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Abstract

A central problem in risk management is to identify the optimal combination

(or portfolio) of actions that improves the reliability of the system most through

reducing failure event probabilities, subject to the availability of resources. This

optimal portfolio can be sensitive with regard to epistemic uncertainties about

the failure events’ probabilities. In this paper, we develop an optimization model

to support the allocation of resources to risk mitigation actions in coherent sys-

tems in which interval-valued probabilities defined by lower and upper bounds

are employed to capture epistemic uncertainties. Decision recommendations

are based on portfolio dominance: a resource allocation portfolio is dominated if

there exists another portfolio that improves system reliability (i) at least as much

for all feasible failure probabilities and (ii) strictly more for some feasible prob-

abilities. Based on non-dominated portfolios, recommendations about actions

to implement are derived by inspecting in how many non-dominated portfolios

a given improvement is contained. We present an exact method for computing

the non-dominated portfolios. We also present an approximate method that

simplifies the reliability function using total order interactions so that larger

problem instances can be solved with reasonable computational effort.
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1. Introduction

The reliability of a system can be improved by using higher quality com-

ponents, introducing redundant components, reducing the operational and en-

vironmental loads on the components, or improving the maintainability of the

component, for instance (Rausand and Høyland, 2004). The selection of com-

ponents to be improved can be formalized as the redundancy allocation problem :

Find which combination (or portfolio) of improvements increases the reliability

the most, given that only some of the possible improvements can be imple-

mented subject to of relevant economical, technical or other constraints (such

as the available budget for improvements). In risk informed decision making,

this problem guides the allocation of resources to improvement activities so that

the reliability of the system improves as much as possible.

In this paper, we consider the redundancy allocation problem under epis-

temic uncertainty about probabilities (Apostolakis, 1990). This type of uncer-

tainty – which is present in most redundancy allocation models – is also referred

to as reducible, or non-stochastic uncertainty, which expresses the lack of knowl-

edge about the probabilities experienced by the decision-maker or the analyst

(see also Walley, 1991). In reliability analysis, epistemic uncertainty has been

modeled with methods such as Dempster-Shafer theory and imprecise proba-

bility/reliability (Limbourg et al., 2008; Sallak et al., 2013; Utkin and Coolen,

2007a; Helton et al., 2004; Coolen, 2004; Le Duy et al., 2010, 2011).

Risk importance measures such as the Fussell-Vesely and Birnbaum mea-

sures have been used for supporting the selection of improvement actions under

interval-valued probabilities (Toppila and Salo, 2013; Kuo and Zhu, 2012b).

These measures can be used for guiding the selection of an improvement port-

folio so that improvements are added to the portfolio in decreasing importance

starting from the most important, then adding the second most important, and

so on, until no more improvements can be added to the portfolio without vi-

olating resource or other constraints. This so called greedy heuristic can be

used for finding a portfolio that yields a good (although not optimal) portfolio.
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However, the drawback with the greedy heuristic is that an improvement has

a non-linear impact on the reliability of the system. For instance, consider a

series system of parallel systems, where each parallel system consists of k identi-

cal and independent components, and the components are 50 % reliable without

improvement and 100 % reliable with the improvement. By symmetry, every

component has the same importance, which would suggest that the components

that are improved do not matter, only how many of them are improved. Clearly,

this conclusion is incorrect, because by improving a single component from every

parallel system, the entire system can be made 100 % reliable, whereas leaving

one parallel system without any improvements leads to a system that has relia-

bility less than 100 %, even if components in the remaining parallel systems are

improved to 100 % reliable.

In this paper, we develop a method for solving the redundancy allocation

problem under interval valued probabilities. This method is based on the im-

plicit enumeration of all possible portfolios, and we use it to determine the

optimal redundancy allocation under uncertainty about the probabilities. The

uncertainty is characterized with lower and upper bounds that determine an

interval called the feasible set to which the probability belongs. The values

that the system reliability can attain when the probabilities are within their

respective feasible sets define a corresponding interval. Our approach resembles

the Robust Portfolio Modeling method (RPM; Liesiö et al., 2007; Liesiö et al.,

2008) which offers robust decision recommend ations for multicriteria project

selection based on incomplete information about criterion weights and interval-

valued statements about projects’ performance on these criteria. In optimal

reliability allocation, analogous problems have been considered by Feizollahi

and Modarres (2012) who optimize the reliability of a series system of parallel

structures under interval uncertainty about parameter values.

We present an exponential time solution algorithm for this problem and solve

an illustrative case that represents a residual heat removal system of a nuclear

power plant. This example has 31 failure events, the probabilities of which could

be reduced through risk management actions. When the probabilities’ intervals
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were very wide, our algorithm did not solve all non-dominated portfolios within

reasonable time, when considering portfolios of more than five simultaneous

improvements. For such situations, we use total order interactions introduced

by Borgonovo and Smith (2011) and Borgonovo (2010) to simplify the reliability

function of the system, and compute the non-dominated (ND) set with respect

to it.

The rest of this paper is structured as follows. Section 2 reviews methods for

redundancy allocation. Section 3 formulates the optimal redundancy allocation

problem as a portfolio optimization problem. Section 4 covers computational

experiments related to optimal redundancy allocation and the analysis of epis-

temic uncertainties. Section 5 presents a method for simplifying the reliability

function so that larger problem instances can be solved. Section 6 discusses and

Section 7 concludes.

2. Exact methods for optimal redundancy allocation

Redundancy and reliability allocation has attracted a significant amount of

research since 1960’s (for reviews, see Kuo and Wan, 2007; Kuo and Prasad,

2000; Tillman et al., 1977). This research has resulted in different kinds of op-

timization methods ranging from heuristic algorithms (e.g. genetic algorithms,

ant colony optimization) to exact algorithms.

In this paper, we consider exact methods for optimal redundancy alloca-

tion; these include dynamic programming, implicit enumeration algorithms and

branch-and-bound algorithms. The advantage of these methods is that they

yield a globally optimal solution. On the downside, they are usually compu-

tationally more demanding than heuristic methods, which may limit their use-

fulness in the analysis of large systems. In general, the redundancy allocation

problem of a series system of parallel structures has been proven to be NP-hard

(Chern, 1992), and thus the worst case solution time of any algorithm for this

problem increases exponentially as a function of problem size (assuming the

likely case that the famous conjecture P 6= NP is valid).
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The solution approaches can be divided into methods that assume a specific

structure of the system and those that do not. Specific structures are for in-

stances series-parallel (e.g. Sung and Cho, 1999) and k out of n systems (e.g.

Elegbede et al., 2003), which are common in many applications of reliability op-

timization. Generic optimization methods that can solve complex systems are

typically formulated as integer non-linear and non-convex programming prob-

lems (e.g. Kuo and Wan, 2007). Methods for solving them are tailored versions

of generic exact algorithms such as branch-and-bound and implicit enumeration.

Prasad and Kuo (2000) present a method for optimizing the reliability of co-

herent systems with statistically independent component failures. Their method

is based on implicit enumeration of all alternatives in lexicographical order.

They exploit the property that the reliability of a coherent system increases

when there is more redundancy. Specifically, they formulate a bounding rule

which can eliminate parts of the solution space without the need to evaluate

these parts explicitly. They apply their method to a parallel system, a series

system and more complex (coherent) system under multiple constraints that are

monotone with respect to the number of redundant components.

