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Quantity discounts are frequent both in everyday life and in business.
Take, for example, product pricing, gas and electricity pricing, trans-
portation and postage pricing, telecommunications, cable TV and Inter-
net access pricing. These are all examples of nonlinear pricing, where the
selling firm designs differentiated products and prices them according to
the firm’s marketing strategy. Nonlinear pricing is also a general model
of incomplete information and it has a plenty of applications, such as
regulation, taxation and designing labor contracts.

This Dissertation develops a new learning approach for the nonlinear
pricing problem, where the selling firm has limited information about
the buyers’ preferences. The main contributions are i) to show how the
firm can learn what kind of products should be put up for sale, and what
information the firm needs to do this, ii) to introduce a new approach in
modeling incomplete information using optimality conditions, iii) to ana-
lyze mathematically the general pricing problem with many buyer types
and multiple quality dimensions, and iv) to examine the computational
issues of solving the pricing problem.

The learning method is based on selling the product repeatedly. The firm
sets linear tariffs, from which the buyers select the product they wish to
consume. This reveals the buyers’ marginal valuations, which is exactly
the information that is needed to evaluate the optimality conditions.
By evaluating the different optimality conditions, the firm learns the
buyers who get the same product at the optimum and the buyers who
are excluded. Different learning paths are examined in terms of profit,

learning time and the buyers’ preferences.

nonlinear pricing, incomplete information, learning, adjustment, mecha-

nism design, computation
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Ostettuun médrdin perustuvat alennukset ovat yleisiil sekid arjessa etti
liike-eldméssia. Hyvid esimerkkejd ovat mm. tuotteiden hinnoittelu (ota
kolme, maksa kaksi), kaukolimmon ja siahkon hinnoittelu, liikenteen ja
kuljetusten hinnoittelu, telekommunikaatio-, kaapelitelevisio- ja Internet
yvhteyksien hinnoittelu. N&mé& ovat kaikki esimerkkeja epélineaarisesta
hinnoittelusta, missid myyvé yritys suunnittelee valikoiman erilaisia tuot-
teita ja hinnoittelee ne yrityksen markkinointistrategian mukaisesti. Epa-
lineaarisen hinnoittelun matemaattinen malli on lisdksi yksi keskeisimpia
epatiydellisen informaation malleja, ja silld on useita sovelluksia, kuten
sdantely, verotus ja tydsopimusten suunnittelu.

Tassd viaitoskirjassa kehitetddin uusi oppimiseen perustuva ldhes-
tymistapa epélineaarisen hinnoittelun tehtdvissd, jossa yritys ei
tarkalleen tiedd asiakkaiden mieltymyksid. Tyon péaitavoitteet ovat

1) ndyttdd miten yritys voi oppia millaisia tuotteita sen tulisi myyda ja
mité informaatiota yritys tarvitsee tdhian, 2) esitella uusi epatiydellisen
informaation mallinnustapa kiiyttden optimaalisuusehtoja, 3) analysoida
matemaattisesti yleistd hinnoitteluongelmaa, jossa on useita ostajia ja
laatudimensioita, ja lisdksi 4) tutkia hinnoitteluongelman laskennan
kysymyksié.

Oppimismenetelmé perustuu tuotteiden toistettuun myymiseen. Yritys
asettaa lineaarisia tariffeja, joista asiakkaat valitsevat haluamansa tuot-
teen. Asiakkaiden tekemé& valinta paljastaa heiddn marginaalisen hyo-
dyn, miké on juuri yrityksen tarvitsema informaatio optimaalisuusehtoja
kiytettaessa. Kokeilemalla erilaisia optimaalisuusehtoja, yritys oppii ne
asiakkaat joille myydaian samaa tuotetta ja ne asiakkaat joille ei kannata
myyda tuotetta laisinkaan. TyoOssé tutkitaan erilaisia oppimismenetelmié
eri kriteerien valossa, kuten oppimisaika, yrityksen voitto ja ostajien miel-

tymykset oppimisaikana.

hinnoittelu, epitiydellinen informaatio, oppiminen, mekanismin suunnit-

telu, laskenta
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1 Introduction

'[ should like to buy an eqq, please,’ she said timidly. "How do you sell them?’
“Fivepence farthing for one -- Twopence for two,’ the Sheep replied.

"Then two are cheaper than one?’ Alice said in a surprised tone, taking out her purse.
‘Only you MUST eat them both, if you buy two,’ said the Sheep.

"Then I'll have ONE, please,’ said Alice, as she put the money down on the counter.
For she thought to herself, "They mightn’t be at all nice, you know.’

Through the Looking-Glass, Lewis Carroll (Carroll 1871, Chapter V)

The prices have very important role in society. The firms use pricing in marketing
their products, and the prices affect the firms’ production decisions. The prices also
ease the exchange of goods and they carry information about the values of the products
and services. The prices affect both the demand and the supply side of the economy,
and thus the prices are associated with economic efficiency. But where do the prices

come from?

There are almost as many mechanisms to trade a product as there are different kind
of products. Bargaining processes can be used in selling or buying expensive or unique
items. For example, in 1626 the Dutch colonizer Peter Minuit acquired Manhattan island
from native Americans in exchange for trade goods worth 24 dollars. Modern alterna-
tives for bargaining are different kinds of auctions, where the participants compete by
bidding, i.e., offering a price for the product. The auctions are used, e.g., in selling an-
tique, art, collectibles, estate and flowers, just to name a few. In electricity auctions, the
bids to buy and the offers to sell determine the trading prices. The long-term contracts
and the derivatives, such as futures and options, can be traded in exchange markets.
For example, Nord Pool founded in 1996 is the world’s first multinational exchange for
trading electric power between Norway, Denmark, Sweden and Finland. Electricity is
an example of a commodity that is difficult to store, which is one reason why it has a

special trading mechanism.

The most common pricing mechanisms are, however, posted price mechanisms (El-
maghraby and Keskinocak 2003), where the seller sets the prices and the buyers choose
the product they wish to consume or buy nothing at all. For example, a firm providing
public transportation may set the fares based on the distance of the trip, zones or the
period of time. The prices may be set to maximize the firm’s revenue, recover costs,
or if the firm is owned by the government then maximize the social welfare under bud-

get constraints (Wilson 1993). Similar applications are mobile phone subscription and



broadband Internet access pricing, where the prices may depend on the number of SMS
messages sent, nominal data rate (Mbit/s), location and the technology used. These
are examples of nonlinear pricing, where the seller designs differentiated products with

suitable prices.

One important factor in pricing is the market structure, i.e., how many buyers and
sellers there are in the market and what is their market power (Mas-Colell et al 1995).
If the market consists of a monopoly and many buyers, then it is said that the monopoly
is a price maker and has high market power whereas the buyers are price takers and
have no market power. On the other hand, if the market allows free entry and there are
many producers, then it is a perfectly competitive market and the firms are price takers.
Between these two extremes there are different oligopolies, e.g., the classic Cournot and
Bertrand models, cartel and imperfect competition models, where a small number of

firms control the market.

Another important factor is information asymmetry. If a firm is selling a product to
a group of buyers and is planning the price, then is it reasonable to assume that the firm
knows how much the buyers are willing to pay for the product? The firms rarely have
complete information about the buyers’ preferences, but on the other hand that may
not be needed to achieve the optimal pricing. There are many approaches to solve the
problem of incomplete information. The firm may estimate the demand with different
methods, i.e., get the probability distribution over the buyers’ valuations, or the firm

may learn good prices by selling the product repeatedly and adjusting the prices.

This Dissertation develops a new learning approach for the nonlinear pricing prob-
lem, where the seller has limited information about the buyers’ preferences. Mathemat-
ical theory and numerical methods are developed, where the firm uses specific pricing
schemes to reveal information about the buyers’ valuations. The acquired information
is then used in adjusting the prices towards the firm’s objectives. More explicitly, Pa-
pers [I] and [II] develop the learning approach when so-called single-crossing property
holds. Papers [III] and [IV] analyze the more general nonlinear pricing problem where
the product has multiple characteristics or qualities. These papers also examine the
computational issues of solving the problem numerically. Paper [V] compares the opti-
mal learning path computed with complete information against the different methods
that use only limited information. This paper gives a new estimate to the value of in-
formation and a suggestion for a good learning method when the whole learning period

is considered.



This summary is structured as follows. Section 2 discusses the different functions of
pricing. Section 3 introduces the basic pricing models. Nonlinear pricing is an applica-
tion of a general model of asymmetric information, which is discussed in Section 4. The
different approaches to model incomplete information and learning in pricing problems
are discussed in Section 5. Section 6 summarizes the contributions of the Dissertation.

Finally, future research directions and conclusions are presented in Section 7.

2 Role of Prices

Before money was invented the trading was based on barter and gift economics. Barter
is based on the coincidence of wants, where goods or services are exchanged without
the medium of exchange, such as money. The idea of gift economics can, however, be
interpreted through social status and reciprocal altruism. You hand out gifts and do
favors, and doing so you expect to gain higher status and get the same treatment back
in similar situations. The role of money was formalized in Babylonia when debt and law
codes were developed. The interest on debt is a compensation in money for breaking
the law of not paying back in time. The money is also a solution to the coincidence of

wants problem, and the prices give a measure of value to the goods and services.

The prices do not necessarily reflect the exact value of the good to the seller nor
the buyer. For example, the Russians sold Alaska in 1867 to the United States for
7.2 million dollars. According to Bolkhovitinov (2003), the Russians were expecting 5
million dollars and probably the United States valued the land more than the final sum
of 7.2 millions. The price, however, reflected more the Russian financial position and

the military state after the Crimean War rather than the value of the land.

In neoclassical economics the prices and the market equilibrium is determined by the
supply and the demand. The prices itself are just transfers that determine the redistri-
bution of income between the parties in the economy. The important role of prices comes
from the indirect effect. The prices influence the economic efficiency by affecting both
the supply and demand side through the firms’ production and the consumers’ purchase
decisions. From the society’s point of view, it is important to design the markets so
that the prices are formed and the parties behave in an efficient way. Mechanism design
theory is a suitable framework for studying this kind of problems, where the emphasis is
on incentives and private information. Mechanism design and its relation to nonlinear

pricing is discussed more in Section 4.



Besides the efficient utilization of resources, pricing has several other roles in practice
(Wilson 1993). Pricing is one aspect of the four Ps in the marketing mix, which also
includes Product, Promotion and Place. Pricing can be used in cost recovery, firm’s
strategy, competition, market penetration and capturing market share, growth, product
placement and positioning (Dobson and Kalish 1988), price skimming, revenue manage-
ment and profit maximization, inventory clearance sales, and signaling the quality of the
product (McConnell 1968), among other things. The price itself may also be the whole
business idea of a firm. For example, a dollar store is a retail store that sells inexpensive
items, usually with a single price for all items in the store. As there are several roles
of prices, there are almost as many pricing models. Some of these are discussed in the

next section.

3 Modeling the Pricing Situation

Pricing is a form of art and economic models will probably never beat a good car sales-
man in making the sales. But leaving psychological and sociological issues aside, the pric-
ing models capture many important principles and practical considerations (Nagle 1984)
including inventory pricing (Karlin and Carr 1962, Elmaghraby and Keskinocak 2003),
capacity and peak load pricing (Oren et al 1985), road and congestion pricing (Vickrey
1952), priority pricing, price discrimination (Pigou 1932, Phlips 1988, Armstrong 2006,
Stole 2007, Armstrong 2008), spatial pricing (Hotelling 1929), pricing durable goods,
zone pricing, asset and stock pricing (Black and Scholes 1973, Merton 1973), retail pric-
ing (Lazear 1986) and bundling products (Stigler 1963, Adams and Yellen 1976, Palfrey
1983), again to make the long list short.

Pricing can be modeled on different levels of abstraction, including industry, market
and transaction levels. The industry level examines the supplier side price changes and
the customer demand changes. The market level focuses on the competition between
the products on the market, differentiation and customization issues. Pricing at the
transaction level examines the discounts off the list prices. For example, a supplier may
set, different discount percentages for a customer on the different product lines depending

on the volume of the sales of each line.

The simplicity of the tariff may also be an important aspect of pricing. A monthly
flat rate may be easier to implement and more convenient than complicated tariffs based

on multiple factors. The more complicated tariffs allow, however, more efficient pricing

4



where the costs are distributed based on the service usage. For example, in pay-per-
view the customer pays only for the chosen television shows and the residential water
and electricity costs may be divided based on water and electricity meters in housing

cooperatives rather than dividing the costs based on flat rate per person or household.

Market equilibrium and market behavior depend strongly on the market structure
(Mas-Colell et al 1995). In perfectly competitive market, the goods are traded at publicly
known prices and the sellers and the buyers act as price takers. According to the
fundamental theorems of welfare economics, the equilibria of competitive markets are
Pareto efficient. The assumptions of competitive market do not, however, hold in real
markets and the allocations may not be efficient, which is called as market failure.
The market failure originates often from externalities, asymmetric information and non-
competition, where the firms may have barriers to enter the market or some firms have
market power. Examples of such are monopoly (Spence 1977b, Mussa and Rosen 1978,
Maskin and Riley 1984) and oligopoly pricing models (Spence 1977a, Oren and Wilson
1983, Ivaldi and Martimort 1993), which include Cournot and Bertrand duopoly models,
collusion and cartels modeled with repeated games (Green and Porter 1984, Abreu et al

1986; 1990) and supply function equilibria (Klemperer and Meyer 1989).

