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This thesis introduces an automated approach for constructing dynamic Bayesian
networks (DBNs) in simulation metamodeling. DBN metamodels permit studies
dealing with simulation data produced by discrete event simulation (DES) models.
The new approach allows easier and faster construction of such metamodels
without requiring detailed knowledge of the methodology of Bayesian networks.
Deficiencies in previously created DBN metamodels are thus readily corrected by
creating new refined models. This increases the overall accuracy and usability of
DBN metamodels.

DES is an event based form of stochastic simulation that enables the study of the
time evolution of the variables of the underlying system. Simulation metamodels
are used to investigate the properties of simulation models by describing their
behavior in the form of input-output mappings. In DBN metamodels, a DBN
represents the joint probability distribution of the time-dependent variables of
a DES model. The utilization of DBNs in metamodeling, unlike the use of
input-output mappings, therefore enables investigations involving time-dependent
variables. Unconditional and conditional time evolutions, i.e., the evolution over
time of marginal or conditional probability distributions, can be studied. This
allows for various forms of what-if analysis.

The automated approach to the construction of DBN metamodels presented in
this thesis includes design of experiment, preprocessing of the simulation data,
selection of the variable specific time instants for the DBN, creation of the DBN,
and validation of the DBN. In addition, this thesis introduces the concept of
multiple time scales in DBNs which allows for more accurate DBNs without
increasing their size. An implementation of the approach, a tool for constructing
DBN metamodels, is also presented. Constructing DBN metamodels with the tool
verifies the practicality of the automated approach. The use of the approach and
the tool is illustrated by two example simulation studies dealing with air combat
and the operation of an air base.
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Tässä työssä esitellään uusi lähestymistapa dynaamisten Bayes-verkkojen (dynamic
Bayesian networks, DBNs) automatisoituun konstruointiin simulaatiometamallin-
nuksessa. DBN-metamallien avulla tutkitaan diskreetillä tapahtumasimuloinnilla
(discrete event simulation, DES) luotua simulointidataa. Lähestymistavan avul-
la kyetään konstruoimaan DBN-metamalleja helposti ja nopeasti tuntematta
Bayes-verkkojen toimintaa lähemmin. Aiemmin konstruoitujen DBN-metamallien
mahdollisia puutteita voidaan korjata vaivattomasti luomalla uusia parannel-
tuja metamalleja. Tämä menettely parantaa DBN-metamallien tarkkuutta ja
käytettävyyttä.

DES on stokastinen simulointimuoto, joka mahdollistaa mallin muuttujien arvojen
aikakehityksen tarkastelun. Simulointimetamalleilla tutkitaan simulointimallien
ominaisuuksia kuvaamalla niiden sisäänmenojen ja ulostulojen välistä yhteyttä.
DBN-metamalleissa DBN kuvaa DES-mallin aikariippuvien muuttujien yhteisja-
kauman, minkä avulla voidaan tarkastella muuttujien reuna- ja ehdollisten toden-
näköisyysjakaumien aikakehitystä. Tämä mahdollistaa erilaiset mitä-jos -analyysit,
joita ei voida toteuttaa pelkillä sisäänmeno-ulostulokuvauksilla.

Tässä työssä esiteltävä lähestymistapa DBN-metamallien automatisoituun kon-
struointiin koostuu koesuunnittelusta, simulointidatan esikäsittelystä, muuttuja-
kohtaisten ajanhetkien valinnasta DBN:ää varten, DBN:n luomisesta sekä metamal-
lin validoinnista. Automatisoidun mallintamislähestymistavan lisäksi tässä työssä
esitellään DBN:ien muuttujakohtaiset aikaskaalat, joiden avulla kyetään konstruoi-
maan tarkempia DBN:iä kasvattamatta niiden kokoa. Esitettyyn lähestymistapaan
perustuen kehitetään DBN-metamallien konstruointityökalu. Työssä havainnolliste-
taan esitetyn lähestymistavan ja konstruointityökalun käyttökelpoisuutta kahdella
esimerkkitapauksella, jotka liittyvät ilmataistelua ja ilmatukikohdan toimintaa
kuvaaviin simulointimalleihin.
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1 Introduction

Conducting experiments is a natural way to investigate the properties of
various systems. Rather than conducting experiments on the actual system, a
model of it can be created for experimenting on. Simulation models (see, e.g.,
[28]) are used to achieve this, as are physical models in some circumstances.
This thesis focuses on discrete event simulation (DES, see, e.g., [2]) which is
an event based form of simulation. DES is a popular simulation methodology
for modeling and analyzing a wide range of systems. For further information
on DES analysis, see, e.g., [28]. An example application of DES analysis
related to decision making in aircraft maintenance is provided in [31].

DES models are becoming increasingly complex. The analysis of such
models can be computationally demanding if appropriate methodologies are
not used. Simulation metamodels (see, e.g., [3, 8, 13]) can assist in simulation
studies by describing the behavior of DES models without considering their
inner logic and dynamics. A metamodel expresses properties of the output
of a simulation model as a function of its input. Utilizing dynamic Bayesian
networks (DBNs, see, e.g., [32]) in metamodeling is a new approach [36, 38, 39].
Such metamodels consider the joint probability distribution of the variables
in a DES model [39], including state variables. What-if analysis that is not
possible with mere input-output mappings can therefore be conducted with
the help of DBN metamodels [34, 38, 39]. This includes analysis involving
state variables at specific time instants and multiple output variables.

The construction of a metamodel that describes the behavior of a simula-
tion model accurately enough is not always a simple process. By automating
aspects of it and only leaving certain key decisions to be made manually, the
process is simplified significantly. Automation has previously been applied
in simulation analysis to, e.g., select the number of simulation replications
[20] and estimate the warm-up length of models [21]. Automation in the
construction of metamodels has also been considered on a general level [7].

This thesis describes a new approach to the automated construction of
DBN metamodels representing DES models. Issues related to the construction
of such models are the primary focus of the thesis. New means are adopted
to improve certain aspects of the metamodel construction in order to make it
more suitable for automation. In addition, multiple time scales, i.e., different
degrees of temporal detail for different variables, are included. This is a
new feature in DBN metamodels. An implementation of the automated
construction of DBN metamodels is also presented in the form of a tool for
constructing DBN metamodels (referred to as the DBN metamodeling tool in
this thesis). The application of the approach is illustrated with two example
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studies.
A DBN metamodel takes into account all the variables of a DES model.

The variables are categorized into three types: input variables, state variables,
and output variables [48]. DES models are utilized by employing the Monte
Carlo method (see, e.g., [43]), i.e., repeating the same simulation many times
but with different random numbers. Different values are also used for the
input variables in order to investigate their impact on the output variables.
The observed values of the output variables are then analyzed. This is a
time consuming process that can be bypassed with the help of metamodels
[13, 14, 34]. While a simulation model attempts to imitate the behavior of the
underlying system, metamodels are used to express the relation of the inputs
and outputs directly. Metamodels do not generate individual observations of
the output variables – the behavior of the outputs is instead expressed as a
function of the inputs.

For any given values for the inputs of a simulation model, the outputs
follow some usually unknown and highly complex probability distribution.
In its most basic form, a metamodel is a mapping from the inputs to the
expected values of outputs. It can, e.g., take the form of a regression model
[5, 25]. It may also be of interest to assess other properties of the output.
There exist different types of simulation metamodels based on, e.g., neural
networks [3] or Kriging [24].

A Bayesian network (see, e.g., [22]) represents the joint probability distri-
bution of a set of random variables as a directed acyclic graph where nodes
represent variables and arcs their dependencies. DBNs are Bayesian networks
where temporal information is also considered [32, 33]. Each node represents
either a time-dependent random variable at a specific time instant or a random
variable that does not change value over time.

Interpreting the random variables of a DBN as the variables of a simulation
model results in a metamodel that provides the probability distributions of
both outputs and state variables at all times included in the DBN [39].
Additionally, interpolation is used to generate approximations for probability
distributions at time instants that are not included in the DBN [38]. The
DBN metamodel thus describes the time evolution of the state variables of
the simulation model which allows for analysis that is not possible with input-
output mappings. DBN metamodels are used to conduct what-if analysis by
examining conditional probability distributions.

The construction of a DBN metamodel consists of several phases. These
are design of experiment, preprocessing of the data, selection of time instants
for the variables in the DBN, creation of the DBN, and validation of the
metamodel. Automation of these phases in order to make the automated
approach to constructing DBN metamodels as efficient as possible is presented
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in this thesis. The selection of time instants in particular is modified from
previous approaches for constructing DBN metamodels by introducing a new
algorithm based on dynamic programming (see, e.g., [4]).

A DBN contains nodes corresponding to the same time instants for all
of the relevant variables. In this thesis, however, the time instants in the
DBN are selected separately for each state variable. Unnecessary nodes are
excluded which results in a smaller DBN and therefore a smaller metamodel
without loss of accuracy. The metamodel requires less memory and has better
computation efficiency when performing analysis. The automated approach
presented in this thesis ensures that the variable specific selection of time
instants does not significantly complicate the construction.

The practicality of the automated approach is illustrated and verified by
applying the DBN metamodeling tool and examining two example applications.
The tool provides a graphical user interface for managing the construction of
DBNs by visualizing results and letting the user easily input information when
needed. It is run in the MATLAB [29] environment and uses the SMILE [11]
library to construct and utilize Bayesian networks. The example applications
presented in this thesis deal with air combat and the operation of an air
base. In these examples, various aspects of the automated construction are
demonstrated and the resulting metamodels are analyzed.

The thesis proceeds by presenting the concepts of simulation metamodeling
and DBNs more closely in Sections 2 and 3, respectively. Section 4 introduces
the phases involved in the construction of a DBN metamodel in detail with
emphasis on the automation of the construction process. Section 5 describes
how to utilize the metamodel once it has been constructed. An implementation
of the automated construction of DBN metamodels in the form of the DBN
metamodeling tool is discussed in Section 6. Section 7 presents example
applications of DBN metamodels. Finally, Section 8 contains a summary and
concluding remarks.
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2 Simulation modeling and metamodeling

This section provides background on simulation modeling and metamodeling.
Simulation models are first discussed in Section 2.1. One form of simulation
modeling, discrete event simulation (DES), is considered more closely in
Section 2.2. Section 2.3 deals with simulation metamodels.

2.1 Simulation models

In a simulation study, the behavior of a system is investigated by creating
a mathematical model that imitates it. A computer implementation of the
model is then constructed for analysis. Reasons for using a simulation model
instead of experimenting with the actual system include speed, cost, and
safety. It might also be downright impossible to use the actual system, e.g.,
because it doesn’t exist yet or because it can only be run once. For general
information about simulation, see, e.g., [1, 28].

Simulation models are categorized according to various criteria. The
flow of time is implemented in dynamic simulation models [2]. A stochastic
simulation model [2] includes at least one random variable. A simulation
model that is not dynamic is considered static and a model that is not
stochastic is deterministic. This thesis considers only dynamic stochastic
simulation models.

Stochastic simulation models are generally far too complex to be solved
analytically. Instead, a model is examined by running it multiple times,
i.e., generating observed values for its variables, and analyzing the outputs.
Pseudo-random numbers (see, e.g., [6]) are used to imitate stochastic behavior
in a system.

The inputs of a simulation model are assigned values at the start of the
simulation. They can, for instance, be parameters that determine the arrival
intensity of a queue. A simulation model does not necessarily have any inputs
at all. State variables in a dynamic simulation model are time-dependent
random variables that describe the current state of the system at every time
instant. The outputs are random variables that describe the outcome of each
run of the simulation model. Common examples include the final and mean
values of variables describing the state of the system, e.g., the average length
of a queue. In this thesis, input, state, and output variables are denoted by
u, x(t), and z respectively. Indexes are used to identify separate variables of
the same type when necessary. Fig. 1 illustrates the structure of a dynamic
simulation model.

One further criterion for categorizing dynamic simulation models is the
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x(t)
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u2

z1

z3

z2

Figure 1: Structure of a dynamic simulation model with three inputs denoted
by u1, u2, and u3, the state variable x(t), and three outputs z1, z2, and z3.

manner in which the evolution of the state variables’ values is described. In
continuous simulation models, differential equations are given for the variables
and the evolution is simulated using numerical integration [1]. In discrete
simulation models [2], the values of variables only change when an event
occurs and remain constant between the events. Both types of simulation
models have their uses and are sometimes also combined [48]. This thesis
focuses on discrete simulation.

2.2 Discrete event simulation

A DES model [1, 2] progresses as a series of changes of the state called
events. What these events represent varies from case to case. They can, e.g.,
be arrivals or departures at some location. The execution of a DES model
proceeds from one event to the next in chronological order. Each event consists
of changes to the values of the model’s variables and the creation of new
events. The creation of new events is a stochastic procedure, both concerning
the timing and the content of the event. The list of events is therefore not
known in advance but created dynamically during each simulation run.

The progression of a simulation run can be described explicitly by listing
the initial state of the system, the timing and changes in the values of
variable at each event, and the terminating time of the simulation. The
terminating time can be excluded if it is defined directly in the model rather
than determined during execution. The value of any variable at any time
instant can be determined from the produced simulation data. The last
preceding change of value for the variable in question is looked up, or the
initial value is used if no change in value has occurred. With the help of the
Monte Carlo method [43], it is then possible to investigate the probability
distribution of any variable at any time instant.

There exist many software packages for conducting discrete event simula-
tion including ProModel [40], Arena [41], and SimEvents [30]. Alternatively,
DES models can be constructed using general programming languages. The
platform that is used determines how the model is constructed and how
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E[z1]

E[z2]

E[z3]

M1

M2
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Figure 2: Structure of a metamodel corresponding to the simulation model in
Fig. 1. The metamodel is a mapping from the inputs u1, u2, and u3 to the
expected outputs E[z1], E[z2], and E[z3]. The metamodel consists of a model
Mi for each output. The state variable x(t) is not included in the metamodel.

random numbers are generated. In the context of DBN metamodels, the
format of the DES model is irrelevant. Only the data produced by the model
is of interest.

2.3 Simulation metamodels

A simulation metamodel [3, 13] describes the behavior of a simulation model
without imitating the underlying system. The marginal and conditional
probability distributions of the output variables are often of particular interest.
Metamodels are created to better understand the operation of the underlying
system, to predict the behavior of the system, to find optimal inputs, and to
validate the simulation model [26]. The metamodel is constructed based on
simulation data and optionally also prior knowledge of the underlying system.

There are various metamodeling techniques available, usually designed for
specific situations. The first metamodels were simple regression mappings
from the input to the expected output [5]. Other more complex metamodeling
methods have been developed over time including radial basis function [3],
neural network [3], spatial correlation [3], frequency domain [3], and Kriging
[24]. Many metamodels are single output models [26]. A separate metamodel is
constructed for each output when a system with multiple outputs is considered,
although this collection of single output metamodels can be considered as
one large multiple output metamodel. Any dependence between outputs is
lost with this approach. Fig. 2 shows the structure of such a metamodel
corresponding to the simulation model in Fig. 1.

The most significant advantage of simulation metamodels over simulation
models is computational efficiency. They describe the behavior of outputs
as a function of inputs without the need to consider individual observations
of variables [14]. However, constructing metamodels can be laborious. Once
a metamodel is completed, though, it can give useful results quicker than
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a simulation model. The DBN based metamodels [35, 38, 39] discussed in
this thesis include state variables and not just input and output variables.
They therefore consider the entire probability distributions of output variables
rather than just their expected values and also take into account the joint
probability distribution of all variables. DBN metamodels are discussed in
more detail in Section 3.3.
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3 Dynamic Bayesian networks (DBNs) in sim-
ulation metamodeling

This section provides background on DBNs. Bayesian networks are first
discussed in Section 3.1. Section 3.2 deals with features that are specific to
DBNs. The concept of DBN metamodels is introduced in Section 3.3.

3.1 Bayesian networks

Bayesian networks (see, e.g., [22, 33]) are utilized in numerous different fields,
ranging from computational biology [15] to software maintenance [46], health
care [42], and air combat [47]. A Bayesian network represents the joint
probability distribution of a finite number of random variables as a directed
acyclic graph. The variables are usually discrete valued, although Bayesian
networks can also be applied to some continuous variables [33]. Only discrete
valued Bayesian networks are considered in this thesis.

Each node in a Bayesian network corresponds to a random variable. The
arcs of the graph indicate dependencies between the variables – the probability
distribution of the child node is dependent on the value of the parent node.
The Bayesian network representation of a joint probability distribution is not
always unique. It is often possible to reverse the direction of some arcs and
to adjust the probabilities accordingly, leading to another Bayesian network
with the same joint probability distribution. The alignment of the arcs that
is most consistent with the actual causality between the random variables in
question is preferred. This requires additional knowledge of the system that
is considered. An example of a Bayesian network is shown in Fig. 3.

The joint probability distribution of the variables in a Bayesian network
is defined by conditional probability tables (CPTs). There is a CPT for every
node, where one can look up any combination of values for the node’s parents
and get the probability distribution for the node when the parents obtain
these values. The CPT for nodes without any parent nodes simply consists of
the marginal probability distribution of the node. Table 1 depicts the CPT
of the node G in the Bayesian network presented in Fig. 3.

To get the probability of any combination of values for all of the nodes,
the corresponding conditional probabilities of the nodes are simply multiplied.
Software exists for efficient calculation of marginal and conditional probabili-
ties of any node [10]. A common application of Bayesian networks is to fix
the values of some variables and examining how this affects the probability
distributions of other variables [33].
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A

C

G

B

DF

E

Figure 3: Example of a Bayesian network.

Table 1: Example of a CPT for the node G in Fig. 3. The top three rows
contain the values of G’s parents, while the bottom four rows contain the
probabilities of the different values of G for each combination of values for
the parents.

A 0 1 2
D 0 1 0 1 0 1
F 0 1 0 1 0 1 0 1 0 1 0 1
0 .1 .2 0 .1 0 .1 0 .1 .6 .7 .8 1
1 .2 .1 .3 .2 .4 .3 .4 .3 .2 .2 .1 0
2 .3 .4 .2 .3 .4 .5 .4 .5 .2 .1 .1 0
3 .4 .3 .5 .4 .2 .1 .2 .1 0 0 0 0
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3.2 Dynamic Bayesian networks

A DBN [32] is a Bayesian network where timing is also taken into consideration.
Each node related to a time-dependent variable corresponds to the variable at
a specific time instant. This typically means that the probability distribution
of the variable changes over time. Technically, a DBN is no different from
other Bayesian networks. Arcs have the same purpose, although they should
be aligned so that a node never corresponds to an earlier time instant than
any of its parent nodes. CPTs also work as they do with regular Bayesian
networks. A DBN can also include variables that are not time-dependent.
They are represented by single nodes in the graph. For convenience, such
nodes might still be assigned to some specific time instant.

While the technical aspects of DBNs are similar to those of other Bayesian
networks, there are more links between the nodes in DBNs. The time evolution
of a variable can be examined with the help of the nodes corresponding to it.
All the nodes corresponding to the same time instant compose a structure
referred to as a time slice. The time slices can be viewed as layers of the
DBN, with arcs either contained within a layer or leading to a later one. Arcs
going from each node to the node corresponding to the same variable in the
following time slice are usually included in DBNs.

Arcs going forward in time do not necessarily lead to the next time slice
that includes the variable in question. They can also go further ahead. This
indicates that the underlying system is one where past states, and not just
the current ones, influence the future.

DBNs are constructed such that every time slice includes nodes corre-
sponding to all time-dependent variables. As a result, the DBN can contain
many redundant nodes. If one variable changes value much more rapidly
than another, it makes sense for the second variable to have fewer nodes
in the DBN. Similarly, a variable might change value more often within a
specific time interval than at other times. In this case, it is reasonable for the
variable’s nodes to correspond to time instants more frequently within the
time interval than outside it.

The concept of selecting time instants for nodes separately for different
variables is illustrated in Fig. 4. The graph of a DBN is shown in Fig. 4a,
while in Fig. 4b, excess nodes are removed. The concept of common time
slices can also be discarded completely. In Fig. 4c, the time instants are
chosen separately for each variable, apart from the initial and final times. For
simplicity, any arcs between variables are omitted in Fig. 4. The structure
shown in Fig. 4c is referred to as multiple time scales in this thesis. The
DBNs presented in this thesis feature multiple time scales, since DBNs with
this property describe the time evolution of the variables more accurately
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Figure 4: Example DBNs with different time slice structures. The nodes on
each row correspond to the same variable and the nodes on each column to
the same time instant.

than other DBNs with the same number of nodes.

3.3 DBN metamodels

A DBN can be utilized as a simulation metamodel by associating its nodes
with variables in the simulation model [39]. Continuous variables of the
simulation model are discretized to make them suitable for Bayesian networks
and the values of discrete variables can also be combined into fewer unique
values. The nodes of the DBN correspond to the input and output variables
of the simulation model as well as the state variables at chosen time instants.
The DBN thus represents the joint probability distribution of all the variables
of the simulation model.

The possibility to examine the joint probability distribution of all variables
separates DBN metamodels from input-output mappings. State variables are
included in the metamodel at specific time instants and, as is discussed in
Section 5.2, interpolation is used to approximate the probability distribution
for other time instants as well. This allows for various forms of what-if
analysis that are not otherwise possible. Since the DBN describes the joint
probability distribution of variables, the dependency between outputs is taken
into account and there is no need to construct separate metamodels for each
output variable. The utilization of the joint probability distribution also
enables inverse reasoning where the values of outputs are fixed and the values
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of inputs are instead examined.
Simulation metamodels based on DBNs were first introduced in [36] with

an example application of the methodology. In [37], influence diagrams, which
are Bayesian networks that include decision nodes, are incorporated in DBN
metamodeling in order to aid in decision making. The DBN based metamod-
eling methodology was expanded to handle continuous time in [38] with the
help of multivariate interpolation. Multiple input and multiple output meta-
models based on Bayesian networks are presented in [35]. DBN metamodels
have previously been constructed specifically for each simulation model. This
can be time consuming, in particular since constructing DBN metamodels
is often an iterative process. The automated approach to constructing DBN
metamodels presented in this thesis simplifies the construction significantly,
thus making DBN metamodels a more viable option in practical studies. The
introduction of multiple time scales makes the metamodels more efficient by
eliminating redundant information.
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4 Automated construction of DBN metamod-
els

In order to automate the construction of DBN metamodels, the process must
be clearly structured. It is divided into five distinct phases in this thesis. A
chart of the phases is presented in Fig. 5.

The first phase is the creation of simulation data which includes deter-
mining the number of replications, i.e., the number of times the simulation
model is run, determining the values of input variables for each replication,
performing the simulation, and storing the data. This phase is discussed in
Section 4.1. The phase is skipped if the DBN metamodel is constructed based
on some preexisting data set rather than data generated in connection with
the construction of the metamodel. The simulation data is preprocessed in the
second phase which is considered in Section 4.2. The preprocessing consists of
defining the variables, i.e., selecting which variables of the simulation model to
include in the metamodel, distinguishing between input and output variables,
and discretizing the values of the variables if required.

The third phase is discussed in Section 4.3 and consists of selecting the
time instants that are included in the DBN for each variable. The selection
is performed separately for each variable but is treated as a separate phase
from the preprocessing of the data due to being computationally the most
demanding step in the construction of the metamodel. The graph of the
DBN, i.e., the arcs between nodes, is determined with the help of expert
knowledge and machine learning in the fourth phase which is presented in
Section 4.4. Learning algorithms are also used to determine the CPTs of the
DBN. The fifth and final phase of the construction is the validation of the
DBN metamodel. The validation is discussed in Section 4.5.

During the construction, it can become apparent that the data produced
by a previous phase is inadequate. In such a situation, it is necessary to
return to this earlier phase and redo it. The most common backtracking is
from the validation phase back to the selection of time instants or the design
of experiment but a move from any phase back to any previous phase can be
justified.

4.1 Simulation data

DBN metamodels are constructed based on simulation data. If the data is
created in connection with the construction of the metamodel, the simulation
model is applied in a manner that creates useful data without the need to
run an excessive number of replications. Regardless of how the simulation
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Figure 5: Phases of the construction of a DBN metamodel. The continuous
lines represent the progression of the construction and the dashed lines the
transfer of data between phases. Processed data is also supplied to the
validation phase if a section of the simulation data is reserved for validation.

data is created, it is then stored in a format that contains all the required
information.

4.1.1 Design of experiment

The number of simulation replications to be performed as well as the values
of input variables in each of these are determined in the design of experiment
phase. Choosing the number of simulation replications to perform is an
important decision not just in the construction of DBN metamodels but in
simulation analysis in general [20]. A guideline for the number of replications
needed to achieve a specific level of accuracy in the metamodel can be
calculated by assuming that the metamodel is approximately as accurate as
the simulation data that it is based upon.

The metamodel is based on the relative frequencies in the simulation data,
so the variance of these frequencies also describe the accuracy of the resulting
metamodel. Denote the probability of variable xk obtaining value j at time
instant t when running the simulation model as P . There are N replications
of the simulation model, and xk(t) obtains the value j in n of those. This
means that n is a random variable. The relative frequency estimator for P is
p = n/N . The notation pjk(t) is used when j, k, and t need to be explicitly
stated. The expected value of p is

E[p] = E[n/N ] = E[n]/N = NP/N = P, (1)

and the variance of p is

Var[p] = Var[n/N ] = Var[n]/N2 = NP (1− P )/N2 = P (1− P )/N. (2)

In the utilization of DBN metamodels, conditional probability estimates
are commonly used. They can also be estimated from relative frequencies.
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The procedure is identical to the one above for marginal probabilities, except
that only those replications where the conditions hold are useful. Consider
the previous probability with the added condition of zk′ = j′. The conditional
probability in question is denoted here as P ′. zk′ = j′ is observed N ′ times
and both xk(t) = j and zk′ = j′ simultaneously n′ times. Since N ′ is not
known in advance, it must be treated as a random variable. The relative
frequency estimate for P ′ is p′ = n′/N ′. Assuming that N ′ > 0, the expected
value of p′ does not depend on the probability distribution of N ′ and is
equal to P ′. The variance of p′ does depend on the probability distribution
of N ′ and is equal to P ′(1 − P ′)E[1/N ′]. Since the purpose is merely to
approximate the number of necessary replications, a further simplification
of E[1/N ′] ≈ 1/E[N ′] = 1/(QN) is made where Q is the probability of zk′
obtaining the value j′ in a replication of the simulation model.

