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Abstract 
In this thesis we apply the robust principal component analysis methods ROBPCA and its 
modification for skewed data to two asymmetric and non-Gaussian data sets from the field of 
production engineering. The outliers are identified by their large deviation from the robust center 
of the data, and the subspace spanned by the robust principal components. Finally, we analyze the 
robust principal components to gain a better understanding of the sources of variation in the data. 
The quality of our models is assessed by visualization methods. 
 
As expected, the skew-adjusted algorithm proves to be more accurate in detecting the anomalous 
observations. The ROBPCA algorithm falsely identifies regular observations located in the tail area 
of skewed distributions as anomalies. We identify both univariate and multivariate outliers. The 
complete decomposition contribution (CDC) indices prove to be effective in describing the effect of 
each variable on the large deviation of the outliers. 
 
The findings in this thesis lay the groundwork for further analysis of the data. In the wider context 
of improving production processes, robust logistic regression methods could be used to determine 
whether the measurement phenomena responsible for the outlying observations have negative 
connotations. 
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Tiivistelmä
Tässä opinnäytetyössä sovelletaan kahta vakaata pääkomponenttianalyysimenetelmää kahteen epäsymmet-riseen ja ei-normaalisti jakautuneeseen havaintojoukkoon tuotantotekniikan alalta. Käytetyt menetelmätovat ROBPCA-menetelmä ja sen epäsymmetriselle havaintojoukolle kohdennettu muunnelma. Menetelmätperustuvat pääkomponenttianalyysin, missä havaintojoukon varianssi- ja kovarianssirakennetta pyritäänkuvaamaan laatimalla joukko keskenään korreloimattomia uusia muuttujia eli pääkomponentteja. Pääkom-ponentit ovat alkuperäisten muuttujien lineaarisia yhdistelmiä. Ensimmäinen pääkomponentti maksimoitälle projektoidun havaintojoukon varianssin ja minimoi jäännösvirheet havaintojen ja näiden projektioidenvälillä. Toinen pääkomponentti on kohtisuorassa ensimmäistä pääkomponenttia vastaan ja suunnataanjälleen siten, että tälle projektoidun havaintojoukon varianssi maksimoituu ja jäännösvirheet minimoituvat.Näin edetään, kunnes haluttu osuus alkuperäisen havaintojoukon varianssista on selitetty.
Koska klassinen pääkomponenttianalyysi perustuu oleellisesti pienimmän neliösumman menetelmään, onse herkkä poikkeaville havainnoille. Jo yksittäinen poikkeava havainto voi kasvattaa projektoidun havainto-joukon varianssin mielivaltaisen suureksi, mikä kallistaa ensimmäisen pääkomponentin virheellisesti poik-keavaa havaintoa kohti. Tällöin ensimmäisten pääkomponenttien perusteella ei voida enää tehdä johtopää-töksiä havaintojoukon enemmistön kovarianssirakenteesta. Ongelman ratkaisemiseksi on kehitetty vakaitapääkomponenttianalyysimenetelmiä, jotka luopuvat havaintojoukon normaalisuusoletuksesta ja kuvaavattämän enemmistön ominaisuuksia poikkeavista havainnoista huolimatta. Vakaat menetelmät perustuvatpääsääntöisesti joko vakaan kovarianssimatriisin ominaisarvohajotelmaan tai vakaan hajonnan estimaatinmaksimointiin. Työssä käytetyt menetelmät hyödyntävät kumpaakin keinoa.
Työssä pyritään tunnistamaan havaintojoukosta poikkeavat havainnot. Ideaalitilanteessa nämä sijaitsevatpoikkeuksellisen kaukana havaintojoukon vakaasta keskipisteestä sekä vakaiden pääkomponenttien virittä-mästä tasosta. Lopuksi havaintojoukon merkittävimmät vaihtelun lähteet pyritään tunnistamaan tarkaste-lemalla vakaita pääkomponentteja. Mallin laatua arvioidaan hyödyntäen kaaviota, jossa alkuperäiset muut-tujat ja mallin avulla laaditut rekonstruktiot esitetään päällekkäin.
Muunnettu menetelmä tunnistaa vieraat havainnot alkuperäistä ROBPCA-menetelmää tarkemmin, mikä on
odotettavissa. ROBPCA-menetelmä luokittelee virheellisesti epäsymmetrisen jakauman ”hännän” alueelle
sijoittuvat havainnot poikkeaviksi. Käytettyjen menetelmien tuottamat kaaviot mahdollistavat poikkeavienhavaintojen luokittelun pääkomponenttien virittämään tasoon nähden kohtisuoriin ja yhdensuuntaisiin
havaintoihin. Aineistossa havaitaan sekä yksi- että moniulotteisia poikkeavia havaintoja. Yksittäisen muut-
tujan vaikutuksesta havainnon poikkeavuuteen kertova CDC-indeksi moniulotteisen laadunvalvonnan alalta
osoittautuu tehokkaaksi menetelmäksi näiden kuvailuun.
Tämän opinnäytetyön tulokset viitoittavat aineiston jatkoanalyysin suunnan. Laajemmassa tuotannollisessa
kontekstissa voitaisiin selvittää, vaikuttavatko poikkeaviin havaintoihin johtavat ilmiöt negatiivisesti tuotan-
toprosessiin. Tähän voitaisiin soveltaa vakaita logistisia regressiomenetelmiä.
Avainsanat pääkomponenttianalyysi, moniulotteinen analyysi, vakaat menetelmät, poikkeavien havainto-
jen tunnistaminen, laadunvalvonta



iv

Contents
Abstract ii

Abstract (in Finnish) iii

Contents iv

1 Introduction 1

2 Theoretical background 2
2.1 Robust estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 The ROBPCA method . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2.1 Diagnostic plot . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Modified ROBPCA algorithm for skewed data . . . . . . . . . . . . . 4

3 Description of the data 6

4 Results and analysis 10
4.1 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Outlier maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Loadings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 PCA reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Summary and conclusions 20

References 22

Appendices

A Tables 24



1 Introduction

Principal component analysis (PCA) is a widely used technique in multivariate
statistics. It aims to explain the variance-covariance structure of data through a
set of new uncorrelated variables referred to as principal components (PCs). The
principal components are linear combinations of the original variables, which often
facilitate the interpretation of different sources of variance. PCA is often the first
step of the data analysis, followed by other multivariate techniques.