In this Dissertation the main assumptions are that the seller can set the prices and
differentiate the product, e.g., sell different quantities or qualities of the product. When
the tariff is not strictly proportional to the quantity purchased, the pricing situation
is called as nonlinear pricing (Wilson 1993). The main focus is to study incomplete
information in a monopoly model, even though the model could be extended to include
competition by making small changes to the model. In the next section, it is discussed
that the mathematical model is a general model of contracting under asymmetric infor-
mation, and thus the results of this Dissertation apply as well to the other applications,

such as taxation and regulation.

4 Models of Asymmetric Information

Information, uncertainty and ignorance are one of the most important aspects of mod-
eling in economics (Stigler 1961, Arrow 1963). The cornerstone of modeling the in-
complete information was laid in 1967 when John C. Harsanyi defined the Bayesian
game (Harsanyi 1967-1968). The theory of uncertainty spread to the applications of

economics such as the market for lemons (Akerlof 1970), i.e., the market of used cars,
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taxation (Mirrlees 1971), screening (Stiglitz 1975), monopoly pricing (Spence 1977b;
1980, Mussa and Rosen 1978, Harris and Raviv 1981), insurance (Stiglitz 1977), auc-
tions (Myerson 1981, Riley and Samuelson 1981), credit rationing (Stiglitz and Weiss
1981) and regulation (Baron and Myerson 1982). What is most surprising about these
models is that they all have similar mathematical models. They can all be modeled with
contract theory (Bolton and Dewatripont 2005) and principal-agent framework (Ross
1973, Grossman and Hart 1983).

The principal agent models can be divided into two broad categories: adverse se-
lection (Riley 2001, Stiglitz 2002) and moral hazard (Holmstrom 1979; 1982). Moral
hazard is also known as the model of hidden action, where the principal cannot per-
fectly monitor the agent’s action. For example, a firm may condition the manager’s wage
based on the firm’s profit but not on the manager’s actual effort. Adverse selection is
also known as the model of hidden information, and it can be modeled with signal-
ing (Spence 1973) and screening games. In job market signaling, a worker signals her
competence to the employer, e.g., by acquiring educational credentials. The employer

assumes a good signal is correlated with greater ability to work and offers a higher wage.

An example of a screening or self-selection application is the nonlinear pricing model.
A monopolistic seller produces a product to a market with two types of buyers: a
high type that values the quality more and is willing to pay more for the product
and a low type with lower valuation for quality. The monopoly designs two products
with different qualities so that the profit is maximized and the buyer types choose the
products intended for them, i.e., the high type chooses the high quality bundle and the
low type the low quality bundle. The buyers may choose any bundle they wish or buy
nothing at all, and the firm must take this into account when designing the bundles,
that is, the qualities and their prices. The incomplete information here means that the
monopoly may not give individual offers to the different buyer types, i.e., the monopoly

does not distinguish the buyers.

Another example is monopoly regulation (Baron and Myerson 1982). A government
regulates a firm so that it does not behave as a monopoly. The government has, however,
incomplete information about the firm’s costs. The government designs a payment
scheme to the firm which is based on the firm’s production level so that the social
surplus is maximized. A higher production level means a bigger payment to the firm,
and the firm chooses the production level based on its true costs and the designed

payment scheme.



The screening model is also an instance of mechanism design (Mas-Colell et al 1995,
Nisan and Ronen 2001, Conitzer and Sandholm 2002, Dash et al 2003), which examines
different mechanisms with which desirable outcomes could be achieved. The focus of
mechanism design is on identifying desirable goals, the players’ private information,
the players’ incentives to act in a desirable way and the implementation of the goals
with a mechanism. The study of mechanism design originates from resource allocation
problems (Hurwicz 1960; 1972; 1973, Hurwicz et al 1975).

5 Pricing under Incomplete Information and Learning

Nonlinear pricing is an application of the general screening model. It is not just one
mathematical model but multiple models that differ slightly depending on whether the
buyer type is modeled with continuous or discrete distribution, and whether the product
has multiple or only one quality dimension. For example, the model of Spence (1980) is
a discrete type, multidimensional model where the dimension is interpreted as quantity,
whereas the model of Mussa and Rosen (1978) is a continuous type model with a product
of single quality. The multidimensional models are examined in Wilson (1991; 1993),
Armstrong (1996), Rochet and Chone (1998), Armstrong (1999), Armstrong and Rochet
(1999), Armstrong and Vickers (2000), Rochet and Stole (2003), Nahata et al (2004),

Basov (2005); see Résénen et al (1997) for an application in electricity markets.

The mathematical model has many interpretations. The model can be interpreted
as the seller’s uncertainty about the buyer’s preferences. The probability distribution
describes the seller’s belief over the possible buyer types. The model can also be inter-
preted as self-selection model where there is no incomplete information but a pricing
rule that enforces public prices. The seller designs a public tariff, and the buyers self-
select the bundle they wish to consume from the tariff. The distribution now describes
the fractions of different buyer types in the population. When the pricing situation is
examined as a single decision problem, the interpretation does not play a big role, but
it does when the pricing situation is repeated. It is a different situation if there is a

population of buyers rather than one buyer whose valuation is unknown.

When the seller has limited information and the pricing situation is repeated, the
question arises whether the seller can learn the optimal pricing or not. And if the

seller can, then what is the best way to learn it under different assumptions. There are



many approaches to model learning (Fudenberg and Levine 1999) and incomplete infor-
mation. These include Bayesian techniques (Keller and Rady 1999), auctions (Myerson
1981), multiagent learning (Sandholm 2007), reinforcement and Q-learning (Tesauro and
Kephart 2002), different heuristic methods such as hill climbing methods (Brooks et al
2002), active and passive learning (Balvers and Cosimano 1990, Braden and Oren 1994,
Bischi et al 2008), tatonnement and Cournot adjustment (Kitti 2010), dynamic program-
ming (Bertsimas and Perakis 2006), dynamic pricing (Elmaghraby and Keskinocak 2003,
Garcia et al 2005), stochastic programming and robust optimization (Adida and Perakis
2006) and different nonparametric methods (Carlier 2002).

