image of each element in N can now be
chosen in k−1 different ways. As there are n elements in N , |Ai| = (k−1)n.
Similarly, if AI :=

⋂
i∈I Ai, I ⊂ {1, . . . , k}, denotes the set of mappings for

which I 6⊂ f(N), we have that |AI | = (k − |I|)n.
By the definition of a surjection, all elements in {1, . . . , k} must have

a preimage, and hence a surjection cannot belong to any of the sets Ai.
By using De Morgan’s laws and Theorem 4, we find that the number of
surjections is equal to∣∣∣∣ k⋂

i=1

Ai

∣∣∣∣ =

∣∣∣∣ k⋃
i=1

Ai

∣∣∣∣ =

∣∣∣∣X \ k⋃
i=1

Ai

∣∣∣∣ = |X| −
∑

∅6=I⊂{1,...,k}

(−1)|I|−1|AI |.

There are
(
k
|I|

)
sets whose cardinality is |I|, so we can let |I| run from 1 to k,

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 20

which gives

|X| −
∑

∅6=I⊂{1,...,k}

(−1)|I|−1|AI | = kn −
k∑
|I|=1

(−1)|I|−1
(
k

|I|

)
(k − |I|)n

=

(
k

0

)
(−1)0(k − 0)n +

k∑
|I|=1

(−1)|I|
(
k

|I|

)
(k − |I|)n

=
k∑
i=0

(−1)i
(
k

i

)
(k − i)n,

and the claim follows.

Proposition 4. The Stirling number of the second kind S(n, k) is equal to

S(n, k) =
1

k!

k∑
j=1

(−1)k−j
(
k

j

)
jn. (3.16)

Proof. Each surjection from {1, . . . , n} to {1, . . . , k} defines a partition of a
set of n elements into k non-empty subsets. Since the order of the parts in
a partition is not relevant, the same partition arises from k! surjections, i.e.,
the number of surjections is S(n, k)k!. On the other hand, the same number
is given by (3.15), which results in

S(n, k)k! =
k∑
i=0

(−1)i
(
k

i

)
(k − i)n, i→ k − j

⇔ S(n, k) =
1

k!

k∑
j=0

(−1)k−j
(

k

k − j

)
jn =

1

k!

k∑
j=1

(−1)k−j
(
k

j

)
jn

As an immediate consequence of Proposition 4, the number of (all possi-
ble) partitions of a set of n elements is

Bn =
n∑
k=0

S(n, k) =
n∑
k=0

1

k!

k∑
j=1

(−1)k−j
(
k

j

)
jn. (3.17)

The numbers Bn, n = 1, 2, . . ., are known as the Bell numbers named after
Eric Temple Bell, who studied them in the 1930s.

CHAPTER 3. POLYHEDRAL AND GRAPH THEORY 21

In addition to the Stirling numbers of the second kind, which give the
answer in how many ways n objects can be partitioned into k non-empty
subsets, we are also interested to know in how many ways n objects can
be partitioned into k linearly ordered non-empty subsets. The number of
such partitions is called the Lah number L(n, k). The Lah numbers can be
calculated by using the formula of Proposition 5.

Proposition 5. The Lah number L(n, k) is equal to

L(n, k) =

(
n− 1

k − 1

)
n!

k!
. (3.18)

Proof. We first choose a permutation of n elements, which can be done by
n! ways. Then we slice the permutation into k parts by choosing k − 1 cut
points out of n − 1 possible cut points. This can be done in

(
n−1
k−1

)
ways.

When we take into account that the order of the parts is not relevant, i.e.,
we divide by k!, the desired result follows from the multiplicative principle
of independent events.

The Stirling numbers and the Lah numbers are connected by a relation

L(n, k) =
n∑
j=1

s(n, j)S(j, k), (3.19)

for which reason the Lah numbers are sometimes referred to as the Stirling
numbers of the third kind.

The importance of the Stirling, Bell, and Lah numbers for our study is
seen in chapters 6 and 7, when we determine the number of feasible solutions
to different EDP traffic patterns.

Chapter 4

Integer Programming

4.1 Classification of Optimization Problems

Discrete optimization problems, such as the VRP, are often formulated via
methods of linear programming. By linear programming we mean that a
linear cost function is minimized (or maximized) with respect to linear con-
straints. Linear optimization problems are well-studied and there are nu-
merous algorithms, which are developed to solve different kinds of linear
problems. In nonlinear programming the situation is crucially different be-
cause algorithms of that field are usually able to find only local exreme values.
When optimization problems involve integer constraints, linear modeling is
even more important, since integer optimization problems are in general hard
to solve, and non-linear modeling would only add to the complexity. In this
thesis, we focus only on linear modeling.

Consider a general linear optimization problem, LP,

zLP = min c′x

s.t. Ax ≤ b, (4.1)

where A ∈ Rm×n, b ∈ Rn, c ∈ Rm, and x ∈ Rn. If solutions are constrained
to be integer-valued, i.e., x ∈ Zn, the problem is called an integer linear
optimization problem, ILP. In mixed integer linear problems, MILP, an inte-
ger restriction is set on some of the decision variables, and in binary linear
optimization problems, BILP, decision variables take on the values 0 or 1. In
the case of ILPs and BILPs, the elements of matrix A and coefficients b and
c are usually integers or rational numbers.

Many linear programming algorithms require that decision variables are
non-negative and for the linear constraints to be in equality form. This is
not a real problem, since such a transformation can always be done. The

22

CHAPTER 4. INTEGER PROGRAMMING 23

decision variable x can be written as a sum of two non-negative variables,
i.e., x = x+ − x−, where x+,x− ≥ 0. The inequality constraint Ax ≤ b can
be expressed as an equality constraint by introducing a slack variable s+ ≥ 0
and by setting Ax + s+ = b. By making the substitutions y = [x+,x−, s+],
f = [c,−c,0], and D = [A,−A, I], where I denotes the identity matrix, the
following formulation is obtained:

zLP = min f ′y

s.t. Dy = b, (4.2)

y ≥ 0.

This formulation is called the standard form of a linear programming prob-
lem.

4.2 Relaxations

Consider a minimization problem

z = min{c(x)| x ∈ X ⊂ Rn}, (4.3)

where c is a function c : X → R. A relaxation of the problem (4.3) is any
minimization problem

zR = min{cR(x)| x ∈ XR ⊂ Rn} (4.4)

satisfying conditions
1) XR ⊇ X and
2) cR(x) ≤ c(x) ∀x ∈ X.
According to these conditions, it is easy to see that zR ≤ z as
zR = min{cR(x)|x ∈ XR ⊂ Rn} ≤ min{cR(x)|x ∈ X ⊂ Rn} ≤ min{c(x)|x ∈
X ⊂ Rn} = z. Moreover, if x∗R is an optimal solution to (4.4) such that
x∗R ∈ X and cR(x∗R) = c(x∗R), then x∗R is also optimal to (4.3).

From the standpoint of this thesis, the most important relaxation is a lin-
ear programming relaxation, which means the removal of integer constraints.
If an ILP is defined by

zILP = min{c′x| Ax ≤ b,x ∈ Zn}, (4.5)

then its linear programming relaxation is

zLP = min{c′x| Ax ≤ b,x ∈ Rn}. (4.6)

The cost function is the same in both problems, so whenever an optimal
solution of the LP is integer-valued it also solves the ILP. Due to this reason,
LP relaxations plays a central role in integer programming algorithms, which
will be discussed in Section 4.5.

CHAPTER 4. INTEGER PROGRAMMING 24

4.3 Modeling Techniques

4.3.1 Related Variables

A binary decision variable x ∈ {0, 1} is commonly used in situations, where
there are two possible choices: either we choose something (x = 1) or we do
not (x = 0). Suppose there are n possible choices and we must choose exactly
one. If each possible choice is a binary decision variable xi, the situation can
be expressed by the equation

n∑
i=1

xi = 1. (4.7)

If at most one choice can be made, the equality sign in the equation is replaced
with an inequality sign. Should binary variables be dependent of each other,
such that at most a ∈ {0, . . . , n} variables can take the value 1, this can be
expressed with a constraint

n∑
i=1

xi ≤ a. (4.8)

Often, there are restrictions on consecutive decision variables: if at most a
variables out of m, m ≥ a, consecutive variables can take the value 1, it can
be modeled by a constraint

j+m−1∑
i=j

xi ≤ a, j ∈ {1, . . . , n−m+ 1}. (4.9)

If a decision x implies another decision y, it can be expressed by

x ≤ y. (4.10)

Additionally, should the same hold vice versa, then

x− y = 0. (4.11)

4.3.2 Disjunctive Constraints

Suppose we are given m constraints a′iy ≥ bi, i = 1, . . . ,m, where y ∈ R|ai|,
with a requirement that at least k of them must be satisfied. One way to
model the requirement, is to introduce m binary variables xi, i = 1, . . . ,m,

CHAPTER 4. INTEGER PROGRAMMING 25

and set

(a′iy − bi)xi ≥ 0, i = 1, . . . ,m, (4.12)
n∑
i=1

xi ≥ k, (4.13)

xi ∈ {0, 1}, i = 1, . . . ,m (4.14)

A disadvantage in this system is that the constraints are not anymore in a
linear form. This issue can be avoided with the following formulation

a′iy ≥ bi −M(1− xi), i = 1, . . . ,m, (4.15)
n∑
i=1

xi ≥ k, (4.16)

xi ∈ {0, 1}, i = 1, . . . ,m, (4.17)

where M is a large constant satisfying

M ≥ max
y∈R|ai|

(a′iy − bi). (4.18)

In practice, it is wise to choose M to be as small as possible, because opti-
mization problems involving a constraint (4.15) in which M is large tend to
be hard to solve.

4.3.3 Degree and Subtour Elimination Constraints

Consider a complete undirected graph G = (V,E), and suppose we want to
form a closed path by using vertices from a set S ⊂ V . Also let xe be a
binary decision variable that takes the value 1 if edge e is used in a path and
0 otherwise. Then, in a closed path, the first vertex is visited twice (the first
and last vertex are the same) and all other vertices are visited once. It is
obvious that a necessary condition for a closed path is a degree constraint∑

e∈δ(i)

xe = 2 ∀i ∈ S, (4.19)

where δ(i) is the cutset of S and determined by (3.7). The condition (4.19)
is still not sufficient to guarantee that chosen edges form a closed path,
because it allows so called subtours. E.g., if S = {1, 2, 3, 4, 5, 6} ⊂ V , we
can set that x{1,2} = x{2,3} = x{3,1} = x{4,5} = x{5,6} = x{6,4} = 1 and notice
that the condition (4.19) is satisfied, although the solution now contains two

CHAPTER 4. INTEGER PROGRAMMING 26

distinct closed paths. This problem can be tackled with a subtour elimination
constraint ∑

e∈ρ(S′)

xe ≤ |S ′| − 1, ∀S ′ ⊂ S, S ′ 6= ∅, S, (4.20)

where ρ(S ′) is given by the equation (3.8). A disadvantage of the constraint
is that it involves 2|S| − 1 inequalities that a solution must satisfy. Unfortu-
nately, due to the nature of integer programming, this is a problem, which
is often difficult to circumvent.

4.3.4 Precedence Constraints

Consider a complete directed graph G = (V,A) where {+0, p, q, 0} ⊂ V .
Suppose we want to form an open path containing all vertices such that it
starts from vertex +0, ends at vertex 0, and vertex p must be visited before
vertex q. Since +0 is the start vertex, 0 the end vertex, and all vertices must
be visited, we get the conditions∑

(+0,j)∈A

x+0,j = 1, (4.21)

∑
(i,+0)∈A

xi,+0 = 0, (4.22)

∑
(0,j)∈A

x0,j = 0, (4.23)

∑
(i,0)∈A

xi,0 = 1, (4.24)

∑
(i,j)∈δ(k)

xij = 2 ∀k ∈ V \ {+0, 0}, (4.25)

where xij is a binary decision variable indicating whether an arc (i, j) is used
or not. In order to guarantee that p is visited before q, we define a family of
sets, Spq, by

Spq =
{
S ⊂ V |{p, 0} ⊂ S, {q,+0} ⊂ S

}
and require that ∑

(i,j)∈A: i∈S, j∈S

xij ≥ 1 ∀S ∈ Spq. (4.26)

CHAPTER 4. INTEGER PROGRAMMING 27

The idea behind the constraint is the following: since S1 := V \{p, 0} belongs
to Spq, it follows that∑

(0,j)∈A:j∈S1

x0j +
∑

(p,j)∈A:j∈S1

xpj ≥ 1⇒
∑

(p,j)∈A:j∈S1

xpj ≥ 1⇒ xpi1 = 1

for some i1 ∈ S1. By choosing next S2 := V \ {p, 0, i1}, we get xi1,i2 = 1 for
some i2 ∈ S2. Now, it is obvious that after no more than |V | − 3 steps, we
obtain a path from p to q.

If there are several pair of vertices (pi, qi), i = 1, . . . , n, such that pi must
always precede qi, the constraints (4.26) can be written in the form∑

(i,j)∈A: i∈S, j∈S

xij ≥ 1 ∀S ∈ S, (4.27)

where

S =
{
S ⊂ V |∃i ∈ {1, . . . , n} s.t. {pi, 0} ⊂ S, {qi,+0} ⊂ S

}
.

The constraints (4.27) are often referred as precedence constraints, and they
were introduced by Balas et al. [2].

4.3.5 Strong Formulations

In linear programming, the time which is needed to solve a problem de-
pends primarily on the number of constraints and variables that are used in
the formulation. Hence, the fewer constraints and variables the formulation
contains, the better it is. In integer programming the situation is crucially
different: the goodness of a formulation is determined by the goodness of its
linear relaxation. To see what is meant by ”goodness”, consider an integer
programming problem

z = min c′x

s.t. x ∈ X,
(4.28)

where X is the set of feasible solutions, and the problem where X is replaced
by its convex hull:

z∗ = min c′x

s.t. x ∈ conv(X)
(4.29)

By Theorem 1, we know that conv(X) is a polyhedron, and hence (4.29)
is a linear programming problem. The optimal solution of an LP is always

CHAPTER 4. INTEGER PROGRAMMING 28

an extreme point of the underlying polyhedron, and since all extreme points
are now integers, we have that z∗ = z. Linear programming problems can
be solved efficiently 1 so, whenever the convex hull of integer solutions is
known, problem (4.28) is also efficient to solve. An unfortunate fact is that
convex hulls are rarely known and they can comprise exponentially many
linear constraints. Even if a convex hull may be impractical to form, good
approximations might still be available. This is useful, since integer pro-
gramming algorithms, such as the branch-and-bound, find the solution to
an interger programming problem by solving a sequence of LP problems,
whose number depends on the quality of the approximation. In practice,
the better the convex hull is known, the smaller is the number of LPs to be
solved. The following definition provides a means of quantifying the quality
of a formulation:

Definition 3. Let A and B be two formulations of the same integer program-
ming problem. If LPA and LPB denote the feasible sets of the corresponding
LP relaxations, formulation A is said to be at least as strong as formulation
B if LPA ⊂ LPB.

4.4 Polyhedral Combinatorics in Integer Pro-

gramming

4.4.1 Polyhedral Combinatorics in General

Polyhedral combinatorics is a branch of mathematics that studies the prob-
lems of counting and describing the faces of polytopes (or polyhedra). Re-
search in this area can be divided into two groups: mathematical and opti-
mization orientation. Mathematicians are interested in the number of differ-
ent dimensional faces of polytopes and how they are connected. A key tool
in this approach is the f -vector of a polytope: if the dimension of a polytope
is d, its f -vector is (f0, f1, . . . , fd−1), where fk, k = 0, . . . , d − 1, represents
the number of k-dimensional faces. If we concatenate the number one at
each end of the vector, we get the extended f -vector (1, f0, f1, . . . , fd−1, 1) =
(f−1, f0, . . . , fd). The coefficients of the extended f -vector satisfy Euler’s
formula

d∑
k=−1

(−1)kfk = 0, (4.30)

1In this context, ”efficiently” means that the problem can be solved in polynomial
time, which, in turn, means that the computational complexity of the problem grows
polynomially with respect to the size of the problem.

CHAPTER 4. INTEGER PROGRAMMING 29

which can be considered as the most important (known) relation between
the coefficients. For instance, it is easy to see that the extended f -vector of
a (3-dimensional) cube, which is (1, 8, 12, 6, 1), satisfies the formula.

From the point of view of this study, the more essential topic in polyhe-
dral combinatorics is the optimization aspect. In the field of optimization,
computer and systems scientists study the faces of specific polytopes that
arise from integer programming problems. Analysis is often restricted to just
0-1 polytopes, because many integer problems, including the TSP and the
PDP, can be formulated as BILPs. In particular interests are the facets 0-1
polytopes. In next two subsections, Section 4.4.2 and Section 4.4.3, we will
present some polyhedral results and facet-defining inequalities for the TSP
and the TSP with pickup and delivery.

4.4.2 Symmetric Travelling Salesman Problem

Consider the symmetric travelling salesman problem (TSP) introduced in
Section 2.1. Suppose we are given an undirected graph G = (V,E), where
each edge e ∈ E is associated with a travelling costs ce. The problem can be
formulated as the following BILP

min
∑
e∈E

cexe

s.t.
∑
e∈δ(i)

xe = 2, ∀i ∈ V, (4.31)

∑
e∈ρ(S)

xe ≤ |S| − 1, ∀S ⊂ V, S 6= ∅, V, (4.32)

xe ∈ {0, 1}, ∀e ∈ E, (4.33)

where xe = 1 if edge e is used in a solution, and 0 otherwise. When |V | =
n ≥ 3, it is easy to see that the number of edges is

|E| =
(
n

2

)
=

(n− 1)n

2
(4.34)

and the number of feasible solutions is

|H| = n!

2
. (4.35)

We define the symmetric travelling salesman polytope PE
TSP as the convex

hull of all feasible solutions, i.e.,

PE
TSP = conv{x ∈ {0, 1}|E|| x satisfies (4.31) and (4.32)}. (4.36)

CHAPTER 4. INTEGER PROGRAMMING 30

By Theorem 2, it is immediate that dim(PE
TSP) = |E| − rank(PE

TSP) ≤ |E| −
rank({x ∈ R|E|| x satisfies (4.31)}) = (n−1)n/2−n = n(n−3)/2. Grötschel
and Padberg [13] showed that the inequality holds as an equality:

dim(PE
TSP) =

1

2
n(n− 3). (4.37)

By using this result, they also showed that inequalities

xe ≤ 1, e ∈ E, (4.38)

and
xe ≥ 0, e ∈ E, (4.39)

define facets of PE
TSP whenever n ≥ 4 and n ≥ 5, respectively. These inequal-

ities are often considered as ”trivial” facets, although showing that they are
actually facet-defining is not trivial at all. Another family of facets is given
by the next proposition:

Proposition 6. Let n ≥ 6 and {u, v, w, u1, v1, w1} ⊂ V . Then the inequality

x{u,v} + x{u,w} + x{v,w} + x{u,u1} + x{v,v1} + x{w,w1} ≤ 4 (4.40)

defines a facet of PE
TSP .

Proof. See [13].

By counting the number of inequalities in (4.38), (4.39), and (4.40), we
find that PE

TSP comprises at least n(n − 1)/2 + n(n − 1)/2 + n(n − 1)(n −
2)(n− 3)(n− 4)(n− 5) ≈ n5 many facets. This gives rise to the question of
how many facets are needed to form the whole convex hull. In the case of
the symmetric travelling salesman problem, Yannakakis [34] showed that at
least exponentially many facets are needed; indeed, a lower bound for this
number is of the order 2

√
n. One should note that the exponential number of

facets in the symmetric case does not automatically mean that the number of
facets would be as large in the asymetric case; in fact, this problem remained
unsolved for a few decades until Fiori et al. [11] proved that exponentially
many facets are also needed in the case of the asymmetric travelling sales-
man problem. This means that generating all facets of a travelling salesman
polytope is not an efficient way to solve the original problem.

CHAPTER 4. INTEGER PROGRAMMING 31

4.4.3 Symmetric Travelling Salesman Problem with
Pickup and Delivery

Consider the symmetric travelling salesman problem with pickup and deliv-
ery, TSPPD, i.e., the TSP in which each request comprises a pickup vertex
and a delivery vertex that must be visited. Let G = (V,E) be a complete
undirected graph, where V is composed of pickup vertices P = {1, . . . , n},
delivery vertices D = {n+1, . . . , 2n}, a start depot vertex +0, and a terminal
depot vertex 0. In reality +0 and 0 represent the same depot but the pres-
ence of two different depot vertices simplify the formulation. The problem
can be formulated as follows:

min
∑
e∈E

cexe

s.t.
∑
e∈δ(i)

xe = 2, ∀i ∈ V, (4.41)

∑
e∈ρ(S)

xe ≤ |S| − 1, ∀S ⊂ V, S 6= ∅, V, (4.42)

∑
e∈δ(S)

xe ≥ 4, ∀S ∈ S (4.43)

x{+0,0} = 1, (4.44)

xe ∈ {0, 1}, ∀e ∈ E, (4.45)

where S =
{
S ⊂ V |∃i ∈ {1, . . . , n} s.t. {i, 0} ⊂ S, {n + i,+0} ⊂ S

}
.

The constraints (4.43) represent the precedence constraints of an undirected
graph, and they can be easily derived from the precedence constraints (4.27)
that are defined for a directed graph. The formulation we presented is origi-
nally from Ruland [24] with the exception that instead of (4.42) he used the
constraints ∑

e∈δ(S)

xe ≥ 2, ∀S ⊂ V, S 6= ∅, V, (4.46)

which is an alternative representation of the subtour elimination constraints.
The formulation we gave and the one from Ruland are not just equivalent,
but they are also equally strong (see Appendix A).

The number of edges in the TSPPD graph, |E|, and the number of feasible
solutions to the problem, |H|, are given by the next propositions:

Proposition 7. The number of edges in the TSPPD graph is equal to

|E| = 2n2 + n+ 1 (4.47)

CHAPTER 4. INTEGER PROGRAMMING 32

Proof. Let S1 and S2 be subsets of V and define |{S1, S2}| := |
{
{i, j} ∈ E|i ∈

S1, j ∈ S2}
}
|. When the symmetry is taken into account, we find that the

number of edges is

|E| = 1

2

(n∑
i=1

|{i, V }|︸ ︷︷ ︸
=2n2

+
n∑
i=1

|{n+ i, V }|︸ ︷︷ ︸
=2n2

+ |{+0, V }|︸ ︷︷ ︸
=n+1

+ |{0, V }|︸ ︷︷ ︸
=n+1

)
= 2n2 + n+ 1

Proposition 8. The number of feasible solutions to the TSPPD is

|H| = (2n)!

2n
(4.48)

Proof. Let Hi−1 be the set of feasible solutions when |P | = i − 1. Clearly,
any solution in Hi−1 can be extended to a solution of Hi by requiring that
the path goes also through vertices i and n+ i. Since i must be visited before
n+ i, the number of such extensions is

(
2i
2

)
. Thus,

|H| = |Hn| =
(

2n

2

)
|Hn−1| =

n∏
i=1

(
2i

2

)
|H1| =

n∏
i=1

(2i)!

2!(2i− 2)!
=

n∏
i=1

2i(2i− 1)

2

=
(2n)!

2n

Ruland [24] was the first who studied the polyhedral structure of the TSPPD
polytope, which is defined as

PE
TSPPD = conv{x ∈ {0, 1}|E|| x satisfies (4.41) - (4.44)}. (4.49)

Ruland showed that the dimension of PE
TSPPD is at most 2n2−n−2, but was

not able to give an exact formula. Ten years later, Dumitrescu [10] proved
that 2n2 − n− 2 is also a lower bound for the dimension, i.e.,

dim(PE
TSPPD) = 2n2 − n− 2. (4.50)

Ruland had proposed several valid inequalities that are satisfied by the
TSPPD, and now when the dimension was known, it was also possible to
study whether these inequalities are facet-defining or not. E.g., Dumitrescu
stated and proved the following proposition:

CHAPTER 4. INTEGER PROGRAMMING 33

Proposition 9. For any H = {i1, . . . , im} ⊂ P , the inequality

∑
e∈ρ(H)

xe +
m∑
j=1

x{ij ,n+ij} ≤ |H| (4.51)

defines a facet of the TSPPD polytope.

Proof. See [10].

Now, we can see that the TSPPD also has trivial facets: by choosing
H = {i}, i ∈ P in Proposition 9, it follows that x{i,n+i} ≤ 1 is a facet for
any i ∈ P . To the best of our knowledge, it is unclear if the TSPPD has any
other trivial facets of the form xe ≥ 0 or xe ≤ 1. Dumitrescu showed that
some of the precedence constraints are facet-defining as well:

Proposition 10. The inequality∑
e∈δ(S)

xe ≥ 4, (4.52)

is a facet of the TSPPD for any S ∈ S ′ :=
{
S ⊂ V |∃! i ∈ {1, . . . , n} s.t.

{i, 0} ⊂ S, {n+ i,+0} ⊂ S
}
2.

Proof. See [10].

4.5 Integer Programming Algorithms

In Section 4.5, we consider the integer programming problem

zILP = min c′x

s.t. Ax = b, (4.53)

x ∈ Zn+,

and its linear programming relaxation

zLP = min c′x

s.t. Ax = b, (4.54)

x ≥ 0,

where A ∈ Rm×n, b ∈ Rn, c ∈ Rm, x ∈ Rn, and n > m.

2∃! ”denotes that there is a unique”

CHAPTER 4. INTEGER PROGRAMMING 34

4.5.1 Simplex Algorithm

4.5.1.1 Basic Solutions

Consider the linear programming problem in the standard form (4.54). It can
be assumed that the rows of A are linearly independent; were they not, either
some of the constraints can be eliminated or the problem has no solutions.
Neither of the cases are thus interesting to study.

Since the rows of A are linearly independent, A must contain m lin-
early independent columns. By choosing such columns AB(1), . . . ,AB(m),
where AB(i) indicates the B(i)th column of A, we obtain a basis matrix
B = [AB(1), . . . ,AB(m)]. Because B is invertible, it determines the values of
basic variables by xB := B−1b = [xB(1), . . . , xB(m)]

′. The rest of the decision
variables are nonbasic variables xN , where N denotes the index set of non-
basic variables. When all nonbasic variables are set to zero, basic variables
and nonbasic variables define a basic solution x = [x′N ,x

′
B]′; in addition, if

x ≥ 0, the solution is called a basic feasible solution.
Let P be the polyhedron defined by the constraints of the problem, and

suppose we are given a basis matrix B that defines a basic feasible solution
x ∈ P . Since P is a convex set, for each point x ∈ P there exists a vector
d ∈ Rn such that x + θd ∈ P for some θ > 0. Such a vector d is called a
feasible direction at x.

Consider next a situation in which we move from point x to direction
d = [d′B,d

′
N]′, such that dj = 1 for some j ∈ N and di = 0 ∀i 6= j,

i ∈ N . In order to stay in the feasible region, we must determine θ so that
A(x + θd) = b⇔ θAd = 0. If one assumes that xB(i) > 0 ∀i ∈ {1, . . . ,m},
then θ > 0, in which case

0 = Ad =
n∑
i=1

Aidi =
m∑
i=1

AB(i)dB(i) + Aj = BdB + Aj

⇔ dB = −B−1Aj. (4.55)

The obtained vector d is called the jth basic direction. The case when xB(i) =
0 for some i ∈ {1, . . . ,m} will be considered in Section 4.5.1.4.

4.5.1.2 Reduced Costs

In terms of solving the problem (4.54), it is essential to know how the value
of the cost function c′x changes when moved along the jthe basic direction
d: a unit displacement (θ = 1) along d causes cj units change in the cost
function, where

cj = c′(x + d)− c′x = c′d = c′BdB + cj = cj − c′BB−1Aj. (4.56)

CHAPTER 4. INTEGER PROGRAMMING 35

Quantity cj is known as the reduced cost of the variable xj, and it can be
interpreted as follows: cj indicates the cost of one unit increase in the variable
xj, whereas the term −c′BB−1Aj represents the cost of the requirement that
Ax = b must hold. Since our goal is the minimization of the cost function,
we are interested in variables xj for which cj < 0. Indeed, it can be shown
that x is an optimal solution if c = [c′N , c

′
B]′ ≥ 0 [3]. It is sufficient to

consider only nonbasic variables, since the reduced costs of basic variables
xB(i), i = 1, . . . ,m, are always 0:

cB(i) = cB(i) − c′BB−1AB(i) = cB(i) − c′Bei = cB(i) − cB(i) = 0,

where ei is the ith basis vector of Rn.

4.5.1.3 New Basic Solution

Suppose cj < 0 for some j ∈ N . By moving θ ≥ 0 units along the jth
basic direction, the change in the cost function is θcj < 0, which makes it
desirable to maximize θ. Since we need to stay in the feasible region, one
must have that A(x + θd) = b and x + θd ≥ 0. The former condition is
always satisfied by the construction of d. The latter condition leaves two
cases to consider:

1. If d ≥ 0, then x + θd ≥ 0 ∀θ ≥ 0, in which case θ =∞ and zLP = −∞.

2. If di < 0 for some i ∈ {1, . . . , n}, then xi + θdi becomes negative for
large enough θ, which sets a requirement θ ≤ −xi/di. Since xi + θdi
must be non-negative for all i ∈ {1, . . . , n}, the maximum value of θ is
given by

θ∗ = min
{i=1,...,n|di<0}

(
− xi
di

)
= min
{i=1,...,m|dB(i)<0}

(
−
xB(i)

dB(i)

)
, (4.57)

where the last equality follows from the fact that di = 0 ∀i ∈ N \ {j}, and
dj = 1. Assume now that θ < ∞ and let l = arg mini(−xB(i)/dB(i)). If the
new feasible solution is denoted by y = x + θ∗d, then yj = θ∗ and yB(l) =
xB(l) + θ∗dB(l) = xB(l) + dB(l) ∗ (−xB(l)/dB(l)) = 0. Since yj > 0 and yB(l) = 0,
it gives rise to change our basis matrix B = [AB(1), . . . ,AB(l), . . . ,AB(m)]
such that the column AB(l) is replaced with the column Aj. The new matrix
obtained is

B = [AB(1), . . . ,AB(l−1),Aj,AB(l+1), . . . ,AB(m)], (4.58)

which can be shown to be a basis matrix that determines a basic feasible
solution y = x + θ∗d [3].

CHAPTER 4. INTEGER PROGRAMMING 36

4.5.1.4 Degeneracy

If some of the basic variables are zero, i.e. xB(l) = 0 for some l ∈ {1, . . . ,m},
the basic solution is said to be degenerate. In addition, if dB(l) < 0 for the
chosen basis direction d, degeneracy means that the non-negativity condition
xB(l) + θ∗dB(l) ≥ 0 is satisfied only if θ∗ = 0. Although the new solution
obtained is equivalent to the old one, we can still change the basis matrix
(B ↪→ B) in the hope that the next basis change would lead us to a better
solution. If the new basic variable is selected by random, it is possible that
this procedure will lead back to the initial basis, and thereby cause an infinite
loop. This undesirable phenomenon is called cycling.

Cycling can be avoided by using certain rules for basis changes. One of
these rules is known as Bland’s rule, which can be described as follows:

1. Find the smallest j for which the reduced cost is negative and let the
corresponding variable enter the basis.
Formally, j = min {k ∈ N |ck < 0}.

2. Out of all variables xi which satisfy condition (4.57), choose the one
with the smallest value of i. In other words,
l = min

{
B(i) ∈ B| − xB(i)/dB(i) = θ∗, dB(i) < 0

}
.

Under Bland’s rule cycling cannot occur, and the algorithm terminates after
a finite number of steps (See [5]).

4.5.1.5 Simplex Iteration

The simplex algorithm, which solves a linear programming problem (4.53),
can be described with the following five-step iteration:

1. Determine a basis matrix B = [AB(1), . . . ,AB(m)] and the correspond-
ing basic feasible solution x.

2. Calculate the reduced costs cj = cj−c′BB−1Aj of all nonbasic variables
xj, j ∈ N . If cj ≥ 0 ∀j ∈ N , then x is an optimal solution, and the algo-
rithm terminates; otherwise, choose an index j = min {k ∈ N |ck < 0}.

3. Determine the jth basic direction d = B−1Aj. If d ≥ 0, the optimal
cost is −∞, and the algorithm terminates.

4. If di < 0 for some i ∈ B, set θ∗ = min{i=1,...,m|dB(i)<0}
(
− xB(i)

dB(i)

)
.

5. Choose an index l = min
{
B(i) ∈ B| − xB(i)/dB(i) = θ∗, dB(i) < 0

}
.

Form a new basis B by replacing the column AB(l) with the column

CHAPTER 4. INTEGER PROGRAMMING 37

Aj. When y denotes the new basic feasible solution, the values of
the new basic variables are yj = θ∗ and yB(i) = xB(i) + θ∗dB(i) ∀i ∈
{1, . . . ,m} \ {l}. Return to step 2.

4.5.2 Branch and Bound Algorithm

Let ILP (F) be the ILP defined as

zILP = min c′x

s.t. x ∈ F, (4.59)

x ∈ Zn+,

where F is a set of linear equalities and inequalities. The problem is usually
too hard to solve directly since the decision variables are required to be
integers. However, a lower bound for zILP can be obtained by solving the
linear programming relaxation LP (F) of ILP (F), i.e.

b(F) = min c′x

s.t. x ∈ F, (4.60)

x ≥ 0.

This problem is easy to solve with any linear programming algorithm such as
simplex (see Section 4.5.1). If the optimal solution of LP (F), x∗, is an integer
vector, it also solves the original problem; otherwise, LP (F) is divided into
subproblems of which feasible regions contain all integer solutions but not
the vector x∗. This splitting of the search space is called branching. Suppose
the ith variable of x∗ is not an integer and define sets F1 and F2 such that

F1 = {x ∈ F | xi ≤ bx∗i c} and F2 = {x ∈ F | xi ≥ dx∗i e}. (4.61)

Then x∗ belongs to neither of the sets, but (F1 ∪ F2) ∩ Zn+ = F ∩ Zn+. If
LP (F1) or LP (F2) gives no integer solution, the search spaces of F1 and F2

must also be branched, which generates additional subproblems. Suppose
this procedure is continued until some of the subproblems LP (Fi), i ∈ I,
where I is an index set, has an integer solution. Let such problem be LP (Fk)
and denote the value of the objective function by U := b(Fk). Branching of
the search space of Fk can now be stopped since the value of the objective
function cannot improve anymore on this branch. Moreover, as U provides
an upper bound for zILP , every subproblem LP (Fi) for which b(Fi) ≥ U can
be eliminated. Whenever a better integer solution is found, the value of U
is updated, resulting in the elimination of further subproblems. Due to this
elimination process, the name of the algorithm carries the word ”bound”.

CHAPTER 4. INTEGER PROGRAMMING 38

4.5.2.1 Branch and Bound Iteration

The branch and bound algorithm can be described with the following six
steps:

1. Set U =∞.

2. Choose an LP (Fi) from the list of subproblems. If the list is empty,
the optimal solution is the one that corresponds to U ; if this happens
when U =∞, ILP (F) has no solution.

3. If LP (Fi) is infeasible, eliminate it from the list of subproblems. Oth-
erwise, calculate the lower bound b(Fi).

4. If b(Fi) ≥ U , the subproblem can be eliminated. Return to step 2.

5. If b(Fi) < U , and the solution of the problem x∗ ∈ Zn+, set U = b(Fi)
and eliminate LP (Fi). Return to step 2.

6. If b(Fi) < U , and x∗ /∈ Zn+, create new subproblems according to rule
(4.61). Return to step 2.

4.5.3 Cutting Plane Method

The basic idea of the cutting plane method is to solve the integer program-
ming problem (4.53) by solving a sequence of linear programming problems.
First, solve the LP relaxation (4.54) and find its optimal solution x∗. If
x∗ ∈ Zn+, then it also solves the problem (4.53). Otherwise, we find an in-
equality that is satisfied by all integer solutions, but not by x∗; in other
words, a plane defined by the inequality ”cuts out” x∗. By adding this in-
equality to the linear programming problem and solving it again, we get a
better approximation of the integer optimum. This procedure is repeated
until the solution found is an integer.

Usually, the way how cutting planes are formed uses the specific structure
of the ILP to be solved. We present Gomory’s cutting plane method [12] that
generates cuts for any standard form integer programming problem (4.53) by
using the steps of the simplex algorithm. The method was the first cutting
plane method that was guaranteed to terminate in finite time. Let x =
[x′B,x

′
N]′ be a basic feasible solution to (4.54), where xB and xN denote basic

and nonbasic variables, respectively. Since x is a basic feasible solution, it
satisfies the constraint Ax = b, which is the same as

[AB︸︷︷︸
=B

,AN] ∗ [x′B,x
′
N]′ = BxB + ANxN = b.

CHAPTER 4. INTEGER PROGRAMMING 39

By multiplying both sides with B−1, we get

xB + B−1ANxN = B−1b.

Let aij = (B−1Aj)i, and ai0 = (B−1b)i, in which case

xi +
∑
j∈N

aijxj = ai0.

Since xj ≥ 0 for all j ∈ {B,N}, it holds that

xi +
∑
j∈N

baijcxj ≤ xi +
∑
j∈N

aijxj = ai0.

Furthermore, since xj should be an integer, and the sums and products of
integers are always integers, we obtain the inequality

xi +
∑
j∈N

baijcxj ≤ bai0c, (4.62)

which is valid for all integer solutions. Suppose that B represents the basis
matrix of an optimal solution x∗, where x∗i /∈ Z. Now, x∗i = ai0, and x∗j = 0
∀j ∈ N in which case

xi +
∑
j∈N

baijcxj ≤ bai0c ⇔ ai0 ≤ bai0c.

But this is a contradiction since ai0 was assumed to be fractional. Hence,
(4.62) is not satisfied by x∗, and the inequality defines a cutting plane.

4.5.3.1 Cutting Plane Iteration

Cutting plane method can be described with the following steps:

1. Solve the linear programming problem (4.54). Let x∗ be an optimal
solution.

2. If x∗ is integer, then x∗ also solves the integer programming problem
(4.53), and the algorithm terminates.

3. If x∗ is not integer, form a linear inequality constraint that is satisfied
by all integer solutions but not by x∗ and add it to the problem (4.54).
Return to step 1.

Chapter 5

Elevator Dispatching Problem
(EDP)

5.1 Formulation

Let G = (V,A) be a directed graph where V denotes the set of vertices and
A ⊂ V × V the set of arcs. In addition, let the number of transportation
requests be n and the number of elevators l. Each request i ∈ {1, . . . , n}
is associated with two vertices: a pickup vertex i, which corresponds to the
arrival floor of the request, and a delivery vertex n+ i, which corresponds to
the destination floor. Pickup and delivery vertex sets are denoted by P and
D, respectively. Each elevator e ∈ {e1, . . . , el} is associated with an origin
depot vertex 2n + e indicating the initial location of the elevator. Origin
depot vertex set is denoted by T . After an elevator has served the requests
(possibly none) that were assigned to it, the elevator ends its route to a
common terminal depot vertex 0. In the following, 0 is used for notational
and modeling convenience. Now, we can define V = P ∪ D ∪ T ∪ {0} and
A = {(i, j)| i 6= j, i, j ∈ P ∪ D} ∪ {(i, j)| i ∈ T, j ∈ P ∪ D} ∪ {(i, 0)| i ∈
P ∪D ∪ T}.

The solutions to EDP are sets of paths starting from T and ending at
0, so that each vertex in P and D is visited by some elevator. A feasible
solution also satisfies a set of constraints, which we divide into 8 different
categories [28]:

1) In- and out-degree constraints guarantee that each pickup and de-
livery vertex is visited exactly once. In order to take into account these con-
ditions, a binary decision variable xij is associated with each arc (i, j) ∈ A.
The variable takes the value of 1 if some elevator goes straight from ver-

40

CHAPTER 5. ELEVATOR DISPATCHING PROBLEM (EDP) 41

tex i to vertex j in the solution, and 0 otherwise. In-degree and out-degree
constraints can now be employed, respectively, by equations

x(V, i) = 1, ∀i ∈ P ∪D, (5.1)

x(i, V) = 1, ∀i ∈ V \ {0}, (5.2)

where x(V, i) and x(i, V) are abbreviations for expressions∑
(j,k)∈A:k∈{i},j∈V xjk and

∑
(k,j)∈A:k∈{i},j∈V xkj.

2) Precedence constraints require that the pickup vertex of each request
is visited before the delivery vertex, and both vertices must be visited by
the same elevator. In other words, if elevator e serves request i, there must
be a path through vertices 2n + e, i and n + i, respectively. In order to
express these constraints formally, we define a family S of all vertex subsets
S such that S= {S ⊂ V | ∃! i ∈ P s.t. i /∈ S and n + i ∈ S, 0 /∈ S, T ⊂
S, 2 + |T | ≤ |S| ≤ |V | − |T | − 2}. Now, the precedence constraints follow
from the inequalities

x(S, S) ≥ 1, ∀S ∈ S, (5.3)

where S = V \ S and x(S, S) =
∑

(i,j)∈A:i∈S,j∈S xij.

3) Fixing constraints . There are three different types of transporta-
tion requests: on-board requests, assigned requests, and non-assigned requests.
These requests represent passengers, respectively, who have been picked up
but have not been delivered, passengers that have been assigned to some ele-
vator but not yet picked up, and passengers which are neither assigned to an
elevator nor picked up. On-board requests and assigned requests are called
fixed requests, as they cannot be reassigned. If request i is fixed to some ele-
vator ê, then there must be a path from origin depot vertex 2n+ ê to vertex
n+ i. Define a family F of all vertex subsets F by F= {F ⊂ V | ∃! (n+ i) ∈
F s.t. 2n+ ê /∈ F, whenever i is fixed to elevator ê}, in which case the fixing
constraints can be expressed in the form

x(F , F) ≥ 1, ∀F ∈ F (5.4)

4) Load constraints (consistency, capacity, initial conditions). As-
sume that each elevator has a maximum capacity of Q. Each vertex i ∈ V
is associated with a load ωi, expressing the number of passengers entering
the elevator (i ∈ P), exiting the elevator (i ∈ V), or the initial load of the
elevator (i ∈ T). In addition, conditions ω0 = 0, ω2n+e ≥ 0 ∀(2n + e) ∈ T ,
ωi = −ωn+i ∀i ∈ P , and ωi ≤ Q ∀i ∈ V are assumed to hold.

CHAPTER 5. ELEVATOR DISPATCHING PROBLEM (EDP) 42

Let qi ∈ R+ be a decision variable, which represents the load of an elevator
upon leaving vertex i. Consistency, capacity, and initial conditions for the
load can now be formulated as follows:

qj ≥ qi + ωj −min{Q,Q+ ωi}(1− xij), ∀(i, j) ∈ A, (5.5)

max{0, ωi} ≤ qi ≤ min{Q,Q+ ωi}, ∀i ∈ P ∪D, (5.6)

qi = ωi, ∀i ∈ T, (5.7)

qi = 0, i = 0. (5.8)

5) Time constraints (consistency, time window). We define the wait-
ing time of a passenger as the time from the moment the request was given
to the moment the passenger enters the elevator. Accordingly, the journey
time is defined as the time from the moment the request was given to the
moment the passenger exits the elevator at the destination floor. In addition,
the time from the instant request i ∈ P was given to the current moment is
called an elapsed time γi. Let ti be a continuous decision variable indicating
the time at which an elevator begins service at vertex i. By requiring that

ai ≤ ti ≤ bi, ∀i ∈ V, (5.9)

where

bi =

W − γi if i ∈ P,
J − γi if i ∈ D,
∞ if i ∈ V \ (P ∪D),

it can be guaranteed that neither the waiting nor the journey time of a
passenger exceeds given parameters W and J . The earliest time at which
service may begin at vertex i, ai, is greater than 0 only if a request device
is not located next to the elevators, in which case the walking time from
the device to the elevators is taken into account; otherwise, ai can be set to
0. Time windows of vertices i ∈ V \ (P ∪ D) are assumed to be relaxed,
i.e., [ai, bi] = [0,∞). Consistency of time variables follows from the set of
inequalities

tj ≥ ti + τij −max{0, bi + τij − aj}(1− xij), ∀(i, j) ∈ A, (5.10)

where τij represents a travel time between vertices i and j. The length of
the travel time τij depends on the floors and vertex types (P , D, T or 0) of i
and j. Especially, if j = 0, then τij = 0. More detailed description of travel
times is presented in references [27, 28].

CHAPTER 5. ELEVATOR DISPATCHING PROBLEM (EDP) 43

6) Boarding constraints stipulate that an elevator cannot leave a floor
before it is full or all of the passengers who are assigned to that elevator,
waiting at the current floor, and travelling the same direction as the eleva-
tor, have entered the elevator. Let the floor of vertex i be f(i). The direction
of vertex i, i ∈ P ∪D, is denoted by d(i) and it is defined as follows:

d(i) =

{
χ{f(n+i)>f(i)} ∗ 1 + χ{f(n+i)<f(i)} ∗ (−1) if i ∈ P,
d(i− n) if i ∈ D.

Denote the load of vertex set S ⊂ V by Ω(S) and define a family X of for-
wards paths X, which are of the form X = (2n+ e, k1, . . . , ki, . . . , kj, . . . , kr),
where ki, kr ∈ P , d(ki) = d(kr), f(ki) = f(kr), f(ki) 6= f(kj) such that either
Ω({2n+ e, k1, . . . , ki}) < Q or Ω({2n+ e, k1, . . . , ki}) = Q, but kr < ki. The
boarding constraints can now be expressed by inequalities∑

(i,j)∈A(X)

xij ≤ |A(X)| − 1, ∀X ∈ X , (5.11)

where A(X) is the arc set of X.

7) Reversal constraints relate to situations in which an elevator changes
its direction: it is usually assumed that passengers cannot travel the opposite
direction in respect of their destination floors, so we require that the elevator
must be empty each time the direction is changed. The set of reversal arcs
is defined by

R ={(n+ i, j) ∈ A| n+ i ∈ D, j ∈ P, d(i) 6= d(j)}∪
{(n+ i, j) ∈ A| n+ i ∈ D, j ∈ P, d(i) = d(j), d(i)f(n+ i) > d(j)f(j)},

in which case the reversal constraints can be expressed in the form

qi ≤ (1− xij) min{Q,Q+ ωi}. ∀(i, j) ∈ R. (5.12)

8) Service order constraints reflect the following three assumptions,
which are usually given in elevator routing problems.
”i) Waiting passengers at a floor cannot enter the servicing elevator car be-
fore all on-board passengers who are going to leave the elevator at that floor
finish leaving the elevator.
ii) If there is more than one passenger boarding the elevator at a floor, then
they board the elevator in the ascending order of their arrival times.
iii) If there is more than one passenger leaving the car at a floor, then they
leave the elevator in the reverse order of their boarding.” [28] Define O as the

CHAPTER 5. ELEVATOR DISPATCHING PROBLEM (EDP) 44

set of arcs which contradict assumptions i)-iii). Formally, O = Oi∪Oii∪Oiii,
where

Oi = {(i, n+ j) ∈ A| i ∈ P, n+ j ∈ D, f(i) = f(n+ j), d(i) = d(n+ j)}
Oii = {(i, j) ∈ A| i, j ∈ P, j < i, f(i) = f(j), d(i) = d(j)}
Oiii = {(n+ i, n+ j) ∈ A| i, j ∈ P, f(n+ i) = f(n+ j), d(n+ i) = d(n+ j),

d(i) = 1, {f(i) < f(j) or {f(i) = f(j) and i < j}}}∪
{(n+ i, n+ j) ∈ A| i, j ∈ P, f(n+ i) = f(n+ j), d(n+ i) = d(n+ j),

d(i) = −1, {f(i) > f(j) or {f(i) = f(j) and i < j}}},

in which case the service order constraints are

xij = 0, ∀(i, j) ∈ O. (5.13)

By minimizing the average waiting time of the passengers, which is one of
the most common objective functions among elevator routing problems, with
respect to constraints (5.1)-(5.13), the following mixed integer linear problem
is obtained:

min
∑
i∈P

ωi
Ω(P)

(ti + γi), (5.14)

subject to

x(V, i) = 1, ∀i ∈ P ∪D,
x(i, V) = 1, ∀i ∈ V \ {0},
x(S, S) ≥ 1, ∀S ∈ S,
x(F , F) ≥ 1, ∀F ∈ F ,

tj ≥ ti + τij −max{0, bi + τij − aj}(1− xij), ∀(i, j) ∈ A,
ai ≤ ti ≤ bi, ∀i ∈ V,∑

(i,j)∈A(X)

xij ≤ |A(X)| − 1, ∀X ∈ X ,

qj ≥ qi + ωj −min{Q,Q+ ωi}(1− xij), ∀(i, j) ∈ A,
max{0, ωi} ≤ qi ≤ min{Q,Q+ ωi}, ∀i ∈ P ∪D,

qi = ωi, ∀i ∈ T,
qi = 0, i = 0,

qi ≤ (1− xij) min{Q,Q+ ωi}, ∀(i, j) ∈ R,
xij = 0, ∀(i, j) ∈ O,
xij ∈ {0, 1}, ∀(i, j) ∈ A,
ti, qi ∈ R+, ∀i ∈ V

CHAPTER 5. ELEVATOR DISPATCHING PROBLEM (EDP) 45

5.2 Polyhedral Analysis

Polyhedral analysis of the EDP is extremely challenging in the general case,
since the numbers of constraints and decision variables in the formulation
depend not only on the number of requests, but also on how the requests
are located in the building. Due to this reason, we can properly study the
structure of the EDP polytope only under very specific cases, including up-
peak traffic and down-peak traffic, which are the topics of Chapters 6 and 7.
Therefore, the main point of this section is to give just essential definitions
and state some useful propositions that can be applied in the analysis of
up-peak and down-peak traffic patterns.

Polyhedral analysis is often desirable to carry out when the number of
decision variables in the formulation is the smallest possible. For this rea-
son, we show a way, how to eliminate the load variables qi from the EDP
formulation: replace constraints (5.5)-(5.8), (5.12), and (5.11) with rounded
capacity constraints

x(S, S) ≥ max

{
1,

⌈
|Ω(S)|
Q

⌉}
∀S ⊂ V \ {0}, |S| ≥ 2, (5.15)

and extended boarding constraints∑
(i,j)∈A(X)

xij ≤ |A(X)| − 1, ∀X ∈ X ′ (5.16)

where X ′ is the union of X and all forward paths of the form X = (2n +
e, k1, . . . , kr−1, kr) where (kr−1, kr) ∈ R, and Ω(X \ {kr}) > 0. Rounded
capacity constraints are originally presented in the context of VRPs [25], but
they apply directly to the EDP formulation as well. The extension of X
reflects the assumption that reversals are forbidden: since elevator e reverses
its direction either at vertex kr−1 or kr so that its load is positive, such a
path must be infeasible. Due to the elimination of load variables, polyhedral
analysis is now possible to be carried out in the (x, t)-space instead of the
(x, t,q)-space. Let us define the EDP polytope.

Definition 4. The polytope of the EDP, PEDP , is the convex hull of the
feasible solutions projected onto the (x, t)-space, i.e.,

PEDP = conv
{

(x, t) ∈ {0, 1}|A| × R|V |+ | (x, t) satisfies (5.1)− (5.4),

(5.9)− (5.10), (5.13), and (5.15)− (5.16)
} (5.17)

CHAPTER 5. ELEVATOR DISPATCHING PROBLEM (EDP) 46

From now on, when we say that (x, t) is a feasible solution we refer to the
fact that (x, t) satisfies the constraints of Definition 4. Suppose that we are
given a set of feasible solutions (xi, ti), i = 1, . . . ,m, whose x variables are
affinely independent. Next, we show that if one of the solutions is ”flexible”
with respect to all time windows [aj, bj], i.e., for some i ∈ {1, . . . ,m} tij < bj
∀j ∈ V , then the dimension of PEDP is at least m + |V | − 1. In order to
prove the claim, we first need two definitions.

Definition 5. A feasible solution (x, t) of the EDP is called ε-flexible if for
some ε > 0 a solution (x, t + ε ∗ 1|t|) is also feasible, where 1|t| is the all-ones
vector of size |t|.

Definition 6. Let (x, t) be a feasible solution of the EDP in which passengers
are served by l ≤ |T | elevators such that elevator ek, k = 1, . . . , l, visits sek
vertices from the set P ∪D. We define relations ”�x” and ”≺x” as follows:
i �x j if the position of vertex i ∈ V precedes or is equal to the position of
vertex j ∈ V in the sequence

(2n+ e1, . . . , 2n+ e|T |, i(e1,1), i(e1,2), . . . , i(e1,se1), i(e2,1), . . . , i(el,sel), 0), (5.18)

where i(ek,r) ∈ P ∪ D, k = 1, . . . , l, r = 1, . . . , sek , denotes the rth vertex
visited by elevator ek on route x. If the position of i precedes the position of
j, then i ≺x j.

Now, we prove the claim by showing that |V | + 1 affinely independent
solutions arise from any ε-flexible solution.

Proposition 11. Let hi = (xi, ti), i = 1, . . . ,m, be a set of feasible solutions
of the EDP, where x1, . . . ,xm are affinely independent. If hi is ε-flexible for
some i ∈ {1, . . . ,m}, then dim(PEDP) ≥ m+ |V | − 1.

Proof. Without loss of generality, it can be assumed that hm is ε-flexible.
Let z := (x, t) denote hm = (xm, tm), and define a set of solutions {ziε}i∈V
as follows:

ziε={(xiε, tiε)| xiε = x, (tiε)k=(tk + ε)χ{i�xk}+ tkχ{k≺xi} ∀k∈V }

Clearly, all ziε’s are feasible solutions. Consider a set H := {hi}i=1,...,m−1 ∪
{z} ∪ {ziε}i∈V . The vectors of H are affinely independent if

m−1∑
i=1

λi(h
i − z) +

∑
i∈V

γi(z
i
ε − z) = 0 ⇒ λi, γi = 0 ∀i.

CHAPTER 5. ELEVATOR DISPATCHING PROBLEM (EDP) 47

which is the same as[∑m−1
i=1 λi(x

i − x) +
∑

i∈V γi(x
i
ε − x)∑m−1

i=1 λi(t
i − t) +

∑
i∈V γi(t

i
ε − t)

]
=

[
0
0

]
⇒ λi, γi = 0 ∀i

⇔
[∑m−1

i=1 λi(x
i − x)∑m−1

i=1 λi(t
i − t) +

∑
i∈V γi(t

i
ε − t)

]
=

[
0
0

]
⇒ λi, γi = 0 ∀i

As x1, . . . ,xm are affinely independent, it follows that λi = 0 ∀i ∈ {1, . . . ,m−
1}. It remains to show that∑

i∈V

γi(t
i
ε − t) = 0⇒ γi = 0 ∀i ∈ V.

Re-index variables tiε and γi, i ∈ V , so that i corresponds the ith vertex in
the sequence (5.18). By construction of ziε’s,

|V |∑
i=1

γi(t
i
ε − t) = ε ∗

[
γ1, γ1 + γ2, · · · ,

|V |−1∑
i=1

γi,

|V |∑
i=1

γi

]T
= 0⇒ γi = 0 ∀i ∈ V,

and since the cardinality of H is m+ |V |, the claim follows.

The reader should note, that the concept of ε-flexibility is primarily a tool
in our proofs due to the following reason: a feasible solution can always
be made ε-flexible just by slightly increasing the values of all upper bounds
bi, i ∈ V . Since these increases can be arbitrarily small, the value of the
objective function to be minimized essentially stays the same.

Most of the constraints in the EDP polytope relate to x-variables, so
that x and t are dependent only through time consistency constraints (5.10).
Next, we demonstrate how every feasible x-route can be extended to the
(x, t)-space, so that these constraints are satisfied.

Definition 7. A vector x ∈ {0, 1}|A| is a feasible x-route of the EDP if it
satisfies constraints (5.1)-(5.4), (5.13), and (5.15)-(5.16).

Definition 8. Let x be a feasible x-route of the EDP. If the time vector
t = t(x) where

t(x) =
{
t ∈ R2n+2

+ | xkltl = xkl max{tk + τkl, al} ∀(k, l)∈A \ (V, {0}),
ti = 0 ∀i ∈ T, t0 = max

k∈D
{tk}

}
,

(5.19)

we say that t is induced by x.

CHAPTER 5. ELEVATOR DISPATCHING PROBLEM (EDP) 48

For each feasible x-route the solution (x, t(x)) clearly satisfies the time con-
sistency constraints, but nothing guarantees that t(x) would also satisfy the
time window constraints (5.9). If we make a further assumption that these
constraints are relaxed, then every feasible x-route implies a feasible solu-
tion, which enables us to consider x and t dimensions separately. Thus, it is
useful to define also an EDP polytope that is restricted to the x-space.

Definition 9. The EDP polytope restricted to the x-space is

PEDP |x = conv
{
x ∈ {0, 1}|A|| x satisfies (5.1)− (5.4), (5.13), and

(5.15)− (5.16)
}
,

(5.20)

Whenever the time window constraints are relaxed, the dimensions of PEDP
and PEDP |x are connected by a simple relation:

Proposition 12. If the time window constraints (5.9) are relaxed, the di-
mension of the EDP polytope is given by

dim(PEDP) = dim(PEDP |x) + |V | (5.21)

Proof. Let the dimension of PEDP |x be m, i.e. PEDP |x contains m+1 affinely
independent x-routes xi, i = 1, . . . ,m + 1. Since the time windows are
relaxed, each solution induced by x, (xi, t(xi)), is feasible. In addition, all
feasible solutions are ε-flexible so, by Proposition 11, dim(PEDP) ≥ m+|V | =
dim(PEDP |x) + |V |. On the other hand, according to equations (3.5) and
(3.6), dim(PEDP) = |A| + |V | − rank(PEDP) ≤ |A| + |V | − rank(PEDP |x) =
dim(PEDP |x) + |V |, which gives the result.

Chapter 6

EDP: Up-peak Traffic Pattern

6.1 General Assumptions

Up-peak traffic is a situation in a building in which all or most of the requests
are heading upwards. A common example of up-peak traffic is the morning
peak in office buildings when people come to work and they travel from the
lobby to the upper floors of the building to their offices. The purpose of
this section is to analyze the polyhedral structure of three different up-peak
traffic patterns. All three cases are based on four general assumptions:

A1. There are n non-assigned requests, which are ordered according to their
arrival times:
F=∅ and γ1 > γ2 > · · · > γn ≥ 0.

A2. All requests come from the first floor and the destination floors of the
requests are in ascending order:
f(i) = 1 ∀i ∈ P and f(n+ i) > f(n+ j) > 1 ∀i > j i, j ∈ P

A3. Each vertex has a relaxed time window:
[ai, bi] = [0,∞) ∀i ∈ V .

