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Abstract

Although renewable energy technologies with zero marginal costs decrease electricity prices, the literature

is inconclusive on the impact of the resulting shift in the supply curves on price volatility. Because the risk

exposure of conventional generators depends on price volatility, there is a need to understand how this volatility

is affected by the penetration of renewables. In this paper, we build distributed lag models with Danish and

German data to estimate the impact of renewable energy generation on electricity price volatility. We find that

wind power decreases the volatility of daily prices in Denmark due to a flattening of the intraday price profile,

but increases the volatility in Germany because of a relatively stronger impact on off-peak prices. Meanwhile,

solar power decreases price volatility in Germany. By contrast, the weekly volatility of prices increases in both

areas due to the intermittency of renewables.
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1 Introduction

On 26 May 2012, Germany set a record by meeting nearly half of its midday electricity de-

mand with solar power [1]. In Denmark, wind power accounted for over 30% of total electricity

consumption in 2012 [2]. In Europe but globally as well, the adoption of renewable electricity

generation technologies is progressing rapidly as indicated by the average year-on-year invest-

ment growth rate of 28% since 2004 [3]. At the same time, the efficiency of renewable energy

technologies is improving, and manufacturers are achieving economies of scale that are driving

component prices down.

The growing adoption of renewable energy is also a consequence of energy policy, i.e., govern-

ments are subsidising investment in renewable energy such as wind and solar power by offering

fixed feed-in tariffs for producers, for example. Because of their weather-driven nature and

zero short-run marginal costs, large-scale installations of wind and solar power have increasing

impacts on both the level and volatility of the market-clearing prices. Indeed, conventional

wisdom is that the greater penetration of renewables in Germany is affecting power companies.

As a symptom of gloomy market prospects in Continental Europe, Swedish power company

Vattenfall announced a $4.6 billion writedown in July 2013 [4].

In this paper, we assess empirically the impact of renewable energy in Denmark and Ger-

many on electricity price volatility. The methodology of this paper is largely based on Mauritzen

[5], who models the variation of daily prices as a seasonal autoregressive moving average model

(SARMA) in which wind power production is an exogenous regressor. He finds that Dan-

ish wind power decreases the daily volatility of the area prices in Denmark. The benefits of

this methodology are that its results are straightforward to interpret and that one-day ahead

forecasts for electricity prices can be developed based on the data from previous days and in-

formation on regular consumption patterns. However, less attention has been paid to exploring

possible explanations for the changes in volatility. To investigate these, we divide the data set

into peak and off-peak hours and run regressions for each data set separately. This allows us to

analyse changes in volatility by relating them to supply curve elasticities and to the patterns
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of wind and solar power production.

This paper is organised as follows. In Section 2, we review the literature on impacts of

renewables on electricity markets. In Section 3, we first analyse time series of Danish area price

and wind power data and, then, examine German price and wind and solar power data. Section

4 presents the model for the effects of renewable generation on daily and weekly volatility.

Finally, in Section 5, we provide conclusions and discuss directions for future research.

2 Literature review

Estimates about the effect of wind power production on price levels have been reported in many

references. The common conclusion is that wind power production decreases prices. Holttinen

et al. [6] use the Multi-area Power Market Simulator model, EMPS, in which wind power

production is modelled as a must-run supply that decreases spot prices due to zero marginal

costs. However, the weekly resolution in EMPS does not capture the intermittent nature of

wind power.

Jónsson et al. [7] use hourly data and a non-parametric regression model to provide more

detailed results about price levels as well as the distribution of the prices at different wind

power levels. They employ day-ahead Danish wind power forecast data that are used when

market players place their bids. They model Danish day-ahead area prices as a function of

wind power penetration, i.e., the ratio of wind power and demand forecast, and delivery hour.

They conclude that higher wind power penetration in the day-ahead market decreases prices

and volatility substantially.

In the same time-series framework as in [5], Mauritzen investigates how wind power affects

the cross-border transmission of electricity between Denmark and Norway [8]. His conclusion is

that when more wind power is produced in Denmark, exports to Norway are higher while Nor-

wegian hydropower plants produce less. When wind power production decreases in Denmark,

Norway produces more hydropower and Denmark buys back the wind energy it exported. This
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supports the suggestion of Green and Vasilakos [9], who state that the large hydropower capac-

ity in Norway, Sweden, and Finland acts effectively as storage for high wind power capacity in

Denmark.

In Germany, only recently have there been studies on the effects of growing wind and solar

power capacity on electricity prices. Ketterer [10] models the influence of intermittent wind

power production on the level and volatility of the electricity prices in Germany by using

a generalised autoregressive conditional heteroskedasticity (GARCH) model with logarithmic

prices. GARCH models are particularly suitable for the analysis of volatility [11]. Because

power markets exhibit a high degree of volatility and volatility clustering [12], GARCH models

can also be used to analyse electricity prices. Ketterer finds that higher wind power production

decreases the German price level but leads to higher daily volatility. However, she notes that

since the regulatory change in 2010, which forced the German transmission operators to publish

day-ahead forecasts for renewable generation in their area, the volatility-increasing effect of wind

power has decreased, but the effect still remains. Therefore, Ketterer’s results are not aligned

with those of Jónsson et al. [7] and Mauritzen [5] on the effect of wind power on price volatility.