Ha and Kuo (2006) develop a branch-and-bound algorithm to solve the opti-

mal redundancy allocation problem in a coherent system in which improvements

are formed by adding redundant components to the system under multiple con-

straints on how many redundant components can be used. These constraints are

assumed to be monotone with respect to the number of redundant components:

that is, if all variables are on the left-hand-side of the constraint equation, then

the function defined by the left-hand-side is a monotone function. They report

a significant increase in optimization speed compared to the method of Prasad

and Kuo (2000). The speed-up is attained through an efficient bounding scheme,

which is based on a greedy heuristic that efficiently eliminates branches from

the search tree. They also note that their method could be further improved

for problem instances in which the structure of the system can be exploited to

make the bounding process more efficient.
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3. Methodological development for solving the optimal risk reduction

portfolio problem

Consider a system with the reliability function r(p), where p = (p1, . . . , pn)

such that pi is the probability of event i = 1, . . . , n. As proven by Borgonovo

(2010), r(p) is multilinear with respect to its arguments for both coherent and

non-coherent systems, and thus

r(p) =
∑

I⊆{1,...,n}

αI

∏

j∈I

pj (1)

for some coefficients αI ∈ R, where I is a set valued index. In typical appli-

cations, the multilinear function is sparse so that most of the coefficients αI

are zero. Thus from computational perspective, it is preferable to use a sparse

data structure that saves only the non-zero coefficients and the indices of the

variables that are included in the corresponding term. For instance, in many

programming languages, r(p) = 1 − p1p2 can be represented by the coefficient

vector (1,−1) and the corresponding list of lists ((), (1, 2)), where () denotes

the empty list, and the vector and list of lists can be easily implementable by

built-in commands.

Assume that the system can be altered by improvements which each reduce

the probability of a single failure event. The improvement i changes the prob-

ability of the associated failure event from pi to pr
i for a cost ci. We encode a

portfolio P ⊆ {1, . . . , n} of improvements as the vector z = (z1, . . . , zn) such

that

zi =






1 if i ∈ P

0 if i /∈ P.

Because there is a one-to-one mapping between the binary vector z and the

corresponding set P , we also call z a portfolio. Under this notation, the set of

all portfolios can be expressed as Z = {0, 1}n. The cost of a portfolio is
∑

i cizi.

A portfolio is feasible if its cost does not exceed a given budget B.

The goal is to determine the portfolio z that reduces the risk – or equivalently

increases the reliability of the system – as much as possible. More specifically,
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we define

r(z; p) = r(q) ,

where qi = pi(1 − zi) + pr
i zi. Then for a given p, the optimal portfolio is the

solution to the problem

max
z

r(z; p)

s.t.
m∑

i=1

cizi ≤ B .
(2)

This is a knapsack optimization problem with a non-linear objective function

and a linear budget constraint.

3.1. Interval-valued probabilities and dominance

As noted in Section 1, it is of interest to analyze how epistemic uncertainty

about the probabilities captured by interval-values impacts the results of the

analysis. Thus, assume that for i = 1, . . . , n that pi ∈ [p
i
, pi], or equivalently

p ≤ p ≤ p, where p
i

and pi are the lower and upper bounds of pi. The set of

feasible probabilities is PF = {p ∈ Rm|p
i
≤ pi ≤ pi}. These bounds can be

inferred, for instance, from the confidence intervals of the events’ probability es-

timates, simulation (Borgonovo, 2008; Modarres, 2006; Zio, 2011; Baraldi et al.,

2009; Modarres, 2006), interval-probabilities (Weichselberger, 2000), fuzzy prob-

abilities Buckley (2003), coherent lower and upper probabilities (Walley, 1991),

imprecise reliability (Utkin and Coolen, 2007b), and Dempster-Shafer theory

(Dempster, 1967; Shafer, 1976), depending on what type of models are pre-

ferred by the analyst.

In our model with interval-valued probabilities, we focus on consistent im-

provements. For instance, with wide intervals, if pi and pr
i have overlapping

intervals within which the probabilities can vary freely, then the probability of

an event with the improvement may not actually be smaller than what it was

before the improvement. In our computational model, we assume that the sys-

tem is monotone with respect to improvements, wherefore the impact of the

improvements such that including event i to the improvement portfolio reduces

the probability of event i by a factor of ai, 0 ≤ ai ≤ 1 , that is the probability of
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the event after the change is pr
i = aipi ∈ [aipi

, aipi]. Here, ai = 0 represents a

change that makes event i impossible, whereas ai = 1 means that the probabil-

ity of event i does not change. If an improvement will increase the probability

of the event, then this event is replaced by the complement of event i, and the

technique can be applied to that event, resulting in an equivalent analysis.

With interval-valued unreliabilities, the solution to problem (2) is no longer

unique, because with different values of p, the optimal portfolio may be different.

However, some portfolios are inferior to others in that they are less reliable for

all feasible p. For such settings, we define dominance as follows.

Definition 1. Portfolio z dominates portfolio z′, denoted z � z′, iff r(z; p) ≥

r(z; p′) for all p ≤ p ≤ p, and r(z; p) > r(z′; p)) for some p ≤ p ≤ p. The set of

non-dominated portfolios is

ZN = {z ∈ ZF | 6 ∃z
′ ∈ ZF : z′ � z} ,

where ZF = {z ∈ Z|
∑m

i=1 cizi ≤ B} is the set of feasible portfolios.

A rational decision maker can limit her choices to non-dominated portfolios

(see, e.g. Liesiö et al., 2007; Liesiö et al., 2008; Toppila and Salo, 2013). This

is because if she were to select a dominated portfolio, then it would be possible

to select some non-dominated portfolio of improvements such that the system

is as reliable for all feasible probabilities and more reliable for some feasible

probabilities than this selected portfolio.

If the information about the probabilities becomes more complete so that

the lower bound of the probability is increased and/or upper bound is decreased

(resulting in a narrower interval), then any portfolio that is dominated will stay

dominated, and the new set of non-dominated portfolios will be a subset of the

current non-dominated set. Thus, if these intervals do contain the values of

the probabilities, then the optimal portfolio corresponding to these estimates is

within the set of non-dominated portfolios.

The set of non-dominated portfolios can provide guidance on which improve-

ments should be included in a portfolio through the use of core indices(Liesiö

et al., 2007).

8



Definition 2. The core index CI of improvement i is defined as

CIi =
| {z ∈ ZN | zi = 1} |

|ZN |
,

where |.| denotes the number of elements in a set.

The core indices divide improvements into three categories, namely core

(CIi = 1), exterior (CIi = 0) and borderline improvements (0 < CIi < 1). Core

improvements are in all non-dominated portfolios, wherefore any rational deci-

sion maker will choose these improvements in her portfolio (because otherwise

the selected portfolio cannot be non-dominated). On the other hand, a ratio-

nal decision maker will not select an exterior improvement into her portfolio,

because doing so would also make her portfolio dominated (because there does

not exist a non-dominated portfolio that would include these improvements).

Borderline improvements could be included or excluded from the portfolio de-

pending on what other improvements are in the portfolio without necessarily

resulting in a dominated or non-dominated portfolio. These are also the most

interesting improvements for elicitation of tighter bounds on the probabilities,

because these are the improvements which selection is uncertain.

In the context of the RPM methodology, several suggestions for visualizing

and interactively exploring the set of non-dominated portfolios have been pre-

sented. This development is straightforward once the non-dominated set has

been computed (Liesiö et al., 2007; Liesiö et al., 2008).

3.2. Computation of dominance

In our computational development, we build upon the framework by Top-

pila and Salo (2013) in which dominance is evaluated by examining the non-

negativity of a multilinear function. Specifically, in order to check if port-

folio z dominates portfolio z′, the first condition in Definition 1 is r(z, p) ≥

r(z′, p) ∀p ∈ PF , which is equivalent to the non-negativity of the multilinear

function g(p) = r(z, p) − r(z′, p). The second condition of dominance follows

from the first condition if all intervals are non-singleton sets (Proposition 1 in

Toppila and Salo, 2013). If some of the intervals are singleton sets (i.e. point
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estimates), then these probabilities would have unique values that can be sub-

stituted into g(p). This substitution results in a new multilinear function g′,

which contains only variables that are constrained in non-singleton sets. Thus

dominance can be characterized by the non-negativity of a multilinear function.