In the classical approach, the first principal component is the direction in which
the projected observations have the largest sample variance. The second component
is orthogonal to the first component and corresponds to the direction which again
maximizes the sample variance of the projected observations. Proceeding this way
produces all of the principal components, which together reproduce the total system
variability. However, much of this variability can often be accounted for by a small
number of components. Thus, principal component analysis is an effective tool
for data reduction. Though PCA is nominally a non-convex problem, it can be
solved using the Lagrange multiplier method. It follows that the components can
be computed as the eigenvectors of an estimate of the covariance matrix. As the
estimate, the classical PCA uses the sample covariance matrix.

Like many classical estimators, sample variance and the sample covariance matrix
are known to be sensitive to anomalous observations. That is to say, even a nominal
portion of outlying points may prevent the leading components of classical PCA
from correctly depicting the covariance structure of the data majority. Accordingly,
the model may not allow to detect the anomalous observations responsible for the
lack of fit and may even portray regular observations as outliers. These effects are
known as masking and swamping. As a consequence, robust PCA methods have
been developed to construct a subset of PCs unaffected by the outliers. The outliers
are then characterized by their large deviation from the subspace spanned by the
principal components. For a more extensive review on the topic, we refer to the
article by Rousseeuw and Hubert (2011).

This thesis focuses on a robust PCA method referred to as ROBPCA and its mod-
ification for skewed data. The methods are applied to a data set from the field of
production engineering. The results are analyzed using visualization methods as
well as techniques from the field of multivariate quality control.
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2 Theoretical background

2.1 Robust estimators

In statistics, estimators are rules for estimating quantities of interest based on a
sample of the data. Estimators are instrumental in describing the data structure,
and they often serve as the basis for higher level statistical methods. In many cases,
classical estimators rely on the fundamental assumption about the normal distribu-
tion of data errors. When the data is contaminated by outliers, i.e. observations
from different population than most of the data, the classical estimators no longer
perform well. Thus, robust estimators have been developed to perform under wider
conditions, such as the presence of outliers and non-Gaussian probability distribu-
tions.

The robustness of an estimator can be described using concepts of breakdown point
of an estimator and its influence function. The breakdown point of the estimators
refers to the proportion of outlying observations the estimator can withstand while
still yielding meaningful estimates. The breakdown point never exceeds 50%, since
with more than half of the data sampled from a contaminating distribution it is
impossible to draw reliable conclusions about the underlying distribution. For in-
stance, the mean estimator has the smallest possible breakdown point of 0%, since
replacing a single observation can render the estimate arbitrarily large, while the
median has the maximum breakdown point of 50%. The influence function in turn
aims to describe the influence of observations upon the estimator in respect of in-
finitesimal perturbations. The efficiency of an estimator on the other hand describes
the estimator’s performance on uncontaminated data in comparison to classical es-
timators. For example, the efficiency of the median for a large sample size is 64%
when compared to the mean estimator. For more information on robust estimators,
we refer to the review paper by Daszykowski et al. (2007).

2.2 The ROBPCA method

The ROBPCA (Hubert et al. 2005) is a method for robust principal component
analysis. It is resistant to outliers in the data and well suited for analysis of high-
dimensional data. The ROBPCA algorithm consists of three major steps and can
be described briefly as follows: Let Xn,p be the n × p input data matrix of n ob-
servations and p variables. First the data is restricted to the subspace spanned by
the n observations by singular value decomposition. The dimension of the resulting
subspace is at most n − 1 so this yields a dimensionality reduction without loss of
information.

In the next step, for each observation xi a measure of outlyingness (Donoho and
Gasko 1992; Stahel 1981) is computed. For this the data is projected onto many
univariate directions and standardized using robust univariate minimum covariance
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determinant (MCD) estimators of location and scale (Rousseeuw 1984). From the
resulting distances, the largest over all considered directions is the measure of outly-
ingness. Then a subset of h < n observations with the lowest outlyingness is selected
and the data is projected onto the subspace V0 spanned by the first k eigenvectors
of the corresponding covariance matrix. The choice of k can be made by examin-
ing a scree plot (Jolliffe 1986) of the eigenvalues, the relative magnitude of which
represent the variance explained, or by a robust PRESS algorithm (Hubert and En-
gelen 2007). To obtain an improved robust subspace V1, a subset of observations
xi whose orthogonal distance to the subspace V0 does not exceed a cutoff value
COD = (µ̂ + σ̂z.975)

3/2 is selected. The orthogonal distance is merely the Euclidean
distance between an observation and its projection in the subspace, and z.975 is the
97.5% quantile of the Gaussian distribution. Furthermore, the estimates µ̂ and σ̂
are obtained using the univariate MCD (Hubert et al. 2005). Respectively, V1 is
the subspace spanned by the k dominant eigenvectors of the covariance matrix of
the subset acquired.

Finally, a robust center µ̂ and covariance matrix Σ̂ of the projected data are com-
puted by applying the re-weighted MCD estimator (Rousseeuw and Van Driessen
1999). The robust principal components are the k eigenvectors of this covariance
matrix. The principal components span a k dimensional subspace in the origi-
nal space and can be arranged into a p × k matrix Pp,k with orthogonal columns.
This is referred to as a loading matrix. Centered and transformed observations
(Xn,p−1nµ̂

ᵀ)Pp,k, where 1n is the column vector with all n components equal to 1,
form a n× k matrix denoted by Tn,k and are referred to as component scores.

2.2.1 Diagnostic plot

In addition to calculating the robust loadings and component scores of the origi-
nal data, the ROBPCA algorithm produces a diagnostic plot or outlier map that
describes the outliers present in the data. In the context of PCA, the outliers can
be divided into three categories: good leverage points, orthogonal outliers and bad
leverage points. The good leverage points lie close to the PCA space but far from
the regular observations. The orthogonal outliers on the other hand have a large
orthogonal distance to the PCA space while their projection on the PCA space is
inlying. Finally, the bad leverage points possess qualities of both the good leverage
points and the orthogonal outliers such that they have a large orthogonal distance
to the PCA space and their projection on the PCA space is distant from most of
the projected data.

The outlier map plots the orthogonal distance, ODi, from each point to its projection
on the PCA space on the vertical axis. The orthogonal distance of each observation
is given by

ODi = ‖xi − µ̂−Pp,kt
ᵀ
i ‖ , (1)

where the p-variate column vector xi denotes the ith observation and tᵀi is the ith row
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of Tn,k. On the horizontal axis, the robust score distance, SDi, of each observation
is plotted. The robust score distance is defined as

SDi =

√√√√ k∑
j=1

t2ij
lj
, (2)

where tij are the robust component scores and lj the sorted eigenvalues of the robust
covariance matrix obtained in the final step of the algorithm. To distinguish the
outliers from the regular observations, lines presenting cutoff values COD, introduced
in Subsection 2.2, and CSD =

√
χ2
k,.975 (Hubert et al. 2005) are drawn.