A4. All elevators are in the same state and they are initially located at the
first floor:
f(2n+ e) = 1 ∀(2n+ e) ∈ T .

By saying that the elevators are in the same state, it means that they are
empty, they are located at the same floor, their doors are in the same position,
and none of them have fixed requests. Such elevators are called symmetrical.
In order to simplify the forthcoming polyhedral analysis, the symmetry is
eliminated by replacing the origin depot vertex set T by one vertex, which

49

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 50

we call a common origin depot vertex +0. Now, instead of demanding that
each elevator must end its route to the common terminal depot vertex, we
set the out-degree of +0 to be at most |T |:

x(+0, V) ≤ |T |. (6.1)

In other words, if some elevator has no assignments, it stays at vertex +0.
This modification changes the out-degree constraints (5.2) into the form

x(i, V) = 1, ∀i ∈ P ∪D. (6.2)

The general formulation of the EDP can be simplified by using assump-
tions A1-A4. First, all requests are non-assigned, which makes fixing con-
straints (5.4) redundant. Also, constraints (5.9) are unnecessary, because
each vertex has a relaxed time window. Time consistency conditions can be
written in the form

tj ≥ ti + τij −M(1− xij), ∀(i, j) ∈ A, (6.3)

where M is a large positive constant, so that M ≥ ti + τij ∀(i, j) ∈ A
in all feasible solutions. It can be assumed that the longest total journey
time is reached when there is only one serving elevator, which can carry one
passenger at a time. In this case

M = τ+0,1 +
n−1∑
i=1

(τi,n+i + τn+i,i+1) + τn,2n.

Due to the reversal constraints, direction of an elevator cannot be changed
unless it is empty; therefore,

xn+i,n+j = 0 ∀n+ j < n+ i, n+ i, n+ j ∈ D. (6.4)

Service order constraints can also be simplified: according to assumption A2,
f(i) 6= f(n+ j) 6= f(n+ i) ∀i ∈ P , ∀n+ i, n+ j ∈ D, and thus, Oi = Oiii = ∅
for any feasible solution x∗. As Oii = {(i, j) ∈ A| i, j ∈ P, j < i, f(i) =
f(j), d(i) = d(j)} = {(i, j) ∈ A| i, j ∈ P, j < i}, service order constraints are
employed by equations

xij = 0 ∀i > j, i, j ∈ P. (6.5)

In addition to formulas (6.1)-(6.5), the following proposition is also found
useful.

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 51

Proposition 13. If assumptions A1-A4 hold, then the equation

xij − xn+i,n+j = 0, ∀i, j ∈ P, n+ i, n+ j ∈ D, (6.6)

is valid for the EDP.

Proof. If i > j, then xij = 0 by (6.5) and xn+i,n+j = 0 by (6.4). Hence, it
can be assumed that i < j. Suppose xij = 1. There cannot be a request k,
i < k < j, which is assigned to the same elevator as requests i and j, because
passengers are assumed to board the elevator in the ascending order of their
arrival times. Since n+ i and n+ j must be visited by the same elevator and
any vertex n + k, i < k < j between them cannot be visited, it follows that
either xn+i,n+j = 1 or xn+j,n+i = 1. The latter option contradicts constraint
(6.4), and thus, xn+i,n+j = 1.

Suppose xn+i,n+j = 1. If it were xij = 0, there would be request k such
that i < k < j and xik = 1. But since xn+i,n+j = 1, vertices n+ i, n+k, n+ j
cannot be visited without violating reversal constraints, so it must hold that
xij = 1, which completes the proof.

Next, we study separately three different cases: in the first case the num-
ber of elevators equals the number of requests and elevators have unlimited
capacity. In the second case, the number of elevators equals the number of
requests, but elevators have restricted capacity. In the third case, elevators
have unlimited capacity, but the number of elevators is less than the number
of requests.

6.2 Case 1: No Restrictions

6.2.1 Assumptions

In addition to assumptions A1-A4, we assume that

A5. There are as many elevators as requests: |T | = l = n

A6. Elevators have unlimited capacity: Q =∞

The EDP which satisfies conditions A1-A6 is denoted by EDP∞n . Since the
capacity of elevators is unlimited (A6) and all passengers travel upwards from
the lobby (A2), the boarding constraints (5.11) force that all passengers who
are assigned to the same elevator must have boarded before the elevator can
leave the floor. In practice, it means that after the elevator goes up, returning
to the lobby is not possible, i.e.,

xn+i,j = 0 ∀n+ i ∈ D, ∀j ∈ P. (6.7)

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 52

As a consequence of (6.7) and (6.4), load variables can be omitted from the
formulation without introducing rounded capacity constraints (5.15) or ex-
tended boarding constraints (5.16). By removing redundant arcs, one obtains
a reduced graph G∞n presented in Figure 6.1.

1 2 n
+0

n+ 1

n+ 2

2n
0

Figure 6.1: The reduced graph, G∞n , of the problem EDP∞n .

6.2.2 Polyhedral Analysis

We define the polytope of EDP∞n as the convex hull of feasible solutions of
the problem under assumptions A1-A6, i.e.,

PEDP∞
n

:= conv{(x, t) ∈ {0, 1}|A∞
n | × R2n+2

+ | (x, t) satisfies

(5.1), (5.3), and (6.2)− (6.7)},
(6.8)

where A∞n is the set of arcs in graph G∞n . Polytope PEDP∞
n |x is defined

similarly but without time consistency constraints (6.3). In the next theorem
we determine the number of feasible EDP∞n solutions projected onto x-space:
the number of solutions is counted only in the x-space since there are clearly
infinitely many solutions in the (x, t)-space. One should note that projected
solutions are now the same thing as feasible x-routes, since time window
constraints are relaxed. The set of projected solutions is denoted by H∞n .

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 53

Theorem 5. The number of feasible solutions to EDP∞n in the x-space is
the nth Bell number,

|H∞n | = Bn =
n∑
k=0

S(n, k) =
n∑
k=0

1

k!

k∑
j=1

(−1)k−j
(
n

k

)
jn (6.9)

Proof. We know that n requests can be assigned to n elevators by Bn dif-
ferent ways, where Bn is the nth Bell number and indicates the number of
partitions of a set. According to constraint (6.5), the pickup order is unique.
The delivery order is also unique, which is an immediate consequence of
constraints (5.1), (6.2), and (6.6). Thus, the number of feasible solutions is
Bn.

Lemma 1. The number of arcs in G∞n is |A∞n | = 3
2
n(n+ 1)

Proof. |(+0, V)| = n
|(i, V)| = |(i, P)|+ |(i,D)| = n− i+ i = n, i = 1, . . . , n
|(n+ i, V)| = |(n+ i,D)|+ |(n+ i, 0)| = n− i+ 1, i = 1, . . . , n
⇒ |A∞n | = n +

∑n
i=1 n +

∑n
i=1(n − i + 1) = n + n2 + n2 − 1

2
n(n + 1) + n =

3
2
n(n+ 1).

In order to determine the dimension of EDP∞n , consider constraints (5.1),
(6.2), and (6.6). Constraint xn−1,n − x2n−1,2n = 0 is a linear combination of
equations x(V, n) = 1, x(V, 2n) = 1, and xi,n − xn+i,2n = 0, i = 1, . . . , n − 2
since x(V, n) − x(V, 2n) −

∑n−2
i=1 (xin − xn+i,2n) = 1 − 1 − 0 ⇔ xn−1,n −

x2n−1,2n = 0. The next lemma shows that the rest of the equations are
linearly independent.

Lemma 2. Consider graph G∞n . If [AS,−bS] is the matrix defined by con-
straints (5.1), (6.2), and

xij − xn+i,n+j = 0, i, j ∈ P, i < j, i ≤ n− 2, (6.10)

then the rows of the matrix are linearly independent and rank(AS) = 1
2
n2 +

7
2
n− 1.

Proof. We show that the equations in system ASx = bS are linearly in-
dependent by finding a vector x ∈ {0, 1}|A∞

n | for each equation a′ix = bi,
i = 1, . . . , |bS|, such that a′kx = bk ∀k 6= i but a′ix 6= bi. We have six different
cases to consider:
1a) x(V, i) = 1, i ∈ P , is not satisfied when x = χA(R), R = (+0, 1, . . . , i −
1, i+ 1, n, . . . , n+ i− 1, n+ i+ 1, . . . , 2n, 0)∪ (i, n+ i, 0), and χA(R) denotes
the characteristic function of the arc set of R.

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 54

1b) x(V, n + i) = 1, n + i ∈ D, is not satisfied when x = χA(R) and
R = (n + i, 2n − 1, 0) ∪ (+0, 1, . . . , i − 1, i + 1, . . . , n − 2, n + 1, . . . , n +
i− 1, n+ i+ 1, . . . , 2n− 2, 0) ∪ (+0, i, n− 1, n, 2n, 0).
2a) x(i, V) = 1, i ∈ P , is not satisfied when x = χA(R) and R = (+0, i) ∪
(+0, n, n + i, 0) ∪ (+0, 1, . . . , i − 1, i + 1, . . . , n − 1, n + 1, . . . , n + i − 1, n +
i+ 1, . . . , 2n, 0)
2b) x(n + i, V) = 1, n + i ∈ D, is not satisfied when x = χA(R) and
R = (+0, i, n + i) ∪ (+0, n, n + i, 0) ∪ (+0, 1, . . . , i − 1, i + 1, . . . , n + i −
1, n+ i+ 1, . . . , 2n, 0)
3a) xij − xn+i,n+j = 0, i ∈ P\ {n− 1, n} , j ∈ P, i + 2 ≤ j, is not satisfied
when x = χA(R) and R = (+0, 1 . . . , i, n+ 1, . . . , n+ i, n+ j, . . . , 2n− 1, 0) ∪
(+0, i+ 1, . . . , j − 1, n+ i+ 1, . . . , n+ j − 1, 0) ∪ (+0, j, . . . , n, 2n, 0)
3b) xij − xn+i,n+j = 0, i ∈ P\ {n− 1, n} , j ∈ P, i + 1 = j, is not satisfied
when x = χA(R) and R = (+0, 1, . . . , i, n+ 1, . . . , n+ i, n+ j, . . . , 2n− 1, 0)∪
(+0, j, . . . , n, 2n, 0).

Because the system also has a feasible solution, e.g., x = χA(R) where
R = (+0, 1, . . . , 2n, 0), so, by Proposition 2, (5.1), (6.2), and (6.10) are lin-
early independent equations, and the rank of the system is rank(AS) =
rank([AS,−bS]) = 2n+ 2n+ 1

2
n(n− 1)− 1 = 1

2
n2 + 7

2
n− 1.

Theorem 6. The dimension of PEDP∞
n

is n2 + 3.

Proof. We first determine the dimension of PEDP∞
n |x and then extend the

result to the (x, t)-space. By using Theorem 2, Lemma 1, and Lemma
2, respectively, an upper bound for the dimension of PEDP∞

n |x is obtained:
dim(PEDP∞

n |x) = |A∞n | − rank(PEDP∞
n
|x) = 3

2
n(n + 1) − rank(PEDP∞

n |x) ≤
3
2
n(n+1)−(1

2
n2 + 7

2
n−1) = n2−2n+1. Here the usage of Lemma 2 is based

on the fact that AS is a submatrix of the constraint matrix of PEDP∞
n |x, and

therefore, rank(AS) ≤ rank(PEDP∞
n |x). We show that the upper bound holds

as equality by finding n2−2n+2 affinely independent x-routes, which belong
to polytope PEDP∞

n |x.
Let H1, H2, H3, and Z be sets of feasible x-routes defined as follows:

H1 = {hi,n+j1 }i,j∈P :1<j<i, H2 = {hij2 }i,j∈P :1<j<i, H3 = {hi3}i∈P\{1}, Z = {z},
where

hi,n+j1 =
{
x ∈ H∞n | xji = xi,n+j = 1, xk,n+k = 1 ∀k ∈ P \ {i, j}

}
hij2 =

{
x ∈ H∞n | x1i = xij = xj,n+1 = 1, xk,n+k = 1 ∀k ∈ P \ {1, i, j}

}
hi3 =

{
x ∈ H∞n | x1i = xi,n+1 = 1, xk,n+k = 1 ∀k ∈ P \ {1, i}

}
, and

z =
{
x ∈ H∞n | xk,n+k = 1 ∀k ∈ P

}
When H1 ∪H2 ∪H3 ∪ Z is denoted by H, we can make the following obser-
vations:

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 55

1. For each i, j ∈ P , 1 < j < i, the only solution in H in which xi,n+j = 1
is hi,n+j1 .

2. For each i, j ∈ P , 1 < j < i, the only solution in H \ H1 in which
xij = 1 is hij2 .

3. The only solution in H \ (H1 ∪H2) in which x2,n+1 = 1 is h2
3.

4. For each i, 3 ≤ i ≤ n, the only solution in H \ (H1 ∪H2 ∪h2
3) in which

x1i = 1 is hi3.

5. The only solution in H \ (H1 ∪H2 ∪H3) = Z is z.

These observations guarantee that there exists a sequence of ordered pairs(
(ik, jk)

)|H|
k=1

that satisfies the conditions of Proposition 1, and hence, the
vectors of H are linearly independent. Since linearly indepedent vectors are
affinely independent as well, and |H| = |H1|+ |H2|+ |H3|+ |Z| = (n−2)(n−1)

2
+

(n−2)(n−1)
2

+n− 1 + 1 = n2− 2n+ 2, the dimension of PEDP∞
n |x is n2− 2n+ 1.

Because time window constraints are relaxed, we know by Proposition 12
that dim(PEDP∞

n
) = dim(PEDP∞

n |x) + |V | = n2 − 2n+ 1 + 2n+ 2 = n2 + 3.

6.3 Case 2: Restricted Capacity

6.3.1 Assumptions

In addition to assumptions A1-A4, it is assumed that

A5. There are as many elevators as requests: |T | = l = n

A6’. Elevators can simultaneously carry at most m, 1 ≤ m ≤ n, passengers,
and each request represents a single passenger: Q = m, ωi = 1, ωn+i =
−1, i = 1, . . . , n.

The EDP which satisfies conditions A1-A5 and A6’ is denoted by EDPm
n . A

reduced graph of the problem is denoted by Gm
n .

Contrary to Case 1, all arcs of the form xn+i,j, n + i ∈ D, j ∈ P are
not excluded. Due to assumption A6’, elevators which have more than m
requests to serve cannot carry all of their passengers at the same time, but
need to return to the lobby at some point in order to complete the task (See
Figure 6.2). Hence, load variables qi cannot be eliminated by the equation
(6.7) but we need to use rounded capacity constraints (5.15).