Würzburg et al. [13] model daily electricity prices in Germany from 2010 to 2012 with a

time-series model in which the independent variables are demand, renewable generation, gas

price, total export or import, and dummies for weekdays. They find that a 1 GWh increase in

total forecasted renewable generation results in a ¤1/MWh decrease in electricity prices. When

they partition renewable generation into wind and solar power components, the price-decreasing

effect from both is equal at ¤1/MWh for each additional 1 GWh of expected generation. They

note that the result is counterintuitive as solar power is expected to have a greater impact

because it is mainly produced during peak hours. In turn, Weigt [14] utilises realistic data on

German conventional plants and develops an optimisation model, which minimises production

and start-up costs in Germany while meeting demand and capacity constraints. If wind power

is included in the optimisation, then the average price level decreases by over ¤10/MWh in

2006 and 2007.

Mulder and Scholtens [15] explore the effect of Dutch renewable production on daily Dutch
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electricity prices from 2006 to 2011. They use a time-series model in which electricity prices are

explained by economic and climate factors. The economic factors include, among others, tight-

ness in the market, defined as the demand excluding decentralised generation that is produced

close to where it used. Climate factors include wind speeds and the intensities of sunshine in

the Netherlands and Germany. Although the share of renewable generation has increased in the

recent years, Mulder and Scholtens conclude that it is still so small that renewable generation

does not affect Dutch electricity prices. However, they find a weak negative impact on Dutch

prices from German wind speed.

Gelabert et al. [16] study the impacts of renewable generation on daily Spanish electric-

ity prices from 2005 to 2010 with a time-series model in which total demand and renewable

generation are treated as independent variables. They find that a 1 GWh marginal increase

in renewable generation decreased average Spanish electricity prices in 2005 by ¤3.8/MWh.

Although the share of renewables has increased, prices have declined less since 2005, and in

2010 the decrease was only ¤1.7/MWh. According to Gelabert et al. [16], the explanation for

this development is that in Spain, coal plants have recently been replaced by gas plants that are

usually setting the price. Furthermore, the increase in renewable generation has discouraged

investment in other types of capacity, and some companies exert market power to counter the

price-decreasing effect of renewables.

Outside Europe, Woo et al. [17] study the impact of wind power on 15-minute price levels

and variance in Texas using a time-series model that includes generation from wind and nuclear,

the natural gas price, and demand as exogenous variables. They find that a 1 GWh increase

in wind power production decreases electricity prices by $3-$15/MWh in different zones of

Texas. Moreover, they forecast electricity prices in Texas with 10% higher installed wind power

capacity. They conclude that the variance of electricity prices increases by less than 1% in non-

West zones of Texas and by about 5% in West Texas where most of the wind power capacity is

situated.

The impacts that renewable electricity generation has on price levels and volatility influence

investment decisions. Baringo and Conejo [18] build a mathematical program with equilibrium
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constraints (MPEC) to determine optimal strategies for investment in wind power for differ-

ent scenarios of demand and wind power production. They do not consider subsidies for the

investor, and all investment costs are recovered from electricity sales. They note that in some

scenarios it is not optimal to build all available wind power capacity because electricity prices

would fall so much that the profit of the investor would decrease. In [19], Baringo and Conejo

use a similar MPEC framework to model a central planner that simultaneously invests in wind

power and reinforces transmission lines in an illustrative network with discrete scenarios of de-

mand and wind power production at various levels of subsidies for wind power. They conclude

that, in their market model, subsidies are required to promote investments in wind power, and

investments in wind power are conditioned by the reinforcements of the transmission network.

Pahle et al. [20], too, use an equilibrium approach to study the German electricity market by

building a numerical Nash-Cournot model that helps strategic investment decisions of power

companies faced with intermittent wind power production and a broad range of exogenous CO2

prices. Wind power is not subsidised, which allows them to conclude a CO2 price of at least

¤128/ton is required before investments in wind power become more profitable than coal or

gas condensing plants.

Green and Vasilakos [21] estimate the impact of intermittent wind power generation on

hourly equilibrium prices and volumes with data on expected wind power production and

demand in Great Britain in 2020. They employ a supply-function equilibrium model in which

market players submit their offers consisting of quantities and prices to the electricity exchange.

Each player maximises its hourly profit given demand and the supply functions of other players.

Both in competitive and duopolistic markets, they find that the volatility of prices is higher

when there is more variability in wind power production. They also note that the volatility

increases if market power is exercised.

