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At present, high-tech manufacturers experience short product life cycles, high

demand uncertainty, and diminishing profit margins. This presents a problem

to the procurement department. It has to ensure supply of components but

overstocking consumes low profit margins by tying capital in inventories. In order

to be able to purchase components at a lower price, the manufacturer may take a

bigger share of the risk imposed by demand uncertainty by making a purchasing

commitment.

In this thesis, demand uncertainty is modelled by using the Martingale Method

of Forecast Evolution on real-life data of a manufacturer in consumer electronics

industry. A procurement contract with a quantity commitment, in exchange for a

discount, is then compared to a reference contract with a fixed unit price. Monte

Carlo simulation is used to derive demand scenarios and procurement-related

cost is calculated for each contract. Comparison of the costs provides a tool for

assessing whether the manufacturer should enter a commitment contract or not.

The decision greatly depends on the parameters of the contract and the capability

to affect them by negotiating. While the method provides multiple indicators

that summarize the data, there are also visualizations that help decision makers

understand the distributions of possible outcomes.
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Teknologiateollisuudessa tuotteiden elinkaaret ovat nykyään lyhyitä, kysyntä

epävarmaa ja voittomarginaalit pieniä. Tämä muodostaa haasteen yrityksen

hankintaosastolle. Sen tulee varmistaa komponenttien saatavuus kasvattamat-

ta kuitenkaan varastoja liiallisesti, jotta sitoutunut pääoma ei heikennä voit-

tomarginaalia entisestään. Pystyäkseen hankkimaan komponentit edullisemmin,

valmistava yritys voi sitoutua hankkimaan määrätyn määrän komponentteja ja

kantaa näin suuremman osan kysynnän epävarmuuteen liittyvästä riskistä.

Tässä työssä kysynnän epävarmuutta mallinnetaan soveltamalla kulutta-

jaelektroniikan valmistajan kysyntädataan martingaalimenetelmää (Martingale

Method of Forecast Evolution). Hankintasopimusta, jossa ostaja saa alennuksen

sitoutuessaan ostamaan määrätyn määrän komponentteja, verrataan kiinteän yk-

sikköhinnan sopimukseen. Kysyntäskenaariot luodaan Monte Carlo -simulaatiolla

ja hankintaan liittyvät kustannukset lasketaan kullekin sopimukselle. Näiden kus-

tannusten vertailu tukee ostajan päätöksentekoa, kun sitoumuksen tekoa harki-

taan.

Päätössuositus riippuu sopimuksen parametreista ja siitä, pystyykö ostaja vaikut-

tamaan niihin neuvottelemalla. Menetelmän avulla saadaan tuotettua sekä tilas-

tollisia jakaumia ja riskiä kuvaavia tunnuslukuja että mahdollisten lopputulemien

jakaumia havainnollistavia kuvaajia.
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innus, Monte Carlo -menetelmä, visualisointi
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Chapter 1

Introduction

1.1 Background

In high-tech electronics industry, there has been recent development towards

shorter product life cycles and more volatile customer demands. In the highly

competitive market, demand can decrease dramatically within a short period

of time for instance when a competitor introduces a competitive product into

the market. On the other hand, if a product turns out to be more successful

than expected, catching the upside opportunities may be extremely difficult

as some of the components have very long lead times compared to the overall

product life cycle. Accurate planning can hence be said to have an important

role in the success of a company.

Great demand uncertainty has become well known to some companies. In

2001, Cisco wrote down $2.2 billion mostly in raw materials and components

due to weakened demand (Burrows 2003). In late 2011, Research In Motion

(RIM) wrote down $485 million as a result of worse than expected demand

for their PlayBook products (Research In Motion 2011). Some companies

have started adopting new tools and models to address the fact that demand

is uncertain. This happens typically through incorporating uncertainty into

sales and operations planning (S&OP) by presenting demand uncertainty

using different demand scenarios, e.g. pessimistic, most likely, and optimistic
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(Sodhi and Tang 2010). If certain demand distribution is assumed and supply

chain related cost and revenue parameters defined, planning can be supported

by solving an expected profit maximization problem where excess inventory

buildup and unmet demand yield penalties.

For a manufacturing company that designs products and purchases mate-

rials for assembly, customer demand uncertainty is a big concern because it

is very likely to carry risk related to excess inventory and unmet demand. An

end product requires all components in its bill-of-material to be present at

the time of assembly or otherwise the product can’t be assembled. Lacking

one component may thus lead to both unmet demand for the end product

and excess inventory for other components already ordered and allocated to

the production. On the other hand, overstocking can lead into carrying ex-

cess inventory all the time consuming the profits. At the end of the product

life cycle, there is also the risk of having obsolete inventory which can’t be

used for anything and thus must be scrapped.

“The [procurement] department of a company is responsible for obtaining

the materials, supplies, and services needed to produce a product or provide

a service.” (Stevenson 2009) Purchasing price is one of procurement depart-

ments’ main concerns. It is in most cases the biggest cost element when total

procurement cost is broken down. Purchased parts typically represent 40 to

60 per cent of an end product’s value (Ballou 2004). Especially for companies

in high technology industry, material cost can represent a high share of over-

all cost of goods sold. Through the leverage effect of purchasing, it is easy to

justify such focus – a percentage-wise small decrease in the purchasing cost

can lead into a considerable increase in profit margin (Wisner 2011). How-

ever, many companies have realized that lowest purchasing price does not

always mean lowest total cost. It may be useful to consider total landed cost

which not only considers the purchasing price but also the transportation

cost, warehousing costs, etc. (Erhun and Tayur 2003). The modelling can

be taken even further with methods such as total cost of ownership which

also includes quality, technology, and support related costs into the model
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(Ellram 1995).

Purchasing price is typically agreed as a part of the supply contract which

states the terms of business between two contracting parties. The supply

contract also defines other conditions than the purchasing price. In order to

reduce the risk caused by downstream demand uncertainty, the two parties

can e.g. agree that a certain minimum quantity is purchased. In return, the

supplier may give a discount on the purchasing price compensating the man-

ufacturer for bearing more risk. This kind of a contract is called a quantity

commitment contract.

The decision to enter a quantity commitment contract is made before the

realized demand can be observed. The buyer has a forecast of the future

demand and can assess the financial sensibility of the commitment based

on it. However, if the forecast does not explicitly take into account the

uncertainty related to the demand, the buyer may make a commitment which

in the light of the most recent forecast may seem beneficial but is actually

expected to yield a worse result than an alternative lower-risk contract due

to uncertain demand. This is further made worse by the fact that both

undercommitting and overcommitting will lead into additional cost.

1.2 Objectives

The objective of this thesis is to develop a framework for a buyer for assess-

ing different supply contracts’ financial sensibility under uncertain demand.

This includes both quantifying and visualizing the impact of demand uncer-

tainty in an otherwise deterministic procurement problem. Different ways of

modelling the demand uncertainty are reviewed as well as different kinds of

supply contracts that are commonly used.