The non-negativity of a multilinear function can be checked with the al-

gorithm by Toppila and Salo (2013). This recursive algorithm is based on the

recognition that the extreme values of a multilinear function in a hyperrectangle

are obtained at the extreme points of the hyperrectangle. One recursion involves

a bounding phase and if bounding is unsuccessful, a branching phase. In the

bounding phase, it is checked if an easily computed lower bound is greater than

zero or an easily computed least upper bound is less than zero (easily meaning

computationally inexpensive). In the first case, dominance holds while in the

latter case it does not. If neither of these cases holds, then a variable is branched:

A variable is selected, set at its lower and upper bound, and the two new mul-

tilinear functions resulting from these substitutions are recursively tested with

the test above. Because at every recursion step, a variable is eliminated, the

algorithm is guaranteed to terminate with the correct answer in a finite number

of iterations. Toppila and Salo (2013) also describe a method based on checking

the non-negativity of the multilinear coefficient of the branching variable, which

can reduce the number of branches needed.

In this paper we adapt the algorithm Toppila and Salo (2013) as follows. In

this algorithm (on line 4), the (bound of the) least upper bound is computed as

follows: The terms of g(p) are arranged such that g(p) = a∅ + g+(p) + g−(p),

where g+(p), and g−(p) denote the sums of product terms of g(p) with positive,

and negative coefficients αJ , respectively. An upper bound for this function

is then computed as a∅ + g+(p) + g−(p), where p = (p
1
, . . . , p

n
), and p =

(p1, . . . , pn). However, this bound is weak if the function is separable. For

instance, the bound computed on g(p) = p1 − p2, when p
i
= 0 and pi = 1, i =

1, 2 would yield a least bound of 0, which would not allow the algorithm to

terminate without branching. To overcome this, we use the improved upper
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bound computed as follows: Consider the vectors p+ and p−, where

p+
i =






p
i
, if pi is only in terms with positive coefficient αI

pi, otherwise ,

and

p−i =






pi, if pi is only in terms with negative coefficient αI

p
i
, otherwise .

Then the improved bound that replaced on line 4 of the original algorithm is

given by α∅ + g+(p+) + g−(p−). If all variables are in terms with both positive

and negative coefficients, then this bound is the same as in Toppila and Salo

(2013), because then p+ = p and p− = p. Otherwise, a variable that is only

in terms with positive(negative) coefficient will affect the value of g+(p)(g−(p))

only, so that the least upper bound will be obtained when this variable is on its

lower(upper) bound, which proves the correctness of the bound.

3.3. Computation of non-dominated portfolios

The set of all non-dominated portfolios can be computed by enumerating all

the possible portfolios and by performing pairwise dominance checks. However,

the number of portfolios increases exponentially with the number of possible im-

provements, and thus this approach requires too much computational resources.

For instance, n improvements can form 2n portfolios and pairwise comparisons

between these can require up to 22n− 2n comparisons (for n = 4 this yields 240

comparisons and n = 10 about one million comparisons). This problem can be

approached with portfolio optimization algorithms such as implicit enumeration

and dynamic programming. These algorithms have been used for solving the

redundancy allocation problem (see references in Kuo and Prasad, 2000; Kuo

and Wan, 2007).

In our development, we combine elements of the dynamic programming ap-

proach by Liesiö et al. (2007) and the implicit enumeration algorithm by Liesiö

(2014) to compute all non-dominated portfolios. This gives a two-phased algo-

rithm in which the first phase implicitly enumerates all possible portfolios and
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returns a superset of the non-dominated set, and the second phase removes dom-

inated portfolios by pairwise comparisons. In the computational development,

we restrict our analysis to coherent systems.

The reliability function r(p) of coherent systems is monotone in its argu-

ments. Without loss of generality, we assume that r(p) is decreasing in its

arguments (if r(p) were to be increasing with respect to pi, we could consider

the complement of event i, which probability would be qi = 1−pi , thus making

r(p) decreasing with respect to qi). We also assume that r(z; p) is increasing in

z, because if the change from zi = 0 to zi = 1 would lead to lower reliability,

then this improvement can be excluded from the analysis, because no decision

maker would select such an alternative. Under these assumptions, we develop

an implicit enumeration algorithm for solving problem (2).

The basis for the implicit enumeration algorithm is in Table 1. It consists

of two distinct phases. The first phase on lines 1-22 is the implicit enumeration

phase which yields a superset of the non-dominated set. The second phase on

line 23 removes dominated portfolios from the superset given by the first phase

such that only non-dominated portfolios remain. The details of the algorithm

are as follows.

On line 1, the current solution z, and the active alternative k are initialized.

Lines 4-8 and 16-22 of the algorithm enumerates all possible portfolios using a

last-in-first out ordering (see, e.g. Liesiö, 2014; Martello and Toth, 1990). On

line 9, the feasibility of the portfolio is checked; if this is the case, then on

line 10, the portfolio is added to the set of potential non-dominated portfolios

Z. On line 11, the lowest reliability that the portfolio can have is computed

and compared to the reliability of the so called minmax portfolio, which is the

portfolio with the lowest reliability lower bound of the portfolios found so far. If

the lowest bound is higher, then the current portfolio is updated to this position.

Lines 13-15 form the bounding phase involving two types of bounds. The first

type of bounding is based on feasibility. That is, if at an iteration in the Forward

loop for some k we have that
∑k

i=1 cizi ≥ B, then every further iteration made

in the Forward loop corresponds to an infeasible solution until a Back-track

12



step is made such that zk ← 0. Thus, it not necessary to explicitly account

for these infeasible portfolios. Instead, the Forward-loop can be terminated

prematurely and the Backtrack-step can be taken instead.

The second bound is based on strict dominance: Assume that for a given

k, portfolio z∗ strictly dominates every feasible portfolio which is of the form

(z1, . . . , zk, xk+1, . . . , xm) where xj ∈ {0, 1}. Then the Forward loop will yield

only portfolios that are dominated until a Backtrack-step zk ← 0 is made.

Thus, it is possible to do this Backtrack-step immediately without losing any

non-dominated portfolios. Note that z∗ is initialized as the empty set, wherefore

we define that r(∅, p) = −∞ for cases where the starting portfolio (0, . . . , 0) is

infeasible.

Before executing line 23, the first part of the algorithm yields the set Z that

is guaranteed to contain all non-dominated portfolios. In the second phase,

pairwise comparisons of portfolios in Z are carried out to remove those domi-

nated portfolios that were not screened in the bounding phase. After this second

phase, only non-dominated portfolios remain.

The above steps are straightforward to implement except the second bound-

ing criterion on line 14; we discuss this in more detail in the following section.

3.4. Computation of bounds

The second bounding criterion in the algorithm in Table 1 is

r(z∗; p) > r(z1, . . . , zk, xk+1, . . . , xm; p)∀p ∈ PF , (z1, . . . , zk, xk+1, . . . , xm) ∈ ZF .

Checking this inequality is a combinatorial problem that can be solved by check-

ing r(z, p)− r(z′, p) ≥ 0 for all p ∈ PF and z′ = (z1, . . . , zk, xk+1, . . . , xm) ∈ ZF

as described in the previous section. However, this makes it necessary to evalu-

ate 2m−k−1 portfolios, and therefore an exact evaluation as a part of an already

exponential time algorithm is not computationally viable. Instead, we derive a

computationally inexpensive condition that is sufficient (but not necessary) for

the second condition to hold.
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Table 1: Algorithm: NonDominatedSetDepthFirst

Input Monotonic dominance relation � over portfolios z ∈ ZF ⊆ {0, 1}m.

Output Set of all non-dominated portfolios (ZN ).

