
Aalto University
School of Science
Department of Mathematics and Systems Analysis

Joonas Haapala

Routing Military Aircraft by Solving
a Dynamic Multi-Objective Network
Optimization Problem with the A*
Algorithm

Bachelor’s Thesis

Espoo, June 8, 2015

Supervisor: Prof. Kai Virtanen

Instructor: M.Sc. Heikki Puustinen

The document can be stored and made available to the public on the open
internet pages of Aalto University. All other rights are reserved.

Aalto University, P.O. BOX 11000, 00076 AALTO

www.aalto.fi

Abstract of bachelor's thesis

Author Joonas Haapala

Title of thesis Routing Military Aircraft by Solving a Dynamic Multi-Objective Network Optimi-

zation Problem with the A* Algorithm

Degree programme Degree programme in Engineering Physics and Mathematics

Major Systems Sciences Code of major F3010

Supervisor Prof. Kai Virtanen

Thesis advisor(s) M.Sc. Heikki Puustinen

Date 8.6.2015 Number of pages 25 Language English

Abstract

Flight paths of military aircraft can be optimized with respect to various criteria simultaneously.
Methods exist for finding these paths by using Dijkstra's algorithm on a weighted network, where
the weight of each edge is a weighted sum of criteria such as fuel consumption and threats caused
by opponents. H. Puustinen describes one such solution in his Master’s thesis. These methods, how-
ever, assume the weights remain constant for the duration of the flight and thus are unable to take
into account the movement of time-dependent threats.

This thesis introduces a modified A* network search algorithm that is able to solve paths through a
weighted network with time-dependent weights. It defines a new dominance relation for search
nodes in the network, which is a vital component required to keep the algorithm running time within
practical limits. The thesis also shows and compares some heuristic functions for the A* algorithm.
The results from various scenario imply that the new algorithm is able to find paths that are more
realistic with respect to threats posed by an opponent.

Keywords military aircraft routing, network optimization, A* algorithm

Contents

1 Introduction 4

2 The aircraft routing problem 6

3 Algorithm Description 7
3.1 Dijkstra’s algorithm . 7
3.2 A* algorithm . 8

4 Solving the aircraft routing problem with the modified A*
algorithm 11
4.1 Heuristic functions . 12

4.1.1 Distance heuristic . 12
4.1.2 Fuel heuristic . 13
4.1.3 Surface-to-air threat heuristic 13

4.2 Treatment of time-dependent weights 14

5 Examples 16
5.1 Comparison of heuristic functions 16
5.2 Time-dependent cases . 18

6 Conclusions 20

7 Bibliography 21

A Time complexity of the algorithm 22

B Yhteenveto (In Finnish) 23

3

Chapter 1

Introduction

Careful ahead of time planning of military air operations is vital to their suc-
cess. In addition to maximizing the probability of success, one is interested
in saving resources for further operations. Finding the flight path of an air-
craft optimized for these objectives simultaneously forms a multi-objective
network optimization problem (e.g., [1]) that can be solved with a network
search algorithm.

The optimization of flight paths in the context of military air operations
is a widely studied subject [2][3][4]. Several network search algorithms are
compared in [3] and the conclusion is that a properly formulated A* network
search algorithm dominates all known algorithms when comparing their time
and memory requirements. A parallel A* algorithm to solve a similar problem
has also been implemented in [3].

Previous work in military aircraft routing was also done by H. Puustinen [1].
His work describes an application that finds efficient flight paths by utilizing
Dijkstra’s shortest path algorithm [5]. The paths are optimized for distance,
fuel consumption and opponent threats simultaneously. However, the used
network search algorithm does not take time into consideration leading to
inaccurate predictions of hostile movement. Thus, it would be useful to have
edges’ weights depend on time. In addition, while Dijkstra’s algorithm is
a powerful and a widely used network search algorithm, the A* algorithm
often outperforms it by searching fewer nodes and by making heuristic guesses
about the shortest path.

This thesis describes a particular route planning algorithm that utilizes the
A* network search algorithm to find routes that avoid potential time-dependent
threats while minimizing fuel consumption. The model in [1] is extended in
several ways. The network building process is made implicit, allowing ad-hoc
changes to edge weights and skipping of many edges altogether. Dijkstra’s
algorithm is replaced with the A* network search algorithm that generally

4

explores a smaller subset of the network with the help of a problem-specific
heuristic function. A temporal dimension is introduced to the algorithm for
a more accurate modeling of time-dependent threats. With the edges of the
network depending on time a new node dominance relation is introduced to
keep the size of the search space within practical limits. A few heuristic
functions that affect the run time requirements and optimality of the solu-
tion of the A* algorithm are also compared to results given by the Dijkstra’s
algorithm and the original formulation of the problem.