The variance is greatest when P ′ = 1/2 which gives the upper bound
Var[p′] ≤ 1/(4QN). N can be selected such that the variance for all conditional
probabilities of interest is sufficiently small if the corresponding probabilities
Q are estimated prior to the simulation. The selection of the sample size is
discussed further in [39].

The DBN metamodel under consideration can only handle discrete vari-
ables. All variables are discretized in the second phase, but the discretization
of input variables needs to be considered in connection with the generation
of simulation data. The metamodel should be able to produce useful results
with any plausible combination of values for the input variables. Because of
this, it is recommended to use every possible combination of discretized values
of the inputs when running the simulation model. The exact distribution of
simulation replications between different input values is judged on a case by
case basis.

DBN metamodels can only be constructed for simulation models that
describe the state of the system during a fixed time interval. Now, the initial
and terminating time of the simulation model are denoted by t0 and tf ,
respectively. If the simulation model does not have a fixed terminating time,
it can be extended up to some predetermined ending time by keeping all
state variables unchanged after the original terminating time. Optionally, a
boolean state variable indicating whether or not the original final time has
been exceeded is added to the model.

4.1.2 Storage of simulation data

In order to automate the construction of DBN metamodels, it is necessary for
the simulation data to be stored in a predefined format. There is no common
standard format for storing DES data, so the format to be used needs to be
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defined explicitly. Regardless of what that format is, the simulation data needs
to at least include the values of input and output variables, the initial values of
state variables, and the timing and value changes associated with each event.
This information is stored for every replication of the simulation. Additional
information can also be included, such as the names of the variables.

4.2 Definition of variables

The metamodel is constructed based on data produced by a simulation model.
Before the DBN can be constructed, the data needs to be preprocessed. This
consists of selecting, categorizing, and discretizing the variables.

4.2.1 Selection of variables

While a DES model should include every variable that is relevant to the
operation of the underlying system, the variables of a corresponding DBN
metamodel can contain any subset of the DES model’s variables. The selection
can therefore be made purely on the grounds of which variables are going
to be used in the analysis that is conducted with the help of the completed
metamodel.

As mentioned before, the variables are categorized into input variables
denoted by uk, state variables denoted by xk(t), and output variables denoted
by zk. The state variables are the only time-dependent variables of the model
and can therefore be automatically identified. A variables must be a state
variable if its value changes even once in just one replication of the simulation
model. Input and output variables cannot be automatically distinguished
from each other unless this information is explicitly included in the format
of the simulation data. It is therefore necessary to make this distinction
manually.

The input variables are variables whose values are determined at the
start of a simulation and remain unchanged. They can, e.g., be parameters
specifying a setting of the model, such as the arrival intensity of customers in
a queuing system. Alternatively, inputs can also represent decisions whose
consequences are studied, such as the number of servers to use.

The state variables are time-dependent variables that may change value
during the simulation. After some further preprocessing described in the
following section, the recorded values of the state variables form the basis of
the DBN metamodel. The state variables are subject to the selection of time
instants for the nodes in the DBN in the third phase of the construction of
the metamodel.
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The use of multiple time scales makes it easier to take into consideration
the individual characteristics of each variable when creating the metamodel.
The use of multiple time scales in the metamodel also has an impact on the
choice of variables. A state variable can be modeled less accurately with fewer
nodes if it has only little impact on the system as a whole. This does not
complicate the metamodel much, so the threshold to include less important
state variables is lower when using multiple time scales.

4.2.2 Discretization of variables

It is necessary to limit the number of possible values for each variable in
order to create a useful DBN metamodel. Continuous variables need to be
discretized and discrete variables are also categorized into a smaller number
of bins when necessary. The fewer values there are for each variable, the
more computationally efficient the metamodel becomes. On the other hand,
some information is always lost in the discretization of variables. The chosen
discretization is therefore a compromise between accuracy and efficiency.

The details of the discretization, such as the exact locations of the edges
between bins that the values are placed in, should ideally be determined on
a case by case basis since the interpretation of the values of the variables
requires knowledge of the system that is being analyzed. Because of this,
it is recommended to do the discretization separately, prior to the actual
metamodeling process. This is not always possible, so it is necessary to also
allow the discretization to be done in an automated manner in connection
with the construction of the metamodel. An algorithm for accomplishing
this is presented here. It is based on the k-means clustering algorithm [18].
k-means is an algorithm that is commonly used in clustering analysis and the
discretization can be seen as a special case of clustering where the data is one
dimensional.

The k-means algorithm divides a set of observations into clusters such that
each point is in the cluster whose mean point it is closest to. The problem
is usually solved by iterative heuristic algorithms [18]. When the data is
one-dimensional, a more systematic approach is possible. There can be several
clusterings of the data points for which each point is assigned to the cluster
whose mean point is closest. One of them is the clustering that minimizes
the expression ∑

i∈I

(vi − c(vi))2 , (3)

where vi is the value of an observation, c(vi) the mean of the cluster that it is
assigned to and I an appropriate set of indexes [12].
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With one-dimensional data, each cluster consists of the observations falling
within an interval with no overlapping between clusters. Because of this, the
clustering can be described by determining the break points where one cluster
ends and the next one begins. This makes the problem suitable for dynamic
programming (see, e.g., [4]) similarly to the selection of the time instants for
the nodes in the DBN which is presented in Section 4.3.3.

The challenge with this approach is that the number of observations
can be too large for dynamic programming to solve the problem efficiently.
This can be bypassed by first rounding the values slightly. This reduces
the number of unique values enough to make dynamic programming viable
without significant loss of accuracy. A histogram is created of the rounded
values and is in turn used in the k-means algorithm.

The expression (3) can be replaced by∑
i∈I′

Fi (yi − c(yi))2 , (4)

where yi is a rounded value, Fi the number of observations rounded to it, and
I ′ the appropriate set of indexes. The sum is calculated for one cluster at
a time and then added together. Given an upper and lower bound for the
values assigned to a cluster, its mean point can be calculated. With the help
of that, the terms in (4) assigned to that cluster are evaluated.

A dynamic programming algorithm is then applied. It iterates over the
unique rounded values to identify the optimal clustering breakpoints for
any number of clusters. Once the number of clusters has been chosen, each
observation is replaced by the mean of its cluster. This means that the number
of unique values for the variable is the same as the number of clusters, i.e.,
the values have been discretized.

4.3 Selection of time instants for nodes

The time instants for the DBN are picked separately for each state variable,
rather than jointly for the entire metamodel, in this thesis. Selecting the time
instants is an optimization problem that has previously been solved using
genetic algorithms [39]. In connection with this thesis, an alternative approach
based on dynamic programming is developed for solving this problem. Since
the same procedure is applied to each state variable one at a time, indexes
identifying the variable are omitted in order to simplify the notation.
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Figure 6: Example of probability curves.

4.3.1 Probability curves

For the state variable x, a discrete set of time instants T = {t0, t1, t2, . . . , tf}
is used in the construction of the DBN instead of the continuous time interval
[t0, tf ]. In order to select the most suitable time instants, an initial discretiza-
tion T ∗ = {t0, t0 + δ, t0 + 2δ, . . . , t0 +mδ} is first created, where m determines
the density of the discretization and δ = (tf − t0)/m. T is then chosen among
the subsets of T ∗. Alternatively, T can be selected from the entire interval
[t0, tf ] as has been done previously, but that approach is incompatible with
the optimization algorithms presented here and computationally inefficient.

The characteristics of the variable in question should be considered when
choosing the value of m. Greater values are needed if the probability dis-
tribution of the variable changes rapidly. This comes at a cost, as a large
m increases the number of candidates for T and therefore slows down the
selection. Increasing the number of time instants by too much renders the use
of the dynamic programming algorithm discussed in Section 4.3.3 impractical.

The marginal probability distributions of the state variable at the time
instants T ∗ are estimated by using the relative frequencies gathered from the
simulation data. The relative frequency of obtaining value j at time instant
t is denoted as pj(t). The estimates can be visualized as time dependent
probability curves for each state variable, as is demonstrated in Fig. 6.
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4.3.2 Optimization problem

The probability curves are the basis for the selection of time instants for
the nodes. The objective is to create an estimate for the probability curves
based only on the probability distributions at the time instants T . Linear
interpolation between consecutive time instants is applied to estimate the
probability distributions at time instants not included in T . The estimate for
obtaining the value j at time instant t /∈ T is

p̂j(t) =
(t+ − t)pj(t−) + (t− t−)pj(t+)

t+ − t−
, (5)

where t− = max{t∗ ∈ T |t∗ < t} and t+ = min{t∗ ∈ T |t∗ > t}. In other words,
the estimate is piecewise linear with the additional restriction that the break
points are on the actual curves. The interpolation is discussed in more detail
in Section 5.2.

The importance of the selection of time instants for the nodes is demon-
strated in Fig. 7. In 7a, the time instants are spread out evenly over the
time interval. As a result, the crucial part of the simulation when the state
changes often is inadequately covered by the interpolation. In 7b, the same
number of nodes are optimally placed and the interpolation fits the original
probability curves much better.

Selecting the time instants for the nodes consists of choosing the number
of nodes and the time instant for each node. The latter forms a complex
optimization problem. Choosing the number of nodes can be treated as a
separate decision or it can be included in the optimization problem in the
form of a penalty for large node counts.

The objective function of the optimization problem measures the error
of the piecewise linear approximation of the probability curves. There are
several such measures, including the maximum absolute estimate error

g(T ) = max
j∈X

max
t∈T ∗
|p̂j(t)− pj(t)|, (6)

where X is the set of possible discretized values for x, and the root mean
squares of the estimate error (RMSE)

g(T ) =

√∑
j∈X

∑
t∈T ∗ (p̂j(t)− pj(t))2

|X||T ∗|
. (7)

The sum of the absolute estimate error, however, is not recommended for this
problem, since the function should be sensitive to spikes in the probability
curves. In this thesis, RMSE or the equivalent sum of squares is used as the
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(a) Evenly spaced time instants.
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(b) Optimally spaced time instants.

Figure 7: Comparison of evenly spaced time instants and optimally spaced
time instants. Continuous lines represent the probability curves derived from
data while the dashed lines represent estimates based on interpolation.
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error measurement, but similar results hold for the maximum absolute error
as well.

The error is calculated separately for sets of time instants, in particular
the time instants between two consecutive instants in T , and then aggregated
to evaluate g(T ). This simplifies the solving of the problem, as partial results
from evaluating one candidate for T can be used in the evaluation of other
candidates.

The choice of the number of time instants to include is dependent on the
probability curves and the accuracy requirement for the variable in question.
More nodes are needed if the curves are particularly non-linear. It is also worth
considering that while the time instants are selected based on the marginal
distributions, they are also applied to conditional probability distributions.
Because of this, large gaps between time instants in T can be problematic
even if the time evolution of the marginal distribution is close to linear in
the gap. Sometimes, it is impossible to know that too few nodes have been
chosen without first analyzing the resulting DBN. Because of this, it may be
necessary to repeat the construction of the metamodel with different selections
of time instants until a satisfactory metamodel is found.

4.3.3 Dynamic programming

Dynamic programming is an algorithm used for solving dynamic optimization
problems [4]. The main principle of the algorithm is that a problem is solved
with the help of subproblems which in turn are solved one by one, starting
with the smallest. The solutions to smaller subproblems are used to solve
larger ones until the main problem has been solved [4].

Dynamic programming has not previously been used in the construction
of DBN metamodels but it is an efficient way of finding the global minimum
for the optimization problem. The algorithm also has the advantage of
simultaneously solving the optimal selections of time instants for multiple
numbers of nodes at once. The procedure for finding the optimal time instants
is similar to the fitting of line segments to a continuous curve presented in
[16].

The algorithm is now described with the sum of squares as the objective
function. The initial step is to choose the maximum number of time instants
allowed. The problem is then solved for all numbers of time instants up to
this maximum. The running time of the algorithm is only slightly affected
by this number as long as it is within reason, so it is recommended to use a
higher limit than what is expected to be necessary.

The notation d(a, b) is used for the estimation error of a linear segment
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from t0 + aδ to t0 + bδ. It is calculated as

d(a, b) =
∑
j∈X

b∑
i=a

(
pj(t0 + iδ)− (b− i)pj(t0 + aδ) + (i− a)pj(t0 + bδ)

b− a

)2

.

(8)
The minimum estimation error when covering the set {t0, ..., t0 + bδ} with

l linear segments is denoted by fl(b). The optimal value of the objective
function can be calculated iteratively. Set fl(0) = 0 for all values of l and
f1(b) = d(0, b) for all b. All other values of fl(b) can then be calculated with
the help of the equation

fl(b) = min
0≤i<b

fl−1(i) + d(i, b). (9)

In order to find the optimal time instants, it is necessary to also keep a record
of which time instants lead to the minimum values. This is denoted as Sl(b)
and is calculated by

Sl(b) = arg min
0≤i<b

fl−1(i) + d(i, b). (10)

The optimal time instants are looked up once the algorithm has termi-
nated. Suppose that time instants for n nodes are sought, including t0 and
tf . They are, in reverse order, tf , t0 + Sn−1(m)δ, t0 + Sn−2(Sn−1(m))δ, t0 +
Sn−3(Sn−2(Sn−1(m)))δ, . . . , t0. The values of d(a, b) should be calculated for
one value of b at a time, so that each fl(b) needs to be evaluated just once
and at most m values of d(a, b) need to be stored in memory at a time.