2.3 Modified ROBPCA algorithm for skewed data

Although the ROBPCA method is an effective tool for analysis of data contaminated
by outliers, it assumes that the non-outlying data are approximately elliptically sym-
metric. When the distributions of the original variables are skewed, the algorithm
tends to flag non-outlying observations as outliers. This is explained by the en-
hanced effect the tail of a skewed distribution has on the principal components, as
its distance from the robust center can be large in relation to the range of the dis-
tribution. For this reason, skewed data could be preprocessed by a transform (for
instance Box–Cox transform) before applying the algorithm. On the downside, the
principal components of the transformed data might be difficult to interpret.

To eliminate the need for a transform, Hubert et al. (2009) introduced a modi-
fied ROBPCA algorithm specifically designed for skewed data. The algorithm is
composed of the same steps as the ROBPCA algorithm described except for three
modifications. First, Stahel–Donoho outlyingness in the second step of the algorithm
is replaced by a new measure, referred to as the adjusted outlyingness (Hubert et al.
2009). The adjusted outlyingness is a generalization of the Stahel-Donoho outlying-
ness, which accounts for the skewness using medcouple, a robust alternative to the
classical skewness coefficient (Brys et al. 2004). Medcouple, denoted by MC(Xi), has
a 25% breakdown point and a bounded influence function, which makes it attractive
skewness estimator for data contaminated by outliers. The adjusted outlyingess of
each point is plotted on the horizontal axis of the outlier map.

Secondly, the cutoff value COD in the second step of the algorithm is adjusted to
depend adaptively on the data itself rather than on quantiles of theoretical dis-
tributions. The cutoff value used is the largest ODi smaller than Q3({OD}) +
1.5e3MC({OD})IQR({OD}), where IQR = Q3 − Q1. If the medcouple of the or-
thogonal distances is negative, the cutoff value is the largest ODi smaller than
Q3({OD}) + 1.5IQR({OD}). The cutoff value CSD is derived in the same way.
The last modification concerns the third step of the algorithm: instead of applying
the re-weighted MCD estimator, the robust principal components are calculated us-
ing the mean and covariance matrix of the h observations for which the adjusted
outlyingness in the subspace V1 is the lowest. This is necessary, as the re-weighting
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step performed in the ROBPCA method is constructed under the assumption that
the regular observations are normally distributed (Hubert et al. 2005).

Both of the algorithms ROBPCA and modified ROBPCA algorithm for skewed data
are well implemented in R and MATLAB. The implementations used in this thesis
are a part of LIBRA: the MATLAB Library for Robust Analysis (Verboven and
Hubert 2010).
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3 Description of the data

In this thesis we inspect two separate production test data sets referred to as B
and E. The data set B is a 627 × 20 matrix that consists of 627 observations
of 20 variables, while the data set E is a 851 × 12 matrix that consists of 851
observations of 12 variables. The two data sets are the largest subsets (identified
by the measurement configuration) of a larger data set, which explains the naming
scheme used. The 12 variables in the data set E (variables 1-7, 9-11, 20 and 24)
represent the same properties as identically enumerated variables in the data set
B, but the measurement configuration differs between the data sets. Variables that
have been excluded from the production process are left out from the analysis, which
again justifies the unconventional naming scheme used.

Before further analysis, the variables are robustly centered and scaled. This is
achieved by first subtracting the column wise medians from the data. Each column
is then divided by its median absolute deviation (Andrews et al. 1972), which is a
robust estimator of scale with a breakdown value of 50% and the efficiency of 37%
that of the sample standard deviation. As a result, each standardized variable has a
median of 0 and unit median absolute deviation, which renders the data comparable.
From now on, B and E refer to the centered and scaled data sets. The robustly
standardized data are presented as a whole in Figure 1. The data are plotted as
a strip chart with jitter, where the univariate variables are plotted on the vertical
axis, and their values on the horizontal axis. A small random vertical displacement
is added to each observation to reduce the overlap. Furthermore, the observations
are made transparent to emphasize the point density.

Two distributions stand out the most from the rest of distributions displayed in
Figure 1 due to their distinct asymmetry. The first of them is the extremely long-
tailed variable 5 distribution. The range of the distribution appears to be a factor of
10 larger than the average range of the distributions displayed in the figure. However,
the tail of the distribution is light, as the median falls near the the distribution’s
peak, which appears black in the figure due to its high point density. The distribution
is significantly left skewed in both of the data sets B and E.

The second distinctively asymmetric distribution in Figure 1 is the variable 3 dis-
tribution. The distribution is bimodal, as it has a second peak. Since the median
falls just beside the left peak, its point density is significantly larger than that of the
right peak. If the peaks were equally dense, the median would fall on the antimode,
the least frequent value between the modes. Moreover, few observations seem to
attain variable 3 values below the major mode or values above the minor mode.
These remarks are valid for both of the data sets B and E.

Next we inspect the univariate distributions in greater detail by focusing on a region
of interest, which includes all the peaks visible in Figure 1. The data that lies within
the selected region of interest [−5, 20] is displayed in the figures 2 and 3. The interval
[−5, 20] contains 98.8% of the standardized observations in the data set B and 98.4%
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Figure 1: Jittered strip charts of the robustly standardized variables a) in the data
set B and b) in the data set E.

of the standardized observations in the data set E. To visualize both the shapes of
the distributions and the specific point locations, a combination of a density plot
and a strip chart with jitter was selected. As in Figure 1, the points in the figures 2
and 3 are added a vertical displacement and transparency to further emphasize the
point density. Unlike in a conventional density plot, the line is only displayed when
its height is 0.1% or more relative to highest point among the ridge lines. This is
done in order to highlight the possible differences in distribution tail lengths.

First we inspect the shape of the univariate distributions. The figures 2 and 3
confirm the previous observation about the bimodality of the variable 3 distribution.
As suspected, the figures show that there is a sudden drop in the point density near
the modes. The variable 7 distribution in the data set B, B7, has three distinct
modes, although there appears to be a fourth less significant mode between the
rightmost mode and the major mode. The E7 distribution differs from the variable
B7 distribution, as the modes appear closer together and the troughs between the
peaks in point density appear deeper. Furthermore, the strip chart below the density
ridge reveals a fourth, less significant, mode on the right tail area of the distribution.