1: z ← (0, . . . , 0), z∗ = ∅, Z ← {}, k ← 0

2: if
∑

i cizi ≤ B then

3: Z ← {z}

4: repeat

5: Forward-loop

6: repeat

7: k ← k + 1

8: zk ← 1

9: if
∑

i cizi ≤ B then

10: Z ← Z ∪ {z}

11: if r(z; p) > r(z∗; p) then

12: z∗ ← z

13: Bounding phase

14: if
∑

i cizi ≥ B or

z∗ � (z1, . . . , zk, xk+1, . . . , xm)∀p ∈ PF , (z1, . . . , zk, xk+1, . . . , xm) ∈ ZF

then

15: break loop

16: until k = m

17: Backtrack-step

18: zm ← 0

19: k ← max({j ∈ {1, . . . ,m} : zj = 1} ∪ {0})

20: if k > 0 then

21: zk ← 0

22: until k = 0

23: Remove from Z dominated solutions by pairwise comparison.
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Consider the function

g(x; p) = g(xk+1, . . . , xm; p) = r(z∗; p)− r(z1, . . . , zk, xk+1, . . . , xm; p) .

This function is multilinear in p and x. It is decreasing in x, because improving

the reliability of a component will improve the reliability of a coherent system.

Because it is multilinear, the function g(x; p) can be factored in the form

g(x; p) = a(x−i; p)xi + b(x−i; p) ,

where

a(x−i; p) =
∑

{I⊆{1,...,m}|i∈I}

aI(p)
∏

j∈I\{i}

xj

and

b(x−i; p) =
∑

{I⊆{1,...,m}|i/∈I}

aI(p)
∏

j∈I

xj

are multilinear functions and x−i = (xk+1, . . . , xi−1, xi+1, . . . , xm), i = k +

1, . . . ,m. This form shows that the change from xi = 0 to xi = 1 changes the

function value by a(x−i; p).

We next derive a lower bound on a(x−i; p). Any coherent system can be

described through a sequence of subsystems (fault tree) including only AND and

OR gates. For these gates, it is straightforward to show that the total increase

in system reliability achieved through joint improvements in the reliability of

two or more of the components is less than the sum of reliability improvements

attained by improvements of these individual components. Hence, by induction,

this property holds for any coherent system. This implies that the coefficient

a(x−i; p) is minimal when x−i = (0, . . . , 0). Thus, it is of interest to establish

a lower bound for a(0, . . . , 0; p) = a−i
∅ (p). Because a−i

∅ (p) is multilinear with

respect to p, it follows that a−i
∅ (p) =

∑
I⊆{1,...,n} a−i

I

∏
j∈I pj ≥ for some unique

coefficients a−i
I . A lower bound on a−i

∅ (p) can be computed analogously to the

bound discussed in the beginning of Section 3 as

a−i
∅ := a−i

∅ + a−i
+ (p) + a−i

− (p) , (3)
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where a−i
∅ is the constant, a−i

+ (p) is the sum of the terms with positive coeffi-

cients a−i
I and a−i

− (p) is the sum of the terms with negative coefficients a−i
I .

Typically not all of the xi can be assigned a value of 1 because of the budget

constraint. To obtain a better bound, we use a continuous knapsack problem

for bounding the lowest value that the simultaneous change of multiple xi:s can

have. The remaining budget is given by B −
∑k

i=1 cizi. We seek to show that

regardless of how the xi, i = k + 1, . . . , n are chosen, the inequality g(x; p) ≥ 0

holds. Now, consider the following continuous knapsack problem

min
x

m∑

i=k+1

a−i
0 xi

subject to
m∑

i=k+1

cixi ≤ B −
k∑

i=1

cizi

0 ≤ xi ≤ 1, i = k + 1, . . . ,m .

This standard optimization problem can be solved efficiently in pseudopolyno-

mial time (see Section 2 in Martello and Toth (1990) for details). The optimal

value τ ≤ 0 of this problem gives a bound on how much at most the value of

g(x, p) can be reduced when changing xi from 0 to 1 under a budget constraint.

Thus r(z∗; p)− r(z′; p) ≥ r(z∗; p)− r(z; p) + τ . We summarize the implications

of this discussion in the following lemma.

Lemma 1. Consider portfolios z∗ and z such that B −
∑k

i=1 cizi ≥ 0 and

zk+1, . . . , zm = 0. Let τ ≤ 0 denote the optimal value of the problem

min
x

m∑

i=k+1

a−i
∅ xi

subject to
m∑

i=k+1

cixi ≤ B −
k∑

i=1

cizi

0 ≤ xi ≤ 1, i = k + 1, . . . ,m ,

where a−i
∅ are given by equation (3) . If r(z∗; p)− r(z; p) + τ ≥ 0∀p ∈ PF , then

r(z∗; p) > r(z1, . . . , zk, xk+1, . . . , xm; p)∀p ∈ PF and (z1, . . . , zk, xk+1, . . . , xm) ∈ ZF .
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Proof. See the discussion above.

Consider the function

g(x) =
∑

I⊆{1,...,m}

αI

∏

j∈I

xj

and the problem

max
x

g(x) (4)

subject to
∑

i

cixi ≤ B (5)

0 ≤ xi ≤ 1. (6)

We first prove a property of the optimal solution that was shown by Hoeffding

(1956) for symmetric multilinear functions. By factoring with respect to xi, we

get g(x) = a(x−i)xi + b(x−i), where a(x−i) =
∑

I⊆{1,...,m}:i∈I αI

∏
j∈I\{i} xj

and b(x−i) =
∑

I⊆{1,...,m}:i/∈I αI

∏
j∈I xj are multilinear functions. Using this

factoring, the objective function can be written as

g(x) =
1
m

∑

i

g(x) =
1
m

(
∑

i

a(x−i)xi −
∑

i

b(x−i)

)

.

Assume that the optimal solution to the problem above is x∗. Consider the

following related problem

max
x

1
m

(
∑

i

a(x∗
−i)xi −

∑

i

b(x∗
−i)

)

subject to
∑

i

cixi ≤ B (7)

0 ≤ xi ≤ 1.

Clearly, x = x∗ is a feasible solution of this optimization problem whose value at

x∗ is the same as that of the original problem (4)-(5); thus, (7) is a relaxation of

the original problem (4)-(6). Next, we prove that the solutions are equivalent:

The necessary and sufficient Karush-Kuhn-Tucker (KKT) condition for x being

a local optimal solution of the former and latter problem is

∂f

∂xi
+ u0

∂

∂xi

(∑

i

cixi −B

)

+
∑

i

ui(xi − 1) +
∑

i

um+i(−xi) = 0 ∀i
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for some u = (u0, . . . , u2m) ≤ 0. For both problems, ∂f
∂xi

= a(x−i) and thus the

KKT conditions are identical, wherefore x∗ (which is the global optimal solution

of the original problem) is a local optimal solution of the latter problem. Prob-

lem (7) is a linear programming problem, which implies that a local optimum

is a global optimum as well. Therefore, x∗ is its global optimal solution.

For optimizing the latter problem, the multiplication by 1/m and substrac-

tion of the constant
∑

i b(x∗
−i) can be disregarded, wherefore the optimal so-

lution to the original problem is the same as the solution of the continuous

knapsack problem

max
x

∑

i

a(x∗
−i)xi

subject to
∑

i

cixi ≤ B (8)

0 ≤ xi ≤ 1.

The continuous knapsack problem can be solved as follows (see, e.g. Section 2 in

Martello and Toth, 1990): Without loss of generality, assume that a(x∗
−i) > 0,

ci > 0, B > 0,
∑

i ci > B, ci ≤ B and that the variables are sorted such that

a(x∗
−i)/ci ≥ a(x∗

−(i+1))/ci+1 for all i. If these assumptions do not hold, then the

problem can be transformed using simple operations to an equivalent knapsack

problem where these assumptions hold, or the solution (or the solution with

regard to some variables) is trivial.