In this paper, we investigate more closely some of the hypotheses from Ketterer [10], Jónsson

et al. [7], and Mauritzen [5]. Specifically, we explain the difference in the results for Denmark

and Germany by dividing the data set into peak and off-peak hours. Our approach also con-

tributes to the literature that estimates the impact of renewable generation on electricity price
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levels ([13], [15], and [16], for example) by providing insights on how the price-decreasing impact

is distributed during the day. Moreover, we extend the analysis to address the impacts of solar

power. Following Mauritzen [5], we apply the methodology at the weekly level to analyse the

impact of intermittent renewable energy in the long run. However, instead of using the level of

wind power production similar to Mauritzen [5], we take the intermittency of wind power into

account by using the standard deviation of wind power production. Specifically, we hypothesise

that renewable generation decreases daily volatility but increases volatility at the weekly level

in both countries. The hypothesis for daily volatility is motivated by the recognition that re-

newable generation cuts peak-hour prices, whereas that for weekly volatility by the day-to-day

variability of wind and solar energy production.

3 Data and methodology

3.1 Summary statistics

Our data consist of hourly Danish area prices (in ¤/MWh), realised hourly wind power pro-

duction (MWh/h) for the two Danish areas (Western Denmark, DK1 and Eastern Denmark,

DK2), hourly German (Phelix) prices (in ¤/MWh), and hourly forecasts for wind and solar

power production in Germany (MWh/h). In both areas, there has been a significant amount

of renewable production for several years [22]. For Denmark, the dataset spans from 1 January

2007 to 31 December 2013 (2557 daily observations) and for Germany from 30 October 2009 to

31 December 2013 (1524 daily observations).

Because prices are calculated by the exchanges, there are no measurement uncertainties or

gaps. Ideally, one should use wind and solar power forecasts for modelling instead of realised

values because only forecasts are available for the players when submitting bids to the day-

ahead market. For Germany, there were enough earlier forecasts available at EEX Transparency

Platform [23], but for Denmark we employed realised values because old forecasts from Nord

Pool [24] can be obtained starting from only 2011. Forecasts also remain unchanged, whereas
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the actual production figures have small errors due to imperfect measurement equipment, and,

consequently, they are updated retroactively. Therefore, using realised Danish wind power data

instead of forecasts introduces some error into the regressions. However, we assume that this

error is random and absorbed by the residuals, in which case the estimated coefficients will

have no systematic biases.

To estimate the effect of wind power production on price volatility, we use a distributed lag

model with an exogenous regressor as in Equation 1

vt = α0 +
p

∑
i=1

αivt−i +
q

∑
i=1

βiεt−i +
r

∑
i=1

σiwt−i, (1)

where vt denotes the logarithm of a measure of volatility and wt the logarithm of the exogenous

wind power production term defined as the sum of the reported hourly production. There are

p autoregressive (AR) terms vt−i, q moving average (MA) terms εt−i, and r external regressors

wt−i with the coefficients αi, βi, and σi, respectively. Because wind and solar power is bid

at zero or negative price to the day-ahead market, we can assume that all wind and solar

power bids are accepted and affect prices directly through a parallel shift in the supply curve.

All variables are transformed into natural logarithm form, and, thus, the coefficients can be

interpreted as elasticities. This assumption of constant elasticity between wind power and prices

is more reasonable than assuming that changes in wind power production lead to equal changes

in prices at different production levels.

Our measure of volatility is the standard deviation calculated from hourly prices in Equation

2.

vt = ln(VD) , where

VD =

√√√√ 1
24

24

∑
h=1

(Ph − P̄)2 , and (2)

VD is daily volatility,Ph price in hour h, and P̄ average daily price
1

24

24

∑
h=1

Ph.

Figures 1(a) and 1(b) show the average intraday price profile for Denmark East (DK2) and

Germany, respectively, resulting from demand patterns. During morning and evening high-load
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(a) Denmark East (b) Germany

Figure 1: Average electricity price for Denmark East (DK2) and Germany from 2007 to 2013.

(a) Denmark East (b) Germany

Figure 2: The natural logarithm of daily price volatility of Denmark East (DK2) and German

prices from 2007 to 2013.

hours, the price is usually driven by thermal plants with higher marginal costs of production.

In low-load times, such as night time, prices are set by thermal plants lower in the merit order.

Figures 2(a) and 2(b) show how the daily volatility of DK2 and German prices has developed

from 2007 to 2013, respectively. There is no clear increasing or decreasing trend in the price

volatility of the areas, but generally the volatility of DK2 prices is lower than that of Germany.

Because condensing plants set German prices in most cases, German price volatility is more

stable than that of DK2, which is affected by the cyclical changes in hydro reservoirs in the

Nordic region.
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(a) Denmark West (b) Germany

Figure 3: Average hourly wind output in Western Denmark (DK1) and Germany in selected

months in 2013.

Figure 4: The intraday profile of German solar power in 2013

Figures 3(a) and 3(b) show that on average peak hours from 10 AM to 8 PM are windier than

off-peak hours. As a result, there is more must-run supply during peak hours than in off-peak

hours. In Denmark, this effect is more pronounced than in Germany, and we hypothesise that

this effect is caused by the larger number of wind power turbines on the coast with higher wind

speeds. In turn, solar power production in Germany shows a more predictable pattern (Figure

4). However, the profile of solar power production is similar in each month with production

only from 6 AM to 8 PM, indicating that solar power is produced only during peak hours.