The final distribution that seemingly has multiple modes is the variable 2 distribu-
tion in both of the data sets B and E. While the distribution appears symmetric, the
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Figure 2: Density plots of the robustly standardized variables in the data set B,
where the line is displayed when its height is 0.1% or more relative to the overall
maximum.

right peak is composed of values that correspond to exactly 0 in the unstandardized
distribution. In addition, no points fall within a fixed radius of the mode. Rest of
the variables are unimodal, although the variables 1, 5 and especially 11 appear dis-
crete in both of the data sets B and E. In addition, the variable B21 seems discrete.
The variables 3 and 5 seem the most asymmetric in both of the distributions, while
many other distributions show signs of asymmetry.
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Figure 3: Density plots of the robustly standardized variables in the data set E,
where the line is displayed when its height is 0.1% or more relative to the overall
maximum.



10

4 Results and analysis

4.1 Preliminary analysis

Preliminary data analysis consisted of examining the pairwise scatter plots, univari-
ate histograms and robust measures of correlation and skewness of the two data sets
B and E. As a robust measure of correlation, Spearman rank correlation ρS(Xi,Xj)
was used. The estimator is defined as the Pearson correlation coefficient between the
ranked variables (Myers and Well 2003) and it is appropriate for both continuous
and discrete ordinal variables (Lehman 2005), which suits the data at hand. The
preliminary analysis revealed high pairwise correlations among the variables, e.g.
ρS(E2,E3) = 0.98 and ρS(B15,B17) = 0.91, which suggests that PCA-based meth-
ods are appropriate for further analysis of the data variability. The full Spearman
rank correlation matrices are presented in the tables A1 and A2 in Appendix A.

As a measure of the shape and asymmetry of a distribution, medcouple was used.
Based on the preliminary analysis, some of the variables appear significantly skewed.
Some noteworthy medcouple values attained were MC(E3) = 0.926, MC(B3) =
0.946, MC(E5) = −0.714, MC(B5) = −0.826, MC(E7) = 0.31 and MC(B7) = 0.543.
The complete set of medcouples acquired is presented in the tables A3 and A4 in
Appendix A.

4.2 Outlier maps

Considering the findings of the preliminary analysis, both the ROBPCA method
using Stahel-Donoho outlyingness (ROBPCA-SD or R-SD) and the skew-adjusted
ROBPCA method using adjusted outlyingness (ROBPCA-AO or R-AO) were ap-
plied to the data sets B and E. As described in Subsection 2.2, after the initial
dimensionality reduction by SVD, a set of h observations is selected and their co-
variance matrix is calculated. Then, as suggested by Jolliffe (1986) we examine the
scree plot corresponding to the min(p, n−1) eigenvalues of the covariance matrix to
select the number of components to retain. Moreover, we consider selection criterion
(Hubert et al. 2005) to choose k for which

k∑
i=1

l̂i

/
r∑

j=1

l̂j ≈ 95%, (3)

where l̂i are the sorted eigenvalues and r is the rank of the covariance matrix calcu-
lated.

The scree plot for the ROBPCA-SD and the ROBPCA-AO methods performed on
the data set B are presented in Figure 4. The plots feature 95% reference lines
corresponding to the selection criterion 3 and only display the 8 largest eigenvalues.
As Figure 4a indicates, the selection criterion holds when the number of eigenvalues



11

chosen in the ROBPCA-SD algorithm reaches 7, while most of the variance is ex-
plained by the first eigenvector of the covariance matrix. Since the line presenting
the cumulative percentage of the variance explained is curved, the amount of vari-
ance explained by a single component added appears to diminish as k grows. As
for the skew-adjusted algorithm (Figure 4b), the selection criterion holds when the
number of eigenvalues chosen reaches 3, whereas most of the variance is explained
by the first two components. As less components now suffice the selection criterion,
the subset of the observations selected by the non skew-adjusted algorithm might
represent the data structure poorly. From the third component on, the amount of
variance explained appears to grow fairly linearly in relation to each component
added.

To judge whether to settle for the k that satisfies the selection criterion, we turn
to a rule of thumb suggested by Johnson and Wichern (2007). The rule states that
only the components which, individually, explain at least a proportion of 1/r, as in
Equation 3, of the total variance should be retained. However, they add that this
rule is supported by little theoretical evidence and should be applied cautiously. As
for the data at hand, the rule suggests that only two leading principal components
should be retained in each algorithm. The 1/r reference lines are presented in Figure
4. The k that suffices the ROBPCA-AO selection criterion exceeds this limit by 8%
in relation to the min(p, n − 1) and the k that suffices the ROBPCA-SD selection
criterion by 25%. As the first few components of the ROBPCA-SD algorithm might
by themselves lead to biased depiction of the data, we decide retain the number of
components yielded by the selection criterion in both of the algorithms. The scree
plots for both of the algorithms performed on the data set E appear very similar
to those of the data set B. Thus, by the same principle we retain 4 components
in the ROBPCA-SD algorithm and 3 components in the ROBPCA-AO algorithm
performed on the data set E.

Next the score distances and the orthogonal distances of the observations in the
data sets B and E are plotted as outlier maps. The outlier maps presenting the
outliers detected by ROBPCA algorithm using Stahel-Donoho outlyigness and the
modified ROBPCA algorithm using adjusted outlyingness are displayed in the figures
5 and 6. To highlight the differences in the results produced by the algorithms, we
label up to eight outliers in the outliers maps. The R-SD algorithm flagged 250
of the observations in the data set B as outliers (i.e. as good leverage points, bad
leverage points or orthogonal outliers), whereas the R-AO algorithm flagged only
three observations. Similarly, the R-SD algorithm flagged 385 of the observations
in the data set E as outliers, while the R-AO algorithm flagged 50 observations.
As the data are very skewed, the smaller number of observations flagged by the
skew-adjusted algorithm is closer to reality.

Figure 5 shows that the R-SD flagged the observations 355 and 499 in the data set
B as bad leverage points. The observation 312 appears as a borderline case between
the good and bad leverage points. R-AO on the other hand flagged the observations
355, 499 and 312 as orthogonal outliers. The rest of the observations flagged as
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Figure 4: Scree plots for the using Stahel-Donoho outlyingness (ROBPCA-SD) and
the modified ROBPCA method using adjusted outlyingness (ROBPCA-AO) per-
formed on the data set B with added 0.95 and 1/r reference lines.

outliers in the R-SD outlier map are converted into regular observations in R-AO
outlier map.
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Figure 5: Outlier maps of the data set B produced by the ROBPCA method us-
ing Stahel-Donoho outlyingness (ROBPCA-SD) and the skew-adjusted ROBPCA
method using adjusted outlyingness (ROBPCA-AO).