The critical item xj is defined by the index j = min{k :
∑k

i=1 ci > B}. Then

the continuous knapsack problem has an optimal solution given by xi = 1 for

i < j, xi = 0 for i > j and xj = B −
∑

i<j cixi. The solution of the continuous

knapsack problem is unique if the set J = {i : a(x∗
−i)/ci = a(x∗

−j)/cj} satisfies

J = {j}, that is, there are no other variables that has the same benefit to cost

ratio as the critical item. Otherwise, the solution is not unique and all possible

solutions are given by xi = 1 for i ∈ {1, . . . , j−1}\J , xi = 0 for i ∈ {j, . . . ,m}\J

and xi ≥ 0,
∑

i∈J cixi = B −
∑max({1,...,j−1}\J)

k=1 ckxk for i ∈ J .

The solution of the original problem is unique if problem 8 (and hence also

problem (7)) has a unique solution and consists of at most one variable that is
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not 0 or 1.

The above result characterizes the optimal solution in way that resembles

Theorem 2 (i) and its Corollary 2.1 by Hoeffding (1956) for symmetric multilin-

ear functions. The results of Hoeffding was used by Liesiö (2014) to bound the

value of a symmetric multilinear function in an implicit enumeration algorithm,

in way similar to our method.

Problem (8) helps establish bounds for the branch-and-bound algorithm.

Although we do not know a(x∗
i ) before solving the problem, we are able to

find easily computable bound on these coefficients. This bounding is based

on replacing a(x∗
i ) in (8) with ai ≥ a(x∗

i ), wherefore the problem of this new

solution will give an upper bound of the optimal value of the knapsack problem.

This optimal value of the knapsack problem will then give a bound on how much

the objective function can increase. Thus evaluating g(x) at x = 0, gives the

most conservative bound.

In some instances, the proposed bound may be weak, as illustrated by the

following example. Assume that p1, p2 ∈ [0.8, 0.95] and g(p1, p2) = 1 − (1 −

p1)(1 − p2) = p1 + p2 − p1p2. Here, computing an upper bound using the last

form yields the bound 0.95 + 0.95 − 0.8 ∙ 0.8 = 1.26 which is greater than the

trivial bound one implied by the fact that g is a probability. However, applying

the bounds on g(q1, q2) = 1− q1q2, where qi = (1− pi), i = 1, 2, and applying it

yields a bound 1−(1−0.95)2 = 0.9975 which is strictly less than one. Thus, the

efficiency of the bound depends on how the function is represented. Different

forms for multilinear functions can be found in Marichal (2014), for instance.

In general, the bound is better, the smaller the values of the nonlinear terms of

g(p) are. In particular, this bound can be expected to work well if pi are close

to zero (which is often the case in reliability analysis).

4. Computations and results

This section presents numerical computations which were carried out using a

standard laptop with 8 GB RAM, 64-bit Windows 7, and Intel(R) Core(TM) i5-
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4300U CPU @ 1.90GHz processor with two cores. We did not use parallelization

techniques, and consequently only a single core was used.

In our computational analysis, we consider the same residual heat removal

system of a nuclear power plant as Toppila and Salo (2013). In this system,

there are 31 failure events whose probabilities are within the lower and upper

bounds defined by 90 % confidence intervals. The system is characterized by

147 minimal cut sets which contain at most three events each. The minimal

cut sets are visualized in Figure 1 (for details about the minimal cut sets and

interval-probabilities, see Toppila and Salo, 2013). The system can be improved

by eliminating the event, that is reducing the probability of component failure

zero. The portfolio of improvements is constrained by how many events can

be eliminated. In the modeling framework presented in Section 3, these are

modeled by setting ai = 0, ci = 1, and B is the number improvement that can

be taken simultaneously.

We solved the non-dominated portfolios for this problem for portfolios that

included 1-5 simultaneous improvements. The core indices based on these non-

dominated sets are shown in Figure 1. In this figure, the core indices are coded:

Black indicates that the component is a core component, white indicates that

the component has core index 0 (exterior component), and gray indicates that

the component has a core index between 0 and 1(borderline component). We

were not able to solve the problem in reasonable time in cases where the optimal

portfolio included 6 or more simultaneous improvements. The explanation can

be seen from Table 2: The first part of the algorithm, which implicitly enumer-

ates all portfolios, generated almost 15000 non-dominated portfolios in about

an hour. To remove dominated portfolios, second part of the algorithm removes

dominated portfolios by pairwise dominance checks, which in this case yields in

worst case about (150002 − 15000)/2 = 112492500 comparisons.

The results can be interpreted as follows. From Figure 1, it can be seen that

when only one improvement can be included, then only improvements 1-5 have

a non-zero core index and they are all borderline, indicating that any of them

could be selected. When the at most two improvements can be selected, then
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Table 2: Computations of the residual heat removal system.

Number of improvements in portfolio 1 2 3 4 5 6

Number of feasible portfolios 31 465 4495 31465 169911 736281

Number of potential non-dominated portfolios 5 70 242 2265 6764 14609

Number of minmax potential ND portfolios 5 43 173 1592 5794 -

Number of non-dominated portfolios 5 9 21 58 133 NA

Table 3: Computations of the residual heat removal system with narrower intervals.

Budget 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#full & feasible portf. 31 465 4.5k 31.5k 169.9k 0.7M 2.6M 7.9M 20.2M 44.6M 84.7M 141M 206M 265M 300M

#pot. ND portfolios 3 3 5 32 169 80 99 203 344 280 122 115 116 259 205

#ND portfolios 3 2 5 7 8 12 24 33 29 23 18 16 18 1 1

also improvements 6 and 11 become borderline. When three to five improve-

ments can be selected, then more improvements become borderline. The most

significant change is that improvement 1 becomes core. Thus as a summary,

if only a few improvements can be selected, then no other improvements be-

come core, which suggests that improvement 1 should have the highest priority

regardless of which other improvements are selected.

When the budget is larger, there are fewer portfolios which are dominated by

the portfolio with the highest worst case improvement in reliability. In a sense,

to find a small set of non-dominated portfolios that would dominate as many

dominated portfolios as possible becomes harder. The maxmin portfolio is such

that it has good values over a wide range of parameter values. This suggests

that in order to find good candidates for eliminating dominated portfolios, it is

required to find non-dominated portfolios that perform well locally. These can

be used in conjunction with the implicit enumeration algorithm or the pairwise

comparisons to eliminate in as early phase as possible the dominated portfolios.

Next we compare our analysis to the analysis in Toppila and Salo (2013),

where recommendations are derived based on Fussell-Vesely (FV) risk impor-

tance measure. In that paper, improvements with regard to components 1-5 are
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Figure 1: Core indices in the residual heat removal system example (left) and a matrix where

each row corresponds to the events that belong to the minimal cut set (right).
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Table 4: Computations of the residual heat removal system with short list 10.

Budget 1 2 3 4 5 6 7 8 9 10

#pot. ND portfolios 5 23 35 81 112 94 60 26 8 1

#ND portfolios 5 8 14 27 39 35 21 10 4 1

Table 5: Computations of the residual heat removal system with short list 20.

Budget 1 2 3 4 5 6 7 8

#pot. ND portfolios 5 48 141 859 1995 4229 6862 12965

#ND portfolios 5 9 21 58 132 232 326 NA
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Figure 2: Core indices in the residual heat removal system example with narrower intervals.
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identified as non-dominated with respect to all other improvements (to avoid

confusion, we abbreviate this as pairwise or pw-ND). When a single improve-

ment can be selected to the portfolio, our method identifies this same set of

improvements to be borderline and all others as exterior. However, when more

improvements can be added to the portfolio, we see that more improvements

become viable: when five improvements can be selected, a total of 15 improve-

ments are borderline or core, compared to the risk measure based analysis,

where only improvements 1-5 are pw-ND. We also see that for budgets 3 to 5,

improvement 1 is a core improvement. In comparison, the FV measure based

analysis does not depend on how many improvements are chosen and hence the

decision recommendation does not change either, wherefore the core status of

improvement 1 for large budgets is not detected.