As an example of longer time windows, we consider weekly price volatility, defined as the
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standard deviation of daily prices as shown in Equation 3.

VW =

√√√√1
7

7

∑
d=1

(Pd − P̄)2 , where (3)

VW is weekly volatility,Pd price on day d
1

24

24

∑
h=1

Ph, and

P̄ average of the daily prices
1
7

7

∑
d=1

Pd.

Thus, we have 366 observations for Denmark and 219 for Germany. Also, wind and solar power

terms for the weekly model are defined as the standard deviation of daily production in contrast

to the daily model where hourly productions are summed up. The reason for the difference is

that at the daily level, we explore the impact of high wind or solar power production on the

intraday price profile, but at the weekly level, we examine whether or not the variability of wind

or solar production levels causes volatility in daily prices during a week. The change is made

because it is possible to have approximately the same amount of wind or solar power produced

during a week with a stable or fluctuating production profile.

3.2 Stability checks

The variability and lack of patterns of Danish and German wind power are apparent in Figures

5(a) and 5(b), which plot the natural logarithm of daily wind power output in 2012. On the

other hand, Figure 6 shows that the production of solar power fluctuates less than that of wind

power on a day-to-day basis even though the daily time series is still very volatile. For the model

in Equation 1 to be valid, price volatility as well as wind and solar power time series need to be

stationary. A visual inspection of Figures 2(a), 2(b), 5(a), 5(b), and 6 suggests that these time

series are stationary. We confirm the stationarity of the time series by applying the augmented

Dickey-Fuller test [25] with lag orders from 1 to 15 for daily data and 1 to 5 for weekly data.

All daily time series pass the test at the 5% level except for the solar power time series, which

fails from lag order 10 onwards. From weekly data, German price and solar power data are

not stationary from lag order 3 onwards at the 5% confidence level. Moreover, wind and solar
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(a) Denmark West (b) Germany

Figure 5: Natural logarithm of daily wind output in Western Denmark (DK1) and Germany in

2013

Figure 6: Natural logarithm of German solar power in 2013

power production do not depend on price volatility because the negligible short-run marginal

costs of wind and solar power give no incentives for the producers to hold back production.

We use autocorrelation (ACF) and partial autocorrelation functions (PACF) of price volatil-

ity, wind, and solar power time series to specify the model. First, the ACF and PACF of daily

price volatility time series from DK1 in Figures 7(a) and 7(b), respectively, and from Germany

in Figures 7(c) and 7(d) have high peaks at the first lag and then near multiples of seven in-

dicating the weekly pattern in demand. Second, the ACF of daily wind power time series has

high peaks at the first few lags as shown in Figures 8(a) and 8(b) for DK1 and Germany, respec-
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(a) ACF of DK1 price volatility (b) PACF of DK1 price volatility

(c) ACF of German price volatility (d) PACF of German price volatility

Figure 7: ACF and PACF plots of DK1 and German daily price volatility. The ACF and PACF

plots for DK2 are highly similar to DK1.

tively. This suggests that an AR(1) or AR(2) representation is sufficient for wind power. As

the ACF of daily solar power time series in Figure 8(c) is flat with every lag due to the smaller

day-to-day variability visible in Figure 6, the best ARMA process is determined by starting

from the simplest AR(1) representation and by increasing the AR and MA terms iteratively.

The same method is used for weekly data because the ACF and PACF plots do not give explicit

indications of the appropriate model structure.

The final model candidates are evaluated by requiring that all coefficients are statistically

significant at the 1% level. To compare the candidates, we assess the Akaiki Information

Criterion (AIC) and examine the Q-Q, ACF, and PACF plots of the residuals of the models.

Because of the large number of observations, we can expect to obtain unbiased estimators and

residuals with little serial correlation. Finally, if the parameters of two models were close to

each other, then a more parsimonious model would be preferred.
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(a) ACF of DK1 wind power (b) ACF of German wind power

(c) ACF of German solar power

Figure 8: ACF plots of DK1 and German renewable production. The ACF plot for DK2 is highly

similar to DK1.
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4 Results

4.1 Daily volatility

We run separate regressions using specifications from Section 3.2 for both Danish areas, DK1

and DK2, to estimate the impact of daily wind power production on the corresponding area

price volatility. For Denmark, we obtain the following SARMA(2,1)(1,1) model with exogenous

terms for total daily wind power production data.

vt = α0 + α1vt−1 + α2vt−2 + α7vt−7 + β1εt−1 + β7εt−7 + σ1wt + σ2wt−1 (4)

The AR(1) and AR(2) terms account for short-term price development, and the AR(7) term

deals with the weekly seasonality in the data. Adding MA(1) and MA(7) terms provides

stochastic parts to the price development and increase the fit of the model. The estimated

coefficients αi and βi are given in Table 1 where all coefficients are statistically significant at

the 1% level unless otherwise noted. Furthermore, the regressions include a constant labelled

α0 as well as a contemporaneous and a one-day lagged term for wind power. The wind power

terms are labelled as wt and wt−1 in Equation 4 and their estimated coefficients are σ1 and

σ2, respectively. Using a one-day lagged term for the exogenous variable accounts for the

autocorrelation in the wind power production data and decreases serial correlation in the model

residuals.

