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Abstract 

The value of a gas fired power depends on the spark spread, defined as the difference between 

the price of electricity and the cost of gas used for the generation of electricity. We model the 

spark spread using a two-factor model, allowing mean-reversion in short-term variations and 

uncertainty in the equilibrium price to which prices revert. We analyze two types of gas 

plants: peak and base load plants. A peak load plant generates electricity when spark spread 

exceeds emission costs, whereas a base load plant generates electricity at all levels of spark 

spread. A base load plant can be upgraded to a peak load plant. First, we find the upgrading 

threshold for a base load plant. The upgrading threshold gives the optimal type of gas plant 

as a function of spark spread. Second, we calculate building threshold for the investment 

costs. When the investment costs are below the threshold it is optimal to build the plant with 

the previously solved optimal technology. In the numerical example, we illustrate how our 

model can be used when investments in gas fired power plants are considered. 
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1 Introduction 

We study flexibility in the choice of technology regarding investments in gas fired power 

plants. The model is motivated by the advances in combined cycle gas turbine (CCGT) 

technology, and the emergence of energy commodity markets worldwide. It has been 

customary for investors holding licenses to build gas fired power plants to plan as if the plants 

are to be run around the clock, year round. The reason for this is that gas is often purchased 

on long-term physical take-or-pay contracts. However, the gas market is being liberalized, and 

in the future we expect a more market-oriented and flexible gas supply system. 

 

The value of a gas fired power plant depends on the spark spread, defined as the difference 

between the price of electricity and the cost of gas used for the generation of electricity. The 

cash flows of an operating gas fired power plant are given by the spark spread less operational 

and emission costs. If the emission costs exceed the spark spread some losses can be avoided 

by ramping down the plant. When the plant is ramped down only operational costs remain. 

We assume that there are two technologies for a gas fired power plant. A base load plant 

produces electricity independent of the spark spread and emission costs. The inflexibility of a 

base load plant can be caused by constraints in the gas inflow. If a plant is ramped down, but 

the gas inflow cannot be changed, the gas will be lost. Thus, it is never optimal to ramp down 

a plant with a rigid gas supply system. A peak load plant is ramped up and down according 

to price changes. Due to the ramping the peak load plant’s operational costs are higher. Base 

load plants can often be upgraded to peak load plants. 

 

We take a viewpoint of an investor holding a license to build a gas fired power plant and 

study following questions. Should the plant be operated as a peak or as a base load plant? 

When should the base load plant be upgraded to a peak load plant? How low should the 

investment costs be in order to entice an investment at the current level of spark spread? 

Valuation of gas fired power plants has been studied in Deng et al. (2001). Our model makes 

several extensions to their model. First, we take into account the option to postpone the 

investment decision. Such postponement option analysis originates from the work of 

McDonald and Siegel (1986). Second, our study considers the flexibility in the choice of 

production technology. He and Pindyck (1992) study the output flexibility for a firm having 
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two possible products to produce. Brekke and Schieldrop (2000) study the input flexibility in 

a power plant when the plant can be either gas or oil fired. In our case, the flexibility is in the 

choice of production strategy, not in the choice of input or output.  

 

A number of authors have argued that mean-reverting price processes, instead of geometric 

Brownian motion based models, are more appropriate for commodities (see, e.g., Laughton 

and Jacoby 1993 and 1995, Cortazar and Schwartz, 1994, and Smith and McCardle, 1999). 

Schwartz and Smith (2000) develop a two-factor model where the short-term deviations are 

modeled with a mean-reverting process and the equilibrium price evolves according to a 

Brownian motion. We use a similar two-factor model for the spark spread. The short-term 

deviations reflect non-persistent changes, for example, changes in the demand resulting from 

variations in the weather. The equilibrium price reflects fundamental changes that are 

expected to persist, for example, expectations regarding the discovery of natural gas. Other 

two-factor models with long- and short-term factors include, among others, Ross (1997) and 

Pilipović (1998). 

 

Deng et al. (2001) use separate price processes for electricity and gas. Instead of modeling the 

electricity and gas prices separately, we model the spark spread process directly. By using the 

spark spread process we have a single reference price process for gas fired power plant 

investments. When electricity and gas processes are used there is no such reference price. 

When separate price processes are used the spark spread variance can be a function of 

electricity and gas prices, whereas when spark spread model is used this is not possible, as 

electricity and gas prices are not observed. This means that we may loose some information 

about the spark spread’s uncertainty structure compared to models with separate electricity 

and gas price processes. In Section 6 we compare the numerical gas plant values obtained by 

the two approaches. The results indicate that, with our data, the difference is small. 

 

The decision to upgrade a base load plant to a peak load plant is not affected by the 

previously made decision to build a base load plant. Thus, we first calculate the upgrading 

threshold, which gives the optimal type of gas plant as a function of spark spread. Second, we 

use the upgrading threshold to find the threshold for the investment costs. If the investment 

costs are above the investment cost threshold it is optimal to postpone the building decision. 

3 



 

An increase in the variability of spark spread increases the value of up and down ramping 

making a peak load plant the more valuable choice. On the other hand, uncertainty also 

delays investments (see, e.g. Dixit and Pindyck, 1994). In the numerical example we illustrate 

how our model can be used to measure the relative strengths of these opposite effects. In our 

example, an increase in short-term variations makes a peak load plant more attractive, 

whereas an increase in long-term uncertainty makes base load plant more favorable by 

postponing the upgrading decision. We also study how the change in the upgrading decision 

affects the investment cost threshold. Our sensitivity analysis illustrates that both upgrading 

and building decisions are highly dependent on the peak load plant’s operational costs and 

spark spread’s uncertainty structure. 

 

The paper is organized as follows. Our spark spread dynamics are introduced in Section 2 and 

in Section 3 the price data together with the method to estimate the process parameters are 

presented. The basic valuation formulas for the plant values and investment options are given 

in Section 4. The optimal technology and thresholds for investment costs and upgrading are 

computed in Section 5. The model is illustrated with an example in Section 6. Section 7 

concludes the study. 

 

2 Spark spread process  

The contribution margin of a gas fired power plant is measured by spark spread, which is 

defined as the difference between the price of electricity  and the cost of gas eS gS  used for 

the generation of electricity 

  S S .  (1) e HK S= − g

The heat rate  is the amount of gas required to generate 1 MWh of electricity. Heat rate 

measures the efficiency of the gas plant: the lower the heat rate, the more efficient the 

facility. The efficiency of a gas fired power plant varies slightly over time and with the output 

level. Still, the use of a constant heat rate is considered plausible for long-term analyses (see, 

e.g., Deng et al., 2001). 

HK
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The current electricity and gas prices do not independently affect the value of a gas fired 

power plant. Thus, instead of modeling electricity and gas prices we model their difference. 

Traditionally, log-normal distributions are used to model non-negative prices. We use 

following dynamics to model the difference of two positive prices. Our spark spread dynamics 

do not follow from the difference of two log-normally distributed price processes, however it 

has similar characteristics, namely it can have negative and positive values. 

ASSUMPTION 1. The spark spread is a sum of short-term deviations and equilibrium price 

  S t( ) ( ) ( )t tχ ξ= + ,  (2) 

where the short-term deviations χ  are assumed to revert toward zero following an Ornstein-

Uhlenbeck process 

  d t( ) ( ) ( )t dt dB tχ χχ κχ σ= − + .  (3) 

The equilibrium price ξ  is assumed to follow an arithmetic Brownian motion process 

  ( )d ( )t dt dB tξ ξ ξξ µ σ= + .  (4) 

Parameters  , κ χσ , ξµ , and  ξσ  are constants and ( )Bκ ⋅ and ( )Bξ ⋅  are standard Brownian 

motions, with correlation dt dBdBχ ξρ =  and information . tF

 

An increase in the spark spread attracts high cost producers to the market, putting downward 

pressure on prices. Conversely, when prices decrease some high cost producers will withdraw 

capacity temporarily, putting upward pressure on prices. As these entries and exits are not 

instantaneous, prices may be temporarily high or low, but will tend to revert toward 

equilibrium price ξ . The mean-reversion parameter κ  describes the rate at which the short-

term deviations χ  are expected to decay. The uncertainty in the equilibrium price is caused 

by the uncertainty in the fundamental changes that are expected to persist. For example, 

advances in gas exploration and production technology, changes in the discovery of natural 

gas, improved gas fired power plant technology, and political and regulatory effects can cause 

changes to the equilibrium price. Other models where the two-factors are interpreted as short- 

and long-term factors are, for example, Schwartz and Smith (2000), Ross (1997), and 

Pilipović (1998). 

 

Seasonality in electricity and gas supply and demand combined with limited storage 

opportunities cause seasonality into electricity and gas prices. As electricity and gas are often 

5 



used for the same purposes, such as heating or cooling, their seasonal variations have similar 

phases and thus the seasonality decays from the spark spread. The seasonality in the spark 

spread process can be modeled by including a deterministic seasonality function to (2). In 

Section 3 our analyses of the spark spread data suggest that there are no seasonal variations 

in the spark spread, so we do not include a seasonality function. The following corollary states 

the distribution of the future spark spread values. 

COROLLARY 1. When spark spread has dynamics given in (2)-(4), prices are normally 

distributed, and the expected value and variance, at time t, are given by 

   (5) [ ] ( )( ) | e ( ) ( ) ( )T t
tE S T t t T tκ

ξχ ξ µ− −= + + −F

 ( ) ( ) ( )
2

2 ( ) 2 ( )( ) 1 e ( ) 2 1 e
2

T t T tVar S T T tχ χ ξκ κ
ξ

σ ρ
σ

κ κ
− − − −= − + − + −

σ σ
.  (6) 

PROOF: See, e.g. Schwartz and Smith (2000). 

Corollary 1 states that the spark spread is a sum of two normally distributed variables: 

equilibrium price and short-term variations. The expected value of short-term variations 

converges to zero as the maturity T  increases and thus the expected value of the spark 

spread converges to the expected value of the equilibrium price. The mean-reversion 

parameter  describes the rate of this convergence. The maturity in which short-term 

deviations are expected to halve is given by 

t−

κ

  
( )

1 2

ln 0.5
κ

T = − .  (7) 

The variance of the spark spread process is independent of the electricity and gas prices. 

When prices are modeled with log-normal distributions the variance is an increasing function 

of price. Thus, when the spark spread is modeled as a difference of two log-normal prices its 

variance varies depending on the electricity and gas prices. For instance, consider a situation 

that the electricity and gas prices are high and the spark spread is zero. In this case the value 

is zero and the uncertainty is large. On the other hand, the spark spread can be also zero 

when both of the prices are small. This time the value of the spark spread is the same but the 

uncertainty is small. In our example data, introduced in Section 3, there is some indication 

the spark spread variance increases as a function of electricity and gas prices. Our price 

process in Assumption 1 does not capture this variation in spark spread variance as a function 

of electricity and gas prices. Nevertheless, our numerical example, in Section 6, illustrates that 

the difference in plant values calculated with our spark spread process and two log-normally 

distributed price processes is small. 
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Note that even though we loose some information when using the spark spread process its use 

is beneficial. It enables a more thorough and intuitive description of the investment decision 

process. When the plant value is a function of both electricity and gas prices, there is no 

single reference price for building and upgrading decision and thus the analysis of these 

decisions becomes a much more complicated two-dimensional problem. 

 

3 Data and process estimation 

Neither the short-term deviations χ  nor the equilibrium price ξ  are directly observable, 

however, they can be estimated from forward prices. A forward price is the risk-adjusted 

expected future spark spread value and thus forward prices can be used to infer the risk 

adjusted dynamics of short-term deviations and equilibrium price. The expected short-term 

variations decrease to zero when the maturity increases and thus the long-maturity forwards 

give information about the equilibrium price. When the maturity is short the short-term 

variations have not yet converged to zero. Thus, the difference of long- and short-maturity 

forwards gives information about the short-term dynamics. Our Kalman filter based 

estimation method for spark spread parameters is based on this simple idea. Before going to 

the details of the estimation method, let us introduce our electricity and gas data. 