The thesis is organized as follows. Chapter 2 describes the aircraft routing
problem considered in this thesis in more details. Both Dijkstra’s algorithm
and the A* algorithm are defined in Chapter 3. Chapter 4 describes a few
heuristic functions and how to apply the modified A* algorithm to the prob-
lem with the help of the node dominance relation. Some numerical examples
are shown in Chapter 5 before arriving at the conclusions in Chapter 6.

5

Chapter 2

The aircraft routing problem

The overall goal is to find an aircraft flight path from an aircraft base to
one of many projectile launch points and back. The chosen path should be
optimized to avoid any air-to-air or surface-to-air threats while minimizing
fuel consumption and path length.

The path begins and ends at a friendly aircraft base. The problem description
also assumes perfect knowledge of surface-to-air threats and air-to-air threats
posed by hostile aircraft bases. Both types of threats define zones that incur a
penalty when flying through them. The hostile bases inflict air-to-air threat,
which is a cylindrical shape centered around each base. Surface-to-air sites
also have a threat-inflicting zone which is defined in more detail in [1].

As the aircraft flies, hostile aircraft also move. The air-to-air threats are
modeled as cylinders the radii of which grow linearly as a function of time
after the friendly aircraft crosses a defined reaction surface.

The optimal path for the aircraft is one that minimizes a weighted sum of
the following four criteria:

• Total path length

• Fuel consumption

• Path length under surface-to-air threat

• Path length under air-to-air threat

The original formulation of the problem is given in more details in [1].

6

Chapter 3

Algorithm Description

This chapter first introduces Dijkstra’s shortest path algorithm [5] and then
shows how the A* algorithm [6] is an extension of it.

3.1 Dijkstra’s algorithm

Dijkstra’s algorithm was described by Edsger Dijkstra in 1959 [5]. It is a
popular network search algorithm that finds the shortest path between two
nodes in a network with symmetric and nonnegative edge weights.

A network is defined as a set of nodes N and a set of edges E. Each edge
connects two nodes i, j ∈ N with a weight wij ∈ R. A network has symmetric
edges if it satisfies wij = wji for all nodes i, j. Figure 3.1 shows such a
network.

1

2

2

3

2

1

3

3

2

Figure 3.1: A weighted and symmetric network.

The set of edges that connects two nodes i, j ∈ N via possible intermediary
nodes forms a path P (i, j). Additionally, if the path minimizes the sum
of edge weights connecting the two nodes, it is marked P ∗(i, j) and called
the optimal path between i and j. The length of the path is |P ∗(i, j)| =∑

edge∈P ∗(i,j) wedge.

7

The algorithm finds the optimal path between two given nodes. The search
begins at a starting node s ∈ N and finishes when the end node e ∈ N is
found. The output of the algorithm is the path P ∗(s, e).

As the algorithm takes steps towards the end node, it keeps track of visited
nodes in a set closed. New nodes are inserted into this set when their
shortest path to the starting node is discovered. This cumulative path cost
is marked as gi for any node i. The algorithm guarantees that gi = |P ∗(s, i)|.
Initially only the starting node inserted into closed and gs = 0.

The algorithm proceeds by repeatedly selecting edges that connect node a ∈
closed to node b /∈ closed so that the sum ga + wab is minimized. That
is, the sum of the length of the path from s to a and the length of the edge
wab. In other words the edge to a non-closed node that yields the lowest
cumulative path cost gb is selected.

Next, the node b is moved to closed and gb is set to ga +wab. One can think
of closed as a solved set of nodes that expands uniformly away from the
starting node. The algorithm terminates when no edge wab exists or when
b = e, where e is the preselected end node.

The first iteration of the algorithm is shown in Figures 3.2 and 3.3.

1

2

2

3

2

1

3

3

2

s e

1

2

CLOSED

a

b

c

d

0

Figure 3.2: A network with nodes a, b, c, d, e and s. The cumulative
path cost is marked inside each node. The starting node s is the only
member of closed and its neighboring edges to nodes a and b are
being inspected. The next step is to take the path to node a, since
ga = gs + wsa = 1 is less than gb = gs + wsb = 2.