The method is applied into a real-life scenario using a method based on

the Martingale Method of Forecast Evolution to generate different demand

scenarios. Two supply contracts, a price only and a quantity commitment

contract, are studied by modelling the cost incurred in both using determin-
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istic cost functions that take demand scenarios as an input. The decision

whether to enter the commitment contract is a single-stage decision. Monte

Carlo simulation is used to create the scenarios, calculate costs, and aggre-

gate results.

1.3 Structure

Chapter 2 reviews the literature on demand uncertainty, supply contracting,

and procurement cost modelling. Related mathematical models are also ex-

amined. The model used in the thesis is presented in chapter 3 together with

the mathematical model and methods. Chapter 4 contains the results of the

analysis. Summary and conclusions are in chapter 5.



Chapter 2

Literature review

2.1 Demand uncertainty

Demand uncertainty is one of the forms of uncertainty that any company

faces continuously. Customers either do not order or are able to cancel their

preliminary (soft) orders until very late in the demand fulfillment process.

Demand uncertainty causes problems for the operations trying to make de-

mand and supply meet. In industries where products are standard and have

a steady demand, finished goods can be produced to stock (make-to-stock) to

provide buffer against demand fluctuations. At the other end of the spectrum,

in industries where products are highly customized for customers and thus

have a higher demand volatility, products cannot be made to stock because

capital may be tied in finished goods for a long time. In this situation, prod-

ucts are typically made to order. When operating in make-to-order mode,

the manufacturer often needs to plan production capacity prior to learning

the realized demand. The manufacturer may keep some flexibility in the

production capacity and have inventories of raw materials and semi-finished

goods in order to be prepared for demand fluctuations. However, unused ca-

pacity and excessive safety stocks incur cost that suppy chain management

aims at minimizing.

Uncertain demand is especially difficult for products with a short life

5
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cycle. When the life cycle is short, there is increasing pressure to fulfill all

demand without having inventory left at the end of the life cycle. For example

in fashion industry, markdowns can be used to increase demand at the end

of the selling season at the cost of profit. In the worst case, the manufacturer

or retailar may be left with obsolete goods which have to be scrapped at a

further cost. End-of-life management deals with consuming inventories so

that no obsolete stock is left. With short life cycle products, the problem is

that a decrease in demand can lead to such a sudden end-of-life that only

managing the supply chain reactively is not sufficient to avoid accumulating

obsolete stock.

A retail environment facing a similar problem has lent its name to this

type of a problem in supply chain management literature. The newsvendor

problem is motivated by a newsvendor who needs to order a certain amount

of newspapers prior to the selling season. In case of a daily newspaper, the

selling season is assumed to be one day as the availability of the next day’s

newspaper and news would obsolete its value. Running into a stockout and

failing to meet the demand means that the newsvendor has lost profit. In

addition to the basic dynamics, lots of extensions have been formulated in

the newsvendor framework making the literature in this area vast and diverse

(see e.g. Porteus 1990).

Demand uncertainty can be modelled in many ways. Typically, an as-

sumption on the distribution is made and the parameters of that distribu-

tion are estimated from data. Normal distribution due to its ease is used

commonly. Granularity of demand representation varies between different

models. In some analyses, demand for a product may be considered as the

lifetime demand and little attention is paid on how the demand is distributed

within the lifetime. Operationally and tactically, it is crucial to understand

when the demand will realize, i.e. whether majority of the demand occur at

the beginning of or whether it is stable over the whole lifetime. With both

objectives, it is also relevant to define what the time horizon in question is.

The planning horizon is typically finite in a real-life setting but in an ideal
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situation an infinite horizon may also be considered. A rolling horizon is also

a common type of a horizon used in real life. At the beginning of period

1, rolling horizon of t periods considers periods [1, t]. Decisions are made

for first period and after observing the outcome, horizon and the problem is

revised for periods [2, t+ 1] with the new information from period 1. Chand

et al. (2002) have compiled a literary review of different horizons’ use in

different problems in operations management literature.

Different ways of modelling demand and related uncertainty include the

use of time series, assuming stationary demand, assuming a forecast up-

date model, using probabilities to model a soft order turning into a hard

one in forecast sharing setting, or creating scenarios. A common way to con-

sider stochastic demand is to assume independent and identically distributed

demand like the (truncated) normal distributions in Bassok and Anupindi

(1997). Hausman (1969) studied real life forecast updates and concluded

that in many of them the ratio of successive forecasts conformed to the log-

normal distribution. Graves et al. (1986) follows a similar setup but with the

absolute forecast update being the random variable. The individual forecast

updates for different months were assumed independent. Heath and Jackson

(1994) present the model as Martingale Model of Forecast Evolution (MMFE)

considering both the additive and multplicative models with lognormal dis-

tribution. In this model, forecast update rounds were assumed independent

but interdependence was allowed within a single update. Kaminsky’s (2004)

model is based on updating a band that narrows down over time to a more ac-

curate demand forecast. The model assumes that the level of realized demand

exists within the band. Contrary to this assumption, Cattani and Hausman

(2000) argue that forecasts do not always improve over time. Terwiesch et al.

(2005) uses a logit model to model probablities of soft orders turning into

firm orders in a forecast sharing setting. Sodhi (2005) uses a binary tree built

on an autoregressive time series model of the first order, AR(1), to create

demand scenarios. The binary tree includes 2T scenarios where T is the num-

ber of time periods in the time horizon. Nagali et al. (2008) mention that
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Hewlett-Packard use regression analysis of historical forecasts and shipments

to model demand uncertainty. Gaur et al. (2007) empirically show that

the dispersion among experts’ forecasts provides a good measure for demand

volatility. They obtained the result by studying the standard deviation of

forecast error so this only suggests that experts’ forecasts can be used to un-

derstand the magnitude of uncertainty while they don’t necessarily improve

forecast accuracy or impact the underlying process.

Companies can manage demand uncertainty with different approaches.

Gupta and Maranas (2003) distinguish between a shaper and an adopter

strategy. In the former, the company attempts to change the distribution of

the uncertain demand and thus minimize the downside risk while retaining

the upside potential. In the adopter strategy, the company tries to control the

risk exposure rather than influence the demand. Literature is skewed towards

the adopter strategy side. Fisher and Raman (1996) describes a method of

using early sales data to enhance the accuracy of demand forecast in fashion

industry. Wu et al. (2006) study leading indicators in semiconductor industry

in order to gain more accurate forecasts. Nagali et al. (2008) report that

Hewlett-Packard use a portfolio of contracts with their suppliers to hedge

against demand fluctuations.

Supply chain risk management deals with an array of interrelated risks.

Uncertain customer demand is only one of these risks. Tang (2006) provides

a good review of supply chain risks. Other procurement related risks include

uncertainty in cost, yield, lead times, capacity, liquidity, and exchange rates

among others.

2.2 Supply contracting

Supply contracts are made to define the rules governing the business rela-

tionship between a buyer and a supplier. Anupindi and Bassok (1999) state

that supply contracts should capture three types of flows: material, infor-

mation, and financial. Each of these have different parameters that further
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describe the agreement between the buyer and the supplier. As Tsay et al.

