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Abstract

Electric power systems extensively rely on cyber physical systems to control physical components

through cyber-based commands. Thus, the vulnerability to cyber threats requires an efficient alloca-

tion of resources to mitigate the risk of attacks. Common practices guide the selection of mitigation

actions by prioritizing the cyber threat scenarios through a qualitative assessment. These practices

can result in sub-optimal allocations of resources to protect the system. To overcome these draw-

backs, we quantify the risk of cyber threats to the system through a comprehensive analysis of the

system vulnerabilities. This analysis relies on Bayesian networks, which provide a solid framework

for probabilistic risk assessment by representing cyber threat scenarios as combinations of cascading

events. In addition, we develop an optimization model to determine the non-dominated mitigation

strategies to protect the system from cyber threats. Specifically, the minimization of the risk of cyber

threats supports the selection of mitigation actions, considering budget and technical constraints.

The optimization model provides additional insight into risk management at different budget levels.

Keywords: Cyber physical systems, Cybersecurity, Electric power grids, Risk management,

Multi-objective optimization.
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1 Introduction

Cyber physical systems are physical systems in which operations are integrated, monitored and controlled

through multi-core processors [1]. Such systems are increasingly employed in a wide range of industries,

including electric power industry. Despite the substantial benefits to our society, the rapid proliferation

of cyber physical systems also provides potential attackers with new opportunities to disrupt critical

infrastructures [2].

Costly impacts can result from such attacks, for instance a cyber attack in 2015 caused the power outage

of 225000 customers in Ukraine that lasted up to six hours. In that occasion, the operators at the three

operations centers were unable to regain remote control of more than 50 substations affected by the inci-

dent. After the loss of over 130MW of load, the operators restored power by sending technicians to the

substations and manually controlling the power system [3]. Besides critical infrastructures, cyber threats

may affect all kind of institutions with potentially severe and costly impacts worldwide. For instance,

the Petya and WannaCry cyber-attacks hit thousands of companies across the globe in 2017 [4]. Other

relevant cases include the Stuxnet attack in 2010 to target an uranium enrichment centrifuge in Iran [5]

and the attack on a German steel mill in 2014 to take over the plant control systems [6]. In recent

years, cyber attacks have increased dramatically in terms of quantity, diversity and sophistication with

significant economic losses [7].

These episodes prove the need for an effective deployment of security measures to mitigate the risk of cy-

ber threats. Poolsappasit et al. [8] develop a mitigation strategy based on the likelihood of cyber attacks.

A genetic algorithm supports the selection of a subset of mitigation actions by minimizing the cost of de-

ployment and the expected damage to the system. Shameli-Sendi et al. [9] propose a dynamic framework

for selecting optimal countermeasures to mitigate attacks. The selection is based on minimizing the cost

of deployment and the impact on users and services. However, these optimization models do not consider

the multiple impacts deriving from the cyber threat scenarios. Instead, mitigation strategies are selected

on the cost and performance of individual actions. The resulting resource allocation could be sub-optimal

for the cyber physical systems due to the lack of modeling the multiple impacts of cyber attacks [10].

Thus, the efficient allocation of resources to secure cyber physical systems involves challenges that we

address in this paper.

Specifically, this paper fits into the first two functions of the National Institute of Standards and Tech-

nology (NIST) cybersecurity framework [11] in detecting system vulnerabilities and protecting the system

from cybersecurity incidents. The NIST cybersecurity framework sets broadly accepted guidelines to

improve the security of cyber physical systems. In this framework, we propose a methodology for the

risk assessment of cyber threats based on a comprehensive analysis of the system vulnerabilities. This
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methodology relies on Bayesian networks that model a probabilistic representation of combinations of

events, possibly leading to severe outcomes. This model responds to the need for intuitive and compu-

tationally efficient methods for risk analysis, combining expert judgment and statistical analyses for the

quantitative assessment of risks [12].

The proposed methodology leads to select the optimal portfolios of mitigation actions, based on the min-

imization of the risk of multiple impacts of cyber attacks. In particular, this paper focuses on mitigation

strategies for protecting electric power systems, yet the framework has broader applications on cyber

physical systems. Recently, the Electric Power Research Institute (EPRI) analyzed the cybersecurity

failure scenarios and impacts for the electric sector [13]. The report provides insights on cybersecurity

risks and potential mitigation actions to support risk assessment and resource allocation. Among appli-

cations on electric power systems, Ciapessoni et al. [14] propose a methodology to assess the security of

such systems by analