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1 Introduction

Metaheuristics are approximate optimization algorithm frameworks that are
often inspired by natural processes. A metaheuristic can be described as a
high-level strategy or as a general algorithmic framework that can be applied
to a variety of problems with only a few modifications. They are commonly
used when faced by a complex problem that cannot be solved by exact algo-
rithms in reasonable time.

The term metaheuristic was first introduced in [Glover, 1986|. It derives
from the composition of two Greek words. Heuristic derives from the verb
heuriskein which means “to find”, while the suffix meta means “beyond, in an
upper level” [Blum and Roli, 2003].

A great interest has been devoted to metaheuristics in the last thirty years.
They are widely used to solve complex problems in industry and services,
in areas ranging from finance to production management and engineering
|Boussaid et al., 2013].

The travelling salesman problem on the other hand is probably among the
most intensively studied problems in optimization. Its applications include
e.g. computer wiring, vehicle routing, data array clustering and job-shop
scheduling as shown in [Lenstra and Kan, 1975]. Since the TSP is classi-
fied as an NP-hard problem, it serves as a good example for application of
metaheuristics even though for solving it there are powerfull exact algorithms
available, such as the Concorde TSP solver [Applegate et al., 2006].

The objective of this thesis is to apply four metaheuristics to the TSP. Namely
these are ant colony optimization algorithm, artificial bee colony algorithm,
a greedy algorithm and a genetic algorithm. All programming is done with
MATLAB. Problem instances are acquired from TSPLIB [Reinelt, 1991],
where problem instances of various size can be obtained. A comparison on
the quality of the results and the differences in implementation will be pre-
sented. Also, the classification and different characteristics of the metaheuris-
tics as well as important concepts regarding the design of the algorithms are
discussed. Eventhough metaheuristics can also be used to solve continuous
problems, this thesis focuses on combinatorial optimization aspect of opti-
mization.



2 Theoretical background

2.1 On the definition of metaheuristics

There are several definitions of metaheuristics present in the literature. [Os-
man and Laporte, 1996 claims that:

“A metaheuristic is formally defined as an iterative generation
process which guides a subordinate heuristic by combining intel-
ligently different concepts for exploring and exploiting the search
space, learning strategies are used to structure information in
order to find efficiently near-optimal solutions.”

An almost identical definition is made in [Talbi, 2009]:

“Metaheuristics search methods can be defined as upper lever
general general methodologies (templates) that can be used as
guiding strategies in designing underlying heuristics to solve spe-
cific optimization problems”

[Voss et al., 1999] defines metaheuristics as:

“A metaheuristic is an iterative master process that guides and
modifies the operations of subordinate heuristics to efficiently pro-
duce high-quality solutions. It may manipulate a complete (or in-
complete) single solution or a collection of solutions at each iter-
ation. The subordinate heuristics may be high (or low) level pro-
cedures, or a simple local search, or just a construction method.”

To summarize, metaheuristics can be seen as higher level, possibly abstract,
strategies that guide the problem solving process, which can be either simple,
complicated or anything in between. Metaheuristics aim to efficiently exploit
and explore the search space for near-optimal solutions.

2.2 Taxonomy of metaheuristics

Optimization algorithms can be divided into exact methods and approxi-
mate methods. Exact methods are guaranteed to obtain optimal solutions,
but for complex problems they are usually non-polynomial-time algorithms.
Approximate methods on the other hand generate high-quality solutions in
reasonable running time, but don’t guarantee finding a globally optimal so-
lution.



The class of approximate methods can be further divided into approximation
algorithms and heuristic algorithms. With approximation algorithms, prov-
able solution quality and provable run-time bounds are obtained. Heuristics
on the other hand generally find "good” solutions but cannot guarantee sim-
ilar bounds.

In the class of heuristics, two families of methods may be distinguished:
specific heuristics and metaheuristics. Specific heuristics are designed to
solve a single spesific problem or instance whereas metaheuristics can be
practically tailored to solve any kind of problem. They can be seen as higher
level strategies that can be used to generate methods for solving a specific
optimization problem. [Talbi, 2009]

2.3 Classification for metaheuristics

Metaheuristics can be classified according to several criteria. Firstly, meta-
heuristics can be numbered among nature inspired or non-nature inspired.
From the metaheuristics discussed in this thesis, the greedy algorithm is the
only one belonging to the non-nature inspired as for example the ant colony
optimization algorithm mimics the food foraging behavior of ants. This clas-
sification, however, can be problematic. There are, for instance, recently
proposed hybrid algorithms that may fit to both of these classes or neither
depending on one’s perspective.

Another way of classification is population-based search vs. single-solution
based search. Single-solution based algorithms, such as the greedy algorithm
discussed in this thesis, work on single solutions whereas population-based
methods manipulate a given number of solutions at a time. Single-solution
based metaheuristics tend to excel in exploitation of the local search space
while population-based metaheuristics allow better exploration of the search
space.

Perhaps, the most straight forward way of classification is deterministic vs.
stochastic. In stochastic methods one starting point may lead to different
solutions since random numbers are used in the process. In deterministic
metaheuristics, on the contrary, a specific initial solution always leads to the
same final solution. In this thesis, the only deterministic algorithm discussed
is again the greedy algorithm.

One of most important ways of classification is memory usage vs. memoryless
methods. For instance, some local search metaheuristics perform Markov-
processes as they base their next moves solely on the information regarding



their current state of the search process. These are called memoryless meth-
ods. Memory usage in metaheuristics can usually be divided into short-term
and long-term memory. Short-term memory utilizes recently gathered infor-
mation of the search process. Long-term memory on the other hand takes

advantage of the information accumulated during the whole search. |Talbi,
2009] [Blum and Roli, 2003]

2.4 Important concepts for metaheuristics

Each metaheuristic implementation process starts with the definiton of repre-
sentation and objective function. That is, how the solution is encoded in the
algorithm and how we measure the goodness of a solution [Talbi, 2009]. For
example, the TSP (defined in chapter 2.5) can be encoded in several ways.
One way is to simply give indices to each town and store the permutation of
these indices, which then represents a route. Another way would be to store
every city with the two cities that are connected to it. In this thesis, the
selection of the objective function is unambigous but that is not always the
case.

Every implementation of metaheuristics must balance between diversifica-
tion and intensification. Diversification is the process of exploring more of
the search space or generating solution candidates that differ from the ones
already obtained in the course of the algorithm. Intensification on the other
hand means improving the best candidates or exploring their neighborhoods
in the hope of finding even better solutions. Typically diversification focused
algorithms explore too large section of the search space without being able
to find satisfactory solutions where as intensification focused heuristics tend
to get stuck in the local optima. [Talbi, 2009] [Blum and Roli, 2003]

The definition of neighborhood often becomes relevant during the implemen-
tation of a metaheuristic especially if it contains any local search methods.
The concept of neighborhood defines solutions that are, by some measure,
close to each other. Thus it is closely connected to the definition of dis-
tance in the search space. For example, in the Travelling salesman problem
a neighboring solution to our current one could be a route where two cities
have switched places (see the definition of TSP in 2.5). In this case, a local
search is called a city swap. Even though it might seem the most intuitive
way to describe a neighborhood, city swap is not an effective method com-
pared to other local search techniques such as 2-opt which is discussed in
chapter 3.3.3. [Talbi, 2009]



Oftentimes the performance of a metaheuristic can be altered by changing
how the nitial solutions are generated. If a heuristic is given good enough
initial solutions, it might converge into a solution in less time. However,
certain initial input can also harm the performance of the algorithm. For
example, too little diversified initial solutions can lead to inefficient explo-
ration of the search space. Initial solutions can be generated randomly or
even algorithmically.

2.5 Travelling salesman problem

The travelling salesman problem can be defined as follows. The salesman
is given a set of cities and distances from any city to another. The task
is then to visit every city exactly once and return to the starting city while
minimizing the total distance travelled. In this thesis, the problems instances
are symmetric, wherefore the distace from city i to city j is equal to the
distance from j to .

Formally this can be denoted as a graph problem. Let G = (C,A) be a
graph where C' = {¢y, ¢, ...,c,} denotes a set of nodes or cities and A =
{(,9)|Vi,j € C,i # j} arcs between nodes. Also let d;; denote the weights
associated with each arc. All weights or distances can then be expressed as
a n x n matrix D. The objective is now to construct a Hamiltonian cycle
m={n(1),m(2),...,7(n)} with minimal total weight or

n—1
min Z dr(i),m(i+1) T r(n)m(1)- (1)
i=1

The search space of a TSP problem is of size (n — 1)!, when the starting
city is fixed. This quickly renders brute-force search (going through all the
possible paths one by one) as an infeasible approach when the size of the
problem instances grow. However, until modern day, numerous other ways
of solving the TSP have been devised, including but not limited to dynamic
programming [Bellman, 1962|, integer programming with cutting planes and
branch-and-X algorithms [Padberg and Rinaldi, 1991] and specific heuristics
|[Helsgaun, 2000].



3 Overview and implementation of the selected
metaheuristics

3.1 Greedy algorithm

Perhaps the simplest metaheuristics discussed in this thesis is the greedy
algorithm. The main idea of this metaheuristic is to start with an empty
solution and incrementally add values to decision variables one variable at a
time. This is repeated until all variables have a value, that is to say, until a
complete solution has been achieved. The variables and the values assigned
to them are decided by a local heuristics of choice, which tries to minize
(or maximize) the objective function at every step. In this case, the nearest
neighbor approach is selected. In TSP this translates into the following: the
next city to be visited is the one with smallest euclidean distance to the
current city.

Let C' = ¢y, ¢y, ..., ¢, represent the set of cities of a TSP instance. If the dis-
tances between the cities are known, the pseudo code for the greedy algorithm
can be formulated as in listing 1.

Listing 1: Pseudo code of the implemented greedy algorithm

Initialize C to empty list
Select a starting city and add it to C
for i=2...n
Select neighbor nearest to last visited city and add it to C
end for
Return C

As seen from the pseudo code, the implementation of the greedy algorithm
is relatively simple. The starting city can be selected randomly. However,
since the algorithm is not expensive in terms of computing, every city can
easily be tried in problem instances of less than one thousand cities.

3.2 Ant colony optimization
3.2.1 Overview

Ant colony optimization metaheuristics mimics the food foraging behavior
of ants. It was introduced in [Dorigo and Di Caro, 1999]. The underlying




logic of the metaheuristic was first implemented on the Traveling salesman
problem a few of years earlier by the same authors.

Ant colony optimization is a population based metaheuristic where simple
agents called ants communicate indirectly with each other via pheromone
trails. Ants deposit pheromones of different concentration depending on the
quality of route they have traversed. They also use the concentration of
pheromones to determine their paths in the search space. The trick is that
because pheromones evaporate over time, the shortest routes are covered
most and thus intensified.

The ACO framework consists of three phases. In the first phase the ants try
to find a feasible path or a solution from the search space that minimizes the
cost function. This phase is called the management of ants’ activity. The
other two phases are pheromone evaporation and daemon action, latter being
optional. In the daemon action phase, global actions, which single ants are
unable to do, can be executed. For example, the best route this far can be
intensified or new traversal rules can be added. These phases can be carried
out in any order and there are many possible variations in each of them. For
example, the pheromones can be chosen to be updated after every step of
the ant or in the end when every ant has completed their routes. |Dorigo
and Stiitzle, 2003]

3.2.2 Implementation

Ants are first initialized into random starting cities. Until each ant has visited
every city, ant k chooses to travel from city ¢ to an unvisited city j with a
probability of
(1) = LTl In]” if j € Nf (2)
o S D) - [al? a

where 7;; = 1/d;; is in the most general sense the a priori information of
the move and here, as in most implementations, it is simply the inverse of
distance. NF is the set of unvisited cities of ant k& when it has traversed to
city ¢. Function 7;;(t) gives the amount of pheromone along the route from
1 to 7 at a time t. Coefficients o and [ define the relative weight of the a
priori information and the pheromone trails, respectively. For example, if «
equals zero then only the a priori information affects the probability.

When every ant has visited every city and thus achieved a complete solution
the algorithm moves into the pheromone evaporation phase. The pheromones



are updated according to the formula

m

Tt +1) = (1= p)-m;(t) + Y _ATh(E) V(i j). (3)

k=1

Here p is the parameter which determines how quickly the pheromones evap-
orate. A7l (t) on the other hand is the added pheromone from ant k. There
are many possible variations on how to calculate this, but the most basic
version, which is implemented in this thesis as well, is of the form

1/LE(t) if ant has traveled from city i to j

k _
ATy (t) = { 0 otherwise ’ (4)

where L*(t) is the total length of the complete path of kth ant. So the shorter
the length of the tour is, the more pheromone gets deposited and that path
is more probably traversed in the next iterations. [Dorigo and Stiitzle, 2003|

The whole algorithm in this thesis is implemented as in listing 2.

Listing 2: Pseudo code of the implemented Ant colony optimization

Initialize ants with empty routes

while (StoppingCriteria)
Management of ants’ activity i.e. build complete path for each ant
Pheromone evaporation and update

end while

Return the best ant

The stopping criteria used in this thesis is simply a maximum limit for the
iterations.

3.3 Artificial bee colony optimization
3.3.1 Overview

Artificial bee colony optimization is also a nature inspired population based
metaheuristic. As the name suggests, the metaheuristic is loosely coupled
with bees’ behaviour in searching for a nest site, marriage in the colony or
food foraging. It features concepts borrowed from nature such as waggle
dance, nectar exploration and division of labour. Algorithms based on bee




colony’s have been been used in a variety of problems of both continuous and
combinatorial nature. [Talbi, 2009]

Artificial bee colony optimization is based on the bees’ food foraging be-
haviour where the insects try to find the shortest way to their food source.
In this thesis’ implementation, the bee colony is divided into three different
categories of bees. There are scout bees, who are responsible for diversifica-
tion i.e. they explore new areas in the search space. Then there are foragers
who can be either active (employed) or inactive (unemployed). Active bees
are in charge of intensification i.e. they perform local search around promis-
ing neighborhoods for a given amount of time until they retire to inactive
bees. Inactive bees on the other hand wait in the nest for actives bees’
information about prospective food sources.

The information about about the food sources is transmitted via "waggle
dance". This term is present in almost every paper that discusses bee colony
based metaheuristics although its implementation varies. In summary, the
bees in the nature are able to communicate the direction, quality and the
distance of a food source with a series of movements dubbed "waggle dance".
In this thesis, the implementation of the dance is rather latent as described
below.

3.3.2 Implementation

In practice, a bee holds information of a route and its length. In some cases
an implementation can be said to contain a hive object. It contains global
information of the algorithm such as the shortest route and the number of
each bee type. In this thesis, the hive is not a concrete object in the code.
However, the same information present in separate variables.

At the beginning of the algorithm, the bees are initialized to probabilistic
greedy trails. That is, bee k will choose to travel from city ¢ to city j at a
time ¢t with the probability of

pfj(t) _ [1:5]° E if j € Nf) (5)
ZZGNf (7]

where the terms are the same as in equation (2) with the exceptions that
this equation concerns bees. Notice that the only difference between this
equation and (2) is that the pheromone term is missing.
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After the initialization of the bees, the main loop of the implementation
is split into two parts. First, the active and inactive foragers are handled.
Active bees have two relevant limits concerning their local search: the number
of searches they perform during one iteration of the algorithm and the number
of searches before they retire. If the local search yields the globally best route
it is saved in the global memory and naturally to the ant’s memory also.

Once an employed forager has retired, an unemployed forager is activated.
This means that the population and the proportions of the different bee types
remain constant through the whole algorithm. An unemployed bee can see
the routes of every scout bee and chooses its local search area according to a
probabilistic greedy rule much like the one shown in equation (5). That is the
shorter the route is the more probably it is selected. This can be expressed
as follows. The probability px(t) of selecting the route of bee k at a time ¢ is

iy = L0

SN (6)
2imalpi()]77

where pi(t) is the length of the route of bee k at a time ¢. As before, the
coefficient 8 determines the significance of the differences in route lengths.
The bigger (3 is the more probably a shorter route is selected. In a sense,
every active bee performs the waggle dance after each iteration of heuristic.
Consequently, the dance is not explicitly programmed or implemented.

The scout bees make one move per every iteration of the algorithm. It simply
explores a new probabilistic greedy route seen in equation (5) and saves it if
it’s better than the best it has found this far. The pseudo code of the whole
heuristic is presented in listing 3.

Listing 3: Pseudo code of the implemented Artificial bee colony optimization

Initialize bees with probabilistic greedy routes
while (StoppingCriteria)
Active foragers perform local search
if (active forager iteration limit exceeded)
Set active forager to inactive
Set inactive forager to active and select a route to it
end if
Scouts perform global search
end while
Return the best bee
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3.3.3 2-opt local search

In this thesis, the implemented local search algorithm is called 2-opt. If
the TSP problem is modeled as graph described in chapter 2.5, the 2-opt
algorithm is simply a process of removing and replacing two edges. 2-opt is
a special case of k-opt operator which has been widely used and proved to
be efficient in the travelling salesman problem. |Talbi, 2009]

3.4 Genetic algorithm
3.4.1 Overview

Genetic algorithms belong under the class of evolutionary algorithms. Evo-
lutionary algorithms are inspired by natural evolution and genetics.

GAs have been applied to a variety of optimization problems (see e.g. [Soares
et al., 2013] and [Batenburg et al., 1995]). They are population based meta-
heuristics in which the solutions are produced by different operators such as
mutation or crossovers. Genetic algorithms are based on the hypothesis that
combining good solutions can result in even better ones.

Typical to metaheuristics, concepts such as genotype, fitness, environment
etc. are used in place of typical terms such as solutions or objective function.
Very often the concepts of reproduction and natural selection are present.

Since different operators and ways to simulate selection are easy to come by,
numerous different algorithms have been introduced. The algorithm devised
in this thesis is an example of what a genetic algorithm can look like.

3.4.2 Implementation

First step in the implementation is to initialize the population of individuals
(or solutions/routes) to probabilistic greedy trails, which were presented in
(5). Then 1st order crossover operator is used to create offspring from which
the best 50% are selected and carried over to the next generation. The
remaining half are terminated and replaced by newly initialized individuals.
This process is repeated for a desired number of times. The pseudo code for
the algorithm is presented in listing 4.

The 1st order crossover operator is executed as follows. First, two crossover
points are selected randomly. The offspring is created so that the cities
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inside the points are inherited from one parent. Then, starting from the
latter crossover point of the other parent, one starts adding cities that are
not yet included to the offspring. In this thesis, two offspring are created by
switching the parents’ roles to preserve the population count.

Listing 4: Pseudo code of the implemented genetic algorithm

Initialize individuals to random paths

while (StoppingCriteria)
Create offspring with 1st order crossover operator
Reinitialize the worst 50} of individuals

end while

Return best individual

4 Results

4.1 Overview

The metaheuristics were tested in practice with a MATLAB implementation.
Two test cases were selected for the task from TSPLIB [Reinelt, 1991]. These
are a280, shown in figure 1, and lin105, in figure 2, which contain 280 and
105 cities, respectively. Performance was tested on a computer with Intel
Core i7-4500U 1.8GHZ processor and 8 GB RAM.

All the heuristics, except the greedy algorithm, were iterated until their re-
turn values converged converged. An algorithm is considered converged when
the best solution given by it has not changed during the last 25 iterations.
Unlike the rest of the heuristics, the implemented greedy algorithm is deter-
ministic with regard to the starting city. Despite running the algorithm with
every city as a starting point, it proved to run well within reasonable time
limits.

This thesis does not pursue to give a full fledged benchmark of the algorithms.
Rather, a typical run of each algorithm on each problem is presented. The
reason for this is explained in section 5. The results of the runs do not
drastically vary between runs given enough iterations before convergence.
Even with maximally biased result selection, the heuristics still hold on to
their distinguishable run times, iteration counts and quality of solutions.
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Figure 1: Optimal route for the problem a208 from TSPLIB
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Figure 2: Optimal route for the problem 1in105 from TSPLIB
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Figure 3: Tteration of Greedy algorithm for problem lin105

4.2 Greedy algorithm

The Greedy heuristic was one of two best algorithms tested in this thesis.
It was also clearly the fastest one in terms of time. The results for both
problems are shown in figures 3 and 4.

Both of the problems run under 0.5 seconds and yield a route that is less
than 20% longer than the optimum.

In this problem, one iteration corresponds to running the algorithm with a
new starting city.

4.3 Ant colony optimization

Along with Greedy heuristic, ACO achieved the best results among the im-
plemented heuristics. The two algorithms were mostly on par with each other
for the length of the outputted routes. However, the ACO implementation
took the most time to converge. The iteration of the algorithm for both
problems is shown in figures 5 and 6.
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Figure 4: Tteration of Greedy algorithm for problem a280
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Iteration of ACO algorithm
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Figure 6: Tteration of ACO algorithm for problem a280

4.4 Artificial bee colony optimization

ABC algorithm was found to produce low quality results for the two problem
instances. It’s running time was mediocre compared to other three algo-
rithms. It came in the third place int terms of the length of the resultant
route, winning only the genetic algorithm. The results for both problems are
shown in figures 7 and 8.

4.5 Genetic algorithm

The 1st order crossover operator accompanied with probabilistic greedy route
initialization did not fare very well compared to other heuristics. The algo-
rithm converged faster compared to Ant colony optimization and Artificial
bee colony but produced inferior results.

In problem 1in105, GA converged to a route with nearly double the length
of the optimum. With problem a280 the result was almost fourfold. The
results are presented in figures 9 and 10.
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Table 1: The results for problem 1in105

Route length Time (s) Iterations
Greedy 16935 0.0620 105
GA 28097 16.0940 68
ACO 16038 42.4428 118
ABC 25246 29.7336 183
Optimum 14379 N/A N/A
Random mean 123476 N/A N/A

Table 2: The results for problem a280

Route length Time (s) Iterations
Greedy 2975 0.4885 280
GA 9486 54.8676 50
ACO 3272 229.6782 145
ABC 8649 59.5542 95
Optimum 2579 N/A N/A
Random mean 34111 N/A N/A

4.6 Summary of results

The results of this thesis are summarized in tables 1 and 2. To give a sense
of the quality of the results, the optimum route lengths are also given. In
addition, the mean length of 10000 randomized routes for both problems are
presented in rows "Random mean".

From the results it is seen that the Greedy algorithm and ACO were clearly
better than GA and ABC in terms of length of the resulting routes . However,
every algorithm was one order of magnitude ahead of the random mean.

5 Conclusions and discussion

Among the tested implementations of metaheuristics, perhaps the Greedy
algorithm’s adaptiveness was the most significant finding. In addition to
being conceptually the simplest algorithm, it was also remarkably faster than
the other implementations. It also boasted the best result in problem a280.

All three of the non-deterministic algorithms were based on the probabilistic
greedy initialization. This is the case also for Ant colony optimization, since
in the first iteration all the pheromones are equal. This leads to notion that



20

what was actually measured between these algorithms, was how well they
could leverage or build upon the initial solutions. It seems that the reason
why ABC and GA ended up with approximately the result was because
neither of them was able to improve the sate where they started.

It is to be noted that, in general, the results of this thesis have no impli-
cations on how well certain metaheuristics are applicable to the travelling
salesman problem or combinatorial optimization. This is because the algo-
rithms devised in this paper represent only one possible way of implementing
the metaheuristics in question. As mentioned in section 2, a metaheuristic is
no more than a very high abstraction of the problem solving process.

The effectiveness of the non-deterministic algorithms can be tuned by chang-
ing their parameters. For instance, in ABC one can change the proportions of
different bee types, how many times a local search is performed on a specific
region and so on. This makes the benchmarking of different implementations
tedious since the algorithms themselves should be optimized first. Sometimes
even the optimization of parameters is done with a metaheuristic, which is
then called a hyper-heuristic [Talbi, 2009]. In addition, there are a number of
different factors that complicate the benchmarking such as the programming
language, the quality of code, compilers and so on.

As shown in this thesis, metaheuristics are able to produce near optimal
solutions in difficult problems in very reasonable time. The potential of
metaheuristics has not gone unnoticed. For instance, by the time of writing
there are numerous publications available from Google Scholar written this
year. Hopefully the field continues to thrive and and produce new interesting
methods and insights to the hard computational problems across all areas of
research.
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A Summary in Finnish

Tamén tyon tavoite on esitelld metaheuristiikoita ja niihin liittyvia keskeisia
kasitteitd. Esityksen tueksi sovelletaan neljai eri metaheuristiikkaa kauppa-
matkustajan ongelmaan.

Metaheuristiikat ovat approksimatiivisia optimointimenetelmis, joita taval-
lisesti kidytetddn hankalien ongelmien ratkaisuun. Tarkemmin kuvattuna
metaheuristiikka on korkean tason abstraktio ongelmanratkaisuprosessista.
Metaheuristiikka ikddnkuin antaa siis raamit itse optimointialgoritmin to-
teutukselle, jota kutsutaan tassd kontekstissa spesifiksi heuristiikaksi. Meta-
heuristiikoiden ideologia tai malli on usein johdettu luonnosta.

Metaheuristiikat ovat kiinnittdneet paljon mielenkiintoa 30 vuoden olemassa
olonsa aikana. Todennékoisia syita positiiviselle huomiolle ovat niiden mukau-
tuvaisuus ja tehokkuus. Kaytdnnon ongelmanratkaisutilanteissa on yleensé
riittadva saada "tarpeeksi” hyva ratkaisu lyhyessa ajassa, mikd on metaheuris-
tiikoille ominaista. Niitd onkin sovellettu laajasti eri teollisuudenaloilla.

Kauppamatkustajan ongelma taas on ehkéipd yksi tutkituimpia optimoin-
tiongelmia. Silla on sovelluksia muun muassa piirien sdhkdsuunnittelussa
(computer wiring) sekd koneiden aikatauluttamisessa (job-shop scheduling).
Probleeman ldhtokohtana on joukko kaupunkeja, joiden keskindiset etéisyy-
det on annettu. Tehtdvini on 16ytad lyhin reitti, joka kulkee jokaisen kaupun-
gin lapi tdsmélleen kerran.