(1999) point out, the purpose of a supply contract is also to have the two

parties share the risk related to different uncertainties of a supply chain. By

agreeing on the quantity to be supplied and the price paid for it, the buyer

may mitigate a risk related to price fluctuations and uncertain capacity. On

the other hand, the supplier is guaranteed capacity utilization and a selling

price.

Much of operations research on supply contracting is focused on finding

a contract that allows supply chain (or channel) coordination. Supply chain

coordination means that either a party or the contractual form and param-

eters incentivise the parties to act in a way that is optimal for the whole

supply chain. A typical cause of inefficiency in a supply chain is asymmet-

ric information e.g. in the form of buyer’s private information about her

demand. A coordinating contract might be one that e.g. disincentivizes in-

flating shared forecasts beyond likely figures in order to make the supplier

build more capacity that could be later used to catch unforeseen upsides.

Supply contracts take various forms stating how the risk and revenue are

shared between the buyer and the supplier. Some of the most common types

of supply contracts are presented below.

The most simple form of a supply contract is a price only or

fixed price contract. The buyer and supplier agree on a whole-

sale price. Once the transaction is completed, the buyer owns the

material but is not further obliged to anything. (Lariviere 1999)

Fixed price with incentives is an extension for the fixed price

contract that rewards the supplier for work that exceeds the

agreed standard. It guarantees the supplier a minimum price

but also incentivizes her to strive for exceptional performance.

(Van Weele 2009)

In a cost-plus contract, the buyer pays the supplier her cost

plus a percentage guaranteeing a profit to the supplier. This is
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effectively risk-free for the supplier while the buyer carries more

risk than in a fixed price contract. (Van Weele 2009)

In a quantity discount contract, the supplier offers the buyer

a lower per unit purchase price for purchasing more units. The

quantity discount can be an all-units or an incremental quan-

tity discount. In the former, the price of all purchased units

is reduced when a certain quantity threshold is reached. In the

latter, the discount is only applied to the units exceeding the

threshold. (Burnetas, Gilbert, and Smith 2007)

A buy back contract is a two-stage system. In the first stage,

the buyer purchases the material from the supplier at a wholesale

price. If she is left with excess inventory after she has satisfied all

her demand, the supplier buys back the excess stock at a reduced

price. (Lariviere 1999)

The buyer in a revenue sharing contract purchases at a whole-

sale price but also awards the supplier a percentage of her revenue.

(Cachon 2003)

Total minimum quantity commitment contract refers to a

contract in which the buyer commits to purchase a certain mini-

mum quantity during a fixed period of time. Usually the supplier

offers a price discount for such commitment and is able to do so

because her risk is reduced due to the commitment. If there is a

possibility to purchase more than the initial commitment quan-

tity, the contract is called total minimum quantity commit-

ment with flexibility. The flexibility beyond the commitment

quantity may be available only at a premium. (Anupindi and

Bassok 1999)

Total minimum dollar volume commitment is typically used

if the commitment is made for multiple products. Also in this

case, the supplier offers a price discount in return but the com-
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mitment may change within the products included in the contract

terms as long as their combined dollar value equals at least the

agreed amount. (Anupindi and Bassok 1999)

Periodical commitments take many forms. E.g. a rolling hori-

zon flexibility contract has the buyer committing to certain

periodical quantities at the beginning of the horizon. The com-

mitment is then revised periodically within certain limits of flex-

ibility for the future periods. Another form is periodical com-

mitment with options. Similar to the rolling horizon flexibility

contract, initial commitments are made but the buyer also pur-

chases options that she can later decide to exercise. (Anupindi

and Bassok 1999)

Forecast sharing is closely related to supply contracting. Forecast sharing

means that the buyer shares her forecast for the forecasting horizon with the

supplier. This information will help the supplier plan her production and

make decisions on capacity investments. Typically, the shared forecast is

not a binding commitment to purchase. It is known that the buyer has an

incentive to inflate the forecast she communicates to the supplier in order to

get the supplier to build more capacity for her, thus reducing risk related to

not having enough capacity (Cachon and Lariviere 2001). However, knowing

this the supplier will not build enough capacity. In a long-term relationship,

there may be an incentive to share the forecast truthfully (Ren, Cohen, Ho,

and Terwiesch 2010).

In addition to contracting, many studies include an alternative source for

goods, the spot market. The spot market is open market available to all buy-

ers where prices and availability are defined by the market dynamics. Hence,

there is considerable uncertainty in both price and supply. The spot market

only exists for commodity goods such as electricity, or standardized elec-

tronic components like memory chips. Nevertheless, it may be a prominent

part of the purchasing strategy especially if the prices have high volatility

because it requires no commitments and purchases can be made at any time
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provided that there is supply. Mart́ınez-de Albéniz and Simchi-Levi (2005)

have included the spot market into their supply model.

2.3 Procurement cost modelling

Procurement cost modelling is a topic that all relevant research has to take

a stand on. Depending on the focus of the research, different elements of

the overall supply chain cost may be included. It is often the case that

procurement cost is modelled as a part of a company’s profit maximization

problem. In the simplest form, one can only take into account the purchasing

cost that the buyer has to pay in return for the goods it purchases. However,

this is a very narrow view of the cost. Waters (2003) lists reorder cost,

holding cost and shortage cost as other cost elements to consider. Reorder

cost refers to the cost related to ordering, following up on the order, physically

receiving and inspecting the goods. Holding cost consists of the cost of

capital tied in the stock, storage cost, stock loss and obsolescence, handling,

administration and insurance. Holding cost is estimated to be approximately

25% of the value of the held item annually. Shortage cost is considered when

there is a stockout that prevents from satisfying customer demand. It may

come in the form of re-scheduling, paying a premium for rushed deliveries,

or using more expensive suppliers. All of these cost items may be seen as

procurement-related costs if the supply contract is such that it may incur

holding or shortage cost. In addition to these, salvage value is also used in

some models. It is the value that the item has e.g. on the after-market when

the manufacturer no longer has use for it. It can also be negative e.g. in

case the left-over stock can’t be sold and has to be scrapped at additional

cost. Another type of cost is what Callioni et al. (2005) call component

devaluation cost. Especially in high-tech industries where product life cycles

are short, the introduction of replacing technology may result in dramatic

drops in the prices of the replaced technology. In their example, a central

processing unit (CPU) experienced up to 40% price reduction during its
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nine-month life cycle.

Different models include different cost elements into the cost function that

is typically the objective function for the optimization problem. Bassok and

Anupindi (1997) only consider purchasing price, holding and storage cost.

Gupta and Maranas (2003) do not limit their problem to the procurement

cost so they also have some production related costs. Procurement related

are material unit cost and inventory holding costs as well as penalties for

safety stock violations and unmet demand. In most cases, the cost elements

included in the model are purchasing, holding, and penalty cost (Anupindi

and Bassok 1999; Bassok and Anupindi 2008; Cachon and Zipkin 1999; Chen

and Krass 2001). Penalty cost mainly refers to backlogging (backordering)

penalty. Backlogging of orders, i.e. whether customer orders that could

not be fulfilled will be carried over to the next period, is not present in all

models. If no backlogging is assumed, such orders can be interpreted as

automatically cancelled and will incur penalty cost. Other kinds of penalties

and their parameters, defined in the supply contract, are also subject to

research when supply chain coordination is sought after (Cachon and Zipkin

1999).