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 56

6.3.2 Polyhedral Analysis

The polytope of EDPm
n is

PEDPm
n

:= conv{(x, t) ∈ {0, 1}|Am
n | × R2n+2

+ | (x, t) satisfies

(5.1), (5.3), (5.11), (5.15), and (6.2)− (6.6)},
(6.11)

Polytope PEDPm
n |x is defined similarly.

Theorem 7. The number of feasible solutions to EDPm
n in the x-space is

the nth Bell number,

|Hm
n | = |H∞n | = Bn (6.12)

Proof. Since there are no restrictions on how many requests can be assigned
to one elevator, the number of solutions remains the same as in Case 1.
The only difference compared to Case 1 is, that if more than m requests are
assigned to some elevator, it cannot pick up all passengers at one time (See
Figure 6.2). Hence, |Hm

n | = |H∞n |.
Lemma 3. The number of arcs in Gm

n is

|Amn | =
(3

2
n(n+ 1) +

(n−m)(n−m+ 1)

2

)
χ{m≥2} +

(1

2
n2 +

5

2
n
)
χ{m=1}

Proof. Suppose first that m ≥ 2. Clearly, A∞n ⊂ Amn . In addition, returning
from delivery vertices back to pick-up vertices is now possible if the number
of requests assigned to some elevator is more than its capacity. Service order
constraints, however, impose a restriction xn+i,j = 0 ∀i > j, i, j ∈ P , which
gives |(n + i, P)| = (n − i)χ{i≥m}. By summing over i ∈ P , we obtain that
|Amn | = |A∞n | +

∑n
i=1(n − i)χ{i≥m} = |A∞n | +

∑n
i=m(n − i) = 3

2
n(n + 1) +

(n−m)(n−m+1)
2

.
Suppose now that m = 1. Since m = 1, each elevator can carry only one

passenger at a time and this passenger must be delivered to her destination
floor before the next passenger can be picked up. Therefore, xij = xn+i,n+j =
xi,n+j = 0 ∀i, j ∈ P, i 6= j. For this reason,

|A1
n| = |(+0, V)|+

n∑
i=1

(
|(i, V)|+ |(n+ i, V)|

)
= |(+0, P)|+

n∑
i=1

(
|(i, n+ i)|+ |(n+ i, P)|+ |(n+ i, 0)|

)
= n+

n∑
i=1

(
1 + n− i+ 1

)
=

1

2
n2 +

5

2
n.

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 57

1 2 3 4

5

6

7

8
0

+0

Figure 6.2: A feasible solution to EDPm
n when n = 4 and m = 3.

Next, we determine the dimension of PEDPm
n

, which is divided into three
parts: we study separately cases m = 1, m = 2, and m ≥ 3. We start with
the case m ≥ 3 because the result in that case follows almost immediately
from Theorem 6.

Theorem 8. When m ≥ 3, the dimension of PEDPm
n

is n2+3+ (n−m)(n−m+1)
2

.

Proof. By Proposition 12, dim(PEDPm
n |x) = dim(PEDPm

n
) − (2n + 2), so it is

enough to show that the dimension of PEDPm
n |x is n2 + 3 + (n−m)(n−m+1)

2
−

(2n + 2). The dimension cannot be larger than this since dim(PEDPm
n |x) ≤

|Amn | − rank(AS) = n2 + 3 + (n−m)(n−m+1)
2

− (2n + 2), where AS refers to
the constraint matrix defined in Lemma 2. We show that PEDPm

n |x contains

n2 + 3 + (n−m)(n−m+1)
2

− (2n+ 2) + 1 affinely independent x-routes. Let sets
H1, H2, H3, and Z be defined as in Theorem 6 with the exception that H∞n
and A∞n are replaced by Hm

n and Amn , respectively. These x-routes clearly
belong to polytope PEDPm

n |x. Moreover, let H4 := {hn+i,j4 }i,j∈P :j>i≥m, where

hn+i,j4 =
{
x ∈ Hm

n | xn+i,j = 1, x(+0, V) = n−m− 1
}
.

By observing that the only x-route in H := H1 ∪ H2 ∪ H3 ∪ H4 ∪ Z where
xn+i,j = 1, i, j ∈ P, j > i ≥ m, is hn+i,j4 , we can apply Proposition 1 since
x-routes in H1 ∪H2 ∪H3 ∪Z are already known to be linearly independent.
By Lemma 3, the cardinality of H4 is (n−m)(n−m+1)

2
, and hence, |H| = |H1 ∪

H2 ∪H3 ∪H4 ∪Z| = |H1 ∪H2 ∪H3 ∪Z|+ |H4| = n2− 2n+ 2 + (n−m)(n−m+1)
2

as desired.

Next, the dimension of PEDPm
n

is determined when m = 1 and m = 2.
We need the following lemmas:

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 58

Lemma 4. Consider graph G1
n. If [AS,−bS] is the matrix defined by con-

straints (6.2) and
x(V, i) = 1, ∀i ∈ P, (6.13)

then the rows of the matrix are linearly independent and rank(AS) = 3n.

Proof. We use the sama technique as in Lemma 2. There are 3 different cases
to consider:
1a) x(V, i) = 1, i ∈ P , is not satisfied when x = χA(R),
R = (+0, 1, n+ 1, 2, n+ 2, . . . , n+ i− 1, 0) ∪ (i, n+ i, i+ 1, . . . , 0)
2a) x(i, V) = 1, i ∈ P , is not satisfied when x = χA(R),
R = (+0, 1, n+ 1, 2, n+ 2, . . . , i) ∪ (n+ i, i+ 1, n+ i+ 1, . . . , 0)
2b) x(n+ i, V) = 1, n+ i ∈ D, is not satisfied when x = χA(R),
R = (+0, 1, n+ 1, 2, n+ 2, . . . , i, n+ i) ∪ (+0, i+ 1, n+ i+ 1, . . . , 0).

Because the system also has a feasible solution x = χA(R) where R =
(+0, 1, n+ 1, 2, n+ 2, . . . , n, 2n, 0), so, by Proposition 2, (6.2) and (6.13) are
linearly independent equations and rank(AS) = rank([AS,−bS]) = 2n+n =
3n.

Lemma 5. Consider graph G2
n. If [AS,−bS] is the matrix defined by con-

straints (6.2), (6.13),

xij = xn+i,n+j, i < j, i, j ∈ P, and (6.14)

xij = xj,n+i, i < j, i, j ∈ P (6.15)

then the rows of the matrix are linearly independent and rank(AS) = n2+2n.

Proof. There are 5 different cases to consider:
1) x(V, i) = 1, i ∈ P , is not satisfied when x = χA(R),
R =

⋃
k∈P\{i}(+0, k, n+ k, 0) ∪ (i, n+ i, 0)

2a) x(i, V) = 1, i ∈ P , is not satisfied when x = χA(R),
R =

⋃
k∈P\{i}(+0, k, n+ k, 0) ∪ (+0, i) ∪ (n+ i, 0)

2b) x(n+ i, V) = 1, n+ i ∈ D, is not satisfied when x = χA(R),
R =

⋃
k∈P\{i}(+0, k, n+ k, 0) ∪ (+0, i, n+ i)

3) xij = xn+i,n+j, i < j, is not satisfied when x = χA(R),
R =

⋃
k∈P\{i,j}(+0, k, n+ k, 0) ∪ (+0, i, j, n+ i, 0) ∪ (n+ j, 0)

4) xij = xj,n+i, i < j, is not satisfied when x = χA(R),
R =

⋃
k∈P\{i,j}(+0, k, n+ k, 0) ∪ (+0, i, j, n+ j, 0) ∪ (n+ i, n+ j, 0)

Because the system also has a feasible solution x = χA(R) where R =
(+0, 1, 2, n + 1, n + 2, 3, 4, n + 3, n + 4, . . . , 2n, 0), so, by Proposition 2, the
rows of AS are linearly independent, and rank(AS) = rank([AS,−bS]) =
n+ n+ n+ n(n− 1)/2 + n(n− 1)/2 = n2 + 2n.

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 59

Theorem 9. The dimension of PEDP 1
n

is 1
2
n2 + 3

2
n+ 2.

Proof. By Proposition 12, dim(PEDP 1
n |x) = dim(PEDP 1

n
) − (2n + 2), so it is

enough to show that the dimension of PEDP 1
n |x is 1

2
n2 + 3

2
n+ 2− (2n+ 2) =

1
2
n2 − 1

2
n. The dimension cannot be larger than this since dim(PEDP 1

n |x) ≤
|A1

n|−rank(AS) = 1
2
n2+ 5

2
n−3n = 1

2
n2− 1

2
n, where AS refers to the constraint

matrix defined in Lemma 4. We show that PEDP 1
n |x contains 1

2
n2 − 1

2
n + 1

affinely independent x-routes. Let sets H4 and Z be defined as in Theorem 8.
All x-routes in H4 and Z clearly belong to PEDP 1

n
. By Theorem 8, we know

that H4 ∪ Z is a linearly independent set and since |H4 ∪ Z| = |H4|+ |Z| =
(n−1)(n−1+1)

2
+ 1 = 1

2
n2 − 1

2
n+ 1, the claim is proved.

Theorem 10. The dimension of PEDP 2
n

is n2 + 3.

Proof. It is enough to show that dim(PEDP 2
n |x) = n2−2n+1. The dimension

cannot be larger than this since dim(PEDP 2
n |x) = |A2

n| − rank(PEDP 2
n |x) ≤

3
2
n(n + 1) + (n−2)(n−1)

2
− rank(AS) = 3

2
n(n + 1) + (n−2)(n−1)

2
− (n2 + 2n) =

n2 − 2n + 1, where AS is defined as in Lemma 5. We show that there are
n2 − 2n+ 2 affinely independent x-routes in PEDP 2

n |x.
Let Z be defined as in Theorem 6 (with the exception that H∞n is replaced

by H2
n) and let H1 and H2 be the following sets of vectors:

H1 = {hij1 }i,j∈P :1≤i<j, H2 = {hn+i,j2 }i,j∈P :2≤i<j, where

hij1 =
{
x ∈ H2

n| xij = 1, xk,n+k = 1 ∀k ∈ P \ {i, j}
}

and

hn+i,j2 =
{
x ∈ H2

n| x1i = xn+i,j = 1, xk,n+k = 1 ∀k ∈P \{1, i, j}
}

Let H := H1 ∪ H2 ∪ Z. Clearly, H ⊂ PEDP 2
n |x. The only x-route in H,

where xn+i,j = 1, i, j ∈ P, 1 ≤ i < j, is hn+i,j2 and the only solution in
H \ H2 where xij = 1, i, j ∈ P, 2 ≤ i < j, is hij1 . Hence, by Proposition
1, all vectors of H are linearly independent, and |H| = |H1| + |H2| + |Z| =∑n−1

i=1 (n− i) +
∑n−1

i=2 (n− i) + 1 = n2 − 2n+ 2 as desired.

6.4 Case 3: Restricted Number of Elevators

6.4.1 Assumptions

In addition to assumptions A1-A4, we assume that

A5’. The number of elevators is |T | = l, 2 ≤ l ≤ n.

A6. Elevators have unlimited capacity.

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 60

The EDP which satisfies conditions A1-A4, A5’, and A6 is denoted by
EDP∞n,l. The reduced graph of the problem is denoted by G∞n,l.

Since the elevators have unlimited capacity, load variables can be elim-
inated by using simplified boarding constraints (6.7). Assumption A5’ is
taken into account by equation (6.1).

6.4.2 Polyhedral Analysis

The polytope of EDP∞n,l is

PEDP∞
n,l

:= conv{(x, t) ∈ {0, 1}|A∞
n,l| × R2n+2

+ | (x, t) satisfies

(5.1), (5.3), (6.1)− (6.6), and (6.7)}
(6.16)

Polytope PEDP∞
n,l|x is defined similarly. Unlike in Case 1 or 2, there are now

fewer solutions in the x-space:

Theorem 11. The number of feasible solutions to EDP∞n,l in the x-space is

|H∞n,l| =
l∑

k=1

S(n, k) =
l∑

k=1

1

k!

k∑
j=1

(−1)k−j
(
n

k

)
jn, (6.17)

where S(n, k) refers to the Stirling number of the second kind.

Proof. We are looking for the number of ways to partition n passengers into
k elevators, where k = 1, . . . , l. By the definition of the Stirling numbers of
the second kind, the number of such partitions is

∑l
k=1 S(n, k).

Lemma 6. The number of arcs in G∞n,l is |A∞n,l| =
(

3
2
n(n+1)

)
χ{l≥2}+

(
2n+

1
)
χ{l=1}

Proof. If l ≥ 2, then A∞n,l = A∞n and the claim holds. If l = 1, all requests are
served by one elevator and since the capacity of the elevator is unrestricted,
all passengers must be boarded at one time. Hence, the one and only solution
to the problem in the x−space is x = χA(R), where R = (+0, 1, . . . , n, n +
1, . . . , 2n, 0). All arcs which are not in A(R) are redundant and can be
removed. As |A(R)| = 2n+ 1, the claim follows.

In order to get a hint, how the dimension of PEDP∞
n,l

depends on l or
n, we determine the dimensions of PEDP∞

n,l|x numerically in cases n, l ∈
{1, 2, 3, 4, 5, 6}, l ≤ n. The results are presented in Table 6.1. A survey
of the values shows that the number of elevators seems to have diminishing
effect on dimension when n increases. Moreover, in some cases the number
of solutions clearly restricts the magnitude of the dimension. We set the
following proposition:

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 61

Table 6.1: The dimension of PEDP∞
n,l|x as a function of l and n. The number

in parentheses represents the number of feasible x-routes, |H∞n,l|.

n \ l 1 2 3 4 5 6
1 0(1) # # # # #
2 0(1) 1(2) # # # #
3 0(1) 3(4) 4(5) # # #
4 0(1) 7(8) 9(14) 9(15) # #
5 0(1) 15(16) 16(41) 16(51) 16(52) #
6 0(1) 25(32) 25(122) 25(187) 25(202) 25(203)

Proposition 14. The dimension of EDP∞n,l, 1 ≤ l ≤ n, is bounded from
below by

dim(PEDP∞
n,l

) ≥ min
{n(n+ 1)

2
, |H∞n,l| − 1

}
+ 2n+ 2 (6.18)

and from above by

dim(PEDP∞
n,l

) ≤ min
{

(n− 1)2, |H∞n,l| − 1
}

+ 2n+ 2 (6.19)

In addition, if n ≥ 6, then(n(n+ 1)

2

)
χ{l≥2} + 2n+ 2 ≤ dim(PEDP∞

n,l
) ≤ (n− 1)2χ{l≥2} + 2n+ 2

(6.20)

Proof. We first determine lower and upper bounds for the dimension of
PEDP∞

n |x and then extend the results to the (x, t)-space. Clearly, all fea-
sible x-routes in polytope PEDP∞

n,l|x satisfy the constraint matrix AS given in

Lemma 2. Hence, dim(PEDP∞
n,l|x) ≤ |A

∞
n | − rank(AS) ≤ 3

2
n(n + 1)− (1

2
n2 +

7
2
n − 1) = n2 − 2n + 1 = (n − 1)2. On the other hand, every vector in
PEDP∞

n,l|x is a linear combination, or more precisely a convex combination,
of the feasible x-routes, which means that the dimension of PEDP∞

n,l|x is at

most |H∞n,l| − 1. By combining these two facts, one obtains dim(PEDP∞
n,l|x) ≤

min
{

(n− 1)2, |H∞n,l| − 1
}

.