 

We use a price history of forward contracts over a four year time period starting at the 2nd of 

January 2001 and ending at the 30th of January 2004. For short-maturity forwards we use 

monthly forward contracts with 1-month maturity, whereas the long-maturity contracts are 

three year contracts with 1-year maturity. The electricity data, obtained from Nord Pool 

(The Nordic Power Exchange), is graphed in the upper picture of Figure 1. The currency used 

in Nord Pool is Norwegian krone (NOK), whose exchange rate is around 7 NOK/USD. The 

natural gas data, obtained from International Petroleum Exchange (IPE), is given in the 

lower picture of Figure 1. The short-maturity forwards are the black lines and the grey lines 

are the long-maturity forwards. Figure 1 indicates how the values of short-maturity forwards 

vary more than the values of long-maturity forwards. For example, during the so-called 

Scandinavian power crisis in December 2002 and January 2003 the highest quote of 1-month 

electricity forward was as high as 770 NOK/MWh but at the same time the highest quote of 

1-year forward was only 256 NOK/MWh. Thus, the market did not expect high prices to last 
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long. Similar patterns can be seen in the gas prices, for example in January 2002. The smaller 

volatility in the long-term forwards is typical for commodity prices (see, e.g., Schwartz, 1997), 

and it means that the price process contains short-term fluctuations which are expected to 

disappear. Thus, the decreasing volatility as a function of maturity can be seen as a 

consequence of the mean-reversion in the spot price process. Figure 1 also indicates that both 

the electricity and gas prices have seasonality. The 1-month prices tend to be high during the 

winter months and low during the summer months. 

[Figure 1 about here] 

 

Figure 2 graphs the time series of 1-month and 1-year spark spread forwards calculated from 

the data in Figure 1. We calculate the spark spread process for a new combined cycle gas 

turbine (CCGT) whose efficiency is 58.1%, i.e. we use a heat rate HK = 1.72. The natural gas 

forwards are quoted in GBP/therm, where one therm is equal to 29.3071 kWh. From 2001 to 

2004 the exchange rate has varied between 11-13 NOK/GBP. The spark spread process is 

calculated from gas prices in the UK and electricity prices in Norway and in the calculation 

the transportation costs between the two locations are omitted. It is estimated that the 

transportation costs for natural gas between Norway and UK is around 0.15NOK/Sm3, where 

one Sm3 is equal to 9.87kWh As there is natural gas in Norwegian continental shelf, this 

means that we under estimate the spark spread by around 26 NOK/MWh for a plant at a 

Norwegian terminal. 

[Figure 2 about here] 

 

The mean-reversion in electricity and gas prices leads to mean-reversion in spark spread. The 

seasonality in the electricity and natural gas prices has decayed from the spark spread 

process. For example, during year 2001 the spark spread was at the lowest in winter but 

increased towards the summer, while in 2003 it was the reverse. In Figure 3 the seasonality in 

the spark spread is analyzed by computing the autocorrelations of the changes in the monthly 

average prices of 1-month forwards. In Figures 3 and 4 we use seven year time series, starting 

at 31st of January 1997, for 1-month forwards. In the parameter estimation the longer time 

series can not be used as IPE did not quote long-term natural gas forwards before 2001. In 

Figure 3 the gas process, indicated by the black dashed line, and the electricity process, 

indicated by the black line, have a clear correlation between observations that are 12 months 
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apart. In the spark spread process, indicated by the grey line, this kind of correlation does not 

exist. This justifies our decision to use a non-seasonal spark spread process. 

[Figure 3 about here] 

 

In Figure 4 we illustrate the absolute values of spark spread changes as a function of 

electricity and gas prices. Figure 4 illustrates that the electricity and gas prices are positively 

correlated. This can also be seen in Figure 1 where electricity prices tend to be high when gas 

prices are high. The 95% confidence interval for correlation between electricity and gas prices 

is [0.54; 0.57]. Figure 4 also indicates that the variations in spark spread are greater when the 

electricity and/or gas prices are high. The confidence intervals for the correlation between 

electricity price and absolute value of spark spread change is [0.52; 0.58], whereas for gas price 

it is [0.18; 0.27]. As discussed in previous section, our model does not capture the changes in 

the spark spread variance as a function of electricity and gas prices. In Section 6 we illustrate 

how this simplification affects the peak and base load plant values. 

[Figure 4 about here] 

 

Next we outline a method to estimate the spark spread parameters. We operate in discrete 

periods , where N is the number of price observations. The price observations are 

denoted by , where  denotes the price of a forward contract with maturity 

1,..,i =

=

N


1 2,T T
i i iy S S

1T
iS

{ }1,2jT ∈  at period { }1,i∈ ..,N . For example, in Figures 1 and 2 the maturities are one month 

and one year and the periods are all trading days between the 2nd of January 2001 and the 

30th of January 2004. The time difference between observations  and  is iy 1iy − it∆ . The 

forward prices  and  can be seen as observations depending on unobservable state 

variables, which are the short-term fluctuation 

1T
iS 2T

iS

iχ  and equilibrium price iξ , denoted by 

[ ],ix i iχ ξ= . A Kalman filter is a recursive procedure for computing estimates for unobserved 

state variables based on observations that depend on these state variables. A thorough survey 

of Kalman filtering techniques is given, for example, in Harvey (1989). Schwartz and Smith 

(2000) use a Kalman filter to estimate parameters for two-factor spot price process from oil-

linked forward prices. Our method follows their guidelines with a different price process and 

with non-constant time periods. From Assumption 1 we obtain transition equation for the 

state variables 

  1 1,..,i i i i ix c G x for all i Nω− + == + ,  (8) 
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where  

  c   (9) 0,i ξµ= ∆ it 

  G =  .  (10) 
0

0 1

it

i
e κ− ∆ 

 

The serially uncorrelated normally distributed disturbance vectors iω  have zero expected 

value and the following covariance matrix 

  ( )
( ) ( )

( )

2
2

, ,
2

1 1
2

1
2

i i

i i

i

t t

t t
t

i

e e
W

e t

2Cov

χ χ ξκ κ

χ ξκ
ξ

σ ρσ σ
κχ ξ

ρσ σ
σ

κ

− ∆ − ∆

∆ ∆

− ∆

 
− − 

= =
 

− ∆ 
 

κ  .  (11) 

The measurement equation, describing the relationship between the state variables 

[ ],i ix iχ ξ=  and price observations 1 2,T T
i i iy S S =   , follows from Corollary 1 

  y d ,  (12) 1,..,i iFx for all i N= + =

where  

  d T   (13) 1 2, Tξ ξµ µ=  

  F =  .  (14) 
1

2

1
1

T

T

e
e

κ

κ

−

−

 

 

With the transition equation (8) and measurement equation (12) the likelihood function of a 

given parameter set , , , ,χ ξµ κ ρ σ σ  with a prior mean and covariance matrix can be derived as 

in Harvey (1989, Chapter 3). For the maximum likelihood estimation initial values for the 

parameters together with prior mean and covariance are needed. We reran the optimization 

routine from a variety of initial values and the parameters did not appear to be very sensitive 

to changes in the initial values. In Figure 5 the estimated spot price process t tχ ξ+  over the 

estimation interval, i.e. 2nd of January 2001 through the 30th of January. 2004, is indicated 

with a black solid line. The grey line represents the estimated equilibrium price tξ . The 

equilibrium price varies less than the spot price, whose variation is also affected by the short-

term fluctuations. 