2.4 Mathematical methods

A variety of mathematical methods have been used in supply chain and pro-

curement related problems. Incorporating stochasticity into the model usu-

ally implies the use of stochastic programming if the problem is formulated

as an optimization problem.

Bassok and Anupindi (1997) use dynamic recursion to reduce a quan-

tity commitment problem to a standard newsvendor problem for which the

solution is well known. Further, they conduct a computational study as-

suming normal distribution. They run a sensitivity analysis by changing the

parameters of the model and solving the problem repeatedly.

Heath and Jackson (1994) model forecast evolution by fitting a MMFE
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model into forecast data. The multiplicative MMFE is based on an obser-

vation that in a forecast updating scheme, the ratios of successive forecasts

follow a lognormal distribution. Successive forecasts of a certain demand in

the future are assumed to form a martingale process, i.e. the expected value

of each updated forecast is the same as the previous one. Using past data,

the variance-covariance matrix is estimated. The setting is a multi-product

multi-period setting where demand is assumed neither stationary nor inde-

pendently distributed but dependencies are allowed e.g. between different

products’ forecasts. Using the variance-covariance matrix and initial state

vector (matrix), future forecasts can be generated. Heath and Jackson used

the methodology in a safety stock optimization problem but the linear pro-

gramming model is a separate component of the overall simulation model so

MMFE as a method may also be used in a different setting.

Hausman and Peterson (1972) also make the assumption of lognormally

distributed ratios of successive forecasts. Their problem is minimizing the

costs due to overproduction and underproduction. They formulate a dynamic

program but in the absence of an analytical solution defer to studying the

performance of heuristic strategies.

Chen and Krass (2001) study an optimal commitment quantity. They

analytically define the strategy in their setting, but note that with additional

cost elements, the problem would be a lot harder to solve. They also present

a numerical example in which they do not use optimization methods.

Supply chain models often experience a problem emerging from the com-

plexity of the model combined with potentially multiple sources of uncer-

tainty. Hence the analytical solutions are difficult, or even impossible, to

obtain (Shapiro 2001). In these cases, simulation is an option that can be

considered. While a simulation does not yield the optimal solution in ana-

lytical form, it can still provide valuable information and in some cases be

the only way to optimize. It is also usually easy to create a simulation model

and to modify it according to the specific scenario, e.g. the supply contract

in question. Out of the stochastic simulation methods, Monte Carlo method



CHAPTER 2. LITERATURE REVIEW 15

is probably best known. Wu and Olson (2008) use Monte Carlo simulation in

their optimization problem of multi-objective supplier selection. First, 600

scenarios are created using the distributions assumed for the random vari-

ables, then the optimization algorithm is run for all of them and at the end,

the results are aggregated. Van Landeghem and Vanmaele (2002) also use

Monte Carlo simulation in supply chain context. The problem is a multi-

echelon inventory problem but as they note, the tactical-level supply chain

modelling easily becomes very complex and analytical solutions may be very

impractical to obtain.



Chapter 3

Modelling the problem and data

3.1 Supply chain

The supply chain used in the procurement cost modelling problem of this

thesis is made up of two or three parties: a manufacturer and one or two

suppliers. The manufacturer purchases components from the suppliers and

assembles them into products that it subsequently sells to its customers. The

products are high-tech products with a relatively short life cycle. Due to the

high level of customer-specific customization, the products are made to order.

The customer demand that the manufacturer faces is uncertain. A monthly-

level forecast for a rolling 12-month horizon is revised at the beginning of

each month by planning experts who use past data as well as quantitive and

qualitative information about the future demand to do so. At the end of the

month, the manufacturer learns the realized demand but has already fulfilled

all demand that she is able to. This means that the component inventory

held at the beginning of the month t, i(t), the quantity purchased during

month t, q(t), and realized demand during month t, d(t), must satisfy

i(t) + q(t) ≥ d(t)− U(t), (3.1)

where U(t) denotes the unmet demand during period t. As it is assumed

that left-over inventory is carried to the next period and demand is not

16
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backlogged, the conditions can be written as

i(t+ 1) = max
{
i(t) + q(t)− d(t), 0

}
(3.2)

U(t) = max
{
d(t)− i(t)− q(t), 0

}
. (3.3)

When the end of the last month where d(t) > 0 is reached, the product life

cycle has ended from production point-of-view. The salvaged inventory s(t)

is thus defined as

s(t) = i(t),when d(t) = 0. (3.4)

It can be assumed that d(t) = 0 implies d(T ) = 0∀T > t. This means that the

manufacturer does not need to carry the obsolete inventory but can salvage

it immediately after the production has ended. However, it is assumed that

the inventory can’t be salvaged until d(t) = 0 even if the cumulative demand

forecast does not exceed current inventory when d(t) > 0.

The manufacturer and both suppliers, A and B, are fully flexible and

have unlimited capacity. However, the suppliers do have a higher cost level

due to having such flexibility. If the manufacturer can commit to a certain

quantity, the suppliers can reduce their cost level by selling the extra capacity

to other customers or by optimizing their production scheduling. As a result,

the capacity will be constrained as defined in the supply contract. The

components that the manufacturer buys from these suppliers are custom-

designed and cannot be manufactured by other companies so it is fair to

assume that a spot market does not exist. An annual devaluation of 10% is

assumed.

There are no information or material flow lead times in the supply chain.

The focus is on tactical level decisions so also other operational concerns are

disregarded, such as lot-sizing, ordering, production scheduling, yield, etc.
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3.2 Model selection

As discussed in section 2.1, there are many ways of modelling uncertain

demand. Out of these methods, many, including e.g. Bassok and Anupindi

(1997), are not suitable because of the non-stationary nature of the demand.

The method of Heath and Jackson (1994) seems most appropriate. It can

be applied to a similar forecast updating model that the manufacturer uses.

It also allows for dependencies between different products’ demands. This is

a desirable property because the products can be seen as competing against

each other or reinforcing the demand of other products through the common

brand. Both positive and negative correlations are thus possible.

The goal of this thesis is to develop a framework and methods for assessing

supply contracts from the procurement point-of-view. Thus, the objective is

to find the contract parameters that minimize procurement related cost. In

many other applications in the same field, the objective is maximizing profit.

Procurement cost function is formulated based on the parameters and

form of the supply contracts in question. The cost function is deterministic

while the only stochastic element is demand.

The demand model and deterministic procurement cost function are con-

nected using Monte Carlo method of simulation. Thus, it is possible to use

a deterministic cost function without modeling it as a stochastic one. This

approach is also modular, which is advantageous from practical applications’

point-of-view. Either the demand scenario creation method or cost function

may be changed into a different one without having to change the other.