3.2 A* algorithm

The A* algorithm [6] is an extension of Dijkstra’s shortest path algorithm.
It uses a heuristic function to guide the search in order to avoid visiting
nodes that are unlikely to be a part of the optimal path. Whereas Dijkstra’s
algorithm uses the length of the shortest path from the beginning, gi, i ∈ N ,

8

1

2

2

3

2

1

3

3

2

s e

1

2

CLOSED

a

b

c

d

0

4

Figure 3.3: Dijkstra’s algorithm after one iteration. The nodes s and a
are now both in closed. The next step is to compare the cumulative
costs of paths a → c, a → b and s → b: gc = ga + wac = 4, gb =
ga + wab = 3, gb = gs + wsb = 2. As selecting the path s → b yields
the lowest cumulative cost the node b is added to closed next. The
shortest path P ∗(s, b) is to travel the edge s→ b.

to select edges the A* instead compares fi = gi + h(i), where fi is a heuris-
tic approximation of the length of the whole path and h(i) is the heuristic
function.

The heuristic function h(i), i ∈ N , approximates the length of the remaining
path from any node i to the end node e. It often takes into account addi-
tional information about the properties of the node, for instance, its physical
location. The function has to satisfy certain conditions for the solution of the
A* algorithm to be optimal and equivalent to the solution given by Dijkstra’s
algorithm.

The heuristic function shall never overestimate the length of the remaining
path. This condition is known as the admissibility condition.

An admissible heuristic function guarantees that h(i) for the remaining path
is lower or equal to the length of the actual optimal path, or equivalently,

h(i) ≤ |P ∗(i, e)| ∀i ∈ N, (3.1)

where |P ∗(i, e)| denotes the length of the optimal path from node i to the
end node e. The interpretation is that if the remaining path length for a
node is overestimated, the algorithm might find a worse path instead.

The heuristic is said to be monotone (or consistent) if it satisfies the condition

h(i) ≤ h(j) + wij ∀i, j ∈ N. (3.2)

A monotone heuristic function is also admissible, since for any optimal path

9

P ∗(i, e) it holds that

h(i) ≤ h(j) + wij Eq. (3.2)

h(i)− h(j) ≤ wij

h(i)− h(j) + h(j)− h(k) ≤ wij + wjk

h(i)− h(j) + h(j)− h(k) + h(k)− h(l) ≤ wij + wjk + wkl

h(i)− h(e) ≤ wi··· + · · ·+ w···e since h(e) = 0

h(i) ≤ |P ∗(i, e)| Eq. (3.1).

If the weights of a network represent physical distances, the heuristic is of-
ten chosen to be the euclidean distance between the nodes, which is always
shorter or equal to the length of the remaining path.

10

Chapter 4

Solving the aircraft routing
problem with the modified A*
algorithm

To formalize the problem defined in Chapter 2 for the A* network search
algorithm, the mission airspace is discretized to a three-dimensional grid
where neighboring nodes are connected with weighted edges.

The weight of each edge in the network is a weighted sum of the physical
length, fuel consumption and threat costs. Fuel consumption is approximated
by data from real fuel consumption measurements and it takes into account
the aircraft altitude and angle of ascent. The threat criteria are the physical
distance flown under air-to-air and surface-to-air threat zones. These are
defined in more detail in [1].

The air-to-air threat zone is a high cylinder with a radius that grows linearly
in time. The radius grows at the same velocity as a hostile aircraft would
fly, which simulates all possible locations for it. The radius starts to grow
when the aircraft crosses a reaction surface, that approximates the position
after which the aircraft is detected. Figure 4.1 shows how the air-to-air
threats influence the weights. Surface-to-air threats each have a separate,
time-constant launch acceptability region that defines their threat zone and
is defined in [1].

Whereas in the original formulation of the problem [1] all the weights of the
network are calculated in the beginning of the search (explicit), the modified
A* presented in this thesis calculates them as they are explored (implicit).
While this is useful in avoiding edges that are never reached, it is also the
only way to calculate them in time-dependent cases.

The following subchapters first show what kind of heuristic functions are cho-

11

1 2

34

1 2

34

1 2

34

t=1 t=2 t=3

Figure 4.1: The effect of the air-to-air threats to edge costs. The dif-
ferent panels indicate time progression. Edges’ air-to-air threat criteria
increase in proportion to the covered area.

sen for this problem and then how the algorithm deals with time-dependent
weights.