 

The maximum likelihood optimization gives the parameters describing the past realizations of 

spark spread forwards. In the valuation we want to use price dynamics that describe the 

future expectations of spark spread. In Figure 5 the grey vertical lines after the 30th of 
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January 2004 represent the forward prices on that date. The forward prices give the risk 

adjusted future spark spread estimates, which differs from the true expected spark spread by 

the market price of risk. Thus by selecting the spark spread process so that it describes the 

forward prices as well as possible we get a price process which describes the risk adjusted 

future spark spread expectations. With linear regression we get that the drift in the long term 

forwards is 2.18 NOK/MWh. By using this long-term drift and mean-reversion 2.6κ = , 

estimated from the price history, we get the current equilibrium price 0 62.3ξ = NOK/MWh 

and short-term deviation 0 52.9χ = NOK/MWh. In Figure 5 the risk-adjusted expected future 

spark spread and its 68% confidence level are indicated by black solid and dashed lines. The 

expected value and confidence levels are calculated with Corollary 1. The expected value 

decreases rapidly during the first few months as the expected value of current short-term 

deviation converges to zero. 

[Figure 5 about here] 

 

Let us summarize our parameter estimation. First, we estimate mean-reversion , correlation κ

ρ , and volatility ,χ ξσ σ  parameters from the forward price history with the Kalman filtering 

procedure. Second, the long-term drift ξµ  is estimated from the long-term forwards. Third, 

current equilibrium price 0ξ  and short-term deviation 0χ  are chosen so that the expected 

value matches the whole forward curve. The parameter values are summarized in Table 1. 

 

Table 1: Spark spread parameters 

Parameter κ  ξµ  ρ  χσ  ξσ  0ξ  0χ  

Unit  NOK/MWh  NOK/MWh NOK/MWh NOK/MWh NOK/MWh 

Value 2.6 2.18 -0.21 382.2 47.8 62.3 52.9 

 

 

4 Valuation 

In this section we give the basic valuation formulas. In Section 4.1 the peak and base load 

plant values are given. In Section 4.2 the building and upgrading options are valued. 
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4.1 The plant values 

The following assumption characterizes the two technologies for a gas fired power plant. 

ASSUMPTION 2. A base load plant produces electricity with constant capacity. A peak load 

plant can be ramped up and down without delay. The costs associated with ramping up and 

down can be amortized into operational costs. 

A base load plant produces electricity even if it is unprofitable, whereas a peak load plant can 

be ramped down whenever it is unprofitable to use the plant. In a gas fired power plant, the 

operational and maintenance costs do not vary much over time and the response times are in 

the order of several hours. Thus, we are assuming that the peak load plant is more flexible 

than it really is, but for efficient plants the error in the long-term valuation analysis will be 

small (see, e.g., Deng and Oren, 2003). 

 

For simplicity, we assume that the (nonfuel) operational costs are deterministic. We use a 

constant risk free interest rate r. For every unit of electrical energy generated, the plant must 

pay environmental taxes due to emission of greenhouse gases and other pollutants. This is 

represented by the emission cost E. The following lemma gives the value of a base load plant. 

LEMMA 1. The base load plant value, at time t, is 

 
( ) ( )( )

( ) ( )
( )

( ) ( )
2 2

, , ,

( ) 1( ) ( ) e ( ) ( )e 1

B

T t
r T t r T tB

V t t

r T t Gt t E t t EC
r r r r r r r

ξ

κ
ξξ

χ ξ κ µ

µµχ ξ χ ξ
κ κ

− −
− − − −

=

  − +− − + + − + + − −   + +  
e

, (15) 

where T is the lifetime of the plant, C  is the capacity of the plant, and  are the operational 

costs of a base load plant. 

_

BG

PROOF: The value of a base load plant is the present value of expected cash flows less 

operational costs 

  
( ) ( )( ) [ ]( )( )

( )( )

( )

( ) ( )

, , , ( ) |

( ) ( ) ( )

T
r s t

B t
t

T
r s t s t

B
t

V t t e C E S s E G ds

e C e t t E s t G

ξ

κ
ξ

χ ξ κ µ

χ ξ µ

− −

− − − −

= −

= + − + −

∫

∫

F B

ds

− =

−

.  (16) 

Integration gives (15). Q.E.D. 
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The value of base load plant is just the discounted sum of expected spark spread values less 

emission and operational costs. Thus, the base load plant is not affected by the short-term 

and equilibrium volatilities χσ , ξσ . A peak load plant can react to unexpected changes in the 

spark spread by ramping down when spark spread decreases below emission costs. The 

following lemma gives the value of a peak load plant. 

LEMMA 2. The peak load plant value, at time t, is 

( ) ( )( )
( ) [ ]

( ) [ ]( ) [ ]
( )

( )
2( ( )| )

2 ( )( ) ( )

, , , , , ,

( ) ( ) |
( ) | 1 1 e

2 ( )

t

P

E E S sT
Var S sr s t r T tt P

t
t

V t t

Var S s E E S s GC e e E S s E ds
rVar S s

ξ ξ χχ ξ κ µ σ σ ρ

π

 −  −    − −   − −

=

      −    + − −Φ − −               
∫

F FF

    (17) 

where  is the normal cumulative distribution function, and ( )Φ ⋅ PG  are the operational costs of 

a peak load plant. The expected value E S  and variance [ ( ) | ts F ] ( )( )S sVar  for the spark spread 

are given in Corollary 1. 

PROOF: See Appendix A. 

 

The more the spark spread varies the more valuable is the ability to ramp up and down. 