Such a scenario asset may also be used outside of the procurement context,

e.g. in factory capacity or logistics network simulations.
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3.3 Forecast updating and demand realiza-

tion

Forecast updating follows the method in Heath and Jackson (1994). First,

the log ratios are calculated

v(τ, n, t) = log
(
d(τ, n, t)

)
− log

(
d(τ − 1, n, t)

)
, (3.5)

where d(τ, n, t) refers to the forecast made at the beginning of month τ for

product n’s demand in month t. For τ > t, d refers to realized demand.

Further, the ratio of successive forecasts, R(τ, n, t) can be defined and the

updating formula for forecasts written as

R(τ, n, t) = ev(τ,n,t) (3.6)

d(τ, n, t) = R(τ, n, t)d(τ − 1, n, t). (3.7)

Next, an infinite vector v(τ) is constructed so that the first N components

contain v(τ, 1, τ), . . . , v(τ,N, τ), the next N are v(τ, 1, τ+1), . . . , v(τ,N, τ+1)

and so forth. The infinite vector v(τ) can be truncated at 12N components

as 12 is the length of the forecast horizon. The components of v(τ) are

assumed to be jointly normally distributed. However, v(τ) and v(σ), τ 6=
σ are independent and identically distributed with a mean of 0 based on

the martingale assumption. Now, the variance-covariance matrix Σ can be

estimated from the vectors v(τ − 1), . . . , v(τ − ω) of the past periods.

When updating the forecast for the first time, the number of months in

the forecast update vector will match the number of months in the initial

plan. However, on the next round, a plan will not exist for the 12th month.

In the dataset which is used to derive Σ and the initial plan, the last month’s

forecast has been made by the planning experts so it does exist. Heath and

Jackson did not include such method in their model and it is not done in

this thesis. This means that demand d(τ, n, t) = 0∀τ ≥ τ̄ + 13 where τ̄ is the

last available plan’s month.
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Also, in case the product’s life cycle ends before the end of the forecast

horizon, the zero-demands have to be removed as d(τ, n, t) = 0 would require

taking log 0 which isn’t defined. This is solved by replacing zero-demands

with d(τ, n, t) = 1 in the plans. When unmodified demand is greater than

zero, it is at minimum in the order of thousands so this modification will not

effectively change the total demand.

3.4 Supply contracts

3.4.1 Reference case: price only contract with forecast

sharing

The reference supply contract is the kind of contract that the manufacturer

uses by default. It is a price only contract, i.e., only the price, p(t), is agreed

between the manufacturer and the supplier. The prices are agreed for one

quarter at a time at the beginning of the quarter. The manufacturer shares

her forecast with the supplier and the supplier manages the inventory at a

location close to the manufacturer’s production facilities. The manufacturer

only purchases the materials against firm customer orders so she does not

carry inventory at any point apart from what is operationally necessary to

run the operations without line-downs. This stock can be disregarded as

insignificant for the total cost.

In this model, the supplier carries practically all of the risk. Hence, it

charges a higher unit price for the components, including a risk premium they

have seen reasonable. Supplier A offers a considerably lower price and in a

normal situation supplier B would only be used in case a disruption occured

that would prevent supplier A from supplying. Supplier B is nevertheless

able to offer low enough a price so that the product cost of the manufacturer

ensures her a profit.
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3.4.2 Alternative case: total quantity commitment with

flexibility

The alternative case that the manufacturer is assessing is a total quantity

commitment with flexibility. Supplier offers a contract where the manufac-

turer commits to purchase Q units during the next T months. In return,

the supplier offers a unit price that is discounted by d compared to the price

only contract. The scheduling in those periods is still fully flexible, but if the

cumulative purchases at the end of the T th month have not reached Q units,

the difference between the purchased amount and Q is purchased and car-

ried over to the next month as component inventory. When committing to Q

units, the supplier plans her own operations accordingly and sets a maximum

flexibility of K units that cannot be exceeded during the commitment period.

For purchases beyond Q units, the supplier charges an additional premium

pc. It is assumed that the manufacturer first uses this flexibility and only

after the full capacity is utilized, uses supplier B or must leave the demand

unmet. If Q+K does not enough fulfill the demand during the commitment

period, a penalty of pu is given for the extra units. This can either be viewed

as the penalty of unmet demand or the unit price from supplier B.

In this setting, the manufacturer assumes risk related to supply, excess

inventory, and cost. Supply-wise, the existence of supplier B means that

there is no stockout risk. On the other hand, if supplier B has to be used

extensively, there is a risk that the overall purchasing cost will exceed that

of the reference case.

3.5 Procurement cost function

In the reference case, the procurement cost CR is

CR(τ, n, t) = d(τ, n, t)p(t), (3.8)

where p(t) is the price agreed between the manufacturer and the supplier or

the manufacturer’s estimate of what the price will be.
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In the alternative case, the cost function is formed of five different cost

elements. Assuming that such contract has been made, for the whole contract

the cost, CA, is

CA = Cc + Cp + Cu + Ch + Cs, (3.9)

where Cc is the purchasing cost for the quantity commitment, Cp is the cost

for the overage that can be purchased from supplier A, Cu is the penalty for

unmet demand, Ch is the inventory holding cost, and Cs the salvage cost. Cu

may also be interpreted as the cost of purchasing from supplier B. Broken

further, Cc is simply

Cc = (1− d)p(τ̄)Q, (3.10)

where τ̄ is the first month of the commitment period, i.e. the quantity

discount for the whole commitment period is assumed to be given relative to

the first month’s price.

For simplicity, the realized demand during the commitment period is

D =
∑
n∈P

T∑
j=1

d(τ̄ + j, n, τ̄ + j − 1), (3.11)

where P denotes the list of products which contain the component in ques-

tion. The demand forecast at the beginning of the commitment period is

D′ =
∑
n∈P

T∑
j=1

d(τ̄ , n, τ̄ + j − 1). (3.12)

Price premium purchases Cp are

Cp = (1 + pc)(1− d)p(τ̄) min

{
max

{
D −Q, 0

}
, K

}
. (3.13)

Components will be purchased at the discounted price until the commitment

level Q is reached. Then, up to the maximum capacity Q + K, components

will be purchased at the discounted price plus upward flexibility premium

pc. If the demand exceeds Q + K units during the commitment period,

the exceeding part will be considered unmet demand. The cost function for

unmet demand Cu is

Cu = pu max
{
D −K −Q, 0

}
, (3.14)
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where pu is the penalty paid for unmet demand. As noted in the model

description, this penalty can also be interpreted as the fixed unit cost of

buying the components from a second, fully flexible supplier B. In that case,

pu is considered low enough for the manufacturer to make a profit. A wide

range of values needs to be thus evaluated to conclude the feasibility of the

commitment contract in each case as the penalty for unmet demand can be

assumed to be considerably higher than the unit price from supplier B.