When learning is modeled it is important to define what the players know, how they
choose the strategies, how they gain more information and what is the interpretation
(Camerer 2003). The most simple models that do not require much sophistication
from the players are evolutionary, imitation and reinforcement approaches. In more
sophisticated rule and belief-based models the players update their beliefs about what
others will do and choose the strategies based on these beliefs. The sophistication allows
the players to experiment actively and produce information about the other players. In
pricing the tradeoff in experimentation is between the gain of information and higher

profits in the future against the lower profit now.

In this Dissertation it is assumed that a monopolistic firm sells a product to a large
population of buyers with different valuations. The firm does not know exactly the
buyers’ preferences but segments the buyers with similar preferences into groups. For
simplicity, it is assumed that the firm knows the number and the sizes of the groups, i.e.,
the number of buyers in a group, but does not know the utility functions that represent
each group. The firm designs pricing schedules that produce information about the
utility functions so that the firm can learn how to sell the product more profitably. The
learning is based on the assumption of buyers’ myopicity. A myopic behavior means that

the buyers choose the bundles from the pricing schedule by maximizing their utilities.

The learning approach is nonparametric in the sense that the firm needs not assume
any probability distribution over the utility functions nor assume any specific shape of
utility functions. The good thing about this is that it allows generalization and avoids
making wrong assumptions when the utility functions are unknown. On the contrary,
if the firm knows the shape of utility functions, then it should be taken into account in
the method and it may speed up the learning process. The learning approach can also
be seen as gradient or reinforcement learning, where the firm estimates the direction of

profit increase and adjusts the pricing schedule towards this direction.



6 Contributions

Papers [I] and [IT] show how the firm can learn the optimal solution in a pricing problem
where the product has a single quality dimension. Paper [I| studies a pricing problem
with two buyer types and suggests an adjustment approach using discrete steps. It is
reasonable to assume only two types in some applications, e.g., in pricing phonecalls
where there are two natural customer segments of business and personal use (Jain et al

1999). Paper [II] is an extension to more than two customer segments.

Papers [III] and [IV] examine the multidimensional problem where the buyers’ utility
functions need not be ordered. Paper [III| analyzes the problem mathematically and
examines what modifications need to be done in the learning method. Paper [IV] gives an
interpretation to the Lagrange multipliers of the problem and studies the computational

side of the problem.

Paper [V] examines continuous learning paths instead of using discrete steps. The
methods that use limited information are compared with each other and the optimal
path which is computed with complete information. The main idea of the paper is to

find good methods under different criteria when the whole learning period is considered.

The contributions of each paper are now explained more thoroughly.

6.1 Adjustment in a Unidimensional Problem

The adjustment approach was introduced in Ehtamo et al (2002) and Kitti and Ehtamo
(2009), where it is shown that the equilibrium arises as a long run outcome of an
adjustment process. In Ehtamo et al (2002), the players who grope their way towards
the Pareto optimal outcome have only one type. They also postulate an extra player, a
mediator, who could help the principal and the agent in the negotiations. The mediator
could find the equlibrium by using linear contracts without knowing the parties’ utility

functions.

Paper [I| takes another view on the adjustment approach. It is assumed that the
monopolistic seller can set the prices, and there are two types of buyers. The adjustment
is now more complicated as the equilibrium is not a single negotiable variable and
its price but two quantity-price bundles, that is, one for each buyer type. The aim

of the adjustment is also different. The seller adjusts the price schedule towards the



profit-maximizing solution, which may not be Pareto optimal. The method to reveal
information about the buyers’ preferences is similar to Ehtamo et al (2002). When the
seller offers the buyers a linear tariff, the buyer’s choice of utility-maximizing amount
will reveal the slope of the utility function at that chosen quantity. With this information

the seller may adjust the bundles towards the optimal solution.

Paper [I] develops the optimality conditions for the pricing problem under standard
assumptions made in the literature, and it shows how these conditions can be used in
adjusting the price schedule under limited information. The assumptions eliminate some
pathological pricing situations, and they make it possible to learn the optimal bundles
using only local information about the buyers’ preferences. It is examined in Paper [III]
that the relaxation of the assumptions adds little complexity to solving the problem
with only two buyer types. Paper [I] assumes the standard single-crossing property,
which restricts the shape of buyer types’ utility functions. This combined with the
other assumptions mean that it is optimal to sell positive amounts to both buyers, the
solution is never Pareto optimal and certain constraints are active in the optimum. It
is discussed in Paper [III| that the optimal bundles may actually be efficient and the
utility functions need not be peculiar for this to happen. When the more general utility
functions are allowed, also the adjustment method needs to be modified a little from

what is presented in Paper [I].

The optimality conditions in Paper [I] give the equations that determine the optimal
bundles. There are two equations for the optimal prices. The first equation means that
the buyer type who values the product less, the low type, is indifferent between having
the bundle or not, i.e., the price equals the valuation. The second equation means that
the buyer type who values the product more, the high type, is indifferent between the
high and low bundles, i.e., the price difference equals the valuation difference of the
bundles. There are also two equations for the optimal quantities. The equation for
high type means that the marginal valuation equals the marginal cost at the optimal
quantity. The equation for low type means that the marginal profit of the low bundle
equals the difference of marginal valuations at the optimal quantity. So, from the seller’s
point of view the optimal quantities depend on the marginal valuations, and the optimal
prices depend on the valuations itself. Furthermore, the optimal prices depend on the
optimal quantities and not vice versa, and thus the optimal quantities should be solved
first. Also, the optimal price of high bundle depends on the optimal price of the low

bundle. This means that there is a natural order in which to solve the optimal bundles.

To solve the optimal quantities, the seller needs to know the buyers’ marginal val-
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uations. For the high bundle, the marginal valuation should equal the marginal cost.
The seller can learn this quantity by offering linear tariffs as was initially suggested in
Ehtamo et al (2002). The seller sets a slope for the tariff and adjusts it so that the
optimality condition is met. The seller learns the marginal valuations since the buyers
choose profit-maximizing quantities from the linear tariff. There is, however, a better
way to find the optimal quantity in one iteration. The seller can use its cost function
plus constant as a nonlinear tariff, and the buyers now choose automatically quantities

so that the marginal valuations equal the marginal costs.

Learning the optimal quantity for the low bundle is a bit more complicated and it
is the main idea of Paper [I]. Since the optimality condition involves both the marginal
valuations of low and high types, the equation consists of two unknown terms for the
seller. The seller could offer multiple linear tariffs and adjust the slopes so that both
types choose the same quantity. This way the seller could evaluate the optimality
condition at a certain quantity, and learn whether this quantity is lower or higher than
the optimal amount. But again there is another way to evaluate the optimality condition
in just two iterations. The idea is that the seller may first solve the low type’s marginal
valuation at some quantity and then solve what the high type’s slope should be in order
to satisfy the optimality condition. The seller then sets a tariff with this computed slope
and tests whether it is the real marginal valuation for the high type or not. This way
the seller learns whether the quantity is lower or higher than the optimal amount, and

it gives the direction for adjustment.