In Table 1, an interesting finding is that the contemporaneous terms σ1 for DK1 at −0.0784

and for DK2 at −0.0766 are statistically significantly different from zero at the 1% level. For

both areas, the interpretation is that doubling the amount of daily wind power production

leads to about an 8% decrease in the standard deviation of hourly prices. The effect is slightly

stronger in DK1 than DK2, which is most likely caused by the combination of higher wind

power production and lower consumption in DK1 area.

Mauritzen [5] runs similar regressions with a more complicated SARMA(2,2)(1,2) model.

Our result for DK1 is in line with Mauritzen, although he finds that the effect is stronger at

15



−10%. However, his estimate for the coefficient for DK2 is not statistically significant. The

most probable explanation for the differences is that his data spans 2002 to 2007, whereas our

dataset has more recent data.

The contemporaneous terms σ1 for DK1 and DK2 are robust in that minor changes in

the model specification affect estimated coefficients only slightly. The lagged terms σ2 are

also statistically significant and robust to specification. However, they do not have immediate

economic interpretation because wind power fluctuates considerably from day to day, and the

market players have more recent wind forecasts available for the following day.

DK1 DK2

σ1 -0.0784 -0.0766

[0.0126] [0.0117]

σ2 0.0563 0.0583

[0.0123] [0.0115]

α0 2.1779 2.2381

α1 1.2197 1.3039

α2 -0.2349 -0.3211

α7 0.9992 0.9996

β1 -0.8830 -0.8743

β7 -0.9828 -0.9842

AIC 4128.72 4582.23

Table 1: The effect of Danish wind power production on daily Danish area price volatility. All

coefficients are statistically significant at the 1% level. We have reported standard errors

in brackets below the exogenous coefficients.

For Germany, we run separate regressions, in which the external regressor affecting price

volatility is either the total wind power production, the total solar power production, or the

combined wind and solar power in Germany. Compared to the model for Danish areas in
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Equation 4, adding an AR(14) term improves the fit. Thus, we have

vt = α0 + α1vt−1 + α2vt−2 + α7vt−7 + α14vt−14 + β1εt−1 + β7εt−7 + σ1wt + σ2wt−1 (5)

Table 2 shows that the contemporaneous term, σ1, for German wind power is positive at 0.0319

- contrary to the negative coefficient estimated for Danish areas. The coefficient for wind

power suggests that doubling the daily wind power production increases the hourly volatility

of German prices by 3%. Although the direction of the impact is different from the Danish

result, it is in line with Ketterer [10] whose GARCH model suggests that wind power increases

the daily volatility of German prices.

However, the coefficient σ1 for daily solar power is negative at −0.0425. The coefficient can

be interpreted so that doubling daily solar power production decreases the volatility of hourly

German prices by 4%. The absolute value of the coefficient is close to that for wind power, but

the opposite sign indicates that the impact is different.

When German wind and solar power time series are aggregated, the effect measured by

the coefficient σ1 is positive at 0.0353. Following the same interpretation, doubling the daily

combined output contributes to German price volatility by 4%. The combined output is mostly

driven by wind power because in our dataset the average daily wind power output was 224%

higher than the average daily solar power output. Consequently, the coefficient for combined

output is closer to the coefficient of wind power. However, in the regression with combined

output, the constant α0 is lower than the constant in the regression with only wind power;

it is not statistically significant, which may have increased the estimate for the coefficient σ1

upwards. Also, these regressions include lagged terms for wind, solar, and combined output.

As for Denmark, these terms do not have any economic interpretation. For regressions with

realised production figures instead of forecasts, the results are quite similar, thereby indicating

that the results for Denmark are robust.

The ACF plots of model residuals are presented in Figures 9(a) and 9(b) for DK1 and

German data with wind power as an exogenous term. The model residuals remain within the
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DE (wind) DE (solar) DE (combined)

σ1 0.0319 -0.0425 0.0353a

[0.0123] [0.0128] [0.0175]

σ2 0.0910 -0.0247a 0.1164

[0.0112] [0.0121] [0.0147]

α0 0.8992 3.0174 0.4904b

α1 1.1546 1.1685 1.1679

α2 -0.1811 -0.2025 -0.1852

α7 1.1131 1.1071 1.1129

α14 -0.1143 -0.1086 -0.1141

β1 -0.8925 -0.8897 -0.9001

β7 -0.9724 -0.9694 -0.9730

AIC 523.58 603.25 538.02

asignificant at 5%

bnot significant

Table 2: The effect of German solar, wind, and combined output on daily German price volatility.