Thus, the value of a peak load plant increases as a function of spark spread variance. The 

peak load plant value is the discounted sum of expected cash flows minus operational costs 

plus the option value of being able to ramp up and down. Note that the difference of peak 

and base load plant values, i.e. P BV−V , is negative if the value of up and down ramping is 

smaller than the difference of operational costs. The plant values will be illustrated with an 

example in Section 6. 

 

4.2 The investment options 

The following assumption characterizes the variables affecting the building and upgrading 

decision. 

ASSUMPTION 3. The investment decisions are made as a function of equilibrium price. In the 

investment decisions the lifetime of the plant is assumed to be infinite. 
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Assumption 3 states that when building and upgrading are considered the current short-term 

realization is omitted. Thus, investments are not done due to the temporarily spiking spark 

spread. Note that even though the current short-term realization is omitted the short-term 

dynamics, i.e. short-term volatility χσ  and mean-reversion κ , affect the value of a peak load 

plant, which affects building and upgrading decision. Thus, the short-term dynamics affect 

the investment decisions. The omission of the short-term realization is motivated by the fact 

that gas fired power plants are long-term investments. A gas plant investment is never 

commenced due to a non-persistent spike in the price process. This approximation is realistic 

as long as the expected lifetime of the short-term deviations is considerably smaller than the 

expected lifetime of the plant. The mean-reversion parameter κ =2.6, from Table 1, gives 

with (7) that the short-term variations are expected to halve in about three months. Usually, 

the lifetime of a gas fired power plant is assumed to be around 30 years. Thus, the omission of 

the short-term realization in the investment decision gives an realistic approximation of the 

true building and upgrading decisions. The infinite lifetime assumption is motivated by the 

fact that the plant’s lifetime is often increased by upgrading and reconstructions, and by 

downward shifts in the maintenance costs (see, e.g. Ellerman, 1998). 

 

As the building decision can always be postponed, there is a threshold 0Hξ  for the equilibrium 

price below which building is not optimal. The following lemma gives the value of the build 

option when it is not optimal to build the plant, i.e. when 0Hξ ξ< . 

LEMMA 3. The value of an option to build a gas fired power plant is 

  1
0 1 1 0( , , , ) HF A Ae whenβ ξ

ξ ξξ µ σ ξ ξ= < ,  (18) 

where  is an unknown positive parameter. The parameter 1A 1β  is given by 

  
2 2

1 2

2
0

rξ ξ ξ

ξ

µ µ σ

σ

− + +
β = .  (19) >

PROOF: See Appendix B. 

 

The build option value increases exponentially as a function of the equilibrium price. The 

parameter  depends on what type of plant is optimal. A method for finding the parameter 

 is derived in the next section. When a decision to build a base load plant is made, the 

investor receives both the base load plant and an option to upgrade the plant. As the plant’s 

lifetime is assumed to be infinite there is an upgrading threshold 

1A

1A

1Hξ  above which it is not 
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optimal to upgrade. When it is not optimal to exercise the upgrade option, i.e. when 1Hξ ξ> , 

the upgrade option value is given by the following lemma. 

LEMMA 4. The value of an option to upgrade a base load plant to a peak load plant is 

  2
1 2 2( , , , ) 1HF D D e whenβ ξ

ξ ξξ µ σ ξ ξ= >   (20) 

where  is an unknown positive parameter. The parameter 2D 2β  is given by 

  
2 2

2

2
0

rξ ξ ξ

ξ

µ µ σ

σ

− − +
2β = .  (21) <

PROOF: The proof is similar to that of the build option (Appendix B), but now the option 

becomes less valuable as the spark spread increases. On the other hand, it becomes more 

valuable as spark spread decreases. Q.E.D. 

 

The upgrade option value decreases exponentially as a function of the equilibrium price. The 

parameter  depends on the difference of plant values and their operational costs. A method 

for finding the parameter  is derived in the next section. The values gained, if one invests 

in a base load plant, is the plant value plus an option to upgrade, i.e. V , whereas when a 

peak load plant is built, the values gained are only the plant value, i.e. 

2D

2D

1B F+

PV . 

 

5 Investment strategy 

In this section we first derive a method to select the optimal technology for a gas plant. After 

the optimal technology is known we calculate building threshold for the investment costs. 

When the investment costs are below the threshold it is optimal to build a plant with the 

previously selected technology. We also calculate an upgrading threshold for the equilibrium 

price. If the equilibrium price decreases to the upgrading threshold, it is optimal to upgrade a 

base load plant to a peak load plant. 

 

Let us start by considering the choice of technology. A company owning a base load plant has 

an option to upgrade the plant to a peak load plant. Lemma 4 states that the upgrade option 

has an upgrading threshold above which it is optimal to wait. Once the equilibrium price 

decreases to the upgrade threshold, upgrading becomes optimal. The following proposition 

gives the upgrading threshold and the value of the upgrade option. 
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PROPOSITION 1. The upgrading threshold 1Hξ  is given by the following equation  

( ) 1 1
1 1 2

(0, , , , , , ) (0, , , )
(0, , , , , , ) (0, , , ) P H B H

P H B H

V V
V V ξ ξ χ ξ

ξ ξ χ ξ

ξ κ µ σ σ ρ ξ κ µ
ξ κ µ σ σ ρ ξ κ µ β

ξ ξ
∂ ∂

− = −
∂ ∂

. 

    (22) 

Once the upgrading threshold is known the value of the upgrade option can be written as 

( ) ( )2 1
1 1 1 1( , , , , , , ) (0, , , , , , ) (0, , , ) H

1H P H B HF V V e wβ ξ ξ
ξ ξ χ ξ ξ χ ξ Hhenξ ξ κ µ σ σ ρ ξ κ µ σ σ ρ ξ κ µ ξ ξ−= − >

)

. 

    (23) 

PROOF: When the upgrading decision is made, the values lost must be equal to values gained. 

By assumption 3 the threshold is chosen using a current short-term variation of zero 

  F D1 2 1 1 1( , , , ) (0, , , , , , ) (0, , ,H P H B HV Vξ ξ ξ ξ χ ξξ µ σ ξ κ µ σ σ ρ ξ κ µ= − .  (24) 

Also the smooth-pasting conditions must hold when the upgrade option is exercised (for an 

intuitive proof see, e.g., Dixit and Pindyck, 1994 and for a rigorous derivation see Samuelson, 

1965) 

  1 2 1 1 1( , , , ) (0, , , , , , ) (0, , , )H P H B HF D V Vξ ξ ξ ξ χ ξξ µ σ ξ κ µ σ σ ρ ξ κ µ
ξ ξ

∂ ∂ ∂
= −

∂ ∂ ξ∂
.  (25) 

Equations (24) and (25) together with the value of an upgrade option in Lemma 4 give (22) 

and (23). 