Once the optimal quantities are found, the final step is to find the optimal prices.
The prices can be learned by raising and lowering the prices and giving the buyers take
it or leave it offers. The seller learns that the price is too high when the buyer refuses

to buy its bundle. The firm can now find the optimal price with a simple method.

Paper [II] is a generalization to more than two buyer types. It analyzes the problem
mathematically, examines what happens when there are many buyer types and shows
how the learning method should be modified. The most fundamental change with many
buyer types is that some types may get the same bundle at the optimum and this is
called as bunching. It may also be optimal that the firm does not sell the product to all
buyer types, which is called as exclusion. This means that different types are bunched
and excluded when the buyers have different utility functions. From the learning point
of view the firm does neither know the active constraints at the optimum nor the correct

optimality conditions to be solved. But it is shown that when the single-crossing and
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appropriate convexity assumptions hold the seller can learn the optimal structure, i.e.,

who to bunch and who to exclude.

The first observation is that the optimality conditions consist of a marginal valuation
of the lowest type in the bunch and a marginal valuation of the type above the highest
type in the bunch. So again, the conditions consist of two unknown terms for the seller.
Proposition 1 in Paper [II] shows a way to learn which types should be bunched and
excluded. This adds another step in the learning method. The seller first learns who
to bunch while the product’s quality is adjusted. This is done by evaluating multiple
optimality conditions. When the optimal bunch is known, the learning method is similar
to the method in Paper [I| as only one condition needs to be evaluated. Paper [II] also
offers some improvements to the learning method by introducing intervals and areas of
uncertainty. It is also suggested that the buyers’ utility functions could be approximated
and estimated collectively rather than one by one, which could improve the learning

method when there are many buyer types.

6.2 Multiple Dimensions and General Utility Functions

All theories have limiting assumptions. In nonlinear pricing, one of these assumptions is
the single-crossing property and the related Spence-Mirrlees condition (Edlin and Shan-
non 1998). This condition restricts the shape of buyers’ utility functions and assumes
that the valuations can be ordered. The single-crossing condition was introduced in
the multidimensional problem by McAfee and McMillan (1988). They showed that the
multidimensional problem can be reduced to the single dimensional problem and thus
it can be solved the same way provided that the single-crossing condition is satisfied.
It has been later examined what happens when the assumption is not valid anymore
(Wilson 1993; 1995, Araujo and Moreira 1999, Nahata et al 2001; 2003), i.e., the buyers’
utility functions can be of general shape and the valuations need not be ordered the

same way in all dimensions.

From the mathematical point of view, the relaxation of the single-crossing condition
is dramatic as the assumption simplifies the problem considerably. Under the assump-
tion, only small number of constraints, i.e., the local downward constraints (Maskin
and Riley 1984), can be active at the optimum. This means that the structure of the
solution is of chain type (Nahata et al 2004). From the economic point of view, the

assumption affects the efficiency of the solution (Andersson 2005, Nahata et al 2006,
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Andersson 2008). Under the assumption, only the highest buyer type gets the efficient
bundle, whereas the whole solution may be efficient when the valuations are appropriate,

for example, when the buyers are not interested in each others’ bundles.

From the learning point of view, the assumption has significance for two reasons.
Firstly, the seller can learn the active constraints easily, as was shown in Paper [II],
since there are not so many combinations as there can be without the single-crossing
assumption. Secondly, the optimality conditions consist of no more than two types’
marginal valuations, whereas the conditions may have many marginal valuations when
the assumption is violated. This means that the optimality conditions are more com-

plicated to solve under limited information.

Papers [III] and [IV] generalize the pricing problem to multiple dimensions and gen-
eral shapes of utility functions. This means that the seller designs for each buyer type a
bundle consisting of a price and multiple qualities that define the product. Paper [III]
develops an important notion of directed graph (digraph) presentation which helps in
representing and analyzing the solution; see Nahata et al (2004) for related digraphs
in more general problem with type-splitting and general cost structure. The digraph
basically consists of the buyer types and the active constraints between the types. The
Lagrange multipliers can be interpreted as flows between the buyer types and the multi-
pliers together form a flow network. The Lagrange multiplier interpretation is discussed

more thoroughly in Paper [IV].

The digraph presentation makes it easy to analyze the solution. First, the digraph
represents the relation of the bundles, i.e., which bundles are distorted in order to gain
better profits from the other bundles and how the prices are related to each other. It is
also possible to do sensitivity analysis with respect to changes in the buyer’s preferences.
With small changes it may happen that the active constraints do not change, and with
bigger changes it is possible to guess the new active constraints and the corresponding
digraph. Second, the bundles position in the digraph is associated with the profitability
and efficiency of the bundle. The digraph gives a partial order to the bundles in terms
of profit. The most profitable bundles are at the end of the digraph, and these must

also be the efficient bundles in terms of quality.

The structure of the digraph can be used in solving the optimization problem more
efficiently, which is explained in Paper [IV]. If the digraph consists of parts that do not
have active constraints between them, then these parts can be solved in parallel, i.e.,

independent of each other. Also, some other features of a specific pricing problem can
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be used in enhancing the optimization. For example, the number of constraints can be
reduced dramatically when the buyers’ utility functions are known approximately and

the Lagrange multipliers can be deduced when they have distinctive values.

The most important part of solving the pricing problem is finding the active con-
straints as it creates considerable complexity of solving the problem. When the active
constraints and the Lagrange multipliers are known, the optimization problem reduces
to solving a set of independent nonlinear equations. From the seller’s point of view
these equations consist of the buyers’” marginal valuations depending on the active con-
straints. These equations can basically be solved in the same way as in Papers [I] and
[IT] under limited information. The problem is to know the active constraints and the
fact that there are enormous number of combinations when the utility functions can
be of a general shape. It is calculated in Paper [III] that there are about 100 different
digraphs when there are only three buyer types, and with around 15 types the number
of digraphs is over 10'%. This means that it may be difficult or nearly impossible to

guess the correct active constraints when there are many buyer types.

The roles and interpretations of Lagrange multipliers are examined in Paper [IV].
The multipliers can be interpreted as flows between the buyer types. The optimality
conditions represent a general conservation law. This law means that in each node of the
digraph the incoming flows plus the weight of the corresponding buyer type must equal
the outgoing flows. The multipliers also have the standard sensitivity interpretation
by approximating how much the optimal profit would change if the constraints were
changed a little. Paper [IV] also shows how the non-uniqueness of the multipliers is
related to the stability of the solution. If some buyer types are bunched together, then
the range of possible multipliers is connected to how much the buyers’ preferences need

to change in order to break the bunch and change the digraph.