Inventory holding cost Ch can be written as

Ch =
ch
12

∞∑
j=0

(
ip(τ̄ + T + j) + ip(τ̄ + T + j + 1)

2
p(τ̄ + T + j)

)
, (3.15)

where ip(τ̄ + T + j) is the inventory projection made at τ̄ + T for the future

month τ̄ + T + j. Thus, it is assumed that the holding cost is paid for the

mean inventory during the month. The term ip is defined

ip(τ̄ + T ) = max
{
Q−D, 0

}
(3.16)

ip(τ̄ +T + j) = ip(τ̄ +T + j− 1)−
∑
n∈P

d(τ̄ +T, n, τ̄ +T + j− 1),where j ≥ 1.

(3.17)

If the purchased quantity exceeds the total left-to-go demand, salvaged

inventory cost Cs will be added as in

Cs = ps max

{
ip(τ̄ + T + j)−

∑
n∈P

∞∑
j=1

d(τ̄ + T, n, τ̄ + T + j − 1), 0

}
. (3.18)

The different costs incurred in the three scenarios D1,2,3 satisfy

D1 < Q < D2 < Q+K < D3 (3.19)

are presented in figure 3.1 and the quantities applicable for each cost element

are shown in table 3.1 using the earlier notation.
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Q

K

(1− d)p(τ̄)

(1− d)(1 + pc)p(τ̄)

pu

i(τ̄ + T )

D1

D2

D3

Figure 3.1: Figure showing the commitment Q, flexibility K, prices paid for

units purchased on the left, and three demand scenarios described in table

3.1 on the right.

Table 3.1: Quantities for the calculation of different cost elements in three

different demand scenarios.
Scenario D1 D2 D3

Commitment Q Q Q

Flexibility - D2 −Q K

Unmet demand - - D3 −K −Q
Holding Q−D1 depending on

demand after

commitment period

- -

Salvage Q−D1 depending on

demand after

commitment period

- -
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3.6 Monte Carlo method

Monte Carlo method is utilized as follows:

1. lMC random samples are generated using the initial states d(τ̄ , n, t) and

variance-covariance matrix Σ. 12 forecast update vectors are generated

for each scenario.

2. Forecast update vectors are applied sequentially following (3.7).

3. Deterministic procurement cost is calculated for the reference case using

(3.8) and for the alternative case using (3.9).

4. Results are aggregated.

3.7 Metrics

First, we note that because the procurement related costs can be compared

for different quantities, an adjustment has to be made to the reference case’s

cost function. If the manufacturer commits to a greater quantity than she

will consume during the commitment period, she will have some stock left

after the commitment period is over. Hence, she does not need to purchase as

many units after the commitment whereas in the reference case, this quantity

would be eventually (partially) purchased at a price that may be higher than

the alternative case’s discounted price plus the premium paid for utilizing the

flexibility. This is taken into account by adding a term into the cost function

(3.8) so that

CaR = CR +
∞∑
j=1

(
(ip(τ̄ + T + j)− ip(τ̄ + T + j − 1))p(t+ j)

)
. (3.20)

The profitability of the alternative case is presented by calculating the

mean savings compared to the reference case as a percentage. Savings S and

the mean savings S̄ are defined as

S = 1− CA
CaR

(3.21)
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S̄ =

∑lMC S

lMC

, (3.22)

where
∑lMC denotes the sum over the scenarios created using the Monte

Carlo method. In comparison, the savings generated in the deterministic

case where D = D′ are also calculated as a reference for the case in which

the latest demand forecast is taken for granted at the time of decision making.

When D = D′, setting q = 1 yields CA = Cc and further S = d.

In addition to calculating the mean savings, other metrics are also cal-

culated. Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are

typical risk metrics used to describe financial risk. VaR is the threshold

value that defines the level of return at the point where the cumulative dis-

tribution function of the returns equals a certain level, i.e. VaR is a quantile.

Levels typically used are 1%, 5% and 10%. VaR is a widely used risk metric

but has some undesirable properties from mathematical point-of-view such

as not being subadditive (Szegö 2002). CVaR is often used instead of VaR,

especially when the objective is to minimize the risk of loss. CVaR is de-

fined as the expected return for the cases that have a lower return than the

respective VaR. In the discrete case, these metrics are defined as a quantile

of the sample and the mean of the values below that quantile.

To facilitate the comparison of different scenarios, the commitment quan-

tity q is expressed as a percentage of the cumulative demand forecast for the

commitment period at the beginning of month τ̄

q =
Q

D′
. (3.23)

Because commitment quantity is the value that is easiest to adjust, the results

are mainly presented as a function of q. Maximum S∗ and the maximum

point q∗ with respect to S̄, i.e.

S∗ = max
{
S̄
}

(3.24)

q∗ = arg max
{
S̄
}

(3.25)

are defined as the expected savings at optimum and the respective commit-

ment quantity. In addition, the mean value S̄100 at q = 100% is calculated
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representing the expected savings if commitment quantity equals the demand

forecast for the commitment period. Also the intervals [ql, qu] where S̄ ≥ 0

are defined describing the commitment quantity interval that is expected to

yield savings compared to the reference case and the standard deviation of S,

σS, is calculated. For VaR and CVar, the results are presented as value pairs

of maximum points and maxima q∗VaR,VaR∗ and q∗CVaR,CVaR∗ respectively.

3.8 Data

The demand data used in this thesis consists of 1872 data points made up

from 9 forecast revisions of 12 months’ forecasts for 16 products. As described

in section 3.3, the realized demands are also included in the data. An example

of an evolving forecast horizon is presented in figure 3.2 where the graph is

divided into 21 individual plots for the 12-month horizon that is rolled over

9 times. Each block represents a month t and within the blocks, d(τ, n, t) is

plotted as a function of τ . For simplicity, τ = 1 refers to the initial forecast

in the dataset whereas τ̄ = 1 later on. This example represents an optimistic

demand forecast. As new forecasts are generated, in most cases the demand

is revised to a lower or equal level compared to the previous forecast.

3.9 Parameters

The parameters are set as follows: the decision point τ̄ is assumed to be

the point at which the quarterly price agreement takes place. Purchasing

cost p(τ̄) = 2 based on the offer from the supplier. Commitment discount

d, flexibility premium pc, and penalty cost for unmet demand pu are varied,

subject to the constraint (1 − d)p(τ̄) ≤ (1 − d)(1 + pc)p(τ̄) ≤ pu so that

the manufacturer’s strategy of purchasing at the flexibility price, rather than

choosing penalty for unmet demand, remains optimal. Other parameters

will also be given multiple values within q ∈ [0.1, 1.5], T ∈ {3, 6}. Capacity

flexibility in the commitment contract is defined as a percentage k so that
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Figure 3.2: An example of demand forecast evolution over monthly iterations.

K = kQ. The parameter k is also given different values. Finally, the set

of products included in the analysis, P , is given different values to simulate

scenarios where the same component is used across multiple products and

the demand for all those products can be pooled together.



Chapter 4

Results

The model was created using MATLAB. Creating 1000 demand scenarios

took on average 10 seconds on a modern laptop. Calculating costs for 1000

scenarios took on average 0.10 seconds. No special attention was paid on

optimization of computational performance in either the scenario creation or

cost calculation.