Suppose l ≥ 2. Moreover, we can assume that n ≥ 7 since the values in
Table 6.1 show that the claim holds for cases n ≤ 6. The idea of the proof is
to form a set of feasible x-routes containing arcs that are used only in one of
these x-routes. Define Hk\n−k as the set of feasible x-routes in which requests
are taken care of by two elevators, such that one elevator serves k requests

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 62

and the other n− k requests. Let H1 = {hi1}i∈P , H2 = {hji2 }j,i∈P :i−j≥4, H3 =
{hi,n+j3 }i,j∈P :1≤i−j≤n−4, Z = {z}, where

hi1 =
{
x ∈ H∞n,l ∩H1\n−1| xi,n+i = 1

}
,

hji2 =
{
x ∈ H∞n,l ∩H2\n−2| xji = 1

}
,

hi,n+j3 =
{
x ∈ H∞n,l ∩H2\n−2| xi,n+j = 1

}
,

z =
{
x ∈ H∞n,l ∩H0\n}

When H1 ∪H2 ∪H3 ∪ Z is denoted by H, we can make the following obser-
vations:

1. For each i ∈ P , the only x-route in H in which xi,n+i = 1 is hi1.

2. For each i−j ≥ 4, i, j ∈ P , the only x-route in H \H1 in which xjj = 1
is hji2 .

3. For each 1 ≤ i− j ≤ n− 4, i, j ∈ P , the only x-route in H \ (H1 ∪H2)
in which xi,n+j = 1 is hi,n+j3 .

4. The only x-route in H \ (H1 ∪H2 ∪H3) = Z is z.

Now, by Proposition 1, the vectors of H are linearly independent. The
cardinality of H can be obtained by using the principle of inclusion and
exclusion, i.e., Theorem 4:

|H| = |Z|+ |H1 ∪H2 ∪H3| = 1 + |H1 ∪H2 ∪H3|
= 1 +|H1|+H2|+|H3|−|H1 ∩H2|−|H1 ∩H3|−|H2 ∩H3|+|H1 ∩H2 ∩H3|,

where

|H1| =
n∑
j=1

1 = n,

|H2| =
∑

i,j∈P :i−j≥4

=
n∑
i=5

i−4∑
j=1

1

=
n∑
i=5

(i− 4) =
(n− 5 + 1)(5 + n)

2
− 4(n− 5 + 1) =

1

2
(n2 − 7n+ 12),

|H3| =
∑

i,j∈P :1≤i−j≤n−4

=
n−3∑
i=2

i−1∑
j=1

1 +
n∑

i=n−2

i−1∑
j=i−(n−4)

1

=
n−3∑
i=2

(i− 1) +
n∑

i=n−2

(n− 4) =
1

2
(n2 − n− 12),

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 63

|H1 ∩H2| ≤ |{x ∈ H1\n−1 ∩H2\n−2}| = 0⇒ |H1 ∩H2| = 0,

|H1 ∩H3| ≤ |{x ∈ H1\n−1 ∩H2\n−2}| = 0⇒ |H1 ∩H3| = 0,

|H2 ∩H3| = |{x ∈ H2\n−2 : 4 ≤ i− j ≤ n− 4, i, j ∈ P}|

=
(n−3∑
i=5

i−4∑
j=1

1 +
n∑

i=n−2

i−4∑
j=i−(n−4)

1
)
χ{n≥8}=

(n−3∑
i=5

(i− 4)+
n∑

i=n−2

(n− 7)
)
χ{n≥8}

=
((n− 7)(n− 6)

2
+ 3(n− 7)

)
χ{n≥8} =

1

2
(n2 − 7n),

|H1 ∩H2 ∩H3| ≤ |H1 ∩H2| = 0⇒ |H1 ∩H2 ∩H3| = 0.

Hence,

|H| = 1 + n+
1

2
(n2 − 7n+ 12) +

1

2
(n2 − n− 12)− 1

2
(n2 − 7n),

=
1

2
n(n+ 1) + 1.

in which case the dimension of PEDP∞
n,l|x is at least |H| − 1 = 1

2
n(n + 1).

Recall that the lower bound is valid only if l ≥ 2 and n ≥ 7: when n and
l are small enough, the number of feasible x-routes is the restrictive factor.
By combining these facts together with the upper bound of the dimension,
we obtain a chain of inequalities

min
{n(n+ 1)

2
, |H∞n,l| − 1

}
≤ dim(PEDP∞

n,l|x) ≤ min
{

(n− 1)2, |H∞n,l| − 1
}

(6.21)
Whenever l ≥ 2, it holds that |H∞n,l|−1 ≥ |H∞n,2|−1 = S(n, 1) +S(n, 2)−

1 = 1 + 2n−1− 1− 1 = 2n−1− 1. In addition, if n ≥ 6, it is easy to prove that

2n−1− 1 ≥ (n− 1)2 ≥ n(n+1)
2

. Now, it follows that min
{
n(n+1)

2
, |H∞n,l| − 1

}
=

n(n+1)
2

and min
{

(n− 1)2, |H∞n,l| − 1
}

= (n− 1)2. On the other hand, if l = 1,

then |H∞n,1| = 1 regardless the value of n, in which case min
{
n(n+1)

2
, |H∞n,1| −

1
}

= 0. Hence, when n ≥ 6, it holds that

(n(n+ 1)

2

)
χ{l≥2} ≤ dim(PEDP∞

n,l|x) ≤ (n− 1)2χ{l≥2}. (6.22)

The inequalities to be proven, (6.18), (6.19), and (6.20), follow from inequal-
ities (6.21) and (6.22) by applying Proposition 12.

Proposition 14 gives only bounds within the dimension must lie, so one
might be interested in the goodness of these bounds. In practice, the lower

CHAPTER 6. EDP: UP-PEAK TRAFFIC PATTERN 64

bound seems to be rather poor because a more careful inspection of Table
6.1 reveals that the obtained upper bound is, in fact, achieved in all cases
when n, l ∈ {1, . . . , 6}, l ≤ n. This result also makes sense intuitively: the
number of feasible x-routes, |H∞n,l|, increases very rapidly with respect to n,
so we can consider it probable that for large enough n, H∞n,l would contain
(n − 1)2 + 1 linearly independent x-routes, regardless the value of l, l 6= 1.
Since no real knowledge about cases n, l ≥ 7 is available, we end this chapter
with a following conjecture:

Conjecture 1. The dimension of PEDP∞
n,l

, 1 ≤ l ≤ n, is

dim(PEDP∞
n,l

) = min
{

(n− 1)2, |H∞n,l| − 1
}

+ 2n+ 2 (6.23)

Chapter 7

EDP: Down-peak Traffic
Pattern

7.1 Assumptions

Down-peak traffic is a situation in which all or most of the requests are
travelling downwards. A typical example of down-peak traffic is the peak
at the end of the day, when people are travelling to the lobby in order to
exit the building. Unlike in the case of up-peak traffic, we consider only one
down-peak traffic pattern that was studied by Ruokokoski et al.[28]. The
analysis is based on the following five assumptions:

B1. There are n non-assigned requests such that
f(1) > . . . > f(n), f(n+ 1) = . . . = f(2n) = 1

B2. Each vertex has a relaxed time window:
[ai, bi] = [0,∞) ∀i ∈ V .

B3. Elevators are symmetrical and they initially locate at the first floor:
f(2n+ e) = 1 ∀(2n+ e) ∈ T .

B4. The number of elevators is equal to the number of requests: |T | = n

B5. Elevators have unlimited capacity: Q =∞

A reader should note that assumptions B2, B3, B4, and B5 are the same as
assumptions A3, A4, A5, and A6, respectively - we just prefer to use different
notation for up-peak and down-peak traffic patterns. We denote the down-
peak traffic pattern that satisfies assumptions B1-B5 by D−EDP∞n and the
corresponding reduced graph by G∞D,n. The reduced graph is presented in
Figure 7.1.

65

CHAPTER 7. EDP: DOWN-PEAK TRAFFIC PATTERN 66

n+ 1
n+ 2 2n

+0

1
2

n

0

Figure 7.1: The reduced graph G∞D,n of the studied down-peak traffic pattern.

7.2 Polyhedral Analysis

The polytope of D − EDP∞n is the convex hull of feasible solutions of the
problem under assumptions B1-B5, i.e.,

PD−EDP∞
n

:= conv
{

(x, t) ∈ {0, 1}|A∞
D,n| × R2n+2

+ | (x, t) satisfies (5.1),

(5.3), (5.13), (5.16), and (6.2)− (6.3)
} (7.1)

where A∞D,n is the set of arcs in the reduced graph G∞D,n. Next we determine
the number of feasible solutions in the x-space, i.e., the number of feasible
x-routes.

Theorem 12. The number of feasible solutions to D−EDP∞n in the x-space
is

|H∞D,n| =
n∑

m=1

n∑
k=l

S(n, k)L(k, l), (7.2)

where S(n, k) is the Stirling number of the second kind (3.16), and L(k, l)
the Lah number (3.18).

Proof. Suppose that requests are served by l ≤ n elevators, which leave from
the lobby k ≥ l times in total. During each service trip, an elevator serves a

CHAPTER 7. EDP: DOWN-PEAK TRAFFIC PATTERN 67

cluster of requests by picking up a set of passengers and then by returning to
the lobby. The service order in each cluster is unique since an elevator can
change the direction of travel only if it is empty. Clusters that are assigned
to an elevator can be served in any order. Hence, the number of ways to form
k clusters equals S(n, k), and the number of ways to assign k clusters to l
elevators equals L(k, l). Therefore, according to the multiplicative principle,
n requests can be divided into k clusters that are served by m elevators in
S(n, k)L(k, l) different ways. The claim follows by summing S(n, k)L(k, l)
over l = 1, . . . , n and k = l, . . . , n.

If we compare the number given by Theorem 12 with the number of
feasible x-routes in the corresponding up-peak traffic problem EDP∞n , i.e.,
Bn, it is obvious that the former number is significantly larger. The reason
why these symmetrical traffic patterns are so different, with respect to the
number of x-routes, are the boarding constraints (5.11): in the up-peak traffic
pattern passengers are picked up from the same floor, and since elevators
have unlimited capacity, all passengers assigned to the same elevator, must
be picked up before it can leave the current floor. In the down-peak traffic
pattern, each request comes from a different floor, so examination of boarding
constraints is not necessary. In fact, in the case of D−EDP∞n , we could use
a simplified form for the extended boarding constraints (5.16), so that they
incorporate only reversal requirements. Formally,∑

(i,j)∈A(X)

xij ≤ |A(X)| − 1 ∀X ∈ X ∗, (7.3)

where X ∗ is the union of all forward paths of the form
X = (2n+ e, k1, . . . , kr−1, kr) where (kr−1, kr) ∈ R, and Ω(X \ {kr}) > 0. By
relaxing constraints (6.7) in the formulation of EDP∞n , we obtain |H∞n | =
|H∞D,n|.

The number of arcs in the reduced graph G∞D,n and the dimension of
PD−EDP∞

n
are given in the next lemma and theorem, respectively.

Lemma 7. The number of arcs in G∞D,n equals

|A∞D,n| = 2n2 + n. (7.4)

Proof. Since |({j}, {j})| = n− j + 1 for j = 1, . . . , n, |({n + j}, {n+ j})| =
n + j − 1 for j = 1, . . . , n, and |({+0}, {+0})| = n, hence |A∞D,n| = n +
1/2n(n+ 1) + n2 + 1/2n(n− 1) = 2n2 + n.

Theorem 13. The dimension of PD−EDP∞
n

is

dim(PD−EDP∞
n

) =
1

2
(3n2 + n+ 4). (7.5)

CHAPTER 7. EDP: DOWN-PEAK TRAFFIC PATTERN 68

Proof. The proof is similar to the proof of Theorem 6. See [28] for details.

Chapter 8

Conclusions

Based on the study of Ruokokoski et al. [28], we gave a snapshot mixed-
integer linear formulation for the elevator dispatching problem (EDP) in a
general case. Although, our formulation incorporates three different kinds of
variables, which are routing variables x, time variables t, and load variables
q, we showed that polyhedral analysis can be carried out in the (x, t)-space
instead of the (x, t,q)-space. This observation relies on the fact that load
variables are ”artificial” by nature, thereby enabling their elimination. Fur-
thermore, if neither waiting times nor journey times of passengers are re-
stricted, i.e., time window constraints are relaxed, polyhedral analysis can
be carried out just in the x-space, which after the results can be extended to
(x,t)-space by using a simple formula.

Most of our study focused on the analysis of up-peak traffic patterns. We
analyzed three different up-peak traffic patterns: in Case 1 it was assumed
that there are as many elevators as transport requests, and that the capacity
of elevators is unlimited. In Case 2 there were as many elevators as transport
requests but elevators had restricted capacity, and in Case 3 elevators had
unlimited capacity, but the number of elevators was less than the number
of requests. Depending on the case the general formulation of the EDP was
simplified as much as possible. In each case, we determined the number
of feasible solutions in the x-space and counted the number of arcs in the
reduced graph. In addition, the dimension of each EDP polytope, defined
as the convex hull of the feasible solutions, was studied. An exact formula
for the value of dimension was given in Case 1 and Case 2, whereas in Case
3 we found a plausible formula, but could not show its validity. Instead, in
Case 3 we determined non-trivial lower and upper bounds for the dimension.
Summaries of the obtained results are given in Table 8.1 and Table 8.2,
where, for comparison reasons, we also present similar results for TSP2n and
TSPPDn. If we compare the formulas of Table 8.1 with each other, we can

69

CHAPTER 8. CONCLUSIONS 70

note that whenever n ≥ 3,

|H(TSP2n)| > |H(TSPPDn)| > |H(D − EDP∞n)| > |H(EDP∞n)|
= |H(EDPm

n)| ≥ |H(EDP∞n,l|l ≥ 2)| > |H(EDP∞n,l|l = 1)|

where |H(· · ·)| refers to the number of solutions in the x-space. Validity of
the inequality |H(TSPPDn)| > |H(D−EDP∞n)| is a non-trivial thing, and
its proof is skipped here. A similar sequence of inequalities holds for the
number of arcs too, but in a slightly different order. Assuming n ≥ 3, we
have

|A(TSPPDn)| > |A(TSP2n)| > |A(D − EDP∞n)| > |A(EDPm
n |m ≥ 2)|

≥ |A(EDP∞n)| = |A(EDP∞n,l|l ≥ 2)| > |A(EDPm
n |m = 1)|

> |A(EDP∞n,l|l = 1)|.