We also compute the pw-ND components with respect to the Birnbaum

(B) measure using the method by Toppila and Salo (2013). Then the pw-ND

improvements are 1, 6, 14, 20, and 31. This ranking is quite different from the

ranking based on the FV measure (above), because the B measure does not

depend on the probability of the components’ failure, wherefore the importance

of events that have low probability tends to be exaggerated. In this case, we see

that the B measure detects the importance of component 20, which belongs to

some ND portfolios at budget level 5. However, as is evident from the figure,

also other components than component 20 could be in the ND portfolio.

To solve the ND set with a larger budget, we reduced uncertainties by shrink-

ing the interval endpoints towards the interval mean values so that the interval

width was halved. As a result, there are fewer non-dominated portfolios and

the range of values that a portfolio can have will become narrower so that the

problem becomes easier to solve. With this setting, we could solve the prob-

lem to a budget level of 15, corresponding to about 50 % of the events. After

this, the reliability function becomes linear with respect to the probabilities.

The results are in Figure 2. In this figure, we see a broader perspective on the

impact of multiple improvements. At low budget levels, the top three events

are borderline or core events (as before in the case with full width intervals,
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event 1 becomes core at budget level 2 and above). Event 2 becomes core for

budgets 3-6, but loses this status for budgets 7-12. This affect is attributed

to the non-linearity of the reliability function, because in a standard knapsack

problem, events are taken in the order of highest benefit to cost, wherefore once

core, this status should not be lost. An other special case is event 11, which

becomes borderline at budget 3 and is the fourth event to become core when

the budget is increased.

We also sought to narrow down the number of events that can be included

into the portfolio, while keeping the intervals at full width. This effectively re-

duces the dimension of the search space, but the uncertainties about the prob-

abilities are fully propagated. Thus consider that events 1-10 form a short list

from which a portfolio for improvements are selected. All events 1-31 have

interval uncertainty about them, but the events that are not on the shortlist

cannot be selected for improvement. These results are in Table 4. Here we see

that the number of non-dominated portfolios is significantly reduced. Also the

number of portfolios found by the implicit enumeration algorithm are very low,

which explains why the pairwise comparisons for removing dominated events

do not impede solving the problem. We also solved this problem with a short

list consisting of events 1-20, but as can be seen from Table 5, the the number

of portfolios returned by the implicit enumeration algorithm grew too large for

computing the pairwise dominance comparisons when the budget was 8.

We also sought to simplify the problem using the set of portfolios identi-

fied by the implicit enumeration algorithm. Clearly, this set contains all non-

dominated portfolios and thus, if an event is core or exterior based on core

indices computed these sets, then they must be core or exterior in the non-

dominated set as well, respectively. Then this problem could be reformulated

so that core improvements are included and exterior improvements excluded

to/from the portfolio. However, for larger budgets, all improvements were both

included and excluded in some portfolios identified by the implicit enumeration

algorithm making them borderline, wherefore this technique did not provide any

help.
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5. Simplifying the reliability function by removing insignificant inter-

actions

Importance measures can be used as a heuristic for solving the redundancy

allocation problem (see, e.g. Kuo and Zhu, 2012a,b). Then, by sequentially

selecting components of the system for improvement and computing importance

measures, one can find good solutions for reliability allocation problems. For

instance the Birnbaum importance measure, which is defined as the probability

that a basic event i becomes critical to the system, and which can be computed

by

Bi(p) =
∂r(p)
∂pi

,

can be used for this purpose. From an optimization point of view, this mea-

sure linearizes the change with respect to each probability and recommends

improving the system in the direct of the steepest accent. This can be mod-

ified to take into account the amount of improvement that can be made, the

rate of change can be multiplied by the change in that probability, that is

B(p)|pr
i − pi| = B(p)Δpi.

The downside of using the Birnbaum measure for a optimization heuristics

is that it does not account for interactions. As stated before, the reliability

function is multilinear and, in general, contains products terms that involve

interactions. In our method, in which probabilities belong to intervals that can

be relatively wide and in which these probabilities are impacted by improvement

decisions, the omission of interactions can cause problems.

To overcome this limitation, we use the method of Borgonovo and Smith

(2011). In this method, the change of the reliability is considered in sensitivity

cases : These cases consider simultaneous change in event probabilities such that

pi → pi +Δpi ∀i, and the change is decomposed into three types of interactions

measures (Proposition 7, Borgonovo and Smith, 2011) where the measures are
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given by the equations

β1
i =Bi(p)Δp (9)

βk
i1,...,in

=Jk
i1,...,in

Δpi1 ∙ ∙ ∙Δpik
(10)

βT
i =Bi(p)Δpi +

T∑

k=2

∑

i<i2<...<ik

Jk
i,i2,...,ik

∙Δpi1 ∙ ∙ ∙Δpik
, (11)

where

Jk
i1,...,in

=
∂kr(p)

∂pi1 ∙ ∙ ∙ ∂pik

is the Joint Reliability Importance (see e.g. Kuo and Zhu, 2012a, p. 113). The

first components are the linearized changes, as explained in the beginning of this

section. The second components are the changes caused by interactions. The

third is the Total Order Importance (TOI) measure, as introduced by Borgonovo

(2010) (for further development, see Kuo and Zhu, 2012a, pp. 136-137). Note

that in this paper, we use the unscaled versions of these measures. The scaled

versions can be computed by dividing the measures with the total change related

to the sensitivity case.

As noted in Borgonovo and Smith (2011), equations (9)-(11) can be evaluated

by computing the reliability function r(p) at 2n + 2 different points, making

the computation of these measure efficient. These measures can be used for

decomposing the change of a single probability to its individual impact and

to an interaction impact. Here, β1
i is a measure of the individual impact of a

variable and

βI
i := βT

i − β1
i (12)

is a measure of the interaction with other variables.

As discussed in Borgonovo (2010) and Borgonovo and Smith (2011), these

measures can be used for reliability functions and models in Probabilistic Safety

Assessment that include initiating events. They serve as an opportunity to find

the most important interactions that drive the changes in reliability with respect

to changes in event probabilities. Notably, if the changes are small, interactions

do not play any role at all (Borgonovo and Smith, 2011, Proposition 5).
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The TOI help simplify the model by excluding insignificant interaction terms.

If the impact of a change in event probability is mainly driven by its individ-

ual impact, then all interaction terms in the reliability function regarding this

variable can be disregarded. Also, if the total impact of this variable is negli-

gible, then this factor can be possibly fixed as a constant without significantly

changing the results. These simplifications make the reliability function more

linear and eliminate decision variables, making it easier to find its maximum

and minimum values.

5.1. Elimination of insignificant interactions and variables

The elimination procedure proposed by Borgonovo and Smith (2011) is as

follows

• Estimate the quantities βT
i /Δf , βI

i /Δf and β1
i /Δf , where Δf is the total

change of the sensitivity case for i = 1, . . . , n

• See if βI
i /Δf << β1

i /Δf . If this holds, then individual effect are the most

significant for this variable and they can be neglected. This condition can

be checked relying on expert opinion. An automated procedure could use

the quantity

εi =
|βI

i |
|βT

i |
, i = 1, . . . , n

as a decision criterion. Thus if this quantity is below a given threshold, say

10 %, then the interaction could be considered to be negligible, because it

would explain only a minor part of the change in that variable.

We build on this framework to simplify the reliability function so that it would

be suitable for optimization. To achieve this, we establish guidelines for simpli-

fication of the reliability function with respect to those interactions that can be

considered negligible.

Consider the function r(z, p) = r(q), where qi = pi(1 − zi) + apizi as a

function of the variable vector (z, p) = (z1, . . . , zn, p1, . . . , pn). For the purposes

of dominance, it is of interest to know how the function changes with respect
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to the function varying between its lower and upper bounds. Thus for p, it is

interesting to compute a sensitivity case where the values of p are changed from

p to p.