4.1 Demand scenario creation

Past forecasts and realized demands are put to (3.5) to estimate the variance-

covariance matrix Σ of the distribution. After deriving the matrix Σ, 1000

random forecast update vectors are generated by drawing a random sample

from a multivariate normal distribution N (0,Σ). A total of 12 update vec-

tors are applied to the initial plan sequentially until realized demands for τ̄

to τ̄ + 11 are available.

An example of the resulting set of demand scenarios is presented in figure

4.1. The frequency distributions of simulated demands are presented on

vertical axes which intersect the horizontal axis for the relevant month of

the distribution. To improve the readability of the chart, the bars are scaled

so that the one representing the highest frequency for a month equals the

distance of adjacent vertical axes in length.

29
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Figure 4.1: Demand distributions for each month using the default parame-

ters.

4.2 Cost savings

Using the default parameters p(τ) = 2, d = 0.10, ch = 0.25, pc = 0.3, pu =

3, ps = 0.4, T = 3, k = 0.2, P = {6}, the model yields results in figure 4.2

where the different metrics are plotted. The results for the default param-

eters are also included in tables 4.1 and 4.2 on the third row. As can be

seen from the results, the maximum occurs between q = 77% and q = 81%

depending on the metric. The mean savings are at greatest 3.0% with a 5.9%

standard deviation. q = 1 yields on average a 1.6-percent loss compared to

the reference case. Savings can be expected when q is between 69% and 95%.

The five metrics follow a similar curve with CVaR 5% as the lowest one, con-

stantly negative as the other VaR and CVaR curves. The deterministic curve
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reaches d as shown in chapter 3.7.
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Figure 4.2: Mean savings, deterministic savings, and VaR and CVaR at 5%

and 10% using the default parameters.

The distributions for cost savings can be presented in the same way as

demand distributions. In figure 4.3, the distributions are plotted at 10%

intervals on q-axis. This figure shows that for example when q = 1, there is a

wide spread of outcomes with similar probabilities. It also helps understand

the risk by visualizing the tail for q = 0.8 and q = 1. This complements the

VaR and CVaR metrics presented earlier.

A cost breakdown can also been made for CA and the different elements

of it. In figure 4.4, the cost breakdown for the default problem is presented.

The commitment cost increases linearly while the cost of unmet demand

decreases as the commitment moves to levels closer to the initial plan. In-

ventory carrying cost and salvage cost are barely visible with the default
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Figure 4.3: Savings distributions using the default parameters.

parameters. However, setting P = {16}, which represents a product that is

closer to the end of its life cycle, yields a similar cost breakdown but with a

greater likelyhood of carring excess inventory and ending up with inventory

to salvage, as shown in figure 4.5.

Tables 4.1 and 4.2 also contain results for different levels of d. As ex-

pected, higher discount makes the commitment contract more attractive for

the buyer. The optimal commitment level is higher for greater discount. The

same applies to all metrics studied while there is variation between the q∗ of

different metrics.

There are a number of other changes to the default parameters presented

in tables 4.1 and 4.2. Setting a longer commitment period T = 6 shifts

the optimal commitment quantity to 91%. The mean savings are lower and

standard deviation higher indicating that there’s a bigger risk of demand
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Figure 4.4: Cost breakdown for different cost elements using the default

parameters.

changes causing additional cost.

When increasing the level of flexibility available k the metrics quickly

saturate to certain values indicating that there are few extreme upside cases

in the data. On the other hand, the default penalty for unmet demand refers

to a case where the manufacturer may buy the components from another

supplier B if maximum capacity is used with supplier A discounting the

value of upside flexibility. Quantity commitment with no flexibility, k = 0,

shows that for default parameters, the commitment is expected to yield only

0.5% savings.

Changing the penalty for unmet demand pu to values that describe the

cost of lost sales changes the game for the manufacturer. Optimal values for

q increase as the penalty gets greater. Losing flexibility is expensive at the
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Figure 4.5: Cost breakdown for different cost elements for P = {16}.

higher end of the scale for pu and commitment, even though it still comes

with an option for a twenty-percent upside, is not expected to yield savings at

any commitment level. S for different levels of pu is plotted in Figure 4.6. As

the commitment quantity approaches levels where upsides are non-existent,

also the savings curves converge. However, for the greater values of pu, all of

this happens below the break-even line when keeping the rest of the default

parameters fixed.

Final variation of the default parameters is in the form of changing the

set of products included in the analysis, P . In the default case, P = {6}, and

further scenarios are created by adding products so that P2 = {6, 1}, P3 =

{6, 1, 2}, . . . , P16 = {1, . . . , 16}. It is notable that while the expected savings

are also higher than in the case of P = {6}, the standard deviation is lower

and VaR measures higher when more products are added. This indicates
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Figure 4.6: Mean savings at different levels of pu.

that by pooling the demand of all products together, the variations in the

demand of a single product do not affect the total savings as much.
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Table 4.1: Optima and optimal value; standard deviation for savings; q =

1 expected savings; range for expected savings for default parameters and

scenarios where one parameter had been changed. The change against default

parameters is in the first column.

Change q∗, S̄∗ σS∗ ¯S100 ql, qs

d = 0.02 80%, -5.2% 5.9% -10.6% -

d = 0.05 80%, -2.1% 5.9% -7.3% -

- 81%, 3.0% 5.9% -1.6% [69%, 95%]

d = 0.15 82%, 8.1% 6.0% 4.0% [61%, 112%]

d = 0.2 83%, 13.2% 5.9% 9.6% [56%, >150%]

T = 6 91%, 2.2% 7.9% 0.6% [79%, 101%]

k = 0 84%, 0.5% 6.3% -2.4% [80%, 90%]

k = 0.4 78%, 3.9% 5.0% -1.5% [64%, 95%]

k = 0.6 77%, 4.2% 4.4% -1.5% [60%, 95%]

k = 0.8 76%, 4.3% 4.2% -1.5% [58%, 95%]

k = 1 76%, 4.3% 4.1% -1.5% [57%, 95%]

pu = 2.5 78%, 3.9% 4.7% -1.6% [61%, 95%]

pu = 4 84%, 1.6% 7.8% -1.8% [77%, 94%]

pu = 5 87%, 0.6% 9.3% -2.0% [82%, 92%]

pu = 10 94%, -2.3% 14.2% -3.0% -

pu = 20 101%, -4.8% 18.4% -4.8% -

P = P2 64%, 4.5% 5.0% -10.2% [53%, 75%]

P = P3 54%, 5.9% 3.8% -10.6% [44%, 63%]

P = P4 52%, 5.4% 4.0% -9.7% [43%, 62%]

P = P5 54%, 5.0% 4.6% -9.3% [45%, 64%]

P = P6 57%, 5.5% 4.0% -9.6% [47%, 67%]

P = P7 56%, 5.9% 3.7% -9.4% [46%, 66%]

P = P8 59%, 6.6% 3.0% -10.9% [48%, 69%]

P = P9 57%, 6.5% 3.2% -10.9% [46%, 67%]

P = P10 57%, 6.3% 3.3% -11.2% [47%, 68%]

P = P11 58%, 6.3% 3.4% -11.4% [48%, 68%]

P = P12 58%, 6.6% 3.2% -11.5% [47%, 67%]

P = P13 58%, 6.5% 3.1% -12.0% [47%, 68%]

P = P14 66%, 6.4% 3.3% -13.4% [54%, 77%]

P = P15 67%, 6.7% 3.0% -13.7% [54%, 78%]

P = P16 67%, 6.7% 2.9% -13.3% [54%, 78%]
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Table 4.2: Optima and optimal values for VaR and CVar metrics at 5% and

10% levels. The change against default parameters is in the first column.