6.3 Optimization over the Learning Period

Papers [I| and [II] study how the seller can learn the optimal solution under limited
information. These papers do not, however, examine how well the optimum is reached,
i.e., what happens during the learning period. Paper [V] defines different learning paths
and analyzes these paths with respect to suitable criteria. The learning paths are defined
by heuristics that use only limited information. The paths are compared to the optimal

learning path in terms of discounted profit, which is computed with complete information
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and dynamic programming. Besides the profit, the other criteria used in evaluation are

the learning time and the buyers’ utilities over the learning period.

The learning dynamics of Paper [V] are the gradient and different modified methods.
The methods assume that the seller knows the buyers’ marginal valuations locally around
the currently sold bundles. The difference to Papers [I] and [II] is that the adjustment
is done continuously rather than taking some discrete steps. This means that the step
lengths need not be defined in the methods of Paper [V], which makes it easier to do

the comparison.

The gradient method uses the steepest ascent direction to the seller’s profit. The
numerical experiments show that the gradient method improves the profit fast initially
but it takes long time to learn the optimal solution. Paper [V] defines a class of learning
methods, which use directions that both improve the seller’s profit and are acceptable
for the buyers as well. Two methods are examined from this class of methods: price
raise method and constant direction method. The former is similar to the gradient
method, except when there are no active constraints for a bundle. Only the price is
raised when this happens. The numerical results show that the price raise method finds
the optimum faster than the gradient method and gives better profits in the end of the
learning period. The idea of the constant direction method is to update the quality of
a bundle towards the optimal value. This method finds the optimal bundles faster and
gives better utilities to the buyers than the other two methods. The method is, however,

a bit problematic as it is assumed that the optimal structure of the solution is known.

The optimal learning path is computed using complete information and dynamic
programming (Bertsekas 2005). The quality-price space is discretized and the optimal
path is solved in a regular grid. The idea of the method is to define a value, or a
profit-to-go function, in each point of the grid. With these values the optimal path can
be solved by determining locally where the next step should be taken. The profit-to-go
function is solved by repeating the value iteration, which takes into account the future
profits and discounting. The numerical results show that the optimal path may be far
off from the learning dynamics due to jumps, where some buyer types switch from one
bundle to another. The jumps are difficult to include in the learning dynamics since
some bundles are updated even though none of the buyers buys them. If the buyers do
not buy the bundle, the seller does not get information about the preferences around the
bundle. But if the optimal path does not involve jumps, it can be approximated with

appropriate learning methods. When the discount factor is high, the gradient method
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is close to the optimal path. On the other hand, if the seller wants to minimize the

learning time, the constant direction type of methods can be used.

7 Conclusions and Directions for Future Research

‘Living backwards!’” Alice repeated in great astonishment. ‘I never heard of such a thing!’
- but there’s one great advantage in it, that one’s memory works both ways.’

‘I'm sure mine only works one way,’ Alice remarked.

‘I can’t remember things before they happen.’

‘It’s a poor sort of memory that only works backwards,’ the Queen remarked.

‘What sort of things do you remember best?’ Alice ventured to ask.

‘Oh, things that happened the week after next,” the Queen replied in a careless tone.
Through the Looking-Glass, Lewis Carroll (Carroll 1871, Chapter V)

This Dissertation develops a new learning approach for the nonlinear pricing problem.
The main contributions are i) to show how the firm can learn how many products and
what kind of products should be put up for sale when the demand is uncertain, and
what information the firm needs to do this, ii) to analyze mathematically the general
pricing problem with multiple quality dimensions and more general utility functions, and
iii) to examine the computational questions of solving the pricing problem numerically.
The learning method is based on the use of linear tariffs and the revelation of the
buyers’ marginal valuations. These valuations allow the firm to evaluate the optimality

conditions and adjust the pricing towards greater profits.

The developed methods help firms in marketing questions such as pricing, product
placement and differentiation. The approach, however, leaves aside important practical
issues like advertising, competition, sociology and psychology (Wertenbroch and Skiera
2002, Liechty et al 2005, Voelckner 2006). Some of these aspects could be included in
the model with small modifications, like the brands and competition (Bonatti 2010).

The methods extend to a variety of applications as the pricing model is an instance
of a general model of incomplete information. The pricing model is also a Stackelberg
game and these games offer possible extensions and applications to the methods. The
requirement, for the learning approach is that the situation is repeated. This allows
the players to learn about each other’s preferences and make the adjustment to their

actions.
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One interesting future research direction is applying the methods to real-life prob-
lems. This means modifying the model and matching the available data to the model.
One important aspect of the problem is data collection and data mining (Chen et al
1996, Kantardzic 2002), i.e., the extraction of patterns from possibly huge data sets.
Take, for example, Google who collects enormous data sets from visitors. This data can
be used in finding current trends, customer segmentation, or creating personalized ads

based on Internet usage and spatial information.

Another research direction is to study further the computational questions that were
raised in Papers [III] and [IV]. What are good algorithms and heuristics to solve the
multidimensional pricing problem when all customer data is available and what about
when the firm has limited information? The model could also be modified to include,
e.g., inventory, capacity and integer constraints. It may, for example, be that some
quality dimensions in the pricing problem have only few possible quality levels, and this
could be modeled with mixed integer nonlinear programming framework. Moreover,
it would be interesting to study real-time and nonlinear pricing as an alternative to
combinatorial auctions (Sandholm 2002, de Vries and Vohra 2003).

References

Abreu D, Pearce D, Stacchetti E (1986) Optimal cartel equilibria with imperfect moni-
toring. Journal of Economic Theory 39(1):251-269

Abreu D, Pearce D, Stacchetti E (1990) Toward a theory of discounted repeated games
with imperfect monitoring. Econometrica 58(5):1041-1063

Adams WJ, Yellen JL (1976) Commodity bundling and the burden of monopoly. The
Quarterly Journal of Economics 90(3):475-498

Adida E, Perakis G (2006) A robust optimization approach to dynamic pricing and
inventory control with no backorders. Mathematical Programming 107(1):97-129

Akerlof GA (1970) The market for "lemons": Quality uncertainty and the market mech-
anism. The Quarterly Journal of Economics 84(3):488-500

Andersson T (2005) Profit maximizing nonlinear pricing. Economic Letters 88(1):135-
139

17



Andersson T (2008) Efficiency properties of non-linear pricing schedules without the
single-crossing condition. Economic Letters 99(2):364-366