Since every linear segment between time instants is checked, the number
of such segments is proportional to the square of m. It turns out that this
is also the dominating factor in the running time of the dynamic program-
ming algorithm. Because the running time increases significantly when m is
increased, other alternatives for solving the optimization problem are also
considered. It is possible to reduce the effect of a large m by taking prior
information about the model into consideration. If a maximum acceptable
gap between consecutive time instants in T is known, then automatically
eliminating all larger segments causes an improvement to the running time of
the algorithm.

4.3.4 Genetic algorithm

Evolutionary algorithms (see, e.g., [45]) are a family of stochastic heuristic
optimization algorithms that are based on imitating aspects of natural evolu-
tion. The basic premise of such algorithms is the concept of a population of
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solution candidates, as opposed to the approach employed by most optimiza-
tion algorithms of attempting to improve a single solution until it reaches
the optimum. The population is expected to converge towards the optimum
solution. Evolutionary algorithms consist of three main steps: individual
solutions are selected for reproduction, new individual solutions are created,
and the new solutions replace old ones to create a new generation. This
process is repeated, starting from an initial population, until a terminating
criterion is fulfilled.

Genetic algorithms (GAs) [45] are a form of evolutionary algorithms. In
GAs, individuals are selected for reproduction based on the values of the
objective function. New individuals are created by crossing over two old ones.
Individuals are also modified by mutation. In GAs, the old generation is
completely replaced by the new one, although the best solution candidate
found is stored separately for reference.

A heuristic approach, such as a GA, is needed if solving the optimization
problem in the construction of a DBN metamodel by dynamic programming
takes too long. Compared to dynamic programming, the GA has some clear
disadvantages. It usually only finds sub-optimal solutions and only provides
one solution at a time, while the dynamic programming algorithm solves
the problem for all numbers of nodes at once. The running time of the GA,
however, isn’t heavily dependent on the number of potential time instants.
The exact nature of this dependence is difficult to verify experimentally,
because the running time of the GA is not deterministic. The number of
time instants at which the GA starts to outperform dynamic programming
depends on the parameters of the genetic algorithm.

The GA takes advantage of the same property of the objective function
as the dynamic programming algorithm – it evaluates each gap between
time instants of consecutive nodes separately. In dynamic programming, this
evaluation is carried out for every possible pair of time instants. When running
the genetic algorithm, only the pairs of time instants that the algorithm
stumbles upon are evaluated. To make the algorithm efficient, it is crucial to
store the estimation error of all pairs of time instants that have already been
evaluated to avoid what would otherwise be a large amount of redundant
calculations.

In the GA, the number of nodes needs to be included in the optimization
problem. Each additional node increases the value of the error function
by a set amount. The inclusion of nodes that don’t improve the estimate
sufficiently is thus avoided. Even though the number of nodes cannot be
explicitly chosen, the number can still be forced into a suitable range by
adjusting the size of the penalty for additional nodes.

Each individual in the solution population is a list of bits, one for each
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possible time instant. The solution consists of the time instants for which
the corresponding bit obtains the value 1. Since the selection of time instants
must always include the first and the last time instant, the first and the last
bit always have the value 1.

The initial population for the algorithm consists of randomly generated
individuals. The bits of each solution are all assigned randomly and indepen-
dently. The probability of a bit initially obtaining the value 1 need not be
correctly estimated, because the solution population will converge from any
reasonable initial population.

The fitness value of a solution is the inverse of the error function with
the node penalty included in the error, i.e., a higher fitness is better. When
creating a new generation, two parents are selected randomly from the previous
one. The probability of each individual being selected is relative to its fitness.

Crossover is done with a cutoff point selected randomly among the time
instants. The new solution consists of the bits prior to the cutoff point from
the first parent and the bits after it from the second parent. Mutation is then
performed on the new population. Each individual has a fixed probability of
being subject to mutation. For those individuals, a subset of bits, excluding
the first and last one, are chosen randomly. These bits are then given random
values. Since the clear majority of bits have the value 0, this is considered
when assigning a new value. The probability of obtaining the value 1 must
be of the same magnitude as the relative frequency of ones in the current
population.

The genetic algorithm includes several parameters, such as the size of the
population, the number of generations to be computed, and the probability of
a bit being chosen for mutation. None of these have any obvious default value,
and the tuning of the parameters is a typically solved by trial and error.

4.3.5 Other alternatives

There are also other options for the selection the time instants. Heuristics
other than genetic algorithms can be used to optimize the selection. Since
such algorithms are only needed when the dynamic programming algorithms
is too slow and settling for a good sub-optimal solution is necessary, there
is not much practical benefit in switching to, e.g., simulated annealing. All
such heuristics are likely to eventually find decent solutions.

A more interesting alternative is to let an expert be directly involved in
the optimization, e.g., by manually giving a starting solution that a heuristic
algorithm then attempts to fine tune. This could potentially decrease the
amount of computing effort required considerably but would rely heavily on
the judgment of the person involved. This approach would reduce the level of
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automation but since a person is already required to make the final choice as
to which solution candidate to accept, increasing his responsibilities would
not necessarily slow down the process excessively.

One problem in the automated selection of time instants is situations
where it is known that the value of a variable often changes at a certain time,
but the probability curves are still linear around that time instant. In such
situations, the issue is not with the algorithms used to solve the optimization
problem, but the formulation of the problem itself. One possible solution is
to include manually selected time instants in the DBN metamodel in addition
to the time instants selected based on the optimization problem.

4.4 Determination of the DBN

With N nodes, there are 3N(N−1)/2 different possible directed graphs. Such a
large number of alternatives cannot all be evaluated individually. The collec-
tion of potential graphs is first cut down with the help of expert knowledge
and by ruling out all graphs containing arcs going backwards in time. After
that, machine learning is used to find a suitable graph among the remaining
possibilities.

Even though the estimation of CPTs in the DBN is performed after the
graph has been determined, the two sections are presented here in reverse
order. This is because some algorithms for determining the graph use the
estimation of CPTs as a subroutine.

4.4.1 Estimation of conditional probability tables

When the graph has been determined, and therefore the parents of each
node, CPTs are estimated. This estimation is carried out similarly for each
combination of values for the parents of every node, so it is sufficient to
consider just one such instance. Whether this node represents a state variable
at a particular time instant or an output variable is irrelevant when it comes
to estimating the CPTs. The estimation of the CPTs is one aspect of the
construction of the metamodel that is always conducted in an automated
manner directly from the simulation data.

To properly motivate the choice of estimate, the likelihood of each distribu-
tion being correct is considered, i.e., a probability distribution of probability
distributions. To avoid confusion, the distributions in the CPTs are referred
to as relative frequencies, since they are based on the relative frequencies
in the simulation data. Further mentions of probability distribution in this
section refer to the distribution of relative frequencies.
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In order to model the probability distribution of relative frequencies in
a meaningful way, a parametrized distribution is required. The Dirichlet
distribution, denoted by D(α), turns out to be a natural choice [33]. The
parameter α is a vector of positive elements, one for each value of the
variable in question. The elements can be interpreted as the number of prior
observations of each value. If the prior distribution of relative frequencies is
D(α1, ..., αk, ..., αn) and then an observation of x = k is made, the posterior
distribution is D(α1, ..., αk + 1, ..., αn). This makes the Dirichlet distribution
particularly well suited for modeling the probability distributions of relative
frequencies.

In order to use the Dirichlet distribution, initial values must be provided
for the parameter α. If α = (1, ..., 1) is used as the initial values, then all
relative frequencies are considered equally likely. Larger values for elements
of α can be used to represent prior information about the relative frequencies.
Values of less then 1 can also be used in order to minimize the estimated
relative frequency for values that are never observed. This might be the case
if it is suspected that the probability of some value is actually 0.

With the initial values of α fixed, the simulation data is screened. For
each replication, the values of the parent nodes are looked up and the relevant
column in the CPT and the corresponding α is identified. The element
in α corresponding to the observed value of the variable is increased by 1.
When this has been carried out for every replication, the resulting Dirichlet
distribution takes into consideration both the initial parameter values as well
as all the simulation data.

The CPTs consist of relative frequency estimates based on the Dirichlet
distributions. One obvious choice of estimate is the maximum posterior
likelihood estimate, i.e., the mode of the probability distribution. The relative
frequency of the k:th value at the mode of the Dirichlet distribution is

αk − 1∑n
i=1(αi − 1)

(11)

which is problematic because it is only defined if the value of each element in
α is at least 1 and at least one element has a value greater than 1. Another
option for the estimate is the expected value of the distribution. The relative
frequency of the k:th value at the expected value of the Dirichlet distribution
is

αk∑n
i=1 αi

. (12)

This is always defined since the elements of α are positive. The expected
value is identical to the mode but with different initial parameter values. The
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mean is therefore more convenient to use as the estimate and this is taken
into consideration when selecting the initial values for α.

Apart from the estimate of the relative frequencies, the Dirichlet distri-
bution also provides the means to calculate the probability of a given data
set originating from a Bayesian network with given prior relative frequencies.
This can be done iteratively, by calculating the probability of one sample,
updating the relative frequencies and moving on to the next sample. The
ordering of the samples does not affect the final probability in any way. The
probability can also be calculated directly using the formula

n∏
i=1

qi∏
j=1

Γ(Nij)

Γ(Nij +Mij)

ri∏
k=1

Γ(aijk + sijk)

Γ(aijk)
, (13)

where n is the number of variables, qi the number of combinations of values
for variable i’s parents and ri the number of values for variable i. aijk is
the prior parameter value for variable i, values j for i’s parents and value k
for i, and Nij =

∑ri
k=1 aijk. sijk is the number of observations, with similar

indexing as for aijk, and Mij =
∑ri

k=1 sijk. Γ is the gamma function.
The parameters aijk can be assigned values according to different principles.

One option is to simply set aijk = 1 which is called the K2 prior[23]. Another
alternative is aijk = a0/(qiri) which is called the BDeu prior[23]. When using
BDeu priors, the value of the parameter a0 can be chosen freely, but a0 = 1
is a good default value.

If the sample size is large compared to the prior values of α, the re-
sulting estimates for the CPTs are close to the relative frequencies in the
simulation data and the exact prior values become insignificant. The CPTs
therefore provide probability distributions for the variables in the DBN that
are consistent with the simulation data. The convergence towards the relative
frequencies in the simulation data also justifies the formulation of the estimate
in Section 4.1.1 when calculating the required sample size.

The probability distributions of input variables cannot be determined based
on the simulation data unless their values have been generated according to
their probability distribution. The probability distributions instead originate
from some external source. The most natural origin is some form of expert
knowledge. Knowledge of the underlying system is used to construct a
distribution that is judged to be most accurate. The purpose of the simulation
is not always to merely imitate a system. The objective might instead be to
investigate the effect of various inputs on the system. In such a situation, the
inputs of the simulation metamodel are fixed to correspond to the inputs that
are of interest even if they are less likely to occur.

In the algorithms that are used for determining the graph, input variables
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are treated identically to output variable variables and their distributions
are estimated from the simulation data alone. These distributions are not
necessarily correct, but are used in the validation of the metamodel. When
the metamodel is otherwise completed, the probability distributions of the
input variables are modified from the relative frequencies in the simulation
data to what expert knowledge dictates.

4.4.2 Estimation of the graph

The graph of the DBN is estimated using both expert knowledge and learning
algorithms. Expert knowledge is first introduced automatically by forcing the
DBN to be chronologically consistent. No arc can lead to an input variable
and arcs between nodes corresponding to state variables can only go in one
direction unless the nodes correspond to the same time instant.

Expert knowledge is then introduced manually to determine the graph
more closely. Arcs are introduced if there is judged to be a direct causal link
between two nodes. It is necessary to make sure that the graph does not
become cyclic when doing this. Similarly, arcs are also explicitly forbidden
if the nodes are judged to be independent. It is not recommended, however,
to forbid arcs simply because their direction is considered to be opposite to
causality, as such unrealistic arcs can still improve the accuracy of the DBN.

It is unlikely that enough expert information is available for the graph
to be determined explicitly. Learning algorithms are used to finalize the
graph. There are several algorithms for accomplishing this. Two of them are
presented here. Including some learning algorithm in estimating the graph is
essential in order to automate the construction of the metamodel. Unless the
system that is being modeled is exceptionally simple, it is both difficult and
time consuming to estimate the graph manually.

The first learning algorithm to be presented is called PC [44] and is
based on independence tests. It is a two staged algorithm that first creates
an undirected graph and then attempts to determine the direction of the
arcs. The algorithm begins by creating a complete undirected graph covering
all of the nodes. The next step is to remove arcs between nodes that are
conditionally independent. The arcs are removed iteratively with regards to
the number of nodes in the condition set. That is, nodes are first checked
for unconditional independence, then for conditional independence given the
value of some single node, and so on. This procedure, however, would be too
time consuming as such. To counter this, the PC algorithm takes advantage
of the fact that the graph is becoming increasingly sparse. Conditional
independencies are no longer searched for if the condition set becomes larger
than the set of remaining neighbors for any node.
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When no more arcs can be removed, the algorithm moves on to determining
the direction of the remaining ones. The algorithm looks for triplets of nodes
A,B,C, such that A and B are adjacent, as are B and C, but A and C are
not. Furthermore, B must not be in the condition set that eliminated the
arc between A and C. The two arcs are oriented to point towards B if this
is the case. Finally, logical reasoning is used to orient some more arcs. In a
situation as described above, but with B in the condition set, there cannot be
arcs directed to B from both A and C. Since Bayesian networks are directed
acyclic graphs, no directed cycles can be allowed to form. The algorithm
usually does not result in a graph where all of the arcs directed. It instead
gives an equivalence class of graphs, all of which can correspond to the same
joint distribution of the variables.

A problem with the PC algorithm is determining the independencies. The
simulation data set is used for this, so no definite answers exist. Statistical
methods such as cross entropy, also known as mutual information, [9] and the
χ2-test [17], can be used. There is no guarantee, though, that the selected
methods result in correct conclusions.

An alternative way to determining the graph is to use score functions.
Each potential graph is given a score based on how compatible it is with the
data and the goal is find the graph with the best score. One such method
is called the Greedy Thick Thinning algorithm (GTT). The probability in
Eq. (13) is the scoring function used by GTT.

Going through all potential graphs is not feasible due to the large number
of possibilities. Because of this, it is necessary to potentially settle for a
suboptimal solution. GTT searches for a local optimum with a greedy heuristic
algorithm that consists of two stages. The algorithm begins with a graph with
no arcs. Arcs are added one at a time such that each new arc increases the
value of the score function by a maximal amount. When arcs can no longer be
added without decreasing the value of the score function, the algorithm moves
on to the second stage. In this stage, arcs are removed from the graph. Arcs
are removed one at a time so that each step maximizes the score function.
When it is no longer possible to remove arcs without decreasing the value of
the score function, the algorithm terminates.

Similar but more complex heuristic search algorithms also exist. Rather
than dividing the algorithm into two stages, it is possible to use just one
stage where each step can be the addition of an arc, the removal of an arc,
or the reversal of the orientation of an arc. With this approach, the initial
graph does not need to be empty. One further enhancement is to use several
different starting graphs to get a number of candidate solutions and then pick
the best one [19].

The two approaches to estimating the graph mentioned above, testing
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for conditional independence with PC and maximizing the score function
with GTT, are of similar level of accuracy. One important difference is that
score maximizing algorithms such as GTT produce a graph where all arcs are
always oriented. From an automatization point of view, this is an important
advantage and the main reason why GTT is more useful in the automated
construction of DBN metamodels. GTT is therefore used in the rest of this
thesis.

4.5 Validation

A DBN metamodel is validated to verify that it is consistent with the simu-
lation model under consideration. A thorough validation of the metamodel
would compare it to the underlying system as well [26]. In this thesis, however,
no assumptions are made regarding the possibility of conducting experiments
on the system. The validation of the metamodel is therefore restricted to
comparisons with the simulation model.

The metamodel is constructed from simulation data generated by the
simulation model. There are two main sources of possible inaccuracies in the
metamodel. Firstly, the generated data might not describe the simulation
model accurately enough if an insufficient number of simulation replications
is performed. Secondly, the metamodel might not be consistent with the
simulation data if it is not constructed in sufficient detail.

These errors are looked for in an iterative process where conditional
probabilities are examined in the form of different scenarios where specific
conditions are set. Which scenarios to examine is a design choice and depends
on the intended use of the metamodel. For each scenario, the sample size is
checked and the probabilities produced by the metamodel are compared to the
simulation data. The accuracy of the metamodel is measured in both regards,
but judgment is required to determine whether the result is acceptable or not.
This is repeated for different scenarios until one is found where the metamodel
is invalid, in which case a previous phase of the construction needs to be
repeated. Recall that the phases are described in Fig. 5. The metamodel is
deemed to be valid if it isn’t invalid in any relevant scenario. A flowchart of
the validation process is presented in Fig. 8.

4.5.1 Sufficiency of simulation data

As discussed in Section 4.1, the required number of simulation replications de-
pends on the intended application of the metamodel. The variances of relative
frequencies in the data depend on the sample size and the corresponding true
probabilities. The variance is the greatest when the probability in question is
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Figure 8: The iterative validation process.

1/2. This provides an upper limit for the variance when the sample size is
known.

The simulation data is validated by setting conditions on the values of
variables. The data is screened for those replications where the conditions
hold. The number of such replications is the sample size that determines the
maximum variance for the conditional relative frequencies. If this variance is
judged to be too great for the conditional probability distribution in question,
then more simulation data is needed and the metamodel construction returns
to the first phase.

4.5.2 Consistency between simulation data and metamodel

DBN metamodels produce conditional probability distributions. The same
distributions can also be estimated directly from the relative frequencies in
the simulation data. Assuming that the sample size is large enough, the
relative frequencies correspond closely to the true probability distributions
of the simulation model. The metamodel’s probability distributions must
be similar to the relative frequencies in the simulation data if it accurately
describes the simulation model.

The comparison between the metamodel’s probability distribution and
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the relative frequencies in the data is performed for one variable at a time.
For input and output variables, the probability of each value is subtracted
from the corresponding relative frequency and the resulting differences are
aggregated into a single measurement using RMS. The metamodel is invalid
if the difference is judged to be unacceptably large.

For state variables, the time-evolution of the variables must be considered.
The time interval is first discretized and then the differences in probabilities
at each time instant are calculated. The differences are then collated over all
time instants, again using RMS, to get a single value representing the total
error for every variable. If a measurement other than RMSE was used to
select the time instants in the third phase, it is recommended to use the same
measurement in the validation as well. It may also be useful to check the
differences between the probability distribution and the relative frequencies
for individual variable values and time instants separately. The situations
where the deviation is largest can thus be identified.

The metamodel needs to be reconstructed if the errors are judged to be
unacceptable. This is most conveniently carried out by returning to the third
phase and increasing the number of selected time instants.

4.5.3 Comparison to independent validation data

A DBN metamodel can also be validated by comparing probability distribu-
tions provided by it to relative frequencies in a separate set of simulation data,
i.e., the independent validation data. Due to the limited sample size of the
validation data, the relative frequencies are not identical to the probability
distribution in the simulation model. The difference between these two is
independent from any differences between the simulation model and the
metamodel, because the validation data is generated independently. As a
result, the probability distributions provided by the metamodel are on average
closer to the probability distributions in the simulation model than they are
to the relative frequencies in the validation data. The connection between the
models and the data sets is illustrated in Fig. 9. If the metamodel is deemed
to be consistent with the validation data, then it is likely to also be consistent
with the simulation model and therefore valid.

Comparison to independent validation data differs from the other vali-
dation techniques mentioned in this section in several ways. While other
comparisons focus on a particular part of the construction, comparison to
independent data concerns the DBN metamodel as a whole. All phases of the
construction are likely to be successful if the resulting metamodel appears
valid. On the other hand, the comparison to independent data does not help
in identifying the cause of inaccuracies when the metamodel is not valid.
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Figure 9: Connections between the simulation model, the DBN metamodel,
the simulation data, and the independent validation data. The cause for
inaccuracies introduced by each connection is also given.

Furthermore, the sample size of the independent data is often smaller than
the sample size of the data that the metamodel is constructed with. Because
of this, there is a high probability that discrepancies between the metamodel
and the validation data are caused by the sample size of the validation data.
There is also a philosophical difference between comparison to independent
data and other validation means as the comparison to independent data
assesses the applicability of the DBN metamodel.

Automation is incorporated in all three validation means presented in this
section. The measures of accuracy in each case are automatically calculated
and presented in the form of a single number. This speeds up the process of
validating the metamodel considerably, which in turn allows a more thorough
examination of the its validity. By identifying problems in the sample size
of the simulation and the construction of the metamodel separately, it is
possible to determine which phase of the automated construction needs to be
repeated in order to construct a new improved metamodel.
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5 Utilization of DBN metamodels

The utilization of DBN metamodels is presented in this section. State variables
are initially only considered at time instant with a corresponding node in
the DBN. In Section 5.2, this restriction is lifted and linear interpolation is
applied to conduct approximate reasoning in continuous time. The analysis
techniques presented here are demonstrated by applying them to the examples
in Section 7.

5.1 What-if analysis

The probability distribution of any node in a DBN is calculated efficiently
with the help of Bayesian network software such as SMILE and its graphical
interface GeNIe [10]. This applies to both marginal and conditional probability
distributions. Conditions can be set on any number of nodes anywhere across
the DBN. What-if analysis for various scenarios can thus be performed.

When performing what-if analysis, it is important that the conditions that
are set are probable enough for the conclusions to be based on a sufficient
amount of data. One way to verify this is to obtain the probability of all
conditions being true and multiplying this with the size of the simulation data
set to get an approximate sample size for the conditional probability distribu-
tion. This is, however, merely a guideline. Some conditions can reduce the
approximate sample size substantially without having any significant impact
on the accuracy of the probability distribution that is being investigated.

An application of DBN metamodels is to determine the marginal proba-
bility distributions of their variables. Such probabilities can be calculated for
state variables at the time instants included in the DBN, i.e., Pr(xk(t) = j)
and for the output variables, Pr(zk = j). It is also possible to calculate the
expected value of a variable, E[xk(t)] or E[zk], when its probability distri-
bution is known. This applies to both marginal and conditional probability
distributions. If the variable in question is discretized during the construction
of the metamodel, this also affects the expected value of the variable since it
is calculated based on the discretized values.

More elaborate results are obtained when conditional probability distribu-
tions are examined. The DBN describes the joint probability distribution of
all of its variables, so conditions can be set on any of them. The dependence
between inputs and outputs, for instance, are investigated by fixing the values
of the inputs and examining the probability distribution of outputs using
probabilities such as Pr(zk = j|uk′ = j′).

Even though the marginal probability distributions of input variables are
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known, the conditional probability distributions are not. It can therefore be
of interest to investigate which inputs are most likely to lead to given values
for outputs. This inverse reasoning is conducted by calculating probabilities
such as Pr(uk = j|zk′ = j′).

The inclusion of state variables in the metamodel also allows the examina-
tion of conditional probabilities involving them. The probability distribution
of a state variable at a specific time instant with fixed values for the inputs is
calculated with probabilities such as Pr(xk(t) = j|uk′ = j′). The probability
distribution of outputs with fixed values for a state variable at some time
instant is similarly calculated with probabilities like Pr(zk = j|xk′(t) = j′). It
is also possible to set conditions on the same variable that is being examined
in order to investigate probabilities like Pr(xk(t) = j|xk(t′) = j′).

Since the metamodel represents the joint probability distribution of all
variables, conditions can be combined in numerous ways to investigate complex
scenarios. The choice of conditions depends on the intended use of the
metamodel. The probability distributions provided by the metamodel are
more reliable when considering scenarios similar to the ones that were used
in validating the metamodel.

5.2 Approximate reasoning in continuous time

Even though the DBN metamodel provides probability distributions for
all of the nodes in the DBN, it is also of interest to examine probability
distributions involving other time instants. Linear interpolation is used to
create approximations of such distributions [38]. When marginal probabilities
are considered, accurate approximations for the probability distributions can
be obtained by linear interpolation between the probability distributions of
the previous and following node corresponding to the variable in question.

A more challenging task is the approximation of conditional probabilities.
There are two cases to consider. The simpler one is when the conditions
coincide with the nodes. The more complex situation arises when a condition
is set at a time instant that does not coincide with any node. In the first
case, the conditions can be included directly in the DBN. It is then possible
to proceed with linear interpolation as in the case of marginal distributions.
The conditional probabilities of the nodes generally still provide accurate
estimates but the interpolation between them can occasionally produce notable
errors. This is because the selection of the time instants was optimized for
the marginal distributions. Adding conditions makes the probability curves
between nodes less linear in some cases which results in a greater estimation
error. However, the error is still usually small and can be reduced when
necessary by constructing a new metamodel with a larger number of nodes.
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The situation is more complex if no node corresponds to the time instant
of a condition. This problem is dealt with by setting conditions separately for
the previous and following nodes corresponding to the variable in question and
taking a weighted average of the resulting conditional probability distributions
[38]. Effectively, interpolation is performed on the conditions. The resulting
probability distribution is less accurate than the ones produced in the simpler
cases, because even more non-linearity has been introduced. In practice, the
estimate error can be large for time instants close to the condition, but is
smaller for time instants that are further away. The accuracy of the estimate
close to the condition can be increased if the condition applies to the same
state variable whose probability distribution is examined. Since the variable’s
value is fixed at the time instant of the condition, an artificial extra node,
where the appropriate value occurs with a probability of 1, can be added for
the purpose of interpolation.

Multiple conditions can be set simultaneously at time instants that are
not included in the DBN. Interpolation is then carried out for each of the
conditions. The interpolations overlap and occasionally produce highly inac-
curate results if the time instants of conditions are too close to each other.
This problem is most easily solved by reconstructing the metamodel using a
larger number of time instants for the variables in question to prevent the
overlapping.

The SMILE library allows the study of the probability distribution of any
node of the DBN. In particular, the distribution of every node corresponding
to the same state variable can be examined to assess the time evolution of
the probability distribution of the variable. This, however, only provides
distributions for each time instant separately rather then their joint distri-
bution. Because of this, it is not known how individual realizations of the
simulation model are likely to behave. There usually is strong dependency
between a state variable’s value at different time instants, in particular when
the time instants correspond to consecutive nodes. To explore a variable’s
time evolution more closely, conditional probabilities must be examined.