Recall that the graph of TSPPDn contains 2n + 2 vertices instead of 2n
vertices, which is the reason for the direction of the first inequality. Another
interesting detail in this sequence is that the number of arcs in the up-peak
traffic patterns attains its maximum, when the capacity of elevators is two.
If we assume that n ≥ 5 and the validity of Conjecture 1, then the order of
inequalities for dimensions is exactly the same as in the case of the number of
the arcs. The requirement that n must be at least five, follows from the fact
the dimension of EDP polytopes is determined in the (x, t)-space and not in
the x-space, unlike the dimensions of the TSP and the TSPPD. Should the
same analysis be carried out just in the x-space, then requirement n ≥ 3 is
enough to guarantee the order of the inequalities.

The results of this paper provide new, essential information concerning
polyhedral structure of up-peak traffic patterns in the EDP. Although most
of the results relate to theoretical situations, which are very rare in real life,
they might help us to better understand the structure of the EDP polytope
of a general case. For example, if we discover that certain inequalities are
facet-defining for up-peak traffic patterns, it is presumable their addition to
the general EDP model strengthens the formulation. Hence, we believe that
by using the results of this thesis, we are more capable of discovering ways
to improve the EDP formulation, which will help in designing EDP solving
algorithms.

CHAPTER 8. CONCLUSIONS 71

Table 8.1: The number of solutions and arcs in the TSP and EDP variants
represented in terms of the number of transporation requests n, the capacity
of elevators m, and the number of elevators l. In the table |H| is the number
of solutions to the problem in the x-space, |A| the number of arcs in the
reduced graph, S(n, k) the Stirling number of the second kind, L(k, l) the
Lah number, and Bn the Bell number.

MILP |H(MILP)| |A(MILP)|
TSP2n (2n)!/2 2n(2n− 1)/2

TSPPDn (2n)!/2n 2n2 + n+ 1

D − EDP∞n
∑n

l=1

∑n
k=l S(n, k)L(k, l) 2n2 + n

EDP∞n Bn 3n(n+ 1)/2

EDPm
n

m = 1 Bn n2/2 + 5n/2
m = 2 Bn 2n2 + 1
m ≥ 3 Bn 2n2 + 2n+m(m− 2n− 1)/2

EDP∞n,l
l = 1 1 2n+ 1

l ≥ 2
∑l

k=1 S(n, k) 3n(n+ 1)/2

Table 8.2: The dimensions of two TSP polytopes represented in terms of
requests n, and the dimensions of different EDP polytopes represented in
terms of the number of transportation requests n, the capacity of elevators
m, and the number of elevators l. The dimensions of TSP and EDP polytopes
are determined in the x-space and the (x, t)-space, respectively.

MILP dim(PMILP)
TSP2n 2n(2n− 3)/2

TSPPDn 2n2 − n− 2
D − EDP∞n (3n2 + n+ 4)/2
EDP∞n n2 + 3

EDPm
n

m = 1 n2/2 + 3n/2 + 2
m = 2 n2 + 3
m ≥ 3 n2 + 3 + (n−m)(n−m+ 1)/2

EDP∞n,l
l = 1 2n+ 2
l ≥ 2 See (6.18) and (6.19)

Bibliography

[1] Alexandris, N. Statistical models in lift systems. PhD thesis, Univer-
sity of Manchester Institute of Science and Technology, 1977.

[2] Balas, E., Fischetti, M., and Pulleyblank, W. R. The
precedence-constrained asymmetric traveling salesman polytope. Math-
ematical Programming 68, 1 (1995), 241–265.

[3] Bertsimas, D., and Tsitsiklis, J. Introduction to Linear Optimiza-
tion, 1st ed. Athena Scientific, 1997.

[4] Cameron, P. Combinatorics: Topics, Techniques, Algorithms. Cam-
bridge University Press, 1994.

[5] Chvatal, V. Linear Programming. Series of books in the mathematical
sciences. W. H. Freeman, 1983.

[6] Cortés, C. E., Matamala, M., and Contardo, C. The pickup
and delivery problem with transfers: Formulation and a branch-and-
cut solution method. European Journal of Operational Research 200, 3
(2010), 711 – 724.

[7] Dahl, G. An introduction to convexity, polyhedral theory and com-
binatorial optimization. University of Oslo, Department of Informatics
(1997), 44–45.

[8] Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M. Solu-
tion of a large-scale traveling-salesman problem. Operations Research 3
(1954), 393–410.

[9] Dantzig, G. B., and Ramser, J. H. The truck dispatching problem.
Management Science 6 (1959), 80–91.

[10] Dumitrescu, I., Ropke, S., Cordeau, J.-F., and Laporte, G.
The traveling salesman problem with pickup and delivery: polyhedral

72

BIBLIOGRAPHY 73

results and a branch-and-cut algorithm. Mathematical Programming
121, 2 (2008), 269–305.

[11] Fiorini, S., Massar, S., Pokutta, S., Tiwary, H. R., and Wolf,
R. D. Exponential lower bounds for polytopes in combinatorial opti-
mization. J. ACM 62, 2 (May 2015), 17:1–17:23.

[12] Gomory, R. E. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Society 64 (1958), 275–278.

[13] Grötschel, M., and Padberg, M. W. On the symmetric trav-
elling salesman problem: Theory and computation. In Optimization
and operations research, Proc. Workshop, Bonn 1977 (1978), R. Henn,
B. Korte, and W. Oettli, Eds., vol. 157 of Lecture Notes in Economics
and Mathematical Systems, Springer, pp. 105–115.

[14] Gutin, G., and Punnen, A. P., Eds. The traveling salesman prob-
lem and its variations. Combinatorial optimization. Kluwer Academic,
Dordrecht, London, 2002.

[15] Hiller, B., and Tuchscherer, A. Real-time destination-call eleva-
tor group control on embedded microcontrollers. In Operations Research
Proceedings 2007 (2008), pp. 357 – 362.

[16] Hirasawa, K., Eguchi, T., Zhou, J., Yu, L., Hu, J., and
Markon, S. A double-deck elevator group supervisory control system
using genetic network programming. IEEE Transactions on Systems,
Man, and Cybernetics, Part C 38, 4 (2008), 535–550.

[17] Ikeda, K., Suzuki, H., Markon, S., and Kita, H. Evolutionary
optimization of a controller for multi-car elevators. In IEEE Congress
on Evolutionary Computation (2006), Industrial Technology, 2006. ICIT
2006. IEEE International Conference on, pp. 2474–2479.

[18] Koehler, J., and Ottiger, D. An AI-based approach to destination
control in elevators. AI Magazine (Sept. 2002).

[19] Kumar, S., and Panneerselvam, R. A survey on the vehicle rout-
ing problem and its variants. Intelligent Information Management 4, 3
(2012), 66–74.

[20] Laporte, G., and Nobert, Y. Exact algorithms for the vehicle
routing problem. Annals of Discrete Mathematics 31 (1987), 147–184.

BIBLIOGRAPHY 74

[21] Laporte, G., and Osman, I. H. Routing problems: A bibliography.
Annals of Operations Research 61, 1 (1995), 227–262.

[22] Luh, P. B., Xiong, B., and chung Chang, S. Group elevator
scheduling with advance information for normal and emergency modes,
2008.

[23] Markon, S., Kise, H., Kita, H., and Bartz-Beielstein, T. Con-
trol of traffic systems in buildings. Springer London, 2006, ch. Elevator
group control by neural networks and stochastic approximation, pp. 163–
186.

[24] Mosheiov, G. The Travelling Salesman Problem with pick-up and
delivery. European Journal of Operational Research 79, 2 (December
1994), 299–310.

[25] Naddef, D., and Rinaldi, G. The vehicle routing problem. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001,
ch. Branch-and-cut Algorithms for the Capacitated VRP, pp. 53–84.

[26] Pisinger, D., and Ropke, S. A general heuristic for vehicle routing
problems. Computers & Operations Research 34 (2007), 2403–2435.

[27] Roshier, N., and Kaakinen, M. New formulae for elevator round
trip calculation. Supplement to Elevator World fo ACIST Members
(1978), 189–197.

[28] Ruokokoski, M., Ehtamo, H., and Pardalos, P. M. Elevator
dispatching problem: A mixed integer linear programming formulation
and polyhedral results. J. Comb. Optim. 29, 4 (May 2015), 750–780.

[29] Ruokokoski, M., Sorsa, J., Siikonen, M.-L., and Ehtamo, H.
Assignment formulation for the elevator dispatching problem with des-
tination control and its performance analysis. European Journal of Op-
erational Research 252, 2 (2016), 397 – 406.

[30] Savelsberg, M. W. P., and Sol, M. The general pickup and deliv-
ery problem. Transportation Science 29 (1995), 17–29.

[31] Siikonen, M.-L. Elevator group control with artificial intelligence.
Tech. rep., Helsinki University of Technology, 1997.

[32] Sorsa, J., Siikonen, M.-L., and Ehtamo, H. Optimal control
of double-deck elevator group using genetic algorithm. International
Transactions in Operational Research 10 (2003), 103–114.

BIBLIOGRAPHY 75

[33] Tanaka, S., Uraguchi, Y., and Araki, M. Dynamic optimization
of the operation of single-car elevator systems with destination hall call
registration: Part i. formulation and simulations. European Journal of
Operational Research 167, 2 (2005), 550–573.

[34] Yannakakis, M. Expressing combinatorial optimization problems by
linear programs. Journal of Computer and System Sciences 43, 3 (1991),
441 – 466.

Appendix A

Proof of LP cutTSPPD = LP subTSPPD

Let TSPPDsub and TSPPDcut denote the two different formulations of the
travelling salesman problem with pickup and delivery such that

TSPPDsub =
{
x ∈ {0, 1}|E| : x satisfies (4.41)− (4.44)

}
and

TSPPDcut =
{
x ∈ {0, 1}|E| : x satisfies (4.41), (4.43)− (4.46)

}
.

Let LP cut
TSPPD and LP sub

TSPPD be the feasible sets of the corresponding linear
programming relaxations.

Assume x ∈ LP sub
TSPPD. The set of edges can be written as a union of

three disjoint sets:

E =
{
{i, j} ∈ E : i, j ∈ S or i ∈ S, j ∈ S or i, j ∈ S

}
= δ(S) ∪ ρ(S) ∪ ρ(S),

where S is a subset of V , S 6= ∅, V . Now, because
∑

e∈ρ(S) xe ≤ |S| − 1,∑
e∈ρ(S) xe ≤ |S| − 1, and∑
e∈E xe = 1

2

∑
i∈V
∑

e∈δ(i) xe = 1
2

∑
i∈V 2 = |V |, it follows that∑

e∈δ(S)

xe =
∑

e∈E\{ρ(S)∪ρ(S)}

xe =
∑
e∈E

xe−
∑
e∈ρ(S)

xe−
∑
e∈ρ(S)

xe ≥ |V |−|S|−|S|+2 = 2

for any S ⊂ V , S 6= ∅, V . Hence, x ∈ LP cut
TSPPD, and LP sub

TSPPD ⊂ LP cut
TSPPD.

Assume now that x ∈ LP cut
TSPPD and let S be a subset of V , S 6= ∅, V . We

can write ρ(S) as a function of cutsets such that

ρ(S) =
⋃
i∈S

δ(i) \ δ(S),

where δ(S) ⊂
⋃
i∈S δ(i). According to the principle of inclusion and exclusion,

the cardinality of the union of δ(i)’s is∣∣∣⋃
i∈S

δ(i)
∣∣∣ =

∑
i∈S

|δ(i)| −
∑

i,j∈S:i 6=j

|δ(i) ∩ δ(j)| =
∑
i∈S

|δ(i)| − |ρ(S)|

76

APPENDIX A. PROOF OF LPCUT
TSPPD = LP SUB

TSPPD 77

from which we obtain the desired inequality∑
e∈ρ(S)

xe =
∑

e∈
⋃

i∈S δ(i)

xe −
∑
e∈δ(S)

xe

=
∑
i∈S

∑
e∈δ(i)

xe −
∑
e∈ρ(S)

xe −
∑
e∈δ(S)

xe ≤ 2|S| − 2−
∑
e∈ρ(S)

xe

⇒
∑
e∈ρ(S)

xe ≤ |S| − 1.

Since LP sub
TSPPD ⊂ LP cut

TSPPD and LP cut
TSPPD ⊂ LP sub

TSPPD, it holds that
LP cut

TSPPD = LP sub
TSPPD.

	Cover page
	Symbols and Abbreviations
	Contents
	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Structure

	2 Literature Review
	2.1 Travelling Salesman Problem
	2.2 Vehicle Routing Problem
	2.3 Pickup and Delivery Problem
	2.4 Elevator Dispatching Problem

	3 Polyhedral and Graph Theory
	3.1 Polyhedral Theory
	3.2 Graph Theory
	3.3 Combinatorics
	3.3.1 Selections
	3.3.2 Principle of Inclusion and Exclusion
	3.3.3 Stirling, Bell, and Lah Numbers

	4 Integer Programming
	4.1 Classification of Optimization Problems
	4.2 Relaxations
	4.3 Modeling Techniques
	4.3.1 Related Variables
	4.3.2 Disjunctive Constraints
	4.3.3 Degree and Subtour Elimination Constraints
	4.3.4 Precedence Constraints
	4.3.5 Strong Formulations

	4.4 Polyhedral Combinatorics in Integer Programming
	4.4.1 Polyhedral Combinatorics in General
	4.4.2 Symmetric Travelling Salesman Problem
	4.4.3 Symmetric Travelling Salesman Problem with Pickup and Delivery

	4.5 Integer Programming Algorithms
	4.5.1 Simplex Algorithm
	4.5.1.1 Basic Solutions
	4.5.1.2 Reduced Costs
	4.5.1.3 New Basic Solution
	4.5.1.4 Degeneracy
	4.5.1.5 Simplex Iteration

	4.5.2 Branch and Bound Algorithm
	4.5.2.1 Branch and Bound Iteration

	4.5.3 Cutting Plane Method
	4.5.3.1 Cutting Plane Iteration

	5 Elevator Dispatching Problem (EDP)
	5.1 Formulation
	5.2 Polyhedral Analysis

	6 EDP: Up-peak Traffic Pattern
	6.1 General Assumptions
	6.2 Case 1: No Restrictions
	6.2.1 Assumptions
	6.2.2 Polyhedral Analysis

	6.3 Case 2: Restricted Capacity
	6.3.1 Assumptions
	6.3.2 Polyhedral Analysis

	6.4 Case 3: Restricted Number of Elevators
	6.4.1 Assumptions
	6.4.2 Polyhedral Analysis

	7 EDP: Down-peak Traffic Pattern
	7.1 Assumptions
	7.2 Polyhedral Analysis

	8 Conclusions
	A Proof of LPTSPPDcut=LPTSPPDsub