4.1 Heuristic functions

Though a trivial (zero) heuristic function satisfies the conditions defined in
Chapter 3.2, an accurate heuristic function has the greatest benefit. Since
in the problem each edge weight wij is a weighted sum of four criteria it
makes sense to also define the heuristic function as a similarly weighted sum
of specialized heuristic functions for each cost type. For simplicity, however,
the air-to-air threat cost heuristic is left out. The full heuristic function is
then defined as

h(i) =
∑

f∈{distance,fuel,surface-to-air}

cfhf (i),

where cf is the weighting multiplier for the fth criterion and hf (i) is the
specialized heuristic function for that particular criterion.

4.1.1 Distance heuristic

The distance cost is simply the euclidean distance between two adjacent
nodes. One of the simplest suitable heuristics is to use the euclidean distance
between current node i and the end node e, since by the triangle equality
it never overestimates the remaining distance. However, if the network has
impassable nodes, this kind of heuristic tries the most direct route first.

12

Figure 4.2: A cumulative fuel consumption matrix. Each shade repre-
sents fuel costs required to travel to the origin at the lower left corner.
The matrix is built from real fuel consumption measurements using
Dijkstra’s algorithm.

Nevertheless, it remains a widely used heuristic in the literature due to its
simplicity.

4.1.2 Fuel heuristic

The fuel consumption component of each weight of the network is based on
real fuel efficiency measurements. The A* algorithm can use this knowledge
to minimize the total fuel consumption of the mission. Fuel consumption
varies as a function of altitude and angle of ascent, so that when paths
are optimized only for fuel consumption the aircraft will prefer flying longer
distances at high altitudes.

To make heuristic guesses, the algorithm has a table of cumulative fuel con-
sumptions when traveling a certain distance with a given starting altitude.
One such table is shown in Figure 4.2.

4.1.3 Surface-to-air threat heuristic

The surface-to-air threat cost is non-zero when the aircraft flies within the
threat zone of a hostile surface-to-air site and zero otherwise. Since the
threat does not depend on time, it is sufficient to only calculate the minimal

13

cumulative amount of threat required to escape the zone as the cost is zero
everywhere else.

4.2 Treatment of time-dependent weights

This subchapter shows how the A* algorithm is modified to model the time-
varying threats in the problem.

In order to describe the time-varying air-to-air threats, the previous defini-
tions in Chapter 3 are extended to include time as a parameter. In particular,
edge weights now depend on time, wij = wij(t). A useful property based on
the problem description in the beginning of Chapter 4 is that

∂wij(t)

∂t
≥ 0 ∀i, j ∈ N, (4.1)

since only the air-to-air threat criterion depends on time and it cannot de-
crease as a function of time. With weights depending on time, multiple nodes
of the network are also let to exist in the same physical location.

The aircraft is assumed to fly at a constant Mach number corresponding
to lower velocities at higher altitudes. Thus, it is possible to calculate the
time it takes to fly along an edge from node i to node j simply by t =
distance/average velocity. The modified algorithm keeps track of time by
marking node arrival times as ti, i ∈ N . Multiple nodes of the network can
now exist in the same physical location with different arrival times. The size
of the network is no longer finite, since traveling in circles one can never
reach the same nodes again.

These new definitions lead to the unfortunate effect of rapidly expanding the
explorable node space unless one manages to eliminate unnecessary nodes.
When multiple paths to a new node are explored in the original A*, it suffices
to compare the cumulative path length (gi, the path length traveled so far)
and discard all but the shortest path. This works on the assumption that
the cost of the remaining path to the end node doesn’t change as a function
of the path taken so far. However, in a time dynamic case, this assumption
no longer holds. A new way to eliminate nodes is required to avoid the
exponential growth of candidate paths.

Fortunately, according to the equation 4.1 edge weights are monotone with
respect to time, i.e., it is never beneficial to wait or take a path that takes
longer in time when cumulative path costs are equal, as shown in Figure
4.1. Similarly, for two nodes i, j ∈ N with ti = tg, the consequent path is
identical, since the remaining path is only a function of t, and therefore the

14

other node can be eliminated by comparison gi < gj. Thus, it is possible to
define a dominance relation for two nodes physically in the same location:
Node a dominates node b if its time (ta) and cumulative cost (ga) are lower
or equal to b’s and at least one of them is lower. This relation is shown in
Figure 4.3.

t

g

Figure 4.3: The node dominance relation. When a physical location
is reached via multiple paths, it is possible to discard many of them
merely by comparing their cumulative path length (gi) and time of
arrival (ti).

