A companion to ”How different are ranking methods for fuzzy numbers? A numerical study”

Matteo Brunelli
Systems Analysis Laboratory, Aalto University, Finland
e–mail: matteo.brunelli@aalto.fi

József Mezei
IAMSР, Åbo Akademi University
e–mail: jmezei@abo.fi

1 Scatter-plots depicting the relationship of different ranking methods

In [1], some numerical simulations were performed to investigate the relationship between different ranking methods for fuzzy numbers. In this companion to the article, the scatter-plots depicting the results of the numerical simulation are included. In the plots, every point represents one of the 1000 randomly generated trapezoidal fuzzy numbers with the support in the [0, 1] interval.

<table>
<thead>
<tr>
<th>Method</th>
<th>AD(^{0.5})</th>
<th>CoM</th>
<th>CoG</th>
<th>Med</th>
<th>C</th>
<th>E(_u)</th>
<th>Y(_2)</th>
<th>Y(_3)</th>
<th>Y(_4)</th>
<th>CH(^1)</th>
<th>K</th>
<th>BK</th>
<th>PD</th>
<th>N(^{0.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD(^{0.5})</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>CoM</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoG</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y(_2)</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y(_3)</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y(_4)</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH(^1)</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH(^2)</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>BK</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td></td>
</tr>
<tr>
<td>N(^{0.5})</td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: The values indicate the numbering of the Figures containing the corresponding scatter-plots
References

Figure 1: AD$^{0.5}$ vs. CoM

Figure 2: AD$^{0.5}$ vs. CoG

Figure 3: AD$^{0.5}$ vs. Med

Figure 4: AD$^{0.5}$ vs. C

Figure 5: AD$^{0.5}$ vs. E_p

Figure 6: AD$^{0.5}$ vs. Y_2
Figure 7: $\text{AD}^{0.5} \text{ vs. } Y_3$

Figure 8: $\text{AD}^{0.5} \text{ vs. } Y_4$

Figure 9: $\text{AD}^{0.5} \text{ vs. } \text{CH}^1$

Figure 10: $\text{AD}^{0.5} \text{ vs. } K$

Figure 11: $\text{AD}^{0.5} \text{ vs. } \text{BK}$

Figure 12: $\text{AD}^{0.5} \text{ vs. } \text{PD}$
Figure 13: $AD^{0.5}$ vs. $N^{0.5}$

Figure 14: CoM vs. CoG

Figure 15: CoM vs. Med

Figure 16: CoM vs. C

Figure 17: CoM vs. E_p

Figure 18: CoM vs. Y_2
Figure 19: CoM vs. Y_3

Figure 20: CoM vs. Y_4

Figure 21: CoM vs. CH^1

Figure 22: CoM vs. K

Figure 23: CoM vs. BK

Figure 24: CoM vs. PD
Figure 25: CoM vs. $N^{0.5}$

Figure 26: CoG vs. Med

Figure 27: CoG vs. C

Figure 28: CoG vs. E_p

Figure 29: CoG vs. Y_2

Figure 30: CoG vs. Y_3
Figure 37: Med vs. C

Figure 38: Med vs. E_p

Figure 39: Med vs. Y_2

Figure 40: Med vs. Y_3

Figure 41: Med vs. Y_4

Figure 42: Med vs. CH_1
Figure 43: Med vs. K

Figure 44: Med vs. BK

Figure 45: Med vs. PD

Figure 46: Med vs. N^{0.5}

Figure 47: C vs. E_p

Figure 48: C vs. Y_2
Figure 49: C vs. Y_3

Figure 50: C vs. Y_4

Figure 51: C vs. CH^1

Figure 52: C vs. K

Figure 53: C vs. BK

Figure 54: C vs. PD
Figure 55: C vs. $N^{0.5}$

Figure 56: E_p vs. Y_2

Figure 57: E_p vs. Y_3

Figure 58: E_p vs. Y_4

Figure 59: E_p vs. CH^1

Figure 60: E_p vs. K
Figure 67: Y_2 vs. K

Figure 68: Y_2 vs. BK

Figure 69: Y_2 vs. PD

Figure 70: Y_2 vs. $N^{0.5}$

Figure 71: Y_3 vs. Y_4

Figure 72: Y_3 vs. CH^1