Araujo A, Moreira H (1999) Adverse selection problems without the single crossing

property, econometric Society World Congress 2000 Contributed Papers 1874
Armstrong M (1996) Multiproduct nonlinear pricing. Econometrica 64:51-75

Armstrong M (1999) Price discrimination by a many-product firm. The Review of Eco-
nomic Studies 66:151-168

Armstrong M (2006) Recent developments in the economics of price discrimination. In:
Blundell R, Newey WK, Persson T (eds) Advances in Economics and Econometrics:
Theory and Applications, Ninth World Congress vol. 2, Cambridge University Press,
chap 4, pp 97-141

Armstrong M (2008) Price discrimination. In: Buccirossi P (ed) Handbook of Antitrust
Economics, MIT Press, chap 12, pp 433-468

Armstrong M, Rochet JC (1999) Multi-dimensional screening: A user’s guide. European
Economic Review 43:959-979

Armstrong M, Vickers J (2000) Multiproduct price regulation under asymmetric infor-
mation. The Journal of Industrial Economics 48(2):137-160

Arrow KJ (1963) Uncertainty and the welfare economics of medical care. The American
Economic Review 53(5):941-973

Balvers RJ, Cosimano TF (1990) Actively learning about demand and the dynamics of
price adjustment. The Economic Journal 100(402):882-898

Baron DP, Myerson RB (1982) Regulating a monopolist with unknown costs. Econo-
metrica 50:911-930

Basov S (2005) Multidimensional Screening. Springer

Bertsekas DP (2005) Dynamic Programming and Optimal Control. Athena Scientific,

Belmont, Massachusetts

Bertsimas D, Perakis G (2006) Dynamic pricing: A learning approach. In: Lawphong-
panich S, Hearn DW, Smith MJ (eds) Mathematical and Computational Models for
Congestion Charging, vol 101, Springer US, pp 45-79

18



Bischi GI, Sbragia L, Szidarovszky F (2008) Learning the demand function in a repeated

cournot oligopoly game. International Journal of Systems Science 39(4):403-419

Black F, Scholes M (1973) The pricing of options and corporate liabilities. The Journal
of Political Economy 81(3):637-654

Bolkhovitinov NN (2003) The sale of alaska: A russian perspective. Polar Geography
27(3):254-267

Bolton P, Dewatripont M (2005) Contract Theory. MIT Press

Bonatti A (2010) Brand-specific tastes for quality, mIT Sloan School of Management,

Massachusetts Institute of Technology, working paper

Braden DJ, Oren SS (1994) Nonlinear pricing to produce information. Marketing Science
13:310-326

Brooks CH, Gazzale RS, Das R, Kephart JO, Mackie-Mason JK, Durfee EH (2002)
Model selection in an information economy: Choosing what to learn. Computational
Intelligence 18:566-582

Camerer CF (2003) Behavioral Game Theory: Experiments in Strategic Interaction.

Princeton University Press

Carlier G (2002) Nonparametric adverse selection problems. Annals of Operations Re-
search 114:71-82

Carroll L (1871) Through the Looking-Glass, and What Alice Found There (author:
Dodgson C. L.). Macmillan

Chen MS, Han J, Yu PS (1996) Data mining: An overview from a database perspective.
IEEE Transactions on Knowledge and Data Engineering 8(6):866-883

Conitzer V, Sandholm T (2002) Complexity of mechanism design. In: Proceedings of
the 18th Annual Conference on Uncertainty in Artificial Intelligence (UAI-02), pp
103-111

Dash RK, Jennings NR, Parkes DC (2003) Computational-mechanism design: A call to
arms. IEEE Intelligent Systems: Special Issue on Agents and Markets 18:40-47

Dobson G, Kalish S (1988) Positioning and pricing a product line. Marketing Science
7(2):107-125

19



Edlin AS, Shannon C (1998) Strict single crossing and the strict spence-mirrlees condi-

tion: A comment on monotone comparative statics. Econometrica 66(6):1417-1425

Ehtamo H, Kitti M, Himéldinen RP (2002) Recent studies on incentive design problems.
In: Zaccour G (ed) Optimal Control and Differential Games, Essays in Honor of
Steffen Jorgensen, Advances in Computational Management Science 5, Kluwer, pp
121-134

Elmaghraby W, Keskinocak P (2003) Dynamic pricing in the presence of inventory con-
siderations: Research overview, current practices, and future directions. Management
Science 49(10):1287-1309

Fudenberg D, Levine DK (1999) The Theory of Learning in Games. MIT Press, Cam-
bridge

Garcia A, Campos-Nanez E; Reitzes J (2005) Dynamic pricing and learning in electricity
markets. Operations Research 53(2):231-241

Green EJ, Porter RH (1984) Noncooperative collusion under imperfect price information.
Econometrica 52(1):87-100

Grossman SJ, Hart OD (1983) An analysis of the principal-agent problem. Econometrica
51(1):7-46

Harris M, Raviv A (1981) A theory of monopoly pricing schemes with demand uncer-
tainty. The American Economic Review 71(3):347-365

Harsanyi JC (1967-1968) Games with incomplete information played by "bayesian’ play-
ers, part i-iii. Management Science 14(3,5,7):159-182,320-334,486-502

Holmstrom B (1979) Moral hazard and observability. The Bell Journal of Economics
10(1):74-91

Holmstrom B (1982) Moral hazard in teams. The Bell Journal of Economics 13(2):324—
340

Hotelling H (1929) Stability in competition. The Economic Journal 39(153):41-57

Hurwicz L (1960) Optimality and informational efficiency in resource allocation pro-
cesses. In: Arrow KJ, Karlin S, Suppes P (eds) Mathematical Methods in the Social

Sciences, Stanford University Press

20



Hurwicz L (1972) On informationally decentralized systems. In: Radner R, B MC (eds)

Decision and Organization, North-Holland, Amsterdam

Hurwicz L (1973) The design of mechanisms for resource allocation. The American
Economic Review 63(2):1-30

Hurwicz L, Radner R, Reiter S (1975) A stochastic decentralized resource allocation
process: Part i. Econometrica 43(2):187-221

Ivaldi M, Martimort D (1993) Competition under nonlinear pricing. Annales d’Economie
et de Statistique 34:71-114

Jain DC, Muller E, Vilcassim NJ (1999) Pricing patterns of cellular phones and
phonecalls: A segment-level analysis. Management Science 45(2):131-141

Kantardzic M (2002) Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-
IEEE Press

Karlin S, Carr CR, (1962) Prices and optimal inventory policies. In: Arrow KJ, Karlin
S, Scarf H (eds) Applied Probability and Management Science, Stanford University