   Q.E.D. 

In Proposition 1 we do not include costs for upgrading from base to a peak load plant. This is 

not a simplifying assumption, as the upgrading costs can be represented by peak load plant’s 

extra operational costs whose present value is equal to the investment costs. This is possible 

as the lifetime of the peak load plant is known with certainty. 

 

The value of the upgrade option is not affected by the building costs. When a base load plant 

is built, the investment costs are lost, and thus the upgrading decision is based solely on the 

value of the upgrade option and values gained and lost by upgrading. Equation (23) implies 

that the value of the upgrade option increases as the difference between equilibrium price and 

upgrade threshold decreases. When upgrading is optimal, the value of the upgrade option is 

equal to the values obtained by exercising it, i.e. the difference of peak and base load plant 
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values. The peak load plant value increases as a function of short-term volatility, which 

means that the value of the upgrade option increases as a function of short-term uncertainty. 

Thus, an increase in short-term variations increases the option value. By equation (21) the 

parameter 2β  increases towards zero as the equilibrium uncertainty increases, thus also the 

equilibrium uncertainty increases the upgrade option value.  

 

The upgrade option value indicates the additional value in a base load plant due to the 

possibility to upgrade to a peak load plant. The upgrade option value minus the values gained 

by exercising the option, i.e. 1 P BF V V− + , tells how much more valuable a base load plant with 

a possibility to upgrade is compared to a peak load plant. The choice of optimal technology is 

summarized in the following corollary. 

COROLLARY 2. A base load plant is the optimal technology if the current equilibrium price 0ξ  

and the upgrading threshold 1Hξ  satisfy 

  H1 0ξ ξ< .  (26) 

Correspondingly, when 

  H1 0ξ ξ≥ ,  (27) 

the peak load plant is the optimal technology. 

PROOF: If the current equilibrium price 0ξ  is greater than the upgrading threshold 1Hξ  it is 

optimal to build a base load plant and wait with the upgrading. If the equilibrium price 0ξ  is 

smaller than the upgrading threshold 1Hξ , it is optimal to exercise the upgrade option 

immediately, i.e. to build a peak load plant. Q.E.D.  

 

So far, we have derived the optimal technology for a gas fired power plant and the value of 

the upgrade option. The following proposition gives a threshold for the investment costs as a 

function of equilibrium price. If investment costs are below the threshold, it is optimal to 

build a gas fired power plant with the technology given by Proposition 1 and Corollary 2. 

PROPOSITION 2. When a base load plant is the optimal technology, i.e. when 1H 0ξ ξ< , building 

is optimal if the investment costs satisfy 

0 1 0 1
0 1 0 1

1

(0, , , ) ( , , , , , , ) 1(0, , , ) ( , , , , , , ) B H
B H

V F
I V F ξ ξ ξ

ξ ξ ξ χ

ξ κ µ ξ ξ κ µ σ σ ρ
ξ κ µ ξ ξ κ µ σ σ ρ χ

ξ ξ β
∂ ∂ 

≤ + − + ∂ ∂ 
.

    (28) 
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When the peak load plant is optimal, i.e. when 1H 0ξ ξ≥ , building is optimal if the investment 

costs satisfy 

  0
0

1

(0, , , , , , ) 1(0, , , , , , ) P
P

V ξ ξ χ
ξ ξ χI V

ξ κ µ σ σ ρ
ξ κ µ σ σ ρ

ξ β
∂

≤ −
∂

  (29) 

PROOF: Similar to that of Proposition 1. When the option is exercised, both the value 

matching and smooth-pasting conditions must hold. Q.E.D. 

 

Investing is optimal when the values gained are equal or greater than the values lost. 

Proposition 2 states that building is optimal when investment costs are equal to or smaller 

than the difference of values gained and build option value. The build option value at the 

building threshold is the derivative of values gained, i.e. 1BV F
ξ ξ

∂ ∂
+

∂ ∂
 for a base load plant and 

PV
ξ

∂
∂

 for a peak load plant, divided by the parameter 1β . Equation (19) implies that the 

parameter 1β  decreases towards zero as equilibrium volatility increases, and equation (23) 

gives that the derivative of the upgrade option increases as a function of short-term and 

equilibrium volatility. Thus, the value of the build option increases as a function of both 

equilibrium and short-term volatility. On the other hand, peak load plant and upgrade option 

values increase as a function of equilibrium and short-term volatility. Thus, it is not 

unambiguous how changes in the volatility structure change the investment cost threshold. In 

our numerical example, in Section 6, we illustrate how our model can be used to measure the 

relative strengths of these opposite effects. 

 

The value-matching and smooth-pasting conditions for the upgrade option imply the following 

inequality for the build option 

 1
1

(0, , , ) ( , , ) (0, , , , , , )B P
H

V F V
whenξ ξ ξ ξ ξ χξ κ µ ξ µ σ ξ κ µ σ σ ρ

ξ ξ
ξ ξ ξ

∂ ∂ ∂
+ ≥

∂ ∂ ∂
≥ .  (30) 

The value of a peak load plant in Lemma 2 implies the following inequality 

  
(0, , , , , , )

0PV ξ ξ χξ κ µ σ σ ρ
ξ

∂
>

∂
.  (31) 

Conditions (30) and (31) together with Proposition 2 mean that the value of the investment 

option is always positive, thus investing is never optimal when the investment costs are equal 

to the present values gained by exercising the option. The investment option can be seen as a 
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positive premium needed to cover the risks in the investment’s present value. Condition (30) 

and Proposition 2 imply that this premium is always greater for an investment in a base load 

plant. In other words, when a peak load plant is the optimal technology, the investment cost 

threshold is closer to the present value of the plant. The decrease in the risk premium follows 

from the peak load plant’s ability to react to adverse price changes. 