Very much alike the R-SD performed on the data set B, the R-SD applied to the
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data set E flagged significant portion of the outliers as bad leverage points. As seen
in Figure 6, some of the most extreme bad leverage points in the R-SD outlier map,
observations 288, 503, 602 and 831, are converted into good leverage points by the
R-AO. However, the majority of the observations flagged as bad leverage points by
the R-SD are diagnosed as regular observations by the R-AO. This supports the
statement in Subsection 2.3, which suggests that the tail of the skewed distribution
tilts the PCA space towards it and needs to be adjusted for in order to distinguish
the actual outliers. These include the observations 210, 212, 232 and 732 flagged
as a bad leverage points by the R-SD, which appear as orthogonal outliers in the
R-AO outlier map. From this point on, we no longer examine the results produced
by the R-SD method.
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Figure 6: Outlier maps of the data set E produced by the ROBPCA method using
Stahel-Donoho outlyingness (ROBPCA-SD) and the modified ROBPCA method
using adjusted outlyingness (ROBPCA-AO).

Next we examine the univariate and multivariate nature of the outliers flagged by the
ROBPCA-AO. For this, we color the outliers in the jittered strip chart introduced in
Section 3. To better distinguish the outliers, the regular observations are transparent
while the outliers are opaque. The results are depicted in Figure 7.

Figure 7a indicates that the observations flagged as outliers in the data set B, 312,
355 and 499, have atypical values for only singular variables. To be precise, the ob-
servation 312 attains an exceptionally small variable 7 value, while the observations
355 and 499 have exceptionally small variable 18 values. Thus, the observations are
univariate outliers.

Figure 7b shows the observations flagged as outliers in the data set E. The good
leverage points all lie in the remote tail area of the variable 5 distribution and attain
variable 3 values near the median the bimodal distribution. Although not visible
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in Figure 7b, many regular observations lie in the said tail area of the variable
5 distribution. However, those observations exclusively attain variable 3 values
larger than the variable 3 antimode, situated on the positive side of the median.
Furthermore, the good leverage points all have atypically small variable 4 values.
This can be explained by the strong correlation of ρS(E4,E5) = 0.85 between the
variable 4 distribution and the variable 5 distribution. These remarks suggest that
the good leverage points are multivariate outliers. Similarly, a majority of the
observations flagged as orthogonal outliers have atypically large variable 1 values
and smaller than typical variable 2 values. This is not unexpected, for the two
variables have a significant negative correlation of ρS(E1,E2) = −0.54.

To paint a clearer picture of how the variables contribute to each orthogonal outliers’
residuals from the PCA space, we consult the complete decomposition contribution
(CDC) indices (Alcala and Qin 2011). The CDC matrix for the squared prediction
error index (SPE index or the squared orthogonal distances OD2) is composed of
the squared elements of the residual subspace

X̃n,p = Xn,p(Ip,p −Pp,kP
ᵀ
p,k), (4)

where Ip,p is the p× p identity matrix. The CDC indices for the orthogonal outliers
in the data set E are presented in Table A5 in Appendix A. Indeed, the variables
1 and 2 attain CDC indices significantly larger than zero, which suggests that they
contribute to the squared orthogonal distances of the orthogonal outliers. In ad-
dition, variables 4, 6, 7, 9, 11, 20 and 24 greatly affect some of the distances. By
inspecting the rows of the CDC matrix, we see that most of the orthogonal outliers
appear bivariate or multivariate outliers. Nevertheless, some observations, such as
observation 212 with CDC1 = 67.6 and CDCi 6=1 ≤ 3.3, are univariate. To conclude,
the orthogonal outliers in the data set E consist of both multivariate and univari-
ate outliers, which suggests that the measurement phenomenon responsible for the
residuals varies between the observations.

4.3 Loadings

The principal components can be interpreted by inspecting the loading matrix Pp,k

introduced in Subsection 2.2. The components are linear combinations of the original
variables and the rows of the loading matrix depict the coefficients these variables
attain in the construction. Thus, the magnitude of the coefficients measure the
importance of the variables to the components with respect to the other variables.
Consequently, the elements of the loading matrix are proportional to the linear cor-
relation coefficients, ρ(Xi,Tj), between the original data variables Xi and each unit
scaled principal component Tj (Johnson and Wichern 2007). We denote the ele-
ments of the loading matrix Pp,k by pi,j. Then, the correlation coefficients ρ(Xi,Tj)
are given by

ρ(Xi,Tj) =
Cov(Xi,Tj)√

Var(Xi)
√

Var(Tj)
=
pi,j

√
λj

√
σi,i

, i = 1, 2, ..., p and j = 1, 2, ..., k, (5)
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Figure 7: Jittered strip charts of the robustly standardized variables a) in the data
set B and b) in the data set E, where the outliers flagged by ROBPCA-AO are
colored as in the figures 5 and 6, i.e., regular observations are blue, orthogonal
outliers are yellow, and good leverage points are gray.

where λj are the eigenvalues corresponding to the robust principal components Pj,
and σi,i are the diagonal elements of the robust covariance matrix Σ̂. Alternatively,
σi,i are the approximations of the Var(Xi) without the presence of outliers. The
ROBPCA-AO loading matrices for the data sets B and E are depicted in the tables
A6 and A7 in Appendix A and visualized as bar plots in the figures 8 and 9. The
figures 8 and 9 also depict the normalized eigenvalues corresponding to each com-
ponent. These can be interpreted as the explained portion of variability in the data
majority. It must be stated that these final robust eigenvalues differ from the eigen-
values used in selecting the number of components to be retained in the algorithms
(Figure 4). The corresponding linear correlation coefficients ρ(Xi,Tj) are depicted
in the tables A8 and A9.