All coefficients are statistically significant at the 1% level unless otherwise noted. We

have reported standard errors in brackets below the exogenous coefficients.
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(a) ACF of DK1 model residuals (b) ACF of German model residuals

Figure 9: ACF of DK1 and German model residuals.

95% confidence level with few exceptions at the multiples of seven. Therefore, the models’

residuals appear to be normally distributed and serially uncorrelated as required.

4.2 Analysis of intraday effects

To investigate further why wind power decreases the daily volatility in Denmark but increases

it in Germany, we divide the data set into three blocks called off-peak 1 hours (from 12 PM

to 9 AM), peak hours (9 AM to 9 PM), and off-peak 2 hours (9 PM to 12 PM), according to

EEX specification [26]. Given the intraday price profiles in Figures 1(a) and 1(b), the volatility-

increasing impact of wind power can be explained if prices in off-peak 1 and 2 blocks decrease

more than during peak hours, thereby meaning that prices diverge. On the other hand, the

volatility will decrease if peak prices decrease more than off-peak prices, i.e due to the flattening

of the intraday price profile.

To test these possibilities, we perform similar regressions as in the previous section for each

block, except that the logarithm of the standard deviation of hourly prices vt and the logarithm

of the sum of hourly wind power productions wt are replaced by the logarithm of the average
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price pt and the logarithm of average wind power production awt , respectively. We choose the

average function because the number of hours varies in the blocks. Using the same procedure of

model specification as in Section 3.2, the change of variables leads only to minor modifications.

The best models for Denmark and Germany are

pt = α0 + α1 pt−1 + α7 pt−7 + β1εt−1 + β7εt−7 + σ1awt + σ2awt−1 (6)

pt = α0 + α1 pt−1 + α7 pt−7 + β1εt−1 + β2εt−2 + β7εt−7 + σ1awt + σ2awt−1. (7)

The results of the regressions are in Table 3 and 4 for Denmark and Germany, respectively. For

DK1 and DK2, the coefficients for peak hours are −0.0706 and −0.0434, respectively, which

are slightly lower than the coefficients for evening off-peak hours at −0.0602 and −0.0301 but

higher than the coefficients for morning off-peak hours at −0.1116 and −0.0592. For Germany,

the coefficients for wind power are −0.1197, −0.2742, and −0.1354 for peak, morning off-peak,

and evening off-peak, respectively.

The absolute values of the coefficients reflect the sensitivity of prices to wind power pro-

duction. The fact that the coefficients for morning and evening off-peak hours in Germany are

more negative than the coefficient for peak hours indicates that the supply curves for off-peak

hours are more sensitive than the supply curves for peak hours. Thus, if there is an increase in

wind power production during off-peak hours, then prices will fall more than in peak hours for

a comparative increase in wind output. In Denmark, there is not much difference between the

blocks because the coefficients are close to each other.

Figure 3(a) shows that in Denmark there is a peak in wind output during peak hours, which

amplifies the total impact of wind power on peak hours relative to off-peak hours. This suggests

the idea that wind power contributes to the flattening of the intraday price profile by decreasing

peak prices more than off-peak prices in absolute terms. However, the German intraday wind

profile in Figure 3(b) is flatter indicating that the output is more stable throughout the day.

When this is combined with the fact that coefficients for morning and evening off-peak hours

are even lower than that for peak hours, off-peak prices can decrease more compared to peak

prices in absolute terms, thereby resulting in higher daily volatility. In practice, this means
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DK1 DK2

Peak Off-Peak 1 Off-peak 2 Peak Off-peak 1 Off-peak 2

σ1 -0.0706 -0.1116 -0.0602 -0.0434 -0.0592 -0.0301

[0.0034] [0.0070] [0.0033] [0.0030] [0.0046] [0.0019]

σ2 −0.0077a -0.0208 -0.0052b −0.0003b -0.0143 -0.0031b

[0.0034] [0.0069] [0.0033] [0.0030] [0.0045] [0.0019]

α0 4.2863 4.2302 4.0881 4.0634 3.8507 3.8730

α1 0.9097 0.9037 0.9834 0.8751 0.8564 0.9802

α7 0.9935 0.9967 0.9992 0.9901 0.9642 0.9996

β1 -0.5814 -0.6339 -0.7349 -0.4307 -0.4596 -0.6003

β7 -0.9047 -0.9565 -0.9898 -0.8853 -0.8698 -0.9913

AIC -1338.03 2208.37 -1487.33 -1045.99 1203.02 -2730.59

asignificant at 5%

bnot significant

Table 3: The effect of Danish wind power production on intraday Danish area prices in different

blocks. All coefficients are statistically significant at the 1% level unless otherwise noted.

We have reported standard errors in brackets below the exogenous coefficients.

that morning off-peak prices, in particular, can crash due to the combination of wind power

production and low demand. In contrast, peak-hour prices with high demand decrease only

slightly.