 

6 Example 

We study a combined cycle gas fired power plant whose maximum capacity is 415 MW. The 

utilization rate of the plant is approximately 90%. Thus, the output capacity is C= 3.27 

TWh/year. We assume that the plant’s CO2 emission costs are 8 $/ton and ignore its 

uncertainty. The CO2 production of a combined cycle gas fired power plant is 363 kg/MWh, 

thus a CO2 emission cost of 8 $/ton corresponds 20.3 NOK/MWh when the exchange rate of 

7 NOK/USD is used. Instead of emitting CO2 one may also consider building equipment 

capturing it, however the current cost of capture technology renders this option unprofitable. 

Undrum et al. (2000) estimate that building a combined cycle gas fired power plant without 

CO2 capture equipment in Norway costs approximately 1620 MNOK. We assume that the 

operational costs of a base load plant are 20 MNOK/year and the operational costs of a peak 

load plant are 80 MNOK/year. Remember that the operational costs of a peak load plant 

contain the augmented upgrading costs. For instance, if it costs 300 MNOK to upgrade a base 

load plant to a peak load plant, the peak load plants operational costs must be increased by 

18 MNOK/year. In this example, we omit the possibility to sell steam. This could be due to 

location in a rural area. The parameters characterizing the gas plant are summarized in Table 

2, where also the used risk-free interest rate is given. For the spark spread process we use the 

parameters in Table 1. 

 

Table 2: The gas plant parameters 

Parameter _
C  BG  PG  I  E  r  

Unit TWh/year MNOK/year MNOK/year MNOK NOK/MWh  

Value 3.27 20 80 1620 20.3 0.06 
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In Figure 6 the plant values are illustrated. In the upper part of Figure 6 the solid lines 

illustrate the base and peak load plant values as a function of lifetime. The base load plant is 

the grey line, whereas the black line is the peak load plant. The dashed lines illustrate the 

peak and base load plant values calculated with separate electricity and gas processes. When 

the lifetime is short our model underestimates the difference of peak and base load plant 

values compared to models using separate electricity and gas processes. Correspondingly, with 

longer lifetimes we overestimate the difference. The difference in the plant values is not 

caused just by the different volatility structure. In our model the equilibrium price increases 

linearly, whereas when log-normal price distributions are used the equilibrium price increases 

as a difference of two exponentially increasing processes. Note that the calculation of 

electricity and gas price process parameters is not as straightforward as calculation of spark 

spread parameters; before the parameters are estimated seasonality must be filtered away 

from electricity and gas data. 

 

Both technologies are highly NPV positive with the investment costs given in Table 2. In the 

lower part of Figure 6 the plant values as a function of equilibrium volatility and short-term 

uncertainty are illustrated. As the uncertainty in the spark spread increases the flexibility in 

the peak load plant becomes more valuable and the difference of peak and base load plant 

values increases. When the uncertainty becomes small enough the peak load plant value is 

smaller than the value of a base load plant, which means that the operational costs of a peak 

load plant are greater than the costs saved by being able to ramp up and down. 

[Figure 6 about here] 

 

The plant values, illustrated in Figure 6, do not indicate what the optimal technology for the 

plant is. Proposition 1 together with Lemmas 1, 2, and 4, give an equation for the upgrading 

threshold 1Hξ . Numerically solving this equation, with parameters in Tables 1 and 2, gives 

1Hξ = 52.8 NOK/MWh. In Table 1 the current equilibrium price estimate is 0 62.3ξ =  

NOK/MWh. Thus, by Corollary 2, the base load plant is the optimal technology. In the 

upper part of Figure 7, the optimal technology as a function of the peak load plant’s 

operational costs is illustrated. The base load plant is optimal when peak load plant’s 

operational costs are larger than the vertical dashed line. In the upper part of Figure 7 the 

equilibrium price varies along the y-axis as time passes. It is optimal to upgrade a base load 
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plant to a peak load plant when equilibrium price decreases below upgrading threshold, 

denoted by black line. It is less attractive to upgrade to a peak load plant with higher 

operational costs, hence the upgrading threshold decreases as a function of the peak load 

plant’s operational costs. 

 

So far we have studied the choice of technology. Next, we will find the level of investment 

costs at which it is optimal to invest now in a plant with the previously solved optimal 

technology, i.e. in a base load plant. Using proposition 2, we find that if the investment costs 

I  are below 837 MNOK, it is optimal to build a base load plant now. The inequality in 

Proposition 2 is solved numerically by using Lemmas 1, 2, 3, and 4. Even though both of the 

available technologies are highly NPV positive, it is not optimal to invest now, given the cost 

estimates and the current estimate for the equilibrium price. In the lower part of Figure 7 we 

illustrate the investment cost threshold’s sensitivity to peak load plant’s operational costs. 

The investment cost threshold for a base load plant is denoted with a black line, whereas the 

investment cost threshold for a peak load plant is illustrated with a grey line. An investor 

building a base load plant receives both a base load plant and an option to upgrade to a peak 

load plant. The upgrade option can be seen as an American call option to exchange base load 

plant into a peak load plant. An increase in the peak load plant’s operational costs decreases 

the value of a peak load plant, which also decreases the value of the upgrade option. Thus, an 

increase in the peak load plant’s operational costs decreases investment cost threshold for 

both technologies. The value of the upgrade option decreases towards zero as peak load 

plant’s operational costs increase. In other words, the investment cost threshold 

asymptotically decreases towards the investment cost threshold for a base load plant without 

an upgrade option. In the lower part of the Figure 7 the investment cost threshold decreases 

below zero when the peak load plant’s operational costs are above 108 MNOK/year. Thus, 

with our parameter estimates it is never optimal to build a non-upgradeable base load plant. 

 [Figure 7 about here] 

 

Next, we study how the optimal technology changes as a function of the spark spread 

variance. An increase in the spark spread variance increases the value of a peak load plant, 

making a peak load plant a more attractive technology. On the other hand, an increase in 

spark spread variance also makes upgrade option more valuable, which makes base load plant 

more attractive. Thus, changes in the spark spread variance have an ambiguous effect on the 
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optimal technology. In Figure 8 we illustrate the optimal technology as a function of 

equilibrium volatility and short-term uncertainty. When short-term uncertainty increases, the 

peak load plant becomes a more attractive choice. However, when equilibrium volatility 

increases, the base load plant becomes a more attractive choice. An increase in equilibrium 

volatility increases the upgrade option value more than the peak load plant’s value, since the 

upgrade option is like an American call option to exchange a base load plant for a peak load 

plant. Thus, an increase in equilibrium volatility makes a base load plant more attractive. 