This elimination step is important in keeping the time requirements within
practical limits. It is worthwhile to note, that if one ignores the time dimen-
sion altogether by setting the arrival time ti of each node to zero, the com-
parison resembles that of the regular Dijkstra’s algorithm where one chooses
only the shortest known path to each node.

15

Chapter 5

Examples

This chapter begins with a comparison of several heuristic functions and
then shows example scenarios where the solutions given by the modified
A* algorithm differ from solutions given by the original formulation of the
problem.

5.1 Comparison of heuristic functions

As long as the chosen heuristic function is admissible and monotone, the
result of the A* network search is always optimal. The choice of the heuristic
function, however, does affect the number of nodes the algorithm has to
search.

The combined heuristic function defined in Chapter 4.1 is compared to two
simpler functions: a simple straight-line distance equivalent to the function
presented in Chapter 4.1.1 and a constant zero function. For evaluating
these three functions, six test scenarios were created. The scenarios differ in
the size of the network and in the positioning and amount of surface-to-air
threats. Since none of the heuristic functions take time into account, no air-
to-air threats were placed in any of the scenarios. The heuristics used the
same criteria weights as the edges of the network and they are shown in the
Table 5.1. The number of nodes explored in each scenario is shown in Figure
5.1.

Out of the three heuristics tested the full heuristic was able to estimate the
weights of the network the best. In all of the six test scenarios, it always
found the optimal path with the fewest search nodes. It also made the
searches fastest as the time it takes to calculate the heuristic for the nodes
themselves is negligible in comparison to the savings made by skipping many
nodes during the search.

16

ID distance fuel surface-to-air

1 0.1 0.01 1

2 0.1 0.01 1

3 1 1 1

4 1 1 1

5 1 0 1

6 0 1 1

Table 5.1: Edge criteria weights for each test scenario. No air-to-air
threats were present in the scenarios.

1 2 3 4 5 6
test scenario

104

105

106

107

n
u
m
b
e
r
o
f
n
o
d
e
s
e
x
p
a
n
d
e
d

zero heuristic
euclidean distance
full heuristic

Figure 5.1: The number of network nodes searched by the A* algorithm
in six test scenarios for three heuristic functions. Note that the Y axis
has a logarithmic scale. Here, the zero heuristic represents a trivial
heuristic h(i) = 0 for every node i and makes the search equivalent
to Dijkstra’s algorithm. The euclidean distance heuristic estimates the
remaining path cost via a straight-line distance. The full heuristic is a
weighted sum of three heuristics and is defined in Chapter 4.1.

17

5.2 Time-dependent cases

When all of the network edge weights are fixed in time, the solution paths
given by the modified A* algorithm are equal to the paths given by the
original algorithm in [1]. The results differ when the cylinder-shaped air-to-
air threat zones are set to grow in time, allowing the aircraft to fly closer to
them without a cost in the beginning of the mission. The threat then has a
greater impact on the shape of the return path. This phenomenon is shown
in Figure 5.2.

r

Figure 5.2: The top-down view of a possible flight path with the mod-
ified A* algorithm. The path follows the dashed line and begins at the
left side of the figure. The circle represents an cylinder-shaped air-to-
air threat zone with a growing radius. The return route has to curve
around it to avoid air-to-air threat accumulation.

The solutions of the two algorithms also differ when large costs later in the
mission can be avoided by saving time earlier on in the mission by flying at a
lower altitude. The flight paths in the following example scenario were calcu-
lated with both the original algorithm and with the modified A* algorithm.
The edges of the network were weighted so that air-to-air threat is avoided
as much as possible at the expense of fuel and distance costs. The scenario
forces the aircraft to fly briefly through an air-to-air threat.

Following the numbered points inserted into the two solutions in Figure 5.3,
the aircraft gain altitude near point 1 to save fuel as the efficiency grows at
lower atmospheric pressures. This climbing takes some time, which does not
matter as the hostile aircraft only start moving after the reaction surface is
crossed as defined in the problem description in Chapter 2.

The aircraft drop to a lower altitude near point 2 for two reasons: due to the
shape of the reaction surface, it can travel further before being detected and
upon crossing the surface it will have the highest velocity as they maintain
a constant Mach number. After 2 the paths diverge: the original algorithm
guides the aircraft higher to maximize fuel savings, whereas the modified A*
algorithm keeps the aircraft low where it flies faster.