When German solar power production is also accounted for, the coefficient for peak hours

drops to −0.2347. The result is intuitive because most solar power production takes place

during peak hours. However, peak-hour prices do not decrease as much as morning off-peak

prices as the coefficient for morning off-peak prices is even lower at −0.2942. In contrast,

evening off-peak hours decrease less. Hence, the volatility-increasing effect of the combined

renewable output in Section 4.1 can be caused by lower morning off-peak prices and higher

evening off-peak prices relative to peak prices.
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DE (wind) DE (combined)

Peak Off-Peak 1 Off-peak 2 Peak Off-peak 1 Off-peak 2

σ1 -0.1197 -0.2742 -0.1354 -0.2347 -0.2942 -0.1382

[0.0071] [0.0153] [0.0067] [0.0116] [0.0160] [0.0068]

σ2 -0.0071b -0.0130b 0.0148a 0.0058b -0.0136b 0.0149a

[0.0068] [0.0147] [0.0064] [0.0104] [0.0153] [0.0064]

α0 4.7895 5.7836 4.7646 5.9333 5.9603 4.7883

α1 0.8981 0.9289 0.9152 0.8798 0.9262 0.9154

α7 0.9900 0.9989 0.9942 0.9904 0.9987 0.9943

β1 -0.5412 -0.4897 -0.4929 -0.5352 -0.4893 -0.4939

β2 -0.1099 -0.2263 -0.1613 -0.1032 -0.2257 -0.1617

β7 -0.8527 -0.9768 -0.9509 -0.8516 -0.9742 -0.9511

AIC -557.05 1483.00 -1077.84 -656.62 1468.96 -1081.65

asignificant at 5%

bnot significant

Table 4: The effect of German wind output on different blocks. All coefficients are statistically

significant at 1% level unless otherwise noted. We have reported standard errors in

brackets below the exogenous coefficients.
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4.3 Weekly volatility

We next extend the analysis to a weekly horizon by specifying a weekly model that includes the

standard deviation of daily prices in Equation 3 and the standard deviation of daily renewable

production. Our aim is to explore if wind power, for example, contributes to the weekly volatility

of Danish and German prices due to the day-to-day variability of wind power production.

The best regression model selected using the same procedure as in Section 3.2 is the

ARMA(1,1) model

vt = α1vt−1 + β1εt−1 + σ1wt . (8)

Weekly volatility depends on several factors. Unlike in the daily model, the random spikiness of

the data, in particular, cannot be explained with demand patterns. In Equation 8, the AR(1)

term approximates the current volatility with the previous value along with a MA(1) term

that generates randomness. All variables have been transformed into natural logarithm form

as before.

Table 5 shows the results from the regression for Danish data. Coefficients for DK1 and DK2

wind power, σ1, are clearly positive at 0.1890 and 0.2064, respectively. The coefficients can be

interpreted so that doubling the standard deviation of weekly wind power output in DK1 and

DK2 areas increases the weekly volatility of these areas prices by 19% and 21%, respectively.

Other statistically significant model candidates give slightly smaller coefficients.

The results can be explained by day-to-day horizontal parallel shifts of the supply curve.

When the installed capacity is increasing, the available supply is increasing and the parallel

shifts are larger which contributes to the growing weekly volatility. Mauritzen [5] uses an AR(3)

model to estimate the weekly impact of Danish wind. Contrary to our results, he finds the effect

of DK2 wind power on DK2 price volatility is negative, while the impact of DK1 wind power

on DK1 price volatility is positive. We question the robustness of the results because he notes

that the coefficients are statistically significant at the 10% level even if the reported standard

deviations are, in some cases, larger than the coefficient estimates itself.
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DK1 DK2

σ1 0.1890 0.2064

[0.0193] [0.0097]

α1 0.9435 0.8283

β1 -0.6419 -0.5989

AIC 646.11 729.71

Table 5: The effect of the standard deviation of the weekly Denmark wind power production on

weekly Denmark prices volatility. All coefficients are statistically significant at the 1%

level unless otherwise noted. We have reported standard errors in brackets below the

exogenous coefficients.

Table 6 shows the results for Germany. Wind power is the external regressor in the first,

solar in the second, and the sum of wind and solar power in third column. The corresponding

coefficients, σ1, are 0.17, 0.20, and 0.18, which means that doubling the standard deviation of

weekly wind, solar, and the combined output increases the weekly German price volatility by

17%, 20%, and 18%, respectively.

5 Discussion and conclusion

The share of renewable energy of total energy consumption is growing in Europe because of

EU decarbonisation targets. Denmark and Germany have large shares of wind and solar power

facilitated by their national policies. Consequently, we have chosen these two countries to

explore the impact that renewable energy has on liberalised electricity markets. Our hypothesis

is that wind and solar power decrease the volatility of daily prices because they decrease the

high peak prices relative to lower off-peak prices. In longer time windows, we hypothesise that

wind and solar power increase volatility due to their intermittent nature.