Regarding an increase in short-term variations, the situation is reverse. The only way short-

term variations affect the upgrade option is through the value of the peak load plant. Thus, 

an increase in short-term variations is akin to an increase in the value of the underlying of an 

American call. Generally, it is optimal to exercise an American option when the option value 

is equal to values gained by exercising the option. When exercising is not optimal, the option 

is more valuable than the values gained by exercising it, meaning that the option value must 

increase less than the underlying. The upgrade option that comes with the base load plant 

thus becomes relatively less worth compared to a peak load plant, and the peak load plant 

becomes a more attractive choice when short-term uncertainty increases. In the right part of 

Figure 9 the upgrading threshold’s dependence on short-term and equilibrium volatility is 

illustrated. Naturally, when the base load plant becomes more optimal, i.e. in Figure 8 we 

move towards the lower right corner, upgrading is postponed. This means that the upgrading 

threshold increases as a function of short-term variations but decreases as a function of 

equilibrium volatility. 

[Figure 8 about here] 

 

In the left part of Figure 9 the sensitivity of the investment cost threshold as a function of 

equilibrium and short-term volatility is illustrated. The investment cost threshold increases as 

a function of short-term variations because an increase in short-term variations increases the 

value of the peak load plant. However, when equilibrium volatility increases the increase in 

peak load plant value is dominated by increase in the investment option value, and thus the 

investment cost threshold decreases as a function of equilibrium volatility. This is rather 

intuitive, uncertainty in the future environment makes long-term investments more risky, 

whereas due to the peak load plant’s ability to react to adverse price changes, an increase in 

short-term variations increases the expected future cash flows from a peak load plant. At the 

same time, due to the mean-reversion in prices, an increase in short-term variations does not 

change the long-term risks in the prices. 
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[Figure 9 about here] 

 

7 Conclusions 

We study gas fired power plant investments taking into account flexibility in the choice of 

production technology and in investment decision. First, we find the optimal technology for a 

gas fired power plant and then we use this optimal technology to calculate investment cost 

threshold. When the investment costs are below the threshold investing is optimal. The 

analysis is based on data from electricity and gas forward markets. 

 

We illustrate that an increase in the variability of spark spread has an ambiguous effect on 

the investment decisions. An increase in the variability of spark spread increases the value of 

a peak load plant making investments to such plants more attractive. On the other hand, 

uncertainty also delays investments. In the numerical example we illustrate how our model 

can be used to measure the relative strengths of these opposite effects. We illustrate with a 

numerical example how an increase in short-term variations hastens investment decisions, 

whereas an increase in long-term uncertainty postpones investment decisions. This result is 

rather intuitive due to the mean-reversion in the short-term variations, increase in short-term 

variations does not increase the uncertainty in the future price levels and thus it does not 

postpone investment and upgrading decisions. 
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Appendix A 

A peak load plant operates only when the spark spread exceeds emission costs. The plant’s 

value, at time t, is the expected cash flows less operational costs PG  

( ) ( )( ) ( ) ( )( )( )( ), , , , , , , , , , , ,
T

r s t
P P

t

V t t e Cc s s G dξ ξ χ ξ ξ χχ ξ κ µ σ σ ρ χ ξ κ µ σ σ ρ− −= −∫ s , (A1) 

where T  is the lifetime of the plant, C  is the capacity of the plant, and  is the expected 

value of spark spread exceeding emission costs at time s, i.e. 

( )c s

( ) ( )( ) ( ) ( ), , , , , , max ( ) ,0 | ( )t
E

c s s E S s E y E h y dξ ξ χχ ξ κ µ σ σ ρ
∞

 = − = −  ∫F y ,  (A2) 

where the second equality follows from the normally distributed spark spread process. In (A2) 

 is the density function of a normally distributed variable y, whose mean and variance 

are the mean and variance of spark spread at time s, given in Corollary 1. For clarity we 

rewrite the mean and variance here 

( )h y

   (A3) [ ] ( )( ) | e ( ) ( ) ( )T s
sE S T s s T sκ

ξχ ξ µ− −= + + −F

 ( ) ( ) ( )
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2
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ξ
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κ κ
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Integration gives 
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F FF
 ,  (A5) 

where  is the normal cumulative distribution function. Equations (A1) and (A5) give the 

value of the peak load plant 

( )Φ ⋅
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    (A6) 

Appendix B 

When it is not optimal to exercise the build option (i.e., when 0Hξ ξ< ), the option to build 

 must satisfy following Bellman equation 0F

  [ ]0 0( ) ( ) , 0HrF dt E dF whenξ ξ ξ ξ= < .  (B1) 

Itô’s lemma gives following differential equation for the option value 

  
2
0 0

02

( ) ( ) ( ) 0,
2

21
0H

F F rF when
S S
ξ ξσ α ξ ξ∂ ∂

+ − = <
∂ ∂

ξ

0

.  (B2) 

A solution to (B2) is of the form 

  1 2
0 1 2( ) e e , HF A A whenβ ξ β ξξ ξ ξ= + < ,  (B3) 

where ,  are unknown parameters and 1A 2A 1β  and 2β  are the roots of the fundamental 

quadratic equations given by  

  
2 2

1 2

2
0

rξ ξ ξ

ξ

µ µ σ

σ

− + +
β =   (B4) >

  
2 2

2

2
0

rξ ξ ξ

ξ

µ µ σ

σ

− − +
2β = .  (B5) <

The value of the option to build approaches zero as the spark spread decreases (i.e. 02 =A ), 

and thus 

  1
0 1 1 0( , , , ) e , HF A A whenβ ξ

ξ ξξ µ σ ξ ξ= < .  (B6) 
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Figures 

Figure 1: Electricity and gas forwards 

Figure 2: Spark spread forwards 

Figure 3: Autocorrelation in 1-month forwards 

Figure 4: Changes in spark spread as a function of electricity and gas price 

Figure 5: Estimated spot- and equilibrium spark spread together with forward curve 

Figure 6: Peak and base load plant values 

Figure 7: Upgrading and investment cost thresholds as a function of peak load plant’s 

operational costs 

Figure 8: Optimal technology as a function of short-term and equilibrium volatility 

Figure 9: Investment cost and upgrading thresholds as a function of short-term and 

equilibrium volatility 
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