Next we discuss what sensitivity case should be considered for z. Clearly,

changing every zj variable from 0 to 1 is not that interesting, if a budget con-

straint would require that only a small subset of the variables can be set to

1. Therefore, we propose that in the sensitivity case, where variables with in-

dices ` ∈ L ⊂ {1, . . . , n} such that
∑

`∈L ci ≤ B are allowed a change from 0

to 1. Here there the set L can be determined by taking variables in the order

of a prior belief about which events should be improved until the budget is

exhausted. Such an order can be derived using importance measures, such as

Birnabaum, Fussell-Vesely, or Risk Achievement Worth, for instance (for details,

see e.g. Kuo and Zhu, 2012a).

The total order interactions βI
i , the individual impacts β1

i and interaction

impacts βI
i should be computed based on the sensitivity case presented in the

previous paragraph. Then, as proposed in the original method, variables are

ordered from the most to the least relevant according to |βT
i |. Then, a threshold

rule such as the one presented above can be used for determining which variables

should be simplified either by linearizing their impact or by substituting them

with constants.

5.2. Illustrative example

To illustrate our method, we performed this analysis on the residual heat

removal system. The decomposition, where the sensitivity case is such that zi

remain unchanged and pi are changed from their upper bounds to their lower

bounds can be found in Table 6. It is illustrated as a Pareto chart in Figure 3

(lower). We see that most of the change in attributed to the three first prob-

abilities. Of these, the impact of changing the first probability is driven by its

individual impact, whereas the impact of changing the second and third prob-

abilities are driven by their interactions with other probabilities. We also see

that there are some other probabilities that although have small TOI values,
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Table 6: Total order interactions of the RHRS case

Variable index βT
i β1

i βI
i

1 4.42113 × 10−1 4.42113 × 10−1 4.21885 × 10−15

2 4.61616 × 10−2 3.57635 × 10−1 −3.11473 × 10−1

3 4.11311 × 10−2 3.12343 × 10−1 −2.71212 × 10−1

4 6.14858 × 10−3 5.65826 × 10−2 −5.0434 × 10−2

5 5.21867 × 10−3 4.82103 × 10−2 −4.29916 × 10−2

6 2.12518 × 10−2 2.12518 × 10−2 0.

7 3.96072 × 10−3 3.0077 × 10−2 −2.61163 × 10−2

8 3.96072 × 10−3 3.0077 × 10−2 −2.61163 × 10−2

9 2.22785 × 10−3 1.72601 × 10−2 −1.50323 × 10−2

10 1.98507 × 10−3 1.50743 × 10−2 −1.30892 × 10−2

11 1.32923 × 10−3 3.28293 × 10−2 −3.15 × 10−2

12 7.96104 × 10−4 6.16778 × 10−3 −5.37167 × 10−3

13 7.09349 × 10−4 5.38668 × 10−3 −4.67733 × 10−3

14 2.42877 × 10−3 2.42877 × 10−3 −4.21321 × 10−15

15 6.20899 × 10−4 4.81038 × 10−3 −4.18948 × 10−3

16 7.59309 × 10−5 1.48437 × 10−2 −1.47678 × 10−2

17 7.23678 × 10−5 1.40417 × 10−2 −1.39693 × 10−2

18 3.12146 × 10−4 7.80365 × 10−3 −7.4915 × 10−3

19 5.53237 × 10−4 4.20119 × 10−3 −3.64796 × 10−3

20 1.51798 × 10−3 1.51798 × 10−3 −4.21321 × 10−15

21 2.54878 × 10−4 1.97465 × 10−3 −1.71977 × 10−3

22 2.27102 × 10−4 1.72458 × 10−3 −1.49748 × 10−3

23 1.59221 × 10−4 1.23356 × 10−3 −1.07433 × 10−3

24 1.4187 × 10−4 1.07734 × 10−3 −9.35467 × 10−4

25 6.69402 × 10−6 1.39615 × 10−3 −1.38946 × 10−3

26 6.33693 × 10−6 1.31578 × 10−3 −1.30944 × 10−3

27 5.54163 × 10−5 4.29335 × 10−4 −3.73919 × 10−4

28 5.54163 × 10−5 4.29335 × 10−4 −3.73919 × 10−4

29 4.93773 × 10−5 3.74964 × 10−4 −3.25586 × 10−4

30 4.93773 × 10−5 3.74964 × 10−4 −3.25586 × 10−4

31 1.34192 × 10−5 1.34192 × 10−5 −4.21325 × 10−15

have large interaction affects.

For simplicity, we assume that implementing an improvement has the effect

that the associated failure event cannot occur, wherefore its probability is zero.

Analyzing these improvements gives an upper bound on the achievable reliability

in the system. If an improvement is made, the corresponding TOI and individual

effects disappear.

For generating the sensitivity case, we approximate the best portfolio to

consists of the probabilities of the highest ranked events with respect to the

Fussell-Vesely importance measure. Thus in this sensitivity case, zi = 1 for

i = 1, . . . , B, where B is the budget, the remaining zi = 0, and the probabilities

change from their upper bounds to their lower bounds as previously presented.
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Figure 3: Pareto Charts of TOI (Yellow), Individual impact (Red), and Interaction effect

(blue) for two different sensitivity cases. The first is the base case, and the second is the base

where events 1-5 have been eliminated.
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The TOI decomposition for this sensitivity case is presented in Figure 3 (right).

Compared to the initial sensitivity case, we see that the absolute values of the

largest TOI values have dropped from about 0.010 to about 0.0006, that is to

6 % of the original value. The improved components have a TOI of zero, because

the probabilities related to these events do not change in the sensitivity case.

However, we see that interactions start to play a key role much more diversely

when the (thought to be) best improvements are done. Thus for more expensive

portfolios, these interactions are likely to become significant. The plots of this

type was plotted for all budgets up to 10, but they were very similar to this

latter sensitivity case.

5.3. Guidelines for simplification

Here, we develop guidelines for simplification that can be done if an inter-

action is considered insignificant. Consider the following rules:

1. If βT
i and βI

i are small, then fix this event’s probability to the interval

upper bound.

2. If βT
i and β1

i are large, and βI
i is small, then fix the value of the probability

of all other events to their interval upper bounds in all terms which the

event is present.

3. If βT
i is small but βI

i and β1
i are large, then give high priority to this

variable in branching.

The rationale for these rules is as follows: If the total impact is small and it

does not interact significantly either, then this variable can be effectively treated

as a constant. The second rule says that if the interactions are insignificant but

the individual impact is significant, then it is better to treat changes on this

variable as a linear function, without allowing the probability to interact with

other probabilities. The reason for setting the variable to its upper bound stems

from the coherence of the system: Approximating the probability of a minimal

cut set by setting a probability at its upper bound yields an upper bound for

the minimal cut set probability, wherefore the simplified reliability function is

a conservative with respect to the original reliability function.
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The third rule is motivated by the fact that the bounds proposed to used in

the implicit enumeration algorithm and the dominance checking algorithm are

based on linearization. Branching on such a variable removes the nonlinearity

associated with that variable, which makes the partially evaluated reliability

function more linear with respect to the remaining variables. Thus this should

lead to better bounds in subsequent branches, hence accelerating the termina-

tion of both of these algorithms, and for the implicit enumeration algorithm,

reduces the number of dominated portfolios returned by the algorithm. Note

that this last rule does not alter the reliability function, only creates a recom-

mendation about how it should be evaluated in the algorithms. Thus if only

this rule is used, the analysis is equivalent to the original analysis, and only the

computational order is impacted.

An important note about these rules is that it does not matter in which order

they are employed. Thus even if they are applied repeatedly and interactively,

the end result will be the same. Also, these rules do not have to use the same

way for determining if a decomposition term is large or small, which allows for

flexibility in tailoring a rule that yields a satisfactory simplification.

These rules should be employed at some budget level, because it is likely

that at higher budget levels, the smaller interaction terms are more significant,

because the impact potential of the already improved events is reduced (in our

RHRS example to zero).