The first component of data the set B explains 83.0% of the variability in the data
majority. Figure 8 shows that the component consists almost exclusively of the
variable 5. In fact, p5,1 = −1.00 = ρ(X5,T1) and the first component increases
with decreasing variable 5 value. Similarly, the second component, which explains
15.8% of the data majority variance, increases with only one of the values, decreasing
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Figure 8: Component loadings of the data set B produced by the ROBPCA-AO,
where the numbers in parentheses are the normalized eigenvalues corresponding to
each component.

variable 3 value (p3,2 = −0.99, ρ(X3,T2) = −1.00). The third and final component
retained in the construction of the robust PCA space for data set B explains 1.10%
of the variability in the data majority and is strongly impacted by the variable
7 (p7,3 = 0.60, ρ(X7,T3) = 1.00). In addition, the coefficients of the variables
10, 13, 15, 17 and 21 in the third component are larger than 0.2 in magnitude.
Furthermore, the correlation between the component and these variables is 0.99.
This suggests that while the component increases strongest with increasing variable
7 value, these six variables vary together. In fact, the majority of the variables are
strongly correlated with the third component, which may explain why the three
components could replace the original 20 variables with little loss of information.

The data set E loadings depicted in Figure 9 tell a similar story. The first component,
which explains 0.68% of the variability in the data majority, is strongly impacted
by the variable 5 (p5,1 = −0.98, ρ(X5,T1) = −0.99). The second component, which
constitutes 30.9% of the data majority variance, increases with decreasing variable
3 value (p3,2 = −0.97, ρ(X3,T2) = −0.96). The third component explains 1.10% of
the variability in the data majority. Since p1,3 = 0.45, p20,3 = 0.46 and p24,3 = −0.54,
it increases with variable 1 and variable 20 values, and the decreasing variable 24
value. The coefficients of the variables 2 and 11 in the third component are larger
than 0.2 in magnitude, which implies that the five variables vary together. As before,
the majority of the variables are strongly correlated with the third component.
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Figure 9: Component loadings of the data set E produced by the ROBPCA-AO,
where the numbers in parentheses are the normalized eigenvalues corresponding to
each component.

4.4 PCA reconstruction

Next we inspect the reconstruction matrix X̂n,p given by

X̂n,p = Tn,kP
ᵀ
p,k. (6)

If k = r, where r is the min(p, n − 1) such that all of the eigenvectors are used in
the reconstruction, Pp,kP

ᵀ
p,k is the identity matrix. This results in

X̂n,p = Tn,rP
ᵀ
p,r = (Xn,p − 1nµ̂

ᵀ)Pp,rP
ᵀ
p,r = Xn,p − 1nµ̂

ᵀ, (7)

which implies that the reconstruction is perfect. On the other hand, if k < r, the
rows of the loading matrix are no longer orthogonal. In general, X̂n,p refers to
the centered observations projected onto the space spanned by the first k robust
principal components in the original coordinate system.

The ROBPCA-AO outlier maps in the figures 5 and 6 show that the vast majority
of the orthogonal distances fall below the orthogonal cutoff value introduced in
Subsection 2.3. This suggests that few observations are inconsistent with the model
and the overall reconstruction error is sufficiently small. To compare the univariate
structure of the original data sets B and E with that of the reconstructed data sets
B̂ and Ê, the univariate distributions are plotted one on top of other in a density
plot introduced in Section 3. Before plotting, the reconstructed data B̂ and Ê are
robustly centered and scaled, as in Section 3, so that each variable has a median of
0 and unit median absolute deviation. The results are depicted in the figures 10 and
11.
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Figure 10: Density plots of the robustly standardized variables in the data set B,
where the line is displayed when its height is 0.1% or more relative to the overall
maximum.

Figure 10 shows that the the majority of the unimodal distributions in the data
set B are reconstructed fairly accurately. On the other hand, the originally uni-
modal variable 1 distribution is rendered bimodal in the reconstruction. Similarly,
the variable 11 reconstruction is more scattered than the original discrete distribu-
tion, and the tail of the variable 4 distribution is elongated. The bimodal variable
2 and variable 3 distributions are retained bimodal in the reconstruction matrix.
The variable 3 reconstruction is the more accurate of the two reconstructions; while
the reconstructed distribution is less scattered than the original distribution, the
shapes of the peaks are well maintained. On the contrary, the shape of the variable
2 distribution is altered such that the right peak gets significantly spread out. Fi-
nally, the originally multimodal variable 7 distribution is rendered unimodal in the
reconstruction. As seen in Figure 11, the same remarks hold true for the data set
E.
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Figure 11: Density plots of the robustly standardized variables in the data set E,
where the line is displayed when its height is 0.1% or more relative to the overall
maximum.
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5 Summary and conclusions

In this thesis we have applied the robust principal component analysis methods
ROBPCA (Hubert et al. 2005) and its modification for skewed data (Hubert et al.
2009) to two data sets from the field of production engineering. Our aim was to
detect the outlying observations in the data that were shown to be significantly
asymmetric and overall non-Gaussian. The outliers are identified by their large
deviation from the robust center of the data, and the subspace spanned by the
robust principal components. To evaluate each individual variable’s impact to this
deviation, a heuristic from the field of multivariate quality control is applied. The
outliers are inspected using visualization methods, including outlier maps. Finally,
we analyze the robust principal components to gain a better understanding of the
sources of variation in the data. The quality of our models is assessed by a specialized
density plot to further ensure the validity of the results.

Confirming the hypothesis, the skew-adjusted algorithm proved to be more accurate
in detecting the anomalous observations since it flagged 0.5% (B) and 5.9% (E)
of the data as outliers. In contrast, the ROBPCA algorithm flagged 39.8% (B)
and 45.2% (E) of the data as outliers, which suggests that the regular observations
located in the tail area of skewed distributions are mistaken as anomalies. The
skew-adjusted algorithm identified orthogonal outliers (observations with a large
orthogonal deviation from the PCA space with inlying projections) in both of the
data sets, and good leverage points (observations close to the PCA space but far
from the regular observations) in one of the data sets.

Analysis of the principal components revealed that two nearly uncorrelated variables
are responsible for over 90% of the variability (information) in the data. Conse-
quently, these variables contribute almost exclusively to the large deviation of the
good leverage points. We also identified two variables that frequently contribute
to the orthogonal outliers’ large orthogonal distances from the PCA space. How-
ever, no exhaustive proof of systematic behavior of the orthogonal outliers could be
presented.

The small portion of outlying observations suggests that the vast majority of the
data can be regarded as consistent with the model. Thus, the models preserve the
multivariate structure of the data well. Analysis of the PCA reconstructions re-
vealed that the characteristics of the univariate distributions (i.e. spread, symmetry
and modality) were mostly preserved, although the model neglected some discrete
and multimodal features of the data. The quality of the reconstructions can most
likely be attributed to the third principal components, which unlike the first two
components are strongly correlated with the majority of the variables in the data.
On the contrary, the components only explain 1.1% of the variability in the data
majority in both of the data sets.