Press

Keller G, Rady S (1999) Optimal experimentation in a changing environment. The
Review of Economic Studies 66(3):475-507

Kitti M (2010) Convergence of iterative tatonnement without price normalization. Jour-
nal of Economic Dynamics and Control 34(6):1077-1091

Kitti M, Ehtamo H (2009) Adjustment of an affine contract with a fixed-point iteration.
Journal of Optimization Theory and Applications 140(3):477-497

Klemperer PD, Meyer MA (1989) Supply function equilibria in oligopoly under uncer-
tainty. Econometrica 57(6):1243-1277

Lazear EP (1986) Retail pricing and clearance sales. The American Economic Review
76(1):14-32

Liechty JC, Fong DK, DeSarbo WS (2005) Dynamic models incorporating individual
heterogeneity: Utility evolution in conjoint analysis. Marketing Science 24(2):285-293

Mas-Colell A, Whinston MD, Green JR (1995) Microeconomic Theory. Oxford Univer-

sity Press

21



Maskin E, Riley J (1984) Monopoly with incomplete information. Rand Journal of Eco-
nomics 15:171-196

McAfee RP, McMillan J (1988) Multidimensional incentive compatibility and mechanism
design. Journal of Economic Theory 46:335-354

McConnell JD (1968) Effect of pricing on perception of product quality. Journal of
Applied Psychology 52(4):331-334

Merton RC (1973) Theory of rational option pricing. The Bell Journal of Economics
and Management Science 4(1):141-183

Mirrlees JA (1971) An exploration in the theory of optimum income taxation. Review
of Economic Studies 38:175-208

Mussa M, Rosen S (1978) Monopoly and product quality. Journal of Economic Theory
18:301-317

Myerson RB (1981) Optimal auction design. Mathematics of Operations Research 1981:6
Nagle T (1984) Economic foundations of pricing. The Journal of Business 57(1):S3-S26

Nahata B, Kokovin S, Zhelobodko E (2001) Self-selection under non-ordered valuations:
type-splitting, envy-cycles, rationing and efficiency, department of Economics, Uni-

versity of Louisville, working paper

Nahata B, Kokovin S, Zhelobodko E (2003) Package sizes, tariffs, quantity discounts

and premiums, department of Economics, University of Louisville, working paper

Nahata B, Kokovin S, Zhelobodko E (2004) Solution structures in non-ordered discrete
screening problems: Trees, stars and cycles, department of Economics, University of

Louisville, working paper

Nahata B, Kokovin S, Zhelobodko E (2006) Efficiency, over and underprovision in pack-
age pricing: How to diagnose?, department of Economics, University of Louisville,

working paper

Nisan N, Ronen A (2001) Algorithmic mechanism design. Games and Economic Behavior
35:166-196

Oren S, Smith S, Wilson R (1985) Capacity pricing. Econometrica 53(3):545-566

22



Oren SS, Wilson RB (1983) Competitive nonlinear tariffs. Journal of Economic Theory
29(1):49-71

Palfrey TR (1983) Bundling decisions by a multiproduct monopolist with incomplete
information. Econometrica 51(2):463-484

Phlips L (1988) Price discrimination: A survey of the theory. Journal of Economic
Surveys 2(2):135-167

Pigou AV (1932) The Economics of Welfare. London: Macmillan

Riley JG (2001) Silver signals: Twenty-five years of screening and signaling. Journal of
Economic Literature 39(2):432-478

Riley JG, Samuelson WF (1981) Optimal auctions. The American Economic Review
71:381-392

Rochet JC, Chone P (1998) Troning, sweeping, and multidimensional screening. Econo-
metrica 66:783-826

Rochet JC, Stole LA (2003) The economics of multidimensional screening. In: Dewa-
tripont M, Hansen LP, Turnovsky SJ (eds) Advances in Economics and Econometrics
1, Cambridge University Press, pp 105-197

Ross SA (1973) The economic theory of agency: The principal’s problem. The American
Economic Review 63(2):134-139

Résidnen M, Ruusunen J, Himéldinen RP (1997) Optimal tariff design under consumer

self-selection. Energy Economics 19:151-167

Sandholm T (2002) Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence 135(1-2):1-54

Sandholm T (2007) Perspectives on multiagent learning. Artificial Intelligence 171:382—
391

Spence AM (1977a) Entry, capacity, investment, and oligopolistic pricing. The Bell Jour-
nal of Economics 8(2):534-544

Spence M (1973) Job market signaling. The Quarterly Journal of Economics 87(3):355—
374

23



Spence M (1977b) Nonlinear prices and economic welfare. Journal of Public Economics
8:1-18

Spence MA (1980) Multi-product quantity-dependent prices and profitability con-
straints. The Review of Economic Studies 47:821-841

Stigler GJ (1961) The economics of information. The Journal of Political Economy
69(3):213-225

Stigler GJ (1963) United states v. loew’s inc.: A note on block-booking. Supreme Court
Review 152:152-157

Stiglitz JE (1975) The theory of "screening," education, and the distribution of income.
The American Economic Review 65(3):283-300

Stiglitz JE (1977) Monopoly, non-linear pricing and imperfect information: The insur-
ance market. The Review of Economic Studies 44(3):407-430

Stiglitz JE (2002) Information and the change in the paradigm in economics. The Amer-
ican Economic Review 92(3):460-501

Stiglitz JE, Weiss A (1981) Credit rationing in markets with imperfect information.

American Economic Review 71:393-410

Stole LA (2007) Price discrimination and competition. In: Armstrong M, Porter R (eds)
Handbook of Industrial Organization, vol. 3, North-Holland, Amsterdam, chap 34, pp
2221-2299

Tesauro G, Kephart JO (2002) Pricing in agent economies using multi-agent g-learning.
Autonomous Agents and Multi-Agent Systems 5:289-304

Vickrey WS (1952) The revision of the rapid transit fare structure of the city of new
york. New York: Mayor’s Committee on Management Survey of the City

Voelckner F (2006) An empirical comparison of methods measuring consumers’ willing-

ness to pay. Marketing Letters 17:137-149

de Vries S, Vohra RV (2003) Combinatorial auctions: A survey. Informs Journal of
Computing 15(3):284-309

Wertenbroch K, Skiera B (2002) Measuring consumers’ willingness to pay at the point
of purchase. Journal of Marketing Research 39(2):228-241

24



Wilson R (1991) Multiproduct tariffs. Journal of Regulatory Economics 3:5-26

Wilson R (1995) Nonlinear pricing and mechanism design. In: Amman H, Kendrick D,
Rust J (eds) Handbook of Computational Economics 1, Elsevier, pp 249-289

Wilson RB (1993) Nonlinear Pricing. Oxford University Press

25