Our analyses suggest that wind and solar power production have statistically and econom-

ically significant effects on day-ahead prices in Denmark and Germany. In the short run, the
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DE (wind) DE (solar) DE (combined)

σ1 0.1743 0.2027 0.1754

[0.0114] [0.0071] [0.0115]

α1 0.9900 0.8523 0.9901

β1 -0.9428 -0.6975 -0.9434

AIC 261.43 300.19 259.33

a not significant

Table 6: The effect of the standard deviation of the weekly German wind, solar and combined

production on weekly German price volatility. All coefficients are statistically significant

at 1% level unless otherwise noted. We have reported standard errors for the exogenous

terms in brackets.

daily volatility of Danish prices is lower when there is more wind power production. In con-

trast to Denmark, wind power increases the daily volatility of prices in Germany. Hence, our

hypothesis is not fully confirmed. However, our results are aligned with those of Jónsson et

al. [7], Mauritzen [5], and Ketterer [10], and we endeavour explain them via analysis of intra-

day prices. We have argued that this discrepancy between the impacts of wind power can be

attributed to different intraday production profiles and different elasticities of supply curves

during different times of a day. In Germany, off-peak hours are most sensitive to downward

pressure in prices, and wind power is, on average, rather evenly distributed throughout the day.

As a result, prices during off-peak hours decrease more relative to those in peak hours, which

means that prices are diverging and standard deviation increases. In Denmark, however, the

price-decreasing impact of wind power is distributed more evenly during different times of day,

and there is a peak in average wind power production during peak hours. Thus, the standard

deviation decreases when the overall price level decreases.

Solar power is produced only during peak hours, which decreases daily volatility by decreas-

ing high peak hour prices. However, when wind and solar power are generated simultaneously

in Germany, the daily price volatility increases. In our data set, the average daily output from
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wind power is 224% higher than the average daily solar power output. This suggests that, on

average, wind power is the dominant component in the total price impact of wind and solar

power.

Although our weekly results are not as robust as the daily ones, they suggest that wind and

solar power increase the weekly volatility of Danish and German prices. This can be attributed

to the high day-to-day variability of wind and solar power production because both wind and

solar power depend on weather. On a windy day, for example, the price level can be low, but

on the following day the price level can be high if the zero-priced supply from wind power is

very low.

Our distributed lag models have several limitations. First, they estimate a single coefficient

to represent the impact of renewable energy output on price volatility even if the impact is

more dynamic and dependent on the market situation. Second, the high volatility of electricity

markets means that time-series models do not necessarily model the price development very

accurately, which causes errors in the estimated coefficients for renewable energy.

A subject for further research is to use different modelling techniques. In particular, the

link between renewable energy production profiles and supply curve elasticities can be estab-

lished more formally. If German supply is more inflexible than Danish supply during off-peak

hours, then high volumes of renewable energy can cut off-peak prices more relative to peak

prices. Moreover, the differences in cross-border transmission capacities between Denmark and

Germany can also be taken into account. As Mauritzen [8] states, Norway is effectively acting

as storage that absorbs Danish wind power during off-peak hours by lowering its hydropower

production.

Our results for Nord Pool and EEX suggest that the day-ahead price is affected by the

forecasted wind and solar power profiles. In extreme cases, the combination of low demand and

very high supply from renewable sources can lead to very low or even negative prices which

are below the marginal costs of production. Germany, in particular, exhibits occasionally lower

prices during peak hours than base hours. Before the large-scale penetration of wind and solar
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power in Europe, power companies used to profit from peak prices, but now they are facing

diminishing returns [27].

Outside Germany and Denmark, renewables have been found to decrease prices in Spain

[16] and Texas [17]. Also, Woo et al. [17] forecast that price volatility in Texas increases in

case of higher installed wind power capacity. Thus, the price impacts of renewables are not

limited to the two countries we have analysed but similar development is likely to exist in other

countries as well, provided that the capacity is large enough. In the Netherlands, for example,

there is no evidence of price impact yet because the installed capacity is still relatively small

[15].

The current policies for supporting renewables may lead to lower prices, and, thus, dis-

courage investment. Ultimately, this can lead to problems in securing the supply of electricity.

The adoption of more renewable energy requires mechanisms to cope with intermittent supply.

Moreover, wind power production is often geographically dislocated from consumption, which

can pose challenges for transmission network management. In [28], the European Commis-

sion identifies the capacity mechanism, i.e., support payments for conventional generators, as a

means for securing supply. Following a recommendation from the German Federal Ministry of

Economics and Technology [29], the new German coalition seeks to create a capacity mechanism

in Germany [30]. Consequently, equilibrium models similar to [18] and [20] are needed to ex-

plore what kinds of energy policies would promote investments in renewables while maintaining

the security of supply and allowing power companies to make reasonable profits.
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senschaftlicher Beirat beim BMWi Veröffentlicht Gutachten zur Versorgungssicher-

heit im Stromsektor [Online] Available from: http://www.bmwi.de/DE/Presse/

pressemitteilungen,did=602752.html [Accessed 1 December 2013]

[30] Hromadko, J. (27 November 2013) Germany’s New Coalition Vows to Fix Power Mar-

ket The Wall Street Journal [Online] Available from: http://online.wsj.com/article/

BT-CO-20131127-708349.html [Accessed 1 December 2013]

31