Metaheuristiikoille on sekd monia ominaisia ettd muiden optimointimenetelmien
kanssa yhteisid piirteitd. Kuten ldhes kaikkien optimointimenetelmien ko-
hdalla, mys metaheuristiikkojen soveltamisessa ongelman koodaus seki ko-
hdefunktion muodostaminen ovat térkedssd asemassa. Koodauksessa vi-
itataan téssi sithen, miten ratkaisu kuvataan matemaattisesti. Esimerkiksi
kauppamatkustajan ongelman yhteydessd reitti voi olla luontevaa kuvata
permutaationa kaupunkien indekseistd. Toinen tapa olisi esimerkiksi muo-
dostaa lista, jonka jokaisessa alkiossa olisi listattu jokainen kuvattavan re-
itin kaupunki seké sitd edeltdvi ettd seuraava kaupunki. Kohdefunktio taas
méarittda sen, mitd pidimme hyviné ratkaisuna.

Ongelman koodaukseen liittyy suurelta osin se, miten ratkaisuavaruudessa
médritellddn naapurusto. Naapuruston madarittely vastaa kysymykseen si-
itd, mitka ratkaisut katsomme olevan jonkin etdisyyden méaéritelmin mukaan
ldhelld toisiaan. Esimerkiksi kauppamatkustajan ongelmassa voisimme maérit-
taa lahinaapuriratkaisuksi sellaiset reitit, jotka eroavat vain kahden kaupun-
gin jarjestyksessd toisistaan.
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Usein metaheuristiikkoja soveltaessa joudutaan tasapainottelemaan erilais-
tamisen (diversification) ja vahvistuksen (intensification) vélilla. Erilais-
taminen tarkoittaa ratkaisuavaruuden uusien osioiden ldpikiyntid, kun taas
vahvistaminen viittaa lupaavien alueiden tarkempaan tutkimiseen. Mikali
spesifi heuristiikka keskittyy vain vahvistukseen, pdddymme nopeasti liheiseen
lokaaliin optimiin, joka ei todennéksisesti ole kovin laadukas ratkaisu. Liika
erilaistaminen taas johtaa ison alueen ldpikdyntiin l0ytamétta tyydyttavid
ratkaisuja.

Metaheuristiikkoja on mahdollista luokitella monin eri kriteerein. Meta-
heuristiikan malli voi olla peridisin luonnosta tai ei. Esimerkiksi tassd tyossia
késitellaan muurahaisalgoritmia, joka perustuu muurahaisten ruoanetsintaan
luonnossa. Populaatiopohjaisissa (population-based) metaheuristiikoissa al-
goritmi késittelee useaa ratkaisua samanaikaisesti, kun taas yksikkoépohjai-
sissa (single-solution-based) rakennetaan tai parannellaan vain yhtd. Erés
luokittelukriteeri on deterministisyys eli saavuttaako algoritmi aina saman
lopputuloksen, kun ldhtékohdat pysyvit muuttamattomina. Metaheuristi-
ikkoja voi luokitella vield muistin kiyton perusteella. Jotkin metaheuristiikat
eivit kiytd muistia ollenkaan, toisten tallentama ja kiyttdmé muisti voidaan
jakaa pitkdaikaiseen ja lyhytaikaiseen muistiin.

Ensimmaéinen sovellettavista metaheuristiikoista on nimeltdan ahne algoritmi.
Ahne algoritmi alkaa tyhjasta ratkaisusta, johon yksi kerrallaan kiinnitetaan
paatosmuuttuja. Jokaisen muuttujan arvon kiinnitys valitaan sen perus-
teella, mikd arvomuuttuja kombinaatio minimoi tai maksimoi (tapauksesta
riippuen) kohdefunktion. Kauppamatkustajan ongelman tapauksessa tdmén
voi ajatella johtavan ldhimmé&n naapurin valintaan. Toisin sanoen, jokaisella
kierroksella seuraavaksi vierailtava kaupunki on se kaupunki, johon on tAmén-
hetkisestd kaupungista lyhin euklidinen etéisyys.

Seuraava sovellettava metaheuristiikka oli muurahaisalgoritmi. Tamé& l&h-
estymistapa matkii havainnoitua muurahaisten ruoanhakua luonnossa. Ky-
seessd, on populaatiopohjainen metaheuristiikka, jossa muurahaisiksi kutsu-
tut agentit keskustelevat keskendsn epésuorasti feromonin vélitykselld. Muu-
rahaiset jattavat kulkemalleen reitille feromonia l6ydetyn ruoanldhteen tai re-
itin laadun perusteella. Etsiessdéin ruokaa ne myos liikkuvat todennikdisem-
min feromonin suuntaan. Metaheuristiikan idea perustuu feromonin haih-
tumiseen, jolloin ajan saatossa parhaat reitit voimistuvat ja huonoimmat
heikentyvat.

Tyossé tarkasteltu mehildisalgoritmi perustuu puolestaan mehildisten ruoan-
hakuun. Tamén tyén implementaatiossa mehildiset jaetaan kolmeen lu-
okkaan: tiedustelijoihin, aktiiviisiin sekd epdaktiivisiin tyolaisiin. Tiedusteli-
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jat ovat vastuussa algoritmin erilaistamisesta, silld niiden tehtavana on etsid
uusia lupaavia alueita ratkaisuavaruudesta. Aktiiviset tyoldiset taas hoita-
vat vahvistuksen tehdessdin lokaaleja hakuja hyviksi todetuilta alueilta.
Tiedustelijat kommunikoivat reittinsd epéaktiivisille tyoléisille, jotka sitten
paattavat lahtevatko ne tutkimaan aluetta. Mitd paremman alueen tiedustelija
on I6ytanyt, sitd todenndkoisemmin epdaktiivinen tyoldinen sen valitsee. Valin-
nan myotd tyoldisen status vaihtuu aktiiviseksi ja se alkaa suorittaa lokaalia
hakua. Kun aktiivinen tyoldinen on tutkinut jotain aluetta riittévisti, se
epaaktivoituu ja jad seuraamaan tiedustelijoiden reittejé.

Geneettisid algoritmejd on ajan saatossa kehitetty hyvin monia erilaisia.
Téssa tyossa sovelletaan verrattain yksinkertaista ensimmaéisen asteen ristey-
tystd (1st order crossover). Reitit alustetaan ensin probabilistisella ahneella
periaatteella. Toisin sanoen, mité lihempéné seuraava kaupunki on nykyisté
kaupunkia, sen todennikoéisemmin sinne siirrytddn. Jokaisella kierroksella
populaatio risteytetdin keskenddn. Tamén jidlkeen parempi puolikas popu-
laatiosta jatkaa seuraavalle iteraatiokierrokselle, kun taas huonompi puolikas
alustetaan uudestaan.

Edelld mainittujen metaheuristiikoiden implementaatiota sovellettiin kahteen
kauppamatkustajan ongelmaan, jotka sisédlsiviat 280 ja 105 kaupunkia. Tu-
loksista selvisi, ettd muurahaisalgoritmi sekd ahne algoritmi saivat huomat-
tavasti parempia ratkaisuja, kuin mehildisalgoritmi tai geneettinen algotirmi.

Ehkipé mielenkiintoisin havainto tuloksista oli, ettd ahne algoritmi pérjési
niin hyvin verrattuna muihin verrattuna. Sen ajoaika oli vain murto-osan
muista. Se ylsi sijoituksille yksi ja kaksi reitin pituudella mitattuna.

Lukuunottamatta ahnetta algoritmia, tdmén tyon metaheuristiikoiden suori-
tyskykyé voi parantaa optimoimalla niihin liittyvid parametreja. Esimerkiksi
mehildisalgoritmi johtaa eri tuloksiin, mikéili tiedustelijoiden ja tydléisten
suhdetta vaihtelee. Taméa tekee implementaatioiden vertaamisesta tyolasta.
Lisdksi voidaan tunnistaa muita vertailuun vaikuttavia tekijoita, kuten koodin
laatu, kddntdjat ja niin edelleen. Téastd syystd vertailua ei ole toteutettu
kovinkaan perusteellisesti.

Huomioitavaa on, ettd nama tulokset eivit anna osviittaa metaheuristiikko-
jen keskindisestd paremmuudesta. Edellisen kappaleen perusteluiden lisidksi
on muistettava, ettd tdssi tyossa tutkittiin vain metaheuristiikkojen imple-
mentaatioita. Kuten alussa mainittiin, metaheuristiikka taas on méaritelmén
mukaan vain abstrakti kuvaus ongelmanratkaisuprosessista.
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