Automating the calculations involved in the utilization of DBN metamod-
els allows for more comprehensive analysis. The interpolation required for
reasoning in continuous time in particular is tedious without automation.
The time evolution of probability distributions can easily and quickly be
examined graphically by calculating and plotting all the relevant distributions
programmatically.
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6 Implementation of the automated construc-
tion of DBN metamodels

A DBN metamodeling tool is created in this thesis using primarily the
MATLAB environment [29]. MATLAB is used because it offers a suitable
compromise between practicality and computational efficiency. The graphical
user interface (GUI) of the tool is created with MATLAB, as is the algorithm
for finding optimal time instants. The SMILE library [11] is used to handle
DBNs, including the learning algorithms used to determine the graph and
CPTs.

The DBN metamodeling tool automates most aspects of the construction
of metamodels discussed in Section 4. Some decisions need be to made by the
user of the tool but default options are provided when reasonable. Certain
parameter values, such as technical parameters of the optimization algorithms,
are included directly in the source code of the tool. These are not incorporated
in the GUI because they are judged to merely clutter it up without providing
practical benefits. Anyone with basic knowledge of MATLAB can change the
relevant parts of the code if required. The tool saves the constructed DBN
metamodels. It is possible to later open the metamodels for analysis with the
tool or the GeNIe software [10].

The implementation of each of the five phases of the construction of DBN
metamodels is discussed in this section. The importing of data into the DBN
metamodeling tool is considered in Section 6.1. The preprocessing of data
is presented in Section 6.2. The selection of time instants by the tool for
the DBN is discussed in Section 6.3. In Section 6.4, the estimation of the
graph and CPTs of the DBN is considered. The validation features of the
tool are introduced in Section 6.5. Finally, the utilization of the resulting
DBN metamodel with the help of the tool is illustrated in Section 6.6.

6.1 Data import

The simulation data that is used in the construction of DBN metamodels is
created with a separate simulation model. The DBN metamodeling tool does
not interact with the simulation model in any way apart from reading the
data. If additional information about the simulation model is to be taken
into consider during the construction of the metamodel, it must be entered
by the user of the tool through the GUI.

The simulation data has to be stored in a data format that the DBN
metamodeling tool supports. The data is saved in a plain ASCII file in order
to avoid any unnecessary software dependency. When opening a data file
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from the GUI, the tool verifies that the content of the file is of the appropriate
format. Each simulation replication in the data must have the same starting
time and every variable must be given an initial value in every replication.

6.2 Data preprocessing

The second phase of the construction of a DBN metamodel is the selection
and discretization of variables. Any variable that obtains just one value in
the entire simulation data is automatically discarded as useless. All other
variables are included in the metamodel by default but they can also be
discarded by the user.

The discretization of the values of variables is performed for one variable
at a time. The GUI is used to choose number of discretized values or bins
that the original values are sorted into. There is an upper bound of 16 for
the possible number of bins in order to limit the size of CPTs in the DBN.
This number has proven to be sufficient for describing almost any distribution
with satisfactory accuracy. The number of bins should ideally be well below
the limit for most variables. The more bins there are, the more simulation
replications are needed to accurately estimate the CPTs.

The values of a variable are first rounded slightly by the DBN metamod-
eling tool for computational efficiency. A histogram is then drawn of the
rounded values of the variable in the simulation data. The histogram is
divided into sections of different colors to indicate which bin each value is
assigned to. Fig. 10 shows the interface used in the selection and discretization
of variables. The possibility to name each variable is also implemented in the
tool.

A variable is automatically classified as a state variable if its value changes
during any replication of the simulation model. The variable is otherwise
assumed to be an output variable but it can also be specified by the user
to be an input variable. The selected variables are transformed into a more
efficient data structure for the following phases.

6.3 Selection of time instants

The third phase of the construction of DBN metamodels, the selection of time
instants, is performed for one state variable at a time. The first step of the
phase is the discretization of the simulation’s time interval. The discretized
time instants are spaced evenly over the interval but the number of segments
that the time interval is divided into can be chosen freely. The default value
for this number is 500, because it has proven to be sufficient in many cases
and the running time of the dynamic programming algorithm for optimally
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Figure 10: Interface for selecting and discretizing variables.

selecting time instants is not excessive. It is recommended to consider the
characteristics of the variable in question when selecting the number of time
instants. A larger number of time instants is justified if the probability curves
fluctuate more rapidly. The GUI lets the user open up plots in a new window,
allowing probability curves to be examined more closely before deciding on
the discretization.

The values of the variable in all replications at all relevant time instants
are looked up from the simulation data for each potential discretization. The
probability curves are formed based on the relative frequencies of the variable
values in the data. The values of the variable in every simulation replication
and at every time instant are not explicitly recorded, as this would require a
considerable amount of additional memory. The probability curves are plotted
for visual inspection. The number of time instants can be changed repeatedly
and the probability curves are recalculated each time. Once a discretization
is chosen, the next step is to select which optimization algorithm to use in
selecting optimal time instants. Dynamic programming is preferred but the
genetic algorithm is also available and can be used if the dynamic programming
algorithm is considered too slow. After selecting the optimization algorithm,
it is still possible to return and change the algorithm or the number of time
instants if the initial choices turn out to be inappropriate.

If dynamic programming is used, the maximum number of nodes allowed,
the maximum time gap between consecutive nodes, and the objective function
to minimize are provided to the DBN metamodeling tool through the GUI.
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Figure 11: Interface for the dynamic programming algorithm in the selection
of time instants.

The optimal time instants are calculated simultaneously for all numbers of
nodes up to the given maximum. Since the optimization can take a long time
if the initial time discretization is too dense, the calculation can be manually
interrupted.

The time evolution of the estimate for the probability distribution of the
variable in question is calculated based on the selected number of nodes.
This is overlaid on the same plot as the probability curves. The size of the
estimate error is also shown to provide a numerical indicator. This allows
for comparison between different numbers of nodes which can be changed by
moving a slider. It may be an indication that the discretization should be
denser if the selected time instants include two consecutive ones from the
initial discretization. The DBN metamodeling tool gives a warning if this is
the case but does not disallow the selection. The interface of the dynamic
programming algorithm is shown in Fig. 11.

When using the genetic algorithm, the DBN metamodeling tool can only
return one solution candidate at a time. The number of nodes is indirectly
controlled by adjusting a parameter representing the penalty added to the
objective function for each additional node. Other parameters regarding
population size, the number of generations, and the choice of objective
function are also specified via the GUI. Default values are given by the
tool, but they are not suitable for all situations. The estimate and the true
probability curves are again overlaid and the estimate error is displayed. The
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Figure 12: Interface for the genetic algorithm in the selection of time instants.

solution is accepted or a new one is calculated. Since the genetic algorithm
is stochastic in nature, it might be worthwhile to run it multiple times with
identical parameter values. As with the dynamic programming algorithm, the
genetic algorithm can also be interrupted by the user if needed. The interface
of the genetic algorithm is presented in Fig. 12.

As mentioned in Section 4.3.4, the estimate error for linear segments
that are evaluated by the genetic algorithm should be stored. The DBN
metamodeling tool uses MATLAB’s sparse matrix structure. The degree to
which this matrix is filled depends on the number of time instants as well
as the parameter values of the genetic algorithm. The matrix is stored only
for a single optimization run at a time. Fig. 13 illustrates the contents of
the matrix in a sample case. Here, only about 2% of the possible segments
between pairs of time instant are actually evaluated.

6.4 Estimation of the graph and conditional probability
tables

The next phase is the estimation of the graph and CPTs of the DBN. Before
applying the GTT algorithms for learning the DBN, the search space of the
graph is restricted. This is accomplished by only considering graphs that
include specific arcs and do not include other specified arcs. All arcs that
would go backwards in time are first automatically disallowed.
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Figure 13: Time instant pairs for which the error of the segment between
them is evaluated by the genetic algorithm in a test case. With 1000 time
instants, there are 500,000 possible pairs, but only 9978 of them are evaluated.

The user can then introduce further restrictions on the graph through the
GUI of the tool. Arcs given by the user are explicitly included or excluded.
However, arcs between nodes corresponding to the same time instant can only
be included in the DBN as long as the graph can still be acyclic. The GUI
provides features for including multiple arcs at once. Arcs can be included from
every node corresponding to a state variable to the next node corresponding
to the same variable. Arcs can also be included between different variables in
a similar fashion. The interface for entering user input regarding the graph is
shown in Fig. 14.

Once all of the expert knowledge regarding the graph has been entered,
the graph is determined automatically using the GTT algorithm implemented
in the SMILE library with BDeu priors. The CPTs are also estimated
automatically by the same library. The resulting DBN is stored in a new file
by SMILE. In addition, a graphical representation of the graph is presented
to the user.

6.5 Validation

The validation features of the DBN metamodeling tool allow the specification
of conditions on any input or output variables as well as state variables at any
time instants. The tool then determines the sample size for the conditions
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Figure 14: Interface for entering user input about the graph of the DBN.

by counting how many of the replications in the simulation data fulfill them.
The maximum standard deviation for the relative frequencies of the variable
values in the simulation data, i.e., the standard deviation for a conditional
probability of 0.5, is calculated based on the sample size and displayed to the
user.

A target variable, i.e., the variable whose probability distribution is
investigated, must first be selected when comparing the metamodel to the
simulation data. If the target variable is an input or output variable, a bar
graph is displayed. The relative frequency and the metamodel’s conditional
probability are compared for each value of the variable. The RMSE of the
variable is also presented. If the target variable is a state variable, a plot
indicating the time evolution of the estimate errors is displayed. The plot
includes a curve for each value of the variable. By examining the time
evolution, it is simple to identify the time instants where the estimate error
is greatest. The RMSE is also given. Alternatively, the DBN metamodeling
tool can instead display the time evolution of the relative frequencies and
the conditional probability distribution of the metamodel superimposed in
a single plot. It is thus possible to examine what the relative frequencies
are when the estimate error is large rather than just the timing of the large
errors.

Fig. 15 shows the interface used for validating the metamodel. The
state variable temperature is examined with a condition set on the input
variable month. The maximum standard deviation in the simulation data is
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Figure 15: Interface for validating the metamodel.

approximately 0.02 while the RMSE of the metamodel is over 0.03. Whether
or not this is acceptable depends on the requirements set for the metamodel.
It is also worth noting that the estimate error for two particular values
momentarily grows to as big as 0.15 which can be problematic if the time
instants in question are of particular interest.

The metamodel is rejected if it appears to be invalid and a new refined one
can be created instead. The metamodel is approved if it passes all validation
tests. The DBN metamodeling tool then provides functionality to assist in
the analysis of the constructed metamodel.

6.6 Utilization of DBN metamodels

In addition to constructing DBN metamodels, the DBN metamodeling tool
is also capable of assisting in the use of the metamodels. Input variables
can be assigned any probability distribution with the GUI. The state and
output variables can be given fixed values in order to investigate conditional
probabilities. The conditional probability distribution of any variable at any
time instant, with conditions set on any variables at any time instants, can
be calculated. The only restriction is that the conditions must actually be
possible to fulfill. A node in the DBN cannot be assigned a value that it
never obtains in the simulation data. A node also cannot be assigned two
contradicting values. The tool cannot assist in analysis that require the graph
to be extended by adding nodes that do not directly correspond to a variable
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Figure 16: Interface for utilizing the metamodel.

of the simulation model. Fur such studies, it is necessary to open the DBN in
GeNIe.

The DBN metamodeling tool can display the estimated probability distri-
butions in three different ways. The first is as a bar graph for the probability
distribution of a state variable at a specific time instant or the probability dis-
tribution of an input or output variable. For state variables, the distribution
is first calculated for all of the nodes corresponding to the variable in question.
When the time instant is changed, only the interpolation of the distributions
needs to be recalculated. This requires little computational effort and can
therefore be carried out quickly. A presentation that resembles animation
can thus be created by continually advancing the time instant of the target
variable.

The second option is to display the time evolution of the probability dis-
tribution of a state variable. The presentation is similar to that of probability
curves discussed earlier. In this case, the curves are piecewise linear. Markers
in the plot indicate the nodes corresponding to the variable in question. The
probability of conditions being fulfilled as well as an approximate sample
size derived from this are shown to give indication to the accuracy of the
probability distributions. The interface for displaying the time evolution of a
probability distribution is shown in Fig. 16.

The third option is to display the time evolution of the expected value
of each state variable. The expected values of the variables are first scaled
based on the maximum and minimum values that they can obtain and are
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then displayed all in the same plot. It is impractical to determine the exact
expected values based on the plot, but it provides a convenient way to compare
the time evolution of different variables in a single plot.

The DBN metamodeling tool only works with metamodels that it has
created. There is occasionally need to modify the DBN, for instance by adding
a node that describes the joint probability distribution of two other nodes.
This cannot be accomplished with the tool. The metamodel can instead be
saved to file for modification and analysis in GeNIe.
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7 Example simulation studies

The utilization of the automated approach to constructing DBN metamodels
and the DBN metamodeling tool is illustrated by applying them in two
example studies. The studies demonstrate key aspects of the construction
and use of DBN metamodels. In the first example, combat between two
aircraft is analyzed. This example demonstrates the effectiveness of the
dynamic programming algorithm in selecting the time instants included
in the DBN. Conditional time evolution of state variables is examined in
different situations, including one that requires augmentation of the DBN.
The second example deals with the operation of an air base. It includes
a parameter of the simulation model treated as an input variable and the
discretization of continuous variables. The validation of the DBN metamodels
is demonstrated in both examples. The ability of DBN metamodels to
investigate any conditional probability distributions is showcased by examining
various studies involving input, state, and output variables. The time evolution
of the expected value of a state variable is also investigated.