Closing in on the projectile launch point at 3 the bottom aircraft still flies
as low as possible. At point 4 it temporarily enters the hostile air-to-air
threat zone that has by now grown larger. Having cleared it, the algorithm

18

no longer has to optimize for speed and by point 5 it has gained the optimal
flight altitude for fuel savings. Indeed, it shows that between points 2 and
4 the bottom path is being optimized for flight time and otherwise for fuel.
Without the time savings, the penalty for staying inside the air-to-air threat
zone (point 4) would have been larger. The original algorithm follows a
fuel-optimal arc between points 3 and 5. In this scenario, the flight path
calculated by the original algorithm is more fuel efficient, but spends more
time flying inside the air-to-air threat zone than the solution found by the
modified A* algorithm. The modified A* achieves a lower total cost for the
path.

Figure 5.3: The side profile view of a flight path calculated with the
original algorith (top) and with the modified A* algorithm (bottom).
The optimal path follows the direction given by points 1...5. The
connected chain of line segments in the center is the reaction surface.
The red square is a hostile aircraft base and the blue square is the
friendly aircraft base.

19

Chapter 6

Conclusions

This thesis described a military aircraft routing problem and a way to solve it
with a modified A* path finding algorithm. A node dominance relation was
introduced to make the time-dependent problem solvable in practice. The
thesis also showed and compared several heuristic functions to be used with
the modified A* algorithm.

By approximating hostile movement over time more precisely, the modified
A* algorithm produces flight paths that are more useful in practice than the
solutions given by the original formulation of the problem. Out of the three
heuristic functions tested the full, combined heuristic was able to arrive at a
solution with the fewest search nodes.

The node dominance relation was very useful in removing suboptimal search
nodes during the search. However, the number of nodes to search still grows
quickly when the problem size is increased. In the future, the node domi-
nance relation could be enhanced to also drop nodes that lead to very similar
existing solutions or by making further mission-specific assumptions about
the relationship between travel time and cumulative path cost.

The full heuristic function was able to estimate the weights of the network
the best. In the future, the heuristic function could be extended to also take
air-to-air threats into consideration, further decreasing the number of nodes
the algorithm has to search.

20

Chapter 7

Bibliography

[1] H. Puustinen, Military Aircraft Routing with Multi-Objective Network
Optimization and Simulation, Master’s Thesis, Systems Analysis Lab-
oratory, Aalto University, 2013.

[2] M. S. Gudaitis, Multicriteria Mission Route Planning Using a Parallel
A* Search, Master’s Thesis, School of Engineering and Management, Air
Force Institute of Technology, OH, 1994.

[3] E. Sezer, Mission Route Planning With Multiple Aircraft & Targets Us-
ing Parallel A* Algorithm, Master’s Thesis, School of Engineering and
Management, Air Force Institute of Technology, OH, 2000.

[4] W. M. Carlyle, J. O. Royset and R. K. Wood, Routing Military Air-
craft with a Constrained Shortest-Path Algorithm, Military Operations
Research, Volume 14, Number 3, pages 31-52, September 2009.

[5] E. W. Dijkstra, A note on two problems in connexion with graphs, Nu-
merische Mathematik, Volume 1, Issue 1, pages 269-271, June 1959.

[6] P.E. Hart, N.J. Nilsson, B. Raphael, A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths, Systems Science and Cybernetics,
Volume 4, Number 2, pages 100-107, July 1968.

21

Appendix A

Time complexity of the
algorithm

Both Dijkstra’s algorithm and the A* algorithm need to repeatedly find nodes
that have the lowest cumulative path length. A naive implementation loops
through all elements of a set of nodes each time a new node is needed, and
new nodes are simply inserted at the end. The computational complexity
of the algorithm when using such a linear search is O(|N |2), where |N | is
the number of nodes. Replacing the linear search with a priority queue data
structure yields the complexity O(|E|+ |N | log |N |), where |N | is the number
of nodes and |E| is the number of edges in the network. Additionally, both
algorithms repeatedly check whether a particular node exists in a set. The
priority queue is not suited for this task, but an auxiliary hash table data
structure can be used to make the check a constant complexity operation.

22

Appendix B

Yhteenveto (In Finnish)

Sotilaslentokoneiden lentoreittien tarkalla suunnittelulla voidaan vaikuttaa
merkittävästi lentotehtävien onnistumiseen. Reitit suunnitellaan kiertämään
mahdolliset vihollisuhat kaukaa niin, että säästetään mahdollisimman paljon
polttoainetta. Reittisuunnittelu on monitavoiteoptimointiongelma, jota tässä
työssä lähestyttiin verkko-optimointitehtävänä.

Lentoreittioptimointia on tutkittu laajasti. Monet olemassa olevat mene-
telmät perustuvat Dijkstran algoritmiin, jolla voidaan löytää lyhin reitti ver-
kossa kahden solmun välillä. Dijkstran algoritmin soveltamiseksi on verkko
määriteltävä niin, että vihollisuhat ja polttoaineenkulutukset tietyssä pis-
teessä kasvattavat sitä vastaavan kaaren painoarvoa. Tällöin lyhin reitti ver-
kossa on sellainen reitti, joka minimoi polun varrella kuljettavien optimoin-
tikriteerien summan. Diplomityössään Heikki Puustinen määrittelee tavan
ratkaista lyhimpiä lentoreittejä Dijkstran algoritmilla verkolle, jonka kaarien
painoarvot on laskettu etukäteen.

Kirjallisuudessa toinen laajasti käytetty reitinhakualgoritmi on A*-algoritmi.
Se laajentaa Dijkstran algoritmia lisäämällä siihen niin kutsutun heuristiik-
kafunktion, jolla hakua ohjataan kohti tavoitesolmua. Perusmuodossaan A*
vähentää tutkittavien solmujen määrää merkittävästi, mutta ratkaisee silti
optimaaliset reitit.

Todellisuudessa vihollisuhat voivat liikkua. Olisi hyödyllistä, jos mallista
saisi ratkaisuksi reittejä, jotka ennakoivat vihollisliikkeitä eri aikoina. Eräs
tällainen liike on esimerkiksi vihollislentokoneen eteneminen, jonka arvioimi-
seksi tarvitaan sijainnin lisäksi kellonaika. Kun verkon kaarien painoja tar-
kastellaan eri kellonaikoina, ei verkkoa voida määrittää etukäteen vaan sitä
on tarkasteltava reitinhaun edetessä.

Dijkstran algoritmi ei perusmuodossaan sovellu tällaisen verkon ratkaisemi-
seen. Kandidaatintyössä laajennettiin Puustisen diplomityön reittioptimoin-

23

timallia lisäämällä siihen muokattu A*-algoritmi, joka huomioi ajan etenemi-
sen polussa ja täten pystyy mallintamaan vihollisuhkien liikettä lentokoneen
edetessä.

Kun verkon kaarien painot saavat eri arvoja eri aikoihin, voidaan ajatella,
että solmuihin on mahdollista saapua useita kertoja eri aikoihin. Tämä johtaa
verkon solmujen määrän eksponentiaaliseen kasvuun haun edetessä. Tarvi-
taan keino solmujen määrän rajoittamiseksi, jotta reitin voi löytää lyhyessä
ajassa. Tässä kandidaatintyössä esiteltiin dominanssirelaatio, jolla voidaan
vähentää tutkittavien solmujen määrää merkittävästi.

Ongelmassa sotilaslentokoneelle haetaan reitti lentotukikohdasta aseen lau-
kaisupisteelle ja takaisin tukikohtaan. Lisäksi verkkoon on määritelty solmu-
ja, jotka aiheuttavat vihollisuhkia ympärilleen: ohjuslavettisolmut aiheutta-
vat uhan, jonka alueella sijaitsevat verkon kaaret saavat suuremmat painoar-
vot. Kun lentokone lentää erikseen määritellyn reaktiotasan läpi, oletetaan,
että vihollisjoukot lähettävät vastajoukkoja lentotukikohdistaan. Nämä liik-
kuvat vihollisuhat mallinnetaan sylintereinä, joiden säde kasvaa vakionopeu-
della ajan edetessä ja jotka aiheuttavat vastaavan kasvun verkon kaarien
painoihin.

Jokainen kaari verkossa saa painoarvon, joka on painotettu summa neljästä
kriteeristä: kaaren pituudesta, polttoaineenkulutuksesta kaarta pitkin kul-
jettaessa, ohjuslavettiuhasta ja ajassa muuttuvasta vihollislentokoneuhasta.
Muuttamalla näiden kriteerien keskinäistä painotusta voidaan löytää eri ta-
voitteille optimoituja reittejä. Jos esimerkiksi halutaan täysin välttää kaikkia
vihollisuhkia ja sallia pidempi reitti, voidaan uhkien keskinäistä painotusta
muuttaa.

A*-algoritmin keskeinen osa on heuristiikkafunktio h(x), jossa x on jokin ver-
kon solmu. Heuristiikkafunktio palauttaa arvion matkan pituudesta solmusta
x kohdesolmuun (kaarien painojen summa). Reitinhaun edetessä suositaan
solmuja, joille heuristiikkafunktio antaa pienen arvon. Jotta menetelmän rat-
kaisut olisivat optimaalisia ja samat kuin Dijkstran algoritmilla saadut, heu-
ristiikkafunktion on oltava luvallinen (eng. admissible). Luvallinen heuristiik-
kafunktio on sellainen, joka ei koskaan yliarvioi kuljettavan matkan pituutta.

Jotta ongelman voitiin ratkaista A*-algoritmilla, tuli sille laatia sopiva heuris-
tiikkafunktio. Kun verkon kaaret ovat painotettu summa useasta kriteeristä,
myös heuristiikkafunktio on painotettu summa usean erikoistuneen funktion
arviosta. Arviot laadittiin matkan pituudelle, polttoaineenkulutukselle ja oh-
juslavettiuhalle. Liikkuvien vihollisuhkien heuristiikkafunktion toteutus jä-
tettiin jatkokehityskohteeksi. Tältä osin oikea kustannus kohdesolmuun aliar-
vioidaan.

Matkan pituutta arvioitiin yksinkertaisella euklidisella etäisyydellä kahden
solmun välillä. Se on yleisesti käytetty heuristiikka, joka ei koskaan yliarvioi

24

jäljellä olevan matkan pituutta, sillä matka linnuntietä on aina lyhyempi tai
yhtä pitkä kuin oikea reitin pituus.

Polttoaineenkulutuksen arvioimiseksi laadittiin taulukko, josta voitiin lukea
arvioitu kulutus, kun tiedetään solmujen korkeudet ja niiden välinen etäisyys.
Sen täydentäminen tapahtui Dijkstran algoritmilla, jolla haettiin pienin polt-
toaineenkulutus lähtösolmusta kaikkiin muihin taulukon solmuihin. Myös oh-
juslavettiuhalle laadittiin vastaava tietorakenne, josta voitiin arvioida suurin
mahdollinen ohjuslavettiuhka kahden pisteen välillä.

Heuristiikkafunktioiden vertailussa laadittiin kuusi esimerkkitehtävää, joissa
uhkien keskinäisiä painoarvoja vaihdeltiin. Vertailun kohteina oli kolme funk-
tiota: Dijkstran algoritmia vastaava nollafunktio, pelkkä euklidinen etäisyys
ja täysi kolmeen komponenttiin jaettu heuristiikka. Kaikissa tapauksissa vii-
meisin löysi ratkaisun selkeästi pienimmällä määrällä hakusolmuja.

Muokatun A*-algoritmin ratkaisemia lentoreittejä verrattiin Dijkstran algo-
ritmin ratkaisuihin. Reitit vastasivat toisiaan tapauksissa, joissa vihollisuhat
olivat vakioita ajassa. Ongelmissa, joissa esiintyi liikkuvia vihollisuhkia, löysi
muokattu A*-algoritmi ratkaisuja, jotka saattoivat optimoida osia lentorei-
tistä lentonopeudelle minimoidakseen vihollisuhan myöhemmässä vaiheessa
tehtävää.

Työssä esitelty muokattu A*-algoritmi tuotti hyödyllisempiä lentoreittejä so-
tilaslentokonetehtäviin kuin aiempi Dijkstran hakuun perustuva menetelmä.
Se tuottaa reittejä, jotka ennustavat vihollisten liikettä ajassa ja optimoi
reitit siten myös lentoajalle. Työssä esitelty verkon solmujen dominanssi-
relaatio oli tärkeä reitinhaun komponentti, jolla mahdollistettiin ratkaisu-
jen laskeminen kertaluokkia nopeammassa ajassa. Vertailluista heuristiik-
kafunktioista komponentteihiin jaettu heuristiikkafunktio löysi tulokset pie-
nimmällä määrällä hakusolmuja.

25

	Introduction
	The aircraft routing problem
	Algorithm Description
	Dijkstra's algorithm
	A* algorithm

	Solving the aircraft routing problem with the modified A* algorithm
	Heuristic functions
	Distance heuristic
	Fuel heuristic
	Surface-to-air threat heuristic

	Treatment of time-dependent weights

	Examples
	Comparison of heuristic functions
	Time-dependent cases

	Conclusions
	Bibliography
	Time complexity of the algorithm
	Yhteenveto (In Finnish)