These simplifications reduce the number of interval-valued parameter in the

model, wherefore it can also be regarded as a case where more information about

the probabilities is elicited, that is intervals are made narrower. This, on the

other hand, makes it possible that some new dominances arise if rule 2 is used,

which are not present with the unsimplified model. Also, in cases where the

variable is fixed in some terms and not in others, the original feasible set is in

a sense extended, wherefore it is possible for new non-dominated portfolios to

arise. However, these rules try to select for simplification those intervals and

terms that according to the TOI measures have least impact, wherefore the

impact of the simplification is assumed to be low. Thus, it is hoped that the
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non-dominated set of the simplified and unsimplified reliability functions are

hopefully close to each other. Note that these extra non-dominated portfolios

is easy to remove as a post processing step using the original objective function

by pairwise comparison (assuming that this set is reasonably small).

With simplifications, it would be ideal to derive a bound on how much

the difference can be. However, the authors are not aware of any reasonable

technique which in this case would allow to give a bound on a measure of how

similar the sets are. The difficulty stems from the fact that it is not easy to

know which portfolios are or even could be non-dominated without effectively

generating the set of non-dominated portfolios, which on the other hand would

make simplification redundant.

5.4. Computational impact of simplification

We demonstrate the impact of the simplification by two analyses: In the first

analysis, we see how much more efficiently the implicit enumeration algorithm

can identify the superset that contains the set of non-dominated portfolios,

which then again reduces the number of pairwise comparisons needed to remove

the dominated portfolios. We compare the non-dominated sets produced by the

original and simplified reliability functions and report how large share of these

non-dominated sets are equal. Second, we try to solve the instances presented

earlier that could not be solved in reasonable time without simplification.

The first case is solved such that it is comparable to the results with narrow

intervals, because this instance could be solved for budgets levels up to 50 %.

Initially, solving this problem instance for all budget levels took about 30 hours,

but after applying the rules that simplify the reliability function, it could be

solved in about 2 hours. However, after the simplification, all non-dominated

solutions were not found.

A comparison of the simplified method and the exact method can be found

in Table 7. In this table, there are the number of potentially ND portfolios

and ND portfolios with respect to the simplified reliability function. This ND

set corresponds for budget levels 1-5 to the ND set obtained using the original
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Table 7: Computations of the residual heat removal system with narrower intervals and sim-

plified reliability function.

Budget 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#pot. ND portfolios 3 2 5 24 98 27 17 29 39 39 37 25 29 30 35

#ND portfolios (simplified) 3 2 5 7 8 7 6 5 8 6 11 13 6 2 5

Share of actual ND set (%) 100 100 100 100 100 42 75 85 72 74 39 25 67 0 0

reliability function. However, we see that for budgets 6-13, the average share

of ND portfolios is from 39%-85 %, whereas for budgets 14-15, the simplified

method did not find any ND portfolios.

6. Discussion

This paper has developed a model for solving the redundancy allocation

under interval-valued probabilities. In contrast to the reliability optimization

models of Sung and Cho (1999), Prasad and Kuo (2000) and Feizollahi and

Modarres (2012) who assume more on system structure, our method is, in prin-

ciple, applicable to any coherent system. However, for our method to be com-

putationally viable, we need to approximate the reliability as the sum of the

minimal cut set probabilities. Also, the degrees of redundancy are assumed to

be known for each component. In these models, also the degrees of redundancy

are solved.

Based on the computational experiments, our method cannot be used for

analyzing the full scale fault tree of a nuclear power plant or perhaps not even its

larger subsystems. This observation, however, is true even if there is no interval-

uncertainty about the probabilities, because the underlying problem to be solved

is a knapsack problem with a nonlinear objective function, which belongs to the

class of NP-hard problems. Still, our method can provide insights into how

uncertainty impacts the prioritization of risk reduction activities. To ensure

computational tractability, one could use other methods such as importance

measures to narrow the events that can be included to the reduction portfolio
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down to a short list of about 10-25 events. Thus, even if some significant

events may be missed, at least the events that are on the short list are treated

rigorously.

The methods of this paper may be useful in other contexts of optimizing

a reliability function with regard to interval-valued probabilities. For instance,

consider a case where probabilities are determined by an Weibull distribution,

which has interval valued uncertainty about the shape and scale parameters.

Then the reliability function is not a multilinear function about the uncertain

parameters. However, the method of Borgonovo and Smith (2011) has exten-

sions for analyzing functions that are not multilinear: In these cases, the total

order interaction decomposition is, however, only approximate and can be con-

sidered to hold only for small changes if the analyzed reliability function is

smooth enough.

The width of the intervals was more of a factor in this case than the number

of improvement actions that could be selected. This could be seen from the

results: Narrowing the intervals made it possible to compute all non-dominated

portfolios, while reducing the search space made it possible to solve the problem

for only a marginally larger budget.

Importance measures for groups of components is a central topic in reliability

research (Kuo and Zhu, 2012b). Possible uses of our method could be to identify

sets of components that could be analyzed further with these group importance

measures. These groups could be formed from the non-dominated set, because

any portfolio can be understood as a binary indicator vector of the events that

belong to a group.

In this paper, we consider only a single budget constraint. As discussed in

several texts about the implicit enumeration algorithm, inclusion of additional

constraints is straightforward. Computationally, this can even be beneficial, be-

cause typically additional constraints also reduce the feasible set, wherefore the

back-track step due to infeasibility can be done. If the number of constraints

is large and they do not reduce the feasible set significantly, then the inclusion

of more constraints do not lead to a faster termination of the implicit enumera-

36



tion algorithm, and consequently checking the validity of these constraints will

require additional computational effort.

The developments in this paper have been based on the earlier approach by

the authors (Toppila and Salo, 2013), where the reliability of a system is charac-

terized by the minimal cut sets. In the literature, there have been improvements

in the representation of the reliability function, which allow more accurate anal-

ysis of the reliability of a large system. Especially a representation in terms of

a binary decision diagram may be relevant (see e.g. Jung, 2015). The binary

decision diagram may serve as a useful data structure for optimization and may

allow one to derive tighter bounds for eliminating dominated portfolios, which

could improve the computational methods presented in this paper.

When analyzing large problems, there may be so many non-dominated port-

folios that enumerating them all would require excessive resources and too

long computation time. In these cases, computing a only a subset of all non-

dominated portfolios is of interest too, because it still is better to select a non-

dominated portfolio than a dominated portfolio. An approximate method could

be based on simulation: At simulation round k = 1, . . . , N , fix the probabilities

at their lower or upper bound at random (using e.g. a discrete uniform distribu-

tion). Compute the solution πk of problem (2) using these probabilities. Then

the core index CIi of event i can be approximated by computing the fraction

CIi ≈
|{p ∈ {π1, . . . , πN}|i ∈ p}

N
. (13)

A caveat of this method is that it does not find all non-dominated solutions in

every problem instance. This is because a non-dominated portfolio may not have

the highest reliability for any feasible parameter values. This results in a quali-

tative loss of the analysis, because the non-dominated portfolios that cannot be

found are such that they have a relatively high reliability over a large share of

feasible probabilities. Thus, this can be interpreted that these non-dominated

portfolios are less affected by epistemic uncertainty about probabilities, where-

fore this caveat can be significant in some contexts.
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7. Conclusions

We have presented a method for reliability allocation under interval-valued

uncertainty about probabilities. The two-phased algorithm consisting of implicit

enumeration and pairwise comparison is capable of solving the resulting the

set of non-dominated portfolios that characterize reasonable solutions to this

problem. However, the computational complexity increases quickly with the size

of the problem, wherefore state-of-the-art simplification methods were used. The

simplification made it possible to find a significant share of the non-dominated

set with considerable less computational effort.
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Le Duy, T., Vasseur, D., Dieulle, L., Bérenguer, C., Couplet, M., 2010. Treat-

ment of epistemic uncertainties with non-probabilistic approaches in applica-

tions of probabilistic risk assessment. In: Proceedings of PSAM 10 Topical

Meeting, Seattle US.
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