The largest problem faced in the study concerned the number of principal com-
ponents to be selected in the algorithms. The scree plots and the selection criteria
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used are fairly rough approximations with no extensive theoretical evidence. A more
refined technique mentioned earlier in this thesis would be based on the predicted
residual error sum of squares (PRESS). Unfortunately, the MATLAB implementa-
tion of the skew-adjusted algorithm, a part of LIBRA: the MATLAB Library for
Robust Analysis (Verboven and Hubert 2010), did not include the option to apply
the robust PRESS algorithm (Hubert and Engelen 2007).

As mentioned in Section 1, PCA is often followed by other multivariate techniques.
The findings in this thesis lay the groundwork for further analysis of the data. The
multimodal nature and the underlying correlation structure of the data indicate a
presence of multiple populations. To sort the observations into homogenous groups,
cluster analysis methods, such as k-means algorithm, could be applied. In the wider
context of improving the production process, robust logistic regression methods
could be used to determine whether the measurement phenomena responsible for
the outlying observations have negative connotations.
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A Tables

Table A1: Spearman rank correlations of the data set E.
X1 X2 X3 X4 X5 X6 X7 X9 X10 X11 X20 X24

X1 1 -0.54 -0.54 0.04 0.03 0.05 0.07 -0.17 0.07 0.1 -0.04 -0.14
X2 -0.54 1 0.98 0.04 0.06 0.02 -0.06 0.01 0.06 0.03 0 -0.05
X3 -0.54 0.98 1 0.03 0.05 0.02 -0.07 0.03 0.04 0 0 -0.02
X4 0.04 0.04 0.03 1 0.85 0 0.06 -0.04 0.24 0.14 -0.03 -0.1
X5 0.03 0.06 0.05 0.85 1 -0.07 0.03 -0.02 0.22 0.13 -0.01 -0.08
X6 0.05 0.02 0.02 0 -0.07 1 -0.09 -0.12 -0.01 0.03 -0.03 -0.11
X7 0.07 -0.06 -0.07 0.06 0.03 -0.09 1 0.04 0.1 0.1 0.12 -0.04
X9 -0.17 0.01 0.03 -0.04 -0.02 -0.12 0.04 1 -0.05 -0.12 0.08 0.14
X10 0.07 0.06 0.04 0.24 0.22 -0.01 0.1 -0.05 1 0.3 0.01 -0.11
X11 0.1 0.03 0 0.14 0.13 0.03 0.1 -0.12 0.3 1 0.34 -0.56
X20 -0.04 0 0 -0.03 -0.01 -0.03 0.12 0.08 0.01 0.34 1 -0.32
X24 -0.14 -0.05 -0.02 -0.1 -0.08 -0.11 -0.04 0.14 -0.11 -0.56 -0.32 1
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Table A2: Spearman rank correlations of the data set B.
X1 X2 X3 X4 X5 X6 X7 X9 X10 X11 X13 X15 X16 X17 X18 X19 X20 X21 X22 X24

X1 1 -0.59 -0.59 0.14 0.13 -0.06 0.09 -0.14 0.08 0.13 0.13 0.11 -0.31 0.21 -0.19 -0.02 0.08 0.2 -0.08 -0.06
X2 -0.59 1 0.97 -0.03 -0.02 0.01 -0.03 0.02 0.05 0.01 0.04 0.03 -0.03 0.04 -0.05 0.03 0.04 0.08 0.01 -0.02
X3 -0.59 0.97 1 -0.03 -0.02 0.02 -0.04 0.02 0.05 0 0.04 0.03 -0.03 0.04 -0.07 0.02 0.03 0.08 0.02 -0.02
X4 0.14 -0.03 -0.03 1 0.92 -0.04 0.11 -0.04 0.14 0.06 0.17 0.12 -0.23 0.22 -0.27 0 0.07 0.18 -0.12 -0.01
X5 0.13 -0.02 -0.02 0.92 1 -0.07 0.12 -0.06 0.16 0.06 0.17 0.13 -0.2 0.21 -0.23 -0.03 0.05 0.17 -0.08 0
X6 -0.06 0.01 0.02 -0.04 -0.07 1 -0.01 -0.03 0 -0.01 -0.01 -0.06 0.18 -0.08 0.11 -0.06 -0.05 -0.2 0 -0.06
X7 0.09 -0.03 -0.04 0.11 0.12 -0.01 1 -0.03 0.09 0.07 0.12 0.08 -0.21 0.16 -0.18 0.07 0.1 0.22 -0.08 0.03
X9 -0.14 0.02 0.02 -0.04 -0.06 -0.03 -0.03 1 0.03 -0.06 0.02 0.02 0.08 -0.03 0.03 0.02 -0.02 0.01 -0.02 0.1
X10 0.08 0.05 0.05 0.14 0.16 0 0.09 0.03 1 0.2 0.91 0.55 -0.09 0.49 -0.21 -0.07 0.11 0.4 0.08 0.04
X11 0.13 0.01 0 0.06 0.06 -0.01 0.07 -0.06 0.2 1 0.26 -0.05 -0.18 0 -0.25 0.27 0.46 0.1 -0.27 -0.53
X13 0.13 0.04 0.04 0.17 0.17 -0.01 0.12 0.02 0.91 0.26 1 0.46 -0.17 0.44 -0.29 -0.01 0.25 0.51 0.04 0
X15 0.11 0.03 0.03 0.12 0.13 -0.06 0.08 0.02 0.55 -0.05 0.46 1 -0.39 0.91 -0.28 -0.34 -0.44 0.37 -0.07 0.24
X16 -0.31 -0.03 -0.03 -0.23 -0.2 0.18 -0.21 0.08 -0.09 -0.18 -0.17 -0.39 1 -0.63 0.7 -0.08 -0.07 -0.37 0.34 0.01
X17 0.21 0.04 0.04 0.22 0.21 -0.08 0.16 -0.03 0.49 0 0.44 0.91 -0.63 1 -0.45 -0.31 -0.35 0.44 -0.14 0.23
X18 -0.19 -0.05 -0.07 -0.27 -0.23 0.11 -0.18 0.03 -0.21 -0.25 -0.29 -0.28 0.7 -0.45 1 -0.02 -0.17 -0.42 0.18 0.04
X19 -0.02 0.03 0.02 0 -0.03 -0.06 0.07 0.02 -0.07 0.27 -0.01 -0.34 -0.08 -0.31 -0.02 1 0.57 -0.09 -0.46 -0.36
X20 0.08 0.04 0.03 0.07 0.05 -0.05 0.1 -0.02 0.11 0.46 0.25 -0.44 -0.07 -0.35 -0.17 0.57 1 0.11 -0.15 -0.45
X21 0.2 0.08 0.08 0.18 0.17 -0.2 0.22 0.01 0.4 0.1 0.51 0.37 -0.37 0.44 -0.42 -0.09 0.11 1 0.07 0.26
X22 -0.08 0.01 0.02 -0.12 -0.08 0 -0.08 -0.02 0.08 -0.27 0.04 -0.07 0.34 -0.14 0.18 -0.46 -0.15 0.07 1 0.42
X24 -0.06 -0.02 -0.02 -0.01 0 -0.06 0.03 0.1 0.04 -0.53 0 0.24 0.01 0.23 0.04 -0.36 -0.45 0.26 0.42 1
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Table A3: Medcouples of the data set E.
X medcouple
X1 0.000
X2 0.063
X3 0.926
X4 -0.089
X5 -0.714
X6 0.111
X7 0.310
X9 0.041
X10 -0.055
X11 0.560
X20 0.111
X24 -0.059