Change q∗VaR 5%,VaR 5%∗ q∗VaR 10%,VaR 10%∗ q∗CVaR 5%,CVaR 5%∗ q∗CVaR 10%,CVaR 10%∗

d = 0.02 73%, -16.5% 79%, -13.4% 74%, -19.2% 74%, -17.2%

d = 0.05 74%, -13.8% 79%, -10.8% 75%, -16.6% 75%, -14.6%

- 79%, -9.0% 81%, -6.1% 77%, -12.0% 79%, -9.9%

d = 0.15 81%, -4.0% 83%, -1.0% 83%, -7.2% 82%, -4.8%

d = 0.2 83%, 1.2% 84%, 4.2% 85%, -1.8% 84%, 0.4%

T = 6 84%, -11.2% 88%, -7.2% 82%, -15.8% 83%, -12.9%

k = 0 83%, -11.2% 85%, -8.4% 83%, -14.1% 83%, -11.9%

k = 0.4 73%, -6.6% 78%, -3.2% 74%, -9.8% 75%, -7.5%

k = 0.6 71%, -4.0% 76%, -0.3% 72%, -7.6% 72%, -5.0%

k = 0.8 70%, -1.8% 76%, -0.2% 70%, -5.3% 70%, -3.2%

k = 1 70%, -1.8% 76%, -0.2% 69%, -4.0% 69%, -2.7%

pu = 2.5 71%, -3.9% 77%, -1.9% 70%, -6.2% 71%, -4.7%

pu = 4 88%, -12.9% 87%, -9.8% 90%, -17.4% 88%, -14.5%

pu = 5 93%, -15.2% 87%, -11.7% 99%, -20.4% 93%, -17.5%

pu = 10 101%, -18.1% 98%, -14.5% 114%, -22.6% 113%, -19.8%

pu = 20 115%, -18.8% 106%, -14.9% 123%, -24.4% 120%, -21.1%

P = P2 61%, -5.5% 62%, -2.6% 61%, -8.5% 61%, -6.3%

P = P3 52%, -2.1% 53%, 0.8% 52%, -4.4% 52%, -2.5%

P = P4 51%, -2.4% 50%, -0.3% 51%, -5.4% 51%, -3.4%

P = P5 52%, -4.2% 54%, -1.9% 52%, -7.0% 52%, -5.1%

P = P6 56%, -2.8% 56%, -0.4% 56%, -5.5% 56%, -3.6%

P = P7 55%, -1.8% 55%, 0.5% 55%, -4.2% 55%, -2.4%

P = P8 60%, 0.2% 59%, 2.5% 58%, -2.4% 58%, -0.6%

P = P9 57%, 0.1% 57%, 2.2% 56%, -2.6% 56%, -0.7%

P = P10 58%, -0.4% 58%, 1.7% 57%, -3.2% 57%, -1.2%

P = P11 57%, -0.8% 58%, 1.5% 57%, -3.5% 57%, -1.6%

P = P12 56%, 0.2% 57%, 2.4% 57%, -2.5% 57%, -0.7%

P = P13 57%, 0.3% 58%, 2.2% 57%, -2.5% 57%, -0.6%

P = P14 65%, 0.5% 65%, 2.0% 64%, -2.6% 65%, -0.8%

P = P15 66%, 1.0% 67%, 2.8% 65%, -1.6% 66%, 0.1%

P = P16 65%, 1.3% 67%, 3.0% 65%, -1.4% 66%, 0.3%



Chapter 5

Summary

A model for describing uncertainty in customer demand and modeling pro-

curement cost related to two types of procurement contracts was presented in

this thesis. The model selection was motivated by a real-life scenario where a

manufacturer updates her demand forecasts monthly using a 12-month rolling

horizon and purchasing components using a price-only contract. The alter-

native contract evaluated was a total quantity commitment contract with

flexibility. Using a MMFE model for the demand data and a deterministic

cost model for procurement cost, the manufacturer’s procurement cost was

calculated and optimized. This provides the manufacturer with a tool for

assessing whether they should enter a quantity commitment contract with

the supplier or how they should try to affect the parameters of such contract

under negotiation, taking into account that the discount the supplier offers

for the commitment may be offset by other cost elements incurred by the

contract.

The methods presented in this thesis give the manufacturer visibility on

the expected savings depending on the parameters as well as shows how the

demand uncertainty affects the savings. It is good to remember that the risk

level increases with the commitment which is why also measures describing

the risk (VaR and CVaR) were studied. One approach that the manufacturer

could adopt is minimizing risk exposure rather than maximizing expected

38
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savings. In some cases, this can mean giving up expected savings, but that

may be justified for instance for a small company that cannot sustain a major

financial loss. It is also valuable for any decision maker to understand the

distribution of the outcome beyond the aggregated statistical indicators. Vi-

sualizing the distributions and making them available to the decision makers

by using modern business intelligence solutions can help contingency plan-

ning by explicitly reminding that demand uncertainty is not always a minor

inaccuracy of the forecast but extreme scenarios also exist.

What makes this approach more attractive for industry practitioners is

the modularity of the solution. Demand uncertainty is experienced by many

companies but their cost models may differ considerably. Hence, it is valuable

to change either model without having to re-create the whole model. The use

of the demand scenario asset is not only limited to the procurement context.

In parallel, the production planning department could validate that they

have enough capacity or necessary mitigation plans to support the demand

scenarios. Further, the model could for example consider demand uncertainty

in geographical dimension to support logistics network planning. In all of

these cases, Monte Carlo simulation is a useful method for optimizing because

it is easy to use and makes it easy to combine any models that are used for

demand uncertainty and the optimization.

Further research be conducted by studying the same situation from the

supplier’s point-of-view to understand whether the contracts that are attrac-

tive to the manufacturer are also attractive to the supplier, considering that

she also has suppliers facing the same uncertainty. The study could be ex-

tended to cover multiple tiers of upstream supply chain to understand how

different procurement contracts affect the cost of each tier. A commitment

contract downstream may actually help coordinate the supply chain to avoid

the bullwhip effect (see e.g. Lee, Padmanabhan, and Whang 1997). In this

thesis, the lead times were not modelled into the system because the focus

was purely on the manufacturer’s point-of-view, but the impact of those,

among with some of the other simplifications made, may be an interesting



CHAPTER 5. SUMMARY 40

topic for further research and worthy of study in a multi-tier supply chain

model as well.
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