7.1 Air combat

The first example involves the simulation of two aircraft, referred to as blue
and red, engaged in air combat for up to 500 seconds. A DBN metamodel
is constructed based on simulation data produced by a separate air combat
simulation software called X-Brawler [27]. The construction is carried out
with the help of the DBN metamodeling tool. The validity of the metamodel is
checked and analysis is conducted in the form of examining the time evolution
of conditional probability distributions.

The simulation begins from an asymmetric starting position. The sim-
ulation is described by two state variables that obtain one of two possible
values describing whether or not an aircraft has been shot down. The state
variable x1 equals 1 if blue is in the air at time instant t and x1(t) = 0 if it has
been shot down. x2 obtains values similarly according to the situation of red.
Certain conditional probabilities are trivial because of the properties of the
simulation model. Once an aircraft has been shot down, it cannot return. If
xi(t) = 0, then xi(t′) = 0 for all t′ > t. Similarly, if xi(t) = 1, then xi(t′) = 1
for all t′ < t. Furthermore, the state of one aircraft does not change if the
other aircraft has already been shot down a while ago. It is possible for both
aircraft to shoot each other down but this must happen within a short period
of time.

The simulation data consists of 10 000 replications and has been created
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independently prior to the metamodeling so the first phase in the construction
is bypassed. Since the state variables are discrete with only two possible
values and both variables are included in the metamodel, there is no need for
any preprocessing. The construction therefore actually begins only from the
third phase.

The first step of the selection of time instants is the calculation of the
probability curves which are displayed in Fig. 17. An example based on the
same simulation model is included in [38] but without implementing multiple
time scales in the metamodel and instead using the same 15 time instants for
both variables. The piecewise linear approximation of the probability curves
resulting from this selection of the time instants is compared to the approxi-
mation obtained with the time instants provided by dynamic programming.
The time instants in [38] are selected using a different algorithm than the
ones presented in this thesis but examining the RMSE still demonstrates the
accuracy of approximation created with the dynamic programming algorithm.
Using the time instants in [38], the RMSE is 0.0087. This is still significantly
better than the RMSE of 15 equally spaced time instants which is 0.0288.
Using 15 common time instants selected optimally with the help of the DBN
metamodeling tool by employing the dynamic programming algorithm, the
RMSE is 0.0017. By implementing multiple time scales and selecting 15
time instants separately for each variable, the RMSE drops even further to
0.0008. The significance of these errors depends on the requirements of the
metamodel. It is clear, however, that using multiple time scales and the
dynamic programming algorithm improves the selection of time instants.

The usefulness of the dynamic programming algorithm and multiple time
scales is also demonstrated by creating approximations of the probability
curves that are as accurate but contain fewer nodes. A RMSE equal to the
optimal selection of 15 time instants with a common time scale is achieved
by selecting 11 time instants separately for each variable. A RMSE equal to
the time instant selection in [38] is achieved with just 6 optimally selected
time instant per variable. The computational efficiency of the dynamic
programming algorithm is also evident. Using 500 candidate time instants,
it takes only a few seconds to calculate the optimal selection for a variable.
This is a significant improvement compared to previously used optimization
algorithms discussed in [39].

The optimally selected time instants include two consecutive time instant
from the initial discretization of the time interval for both variables. This
is an indication that a denser discretization of the time interval might be
needed. In this case, however, the piecewise linear approximation fits the
probability curves so well that a denser discretization is unlikely to improve it.
The selection of consecutive time instant is in part caused by using a greater
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(a) Probability curves for blue, x1.
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(b) Probability curves for red, x2.

Figure 17: Probability curves for the state variables of the simulation model.
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Figure 18: DBN metamodel of the air combat simulation model. The numbers
indicate the time instants of the nodes.

number of nodes than is actually necessary in order to make the metamodel
comparable to the one presented in [38].

After the selection of time instants, the graph of the DBN metamodel
is estimated. Expert knowledge is applied to the two nodes in the DBN
corresponding to the time instant 0, since they always obtain the same value
in the simulation data. Such nodes are problematic for the learning algorithm
of the DBN metamodeling tool as arcs are automatically placed between the
nodes but they are never connected to any other nodes. All other dependencies
in the DBN are identified by the algorithm. The resulting DBN is shown in
Fig 18. There are arcs originating further back than just the previous node,
such as the arc from x1(174) to x2(220). This suggests that the system is not
a Markov process.

The optimally chosen time instants are different for x1 than x2 due to
the asymmetrical nature of the underlying system. Fig. 17 implies that the
probability distribution for x2 changes most rapidly before t = 150 while the
probability distribution for x1 changes most rapidly after t = 165. This is
illustrated further in Fig. 19 where the expected values of the state variables
as given by the metamodel are overlaid. Because the only possible values of
the state variables are 0 and 1, the expected value of a variable is identical
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Figure 19: Time evolution of the expected value of the state variables x1
and x2. Since the two variables both only obtain the values 0 and 1, the
expected values are automatically scaled identically and are equivalent to the
probability of obtaining the value 1.

to the probability of it obtaining the value 1. It would be challenging to
describe a system where the variables change value at different times like this
efficiently without the use of multiple time scales.

Four scenarios are considered in the validation of the metamodel: no
conditions (i.e., marginal probability distributions), blue is shot down at
some point (x1(500) = 0), red is shot down at some point (x2(500) = 0), and
both aircraft are shot down at some point (x1(500) = 0, x2(500) = 0). The
maximum standard deviation of the relative frequencies and the RMSE for
each variable in the scenarios are shown in Table 2. In each case, the standard
deviation in the relative frequencies is greater than the RMSEs. This means
that the sample size is the greater source of error in these scenarios. Since
conducting additional simulation replications is not possible, this error cannot
be reduced. It is therefore questionable whether it is worthwhile to attempt to
create a more accurate metamodel that would decrease the RMSEs, since the
effect on the overall accuracy of the metamodel is limited. For the purposes
of this example, the metamodel is deemed valid.

The metamodel has no input or output variables which means that all
what-if analysis is performed by only setting conditions on the state variables.
The interdependence of x1 and x2 is investigated in Fig. 20, where the time
evolution of the conditional probability distributions of the variables is shown
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Table 2: Validation results for the metamodel. The maximum standard
deviations of the relative frequencies denoted by σ and the RMSEs of the
state variables in the four scenarios.

Condition — x1(500) = 0 x2(500) = 0 x1(500) = 0, x2(500) = 0

σ 0.0050 0.0074 0.0072 0.0620
RMSE of x1 0.0009 0.0019 0.0005 0.0463
RMSE of x2 0.0008 0.0004 0.0017 0.0312
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(c) x1(250) = 0, x2(250) = 0.

Figure 20: Time evolution of the expected values of x1 and x2 with the
conditions set at t = 250.

for the time interval t ∈ [125, 250]. The conditions apply to the variables at
time instant t = 250. In the first two scenarios, the value of one of the state
variables is set to 0 at that time instant. In the third one, both conditions
are applied simultaneously. This scenario only occurs with a probability
of approximately 0.005 according to the simulation data, so the results are
somewhat imprecise. What is noteworthy in these results is that in the first
two scenarios, the probability distribution related to the aircraft that is shot
down changes at different time instants. This is as expected based on Fig. 19
where the different time evolution of the variables is apparent. In the third
scenario, however, the probability distributions of the variables evolve in a
similar manner to each other. This reflects the properties of the underlying
system. In order for both aircraft to be shot down, the two events must
happen soon after one another.

A scenario with multiple conditions is considered next. Both aircraft
are in the air at time instant t (i.e., x1(t) + x2(t) = 2) and exactly one
is in the air at the end of the simulation (x1(500) + x2(500) = 1). The
latter condition cannot be set directly in the DBN so either the model must
be augmented or the two ways that the condition can be fulfilled must be
considered separately. The conditional probability of blue being the aircraft
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(b) Probability of the conditions.

Figure 21: Time evolution of the conditional probability Pr(x1(500) = 1|x1(t)+
x2(t) = 2, x1(500) + x2(500) = 1) of blue winning when both aircraft are in
the air at time instant t but only one is at the end of the simulation, as well as
the probability Pr(x1(t) + x2(t) = 2, x1(500) + x2(500) = 1) of the conditions
being fulfilled.

to survive, i.e., Pr(x1(500) = 1|x1(t) + x2(t) = 2, x1(500) + x2(500) = 1), is a
function of t. Fig. 21 shows the time evolution of this conditional probability
as well as the probability of the conditions being fulfilled.

The initial situation of the air combat is fairly even, as is seen in Fig. 21a.
Red is the more likely victor if it survives blue’s initial attack during the time
interval 140-150. The situation is again practically even if blue survives red’s
counter attack at around 180-190. As is shown in Fig. 21b, the conditions
are less likely for larger values of t which indicates that the corresponding
conditional probabilities are less accurate.

The construction and utilization of DBN metamodels are demonstrated by
this example study. The utilization of the dynamic programming algorithm
and multiple time scales improves the selection of time instants which results
in more accurate piecewise linear approximations of the probability curves.
In the scenarios examined in the validation of the metamodel, the greatest
source of inaccuracy is the quantity of simulation data. Since the data was
generated separately from the construction of the metamodel, there is no way
to address this potential inaccuracy. Analysis backward in time is conducted
to investigate how different states of the system at time instant t = 250 are
likely to have arisen. Finally, by extending the metamodel to consider a
condition that involves multiple variables of the metamodel, it is possible to
examine more complex conditional probabilities, such as comparing different
final states of the system and determining their relative likelihoods.
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Aircraft Repair
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Figure 22: Flowchart of the simulation model. The aircraft repair, aircraft
service, and mission assignment locations can each hold just one aircraft at a
time and are therefore preceded by queues that are not included in the chart.

7.2 Air base operation

In the second example, the simulated operation of an air base is considered.
A DBN metamodel is constructed according to the guidelines discussed in
Section 4 with the help of the DBN metamodeling tool. The discretization of
continuous variables is first presented. The validation of DBN metamodels is
demonstrated by first constructing a metamodel that turns out to be invalid
and then constructing a more accurate one. The resulting metamodel is
analyzed by investigating various conditional probability distributions. These
include the values of input and output variables and the conditional time
evolution of a state variable.

In the simulation model, aircraft go repeatedly through a cycle consisting
of mission assignment, mission execution, repair of possible damage obtained
during the mission, and standard service such as fueling. There are three
queues for the aircraft, all operating on the first in first out principle: one
for mission assignment, one for repair, and one for service. The repair and
service personnel can only work on one aircraft at a time. Aircraft that have
not been damaged can move directly from mission execution to the service
queue. An aircraft is released from the mission assignment queue every time
a new mission becomes available. A backlog of missions is formed and the
aircraft are assigned to the missions as soon as they arrive from service if
there is no aircraft in this queue when a new mission is about to be assigned.
A flowchart of the simulation model is presented in Fig. 22.

The missions are categorized into patrolling missions and combat missions.
Patrolling missions are assigned regularly with the time between consecutive
missions sampled from a uniform probability distribution. The aircraft are
unlikely to be damaged during a patrolling mission. Combat missions are
assigned as a Poisson process with a time dependent arrival intensity. Combat
missions are shorter than patrolling missions on average but the aircraft
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Table 3: Variables of the metamodel.

Name Type Range Interpretation

u Input {1, . . . , 4} Scenario
x1 State {0, . . . , 4} Number of aircraft in mission assignment
x2 State {0, . . . , 4} Number of aircraft in aircraft repair
z Output {0, 1} Mission assigned with no available aircraft

have a much higher probability of being damaged. The repair time of a
damaged aircraft is stochastic and exponentially distributed. The service
time is deterministic and depends on the length and type of the preceding
mission.

The only input variable of the simulation model determines the time
dependent intensity of the generation of combat missions and is denoted by
u. There are a number of predefined scenarios for the time evolution of the
intensity and u determines which of them applies to a particular simulation
replication. The number of aircraft in each of the four locations are considered
as state variables. In the metamodel to be studied, only the number of aircraft
in mission assignment, denoted by x1(t), and in aircraft repair, denoted by
x2(t), are taken into account. The output variable of the simulation model is
an indicator, denoted by z, that describes whether or not at some point during
the simulation replication, a situation occurs where no aircraft is available to
execute an incoming mission. The variables included in the DBN and their
ranges are summarized in Table 3.

Four combat mission generation scenarios are simulated. In the first one,
the intensity of mission generation starts at 0, peaks early in the simulation,
and return to 0 later. In the second scenario, the intensity slowly increases
throughout the simulation. In the third one, the intensity is constant, and in
the fourth one, there are no combat missions at all. The intensities related
to the first three scenarios are illustrated in Fig. 23. The four scenarios
occur with equal probability. In every simulation replication, four aircraft are
included. The data is collected by running 2000 simulation replications for
each scenario. The duration of each replication is 100 units of time. Since all
of the variables under consideration are discrete and have a limited range of
values, there is no need to discretize them.

In order to demonstrate the discretization feature of the DBN metamod-
eling tool, an additional output variable, denoted by w, is considered. w
obtains the mean value of x1 for each replication of the simulation model
and is therefore a continuous variable. It is used for the demonstration of
the discretization of variables, but is not included in the metamodel because
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(c) Scenario u = 3.

Figure 23: Intensity of the generation of combat missions in three scenarios.

it is not needed in the analysis that is conducted with the metamodel. The
probability distribution of w is skewed and has two distinct peaks, one corre-
sponding to the scenarios u ≤ 3 and one corresponding to the scenario u = 4.
A histogram of the rounded observed values of w is drawn and the bars are
colored by the tool according to what discretized value they are assigned to.
Fig. 24 shows four of the possible discretizations of w into 2, 4, 7, and 10
bins, respectively. The figures imply that the width of the bins varies, as
the longer left tail of the distribution is discretized into wider bins than the
other values. The number of observations that falls into each bin also varies,
since the large spike containing the greatest values of w is contained within
just one bin unless the number of bins is particularly high. For this variable,
it would be natural to let the spike correspond to one discretized value and
using a total of 7 values is the best option in this regard.

The probability curves of the chosen state variables, calculated based on
the simulation data, are shown in Fig. 25. The advantage of utilizing multiple
time scales is evident. The probability distribution of x1 changes rapidly due
to the regularly scheduled patrolling missions while the distribution of x2
changes more slowly. The repeatedly changing probability distribution of
x1 in particular requires a large number of nodes in order to be accurately
described by the metamodel. Determining the optimal time instants for
the state variables using the dynamic programming algorithm discussed in
Section 4.3.3, 75 time instants are judged to be a suitable number for x1,
whereas 25 time instants are sufficient for x2. The probability curves of x2
can be quite accurately described by a smaller number of nodes but larger
gaps between nodes are challenging when dealing with conditional probability
distributions. This is a variable whose value can change quickly, even if
its marginal probability distribution changes slowly. The RMSE is 0.0016
with the chosen time instants for x1 and 0.0010 for x2. Comparing these
numbers to those in the first example in Section 7.1 shows how the probability
distribution of x1 is harder to approximate in a piecewise linear fashion. Even
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(b) Discretized into 4 bins.
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(c) Discretized into 7 bins.
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(d) Discretized into 10 bins.

Figure 24: Alternatives for discretizing the variable w.
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(a) Number of aircraft in mission as-
signment, x1.
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(b) Number of aircraft in repair, x2.

Figure 25: Probability curves of the state variables of the simulation model.

with five times the number of nodes that were included for the variables in
Section 7.1, the RMSE is still nearly double.

The graph for the DBN is determined in the fourth phase of its construction.
Expert knowledge is initially used to add arcs only within each state variable
from one node to the next. Learning algorithms are used to identify additional
arcs in the DBN. A section of the DBN covering nodes with a time instant of
less than 20, as well as the input and output variables, is shown in Fig. 26 This
metamodel, however, proves to be invalid, as implied by Fig. 27, where the
probability distributions provided by the metamodel are incompatible with
the simulation data. This is also indicated by the RMSE that is 0.847. The
time evolution of the probability distribution of x2 given by the metamodel
and the corresponding relative frequencies are compared in the figure. The
probabilities in question are calculated with the condition of u = 4, i.e., the
scenario where there are no combat missions. The curves deviate significantly.
This implies that the learning algorithm does not add enough arcs to accurately
describe the properties of the simulation model. Such an inaccurate metamodel
is of little use and is therefore replaced by a more accurate metamodel.

In the second attempt at constructing a valid metamodel, more expert
knowledge is included. Arcs are added to each node node corresponding to a
state variable from the most recent nodes associated with each variable. Arcs
are also added from the input and output variables to all other nodes. From
a causal point of view, the arcs connecting the output variable should all be
oriented towards it, but a node with such a large number of parent nodes is
not computationally feasible. Orienting the arcs in the opposite direction can
affect the conditional independence of other nodes but is a necessity in this
case. A part of the DBN containing nodes corresponding to time instants of
less than 20 is shown in Fig. 28. Validation based on the same scenario as
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Figure 26: Part of the DBN metamodel containing nodes corresponding to
time instants of less than 20. There are no arcs connecting the state variables
at time instant 0, because they always obtain the same value and are therefore
independent of all other nodes.
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Figure 27: Comparison of the time evolution of the probability distribution
of x2, i.e., the number of aircraft in aircraft repair, with the condition u = 4.
The distribution provided by the metamodel is represented by the dashed
lines and the relative frequencies in the simulation data by the continuous
lines. The sets of lines do not match which indicates that the metamodel is
invalid.
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Figure 28: Part of the corrected DBN containing nodes corresponding to time
instants of less than 20. The input and output variables are not included,
because there are arcs from these to every other node which clutters up the
figure.

before is presented in Fig. 29. Now, the probability distributions provided by
the metamodel correspond well with the relative frequencies in the simulation
data and the RMSE has dropped from what it was in the first metamodel to
0.0013. This is considerably less than the variance caused by the sample size.
The metamodel therefore passes this validation test. This scenario shows
no indication that the new metamodel would be invalid. The metamodel is
considered to be valid for this example study. All further analysis discussed
in this section involves only the corrected metamodel.

Fig. 30 depicts the unconditional time evolution of the simulation, i.e., the
time evolution of the marginal probability distributions of the state variables
provided by the corrected DBN metamodel. The distributions resemble the
probability curves in Fig. 25. The periodical nature of x1, caused by the
regular patrolling missions, is evident in Fig. 30a. This is also the main
reason why the concept of multiple time scales is useful in this example. The
patrolling missions directly affect the number of aircraft available for missions,
but have little impact on the number of aircraft needing repair.

Alternative what-if analyses facilitated by the DBN metamodel are demon-
strated next. First, only the input and output variables are considered. Table
4 lists the marginal probability distribution of the output variable z as well
as all its conditional probability distributions when the value of the input
variable u is fixed. In Table 5, the situation is reversed and the probability
distributions of the input variable u are examined with conditions on the
output variable z. The results presented in Table 5 imply that there is practi-
cally always an aircraft available to execute incoming missions in the fourth
scenario without any combat missions. The second scenario with a constantly
increasing intensity in the generation of combat mission, on the other hand,
is most likely to lead to a situation where a mission cannot immediately be
carried out.

Since the second scenario proved to be the most demanding one with
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Figure 29: Comparison of the time evolution of the probability distribution of
x2, i.e., the number of aircraft in aircraft repair with the condition u = 4 in
the reconstructed metamodel. The distribution provided by the metamodel is
represented by the dashed lines and the relative frequencies in the simulation
data by the continuous lines. The sets of lines are so close that it is hard to
distinguish them in the figure.
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(a) Number of aircraft in mission as-
signment, x1.
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(b) Number of aircraft in repair, x2.

Figure 30: Time evolution of the marginal probability distributions of the
state variables provided by the DBN metamodel.
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Table 4: Conditional and marginal probability distributions of the output
variable z conditional on the input variable u.

u Pr (z = 0|u) Pr (z = 1|u)

1 0.57 0.43
2 0.42 0.58
3 0.51 0.49
4 1 0

unknown 0.63 0.37

Table 5: Conditional and marginal probability distributions of the input
variable u conditional on the output variable z.

z Pr (u = 1|z) Pr (u = 2|z) Pr (u = 3|z) Pr (u = 4|z)

0 0.23 0.17 0.20 0.40
1 0.29 0.39 0.33 0

unknown 0.25 0.25 0.25 0.25

regard to immediately executing missions, it is examined more closely. Fig. 31
shows the time evolution of the probability distributions of the state variables
in this scenario. When comparing to Fig. 30, the biggest differences are
towards the end of the simulation. It becomes increasingly unlikely that no
aircraft is being repaired, while the probability of the mission assignment
queue being empty steadily grows. This is consistent with the intensity of
the generation of combat missions presented in Fig. 23.

The output variable z can obtain the value 1 only if the state variable x1
obtains the value 0 at some point. This is explored more closely by setting
x1(t) = 0 at different time instants and examining the resulting conditional
probability distribution of z. The conditional probabilities of z = 1 and
the marginal probabilities of x1(t) = 0 for seven different time instants t
are shown in Table 6. Small values of t have not been included, since it is
unlikely that the mission assignment queue would become empty early in the
simulation. The probabilities vary somewhat between time instants due to the
periodic nature of the probability distribution of x1, but certain trends can
be observed. The probability of the mission assignment queue being empty is
at its highest right at the end of the simulation. However, it is most likely to
lead to a backlog of missions if the queue is empty in sometime between time
instants 70 and 80.

Finally, the effect on both state variables of fixing the value of x2 at time
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Figure 31: Time evolution of the probability distributions of the state variables
provided by the DBN metamodel conditional on u = 2.

Table 6: Conditional probabilities of z and the marginal probabilities of the
conditions.

t Pr (z = 1|x1(t) = 0) Pr (x1(t) = 0)

40 0.87 0.12
50 0.85 0.17
60 0.90 0.16
70 0.95 0.15
80 0.94 0.18
90 0.90 0.21
100 0.83 0.24
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instant 75 is examined. The values of the state variables are actual numeric
values, so calculating expected values from their probability distributions is
possible. In Fig. 32, the time evolution of the expected value is investigate
for the marginal case as well as for all five alternative values of x2(75). The
connection between the variables is evident: when there are more aircraft
in repair, there are fewer waiting for a mission. It is also evident based on
Fig. 32 that even though the values of the variables drift towards those in
the marginal case after time instant 75, the differences are still large at the
terminal time of the simulation.

The construction and analysis presented above is easy to perform with
the help of the automated approach to constructing DBN metamodels and
the DBN metamodeling tool. The tool automatically presents discretization
alternatives for different numbers of discretized values when preprocessing
continuous variables. The tool also assists in assessing the validity of resulting
metamodels. Should the metamodel turn out to be invalid, a new refined one
can be easily constructed.

DBN metamodels are applied as input-output mappings similar to other
types of metamodels by examining the conditional probability distributions
of output variables when the values of input variables are given. DBN
metamodels are most useful, however, when investigating dynamic phenomena.
The time evolution of state variables with fixed values for inputs are studied by
setting conditions on the input variables. Similarly, the state of the simulation
model at a particular time instant is fixed by setting conditions on state
variables and then examining conditional probability distributions. When
the values of state variables correspond to actual numeric values, the time
evolution of expected values is also provided.
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Figure 32: Time evolution of the marginal and conditional expected values of
the state variables with conditions applying to x2(75).
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8 Conclusion

DBN metamodels are a recently developed type of simulation metamodels.
Such metamodels have previously been constructed individually for each
simulation study. This is time consuming and impractical. Such issues are
bypassed by utilizing the automated approach to the construction of DBN
metamodels developed and presented in this thesis and the DBN metamodeling
tool. The construction is split into five distinct phases to more clearly define
it: design of experiment, preprocessing of simulation data, selection of time
instant, determination of the DBN, and validation.

In this thesis, new means have been adopted for some of the phases
to make them better suited for automation. In the preprocessing of data,
continuous variables are automatically turned into discrete ones and the
number of values for discrete variables is reduced. An algorithm based on
dynamic programming is used to select the time instants of DBNs. The
accuracy of candidates for the time instants is quantified in order to simplify
the choice between alternatives. In the validation of metamodels, descriptive
measures of their accuracy are calculated in order to make the validation
process more systematic.

The approach for automating the construction of DBN metamodels is
implemented as the DBN metamodeling tool created using MATLAB. The
tool provides a graphical user interface for inputting information required
in the construction of the metamodel and for visualizing results. All of the
construction phases except for the design of experiment are included in the
tool, as are features for utilizing constructed metamodels. The tool is designed
to work with generic DES data and can therefore be used regardless of the
simulation model under consideration.

In this thesis, the automated construction approach is applied to two
example studies. The first one deals with a previously generated data set
describing combat between two aircraft. The other one involves the operation
of an air base. The example cases demonstrate the construction of DBN
metamodels and showcase the utilization of the metamodels in simulation
studies.

DBN metamodels allow for simulation studies involving the state variables
of a simulation model, unlike metamodels based on input-output mappings.
Dependencies between output variables are also taken into consideration,
while input-output mappings only consider each output variable separately.
What-if analysis involving any of the simulation model’s variables can be
performed with the help of DBN metamodels. Automating the construction
of the DBNs significantly simplifies the application of DBN metamodels by



67

allowing the focus to be on the analysis rather than the construction.
One area of potential future development in the construction of DBN

metamodels is the selection of time instants for determining of the DBN’s
graph. The time instants that create the most accurate piecewise linear
approximation of the probability curves are not always ideal for the DBN.
Such challenging situation cannot always be solved by automation, but a
closer integration of expert knowledge could be helpful. Features related to
any particular simulation models could also be better taken into consideration
instead of merely following the general automated approach.

The role of input variables is another area where there is still room for
development. Input variables are currently assumed to be independent of
each other which is not necessarily the case. Including possible dependencies
between input variables in the metamodel would increase its accuracy. The
learning algorithms employed to determine the graph of the DBN can be
improved on, e.g., by incorporating expert knowledge regarding the prior
probabilities of different graphs. Finally, the design of experiment phase could
be linked more closely to the other phases of the construction. Sequential
sampling could be used to adaptively generate more simulation data with
input variables obtaining values that improve the accuracy of the resulting
DBN metamodel the most.

The automatization of the construction of DBN metamodels makes the
application of such models a more viable option in simulation studies. The
unique features of the DBN metamodels can be utilized without having to
spend a lot of effort on the construction. The dynamic programming algorithm
presented in this thesis leads to the better selection of time instants and
therefore a more accurate metamodel than with alternative selection methods
for time instants. The DBN metamodeling tool developed in this thesis allows
simulation practitioners unfamiliar with DBNs to take full advantage of the
DBN metamodels through its intuitive user interface.
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