Table A4: Medcouples of data set B.
X medcouple
X1 0.200
X2 -0.166
X3 0.946
X4 -0.069
X5 -0.826
X6 0.083
X7 0.543
X9 0.044
X10 0.004
X11 -0.333
X13 -0.013
X15 -0.011
X16 0.067
X17 0.072
X18 0.097
X19 -0.015
X20 0.143
X21 0.001
X22 0.037
X24 -0.158

Table A5: The complete decomposition contributions (CDC) for the residuals of the
orthogonal outliers in the data set E.

X1 X2 X3 X4 X5 X6 X7 X9 X10 X11 X20 X24

53 6.2 0.3 0 0.1 0 1.7 5.2 0.2 1.1 0.1 12.3 0.1
125 5.6 12.9 0.3 0 0 0.5 2.5 0.4 0 1.4 1.2 3.5
172 8 5.4 0.2 0 0 3.8 0.3 3.4 1 1.1 0 5.5
210 436.3 1.4 1.4 3.1 0 0.9 6.7 7.8 4.8 19.3 14 65.6
212 67.6 1.7 0.2 2.5 0 0 0.7 0.2 1.3 2.6 8 3.3
232 53.9 0.1 0.2 1 0 1.8 0.1 0.8 2 2.4 1.6 6.7
277 16.9 5.2 0.2 0.5 0 0.1 0.1 1.2 0 1.2 3.4 3
359 12.8 12.7 0.4 1.2 0 3.5 0.6 0 2 1.3 3.9 2.9
362 17.7 5.8 0.2 2.8 0 1.7 0.3 4.5 0.7 0.7 4.1 3.6
369 0.1 4.7 0 20.4 0 10.3 0.5 1.4 0.7 0.3 3 0.6
379 2.1 15.1 0.3 0.3 0 5.1 0.4 0 0.1 0 0.7 1.8
518 3.7 13.4 0.3 0.6 0 1 0.6 0.6 1.1 1 0.9 2.1
732 44.4 0.6 0.1 0.1 0 2.3 2.6 0.9 0.2 1.3 6.2 5
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Table A6: Robust loadings (ROBPCA-
AO) of the data set E.

P1 P2 P3

X1 -0.02 0.06 0.45
X2 0.01 -0.11 -0.23
X3 0.21 -0.97 0.06
X4 -0.05 -0.02 0.12
X5 -0.98 -0.21 -0.02
X6 0.00 0.00 0.13
X7 0.00 0.00 0.14
X9 0.00 -0.01 -0.17
X10 -0.01 0.00 0.17
X11 0.00 -0.01 0.35
X20 -0.01 0.01 0.46
X24 0.01 -0.01 -0.54

Table A7: Robust loadings (ROBPCA-
AO) of the data set B.

P1 P2 P3

X1 0.00 0.05 0.10
X2 -0.01 -0.10 -0.03
X3 0.00 -0.99 0.00
X4 -0.04 -0.01 0.04
X5 -1.00 0.00 -0.01
X6 0.01 -0.01 -0.07
X7 0.00 -0.01 0.60
X9 0.00 0.00 0.03
X40 0.00 -0.01 0.30
X11 0.00 0.01 -0.02
X13 0.00 -0.01 0.29
X15 0.00 0.00 0.36
X16 0.01 0.00 -0.19
X17 0.00 0.00 0.33
X18 0.01 0.01 -0.18
X19 0.00 0.00 -0.13
X20 0.00 -0.01 -0.13
X21 -0.01 0.01 0.26
X22 0.00 0.00 0.04
X24 0.00 0.01 0.18
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Table A8: Robust correlation coefficients
(ROBPCA-AO) of the data set E.

P1 P2 P3

X1 -0.19 0.59 0.79
X2 0.14 -0.91 -0.38
X3 0.29 -0.96 0.01
X4 -0.93 -0.24 0.27
X5 -0.99 -0.13 0.00
X6 0.24 -0.02 0.97
X7 -0.04 0.01 1.00
X9 0.23 -0.27 -0.93
X10 -0.43 -0.09 0.90
X11 -0.04 -0.12 0.99
X20 -0.12 0.05 0.99
X24 0.19 -0.07 -0.98

Table A9: Robust correlation coefficients
(ROBPCA-AO) of the data set B.

P1 P2 P3

X1 0.15 0.87 0.47
X2 -0.20 -0.97 -0.09
X3 0.00 -1.00 0.00
X4 -0.98 -0.12 0.15
X5 -1.00 0.00 0.00
X6 0.62 -0.23 -0.75
X7 -0.07 -0.05 1.00
X9 -0.24 0.26 0.94
X10 -0.13 -0.09 0.99
X11 -0.75 0.60 -0.28
X13 -0.12 -0.06 0.99
X15 -0.12 0.00 0.99
X16 0.31 0.03 -0.95
X17 -0.13 -0.01 0.99
X18 0.42 0.13 -0.90
X19 -0.24 -0.13 -0.96
X20 -0.05 -0.27 -0.96
X21 -0.21 0.12 0.97
X22 0.83 -0.12 0.55
X24 0.00 0.31 0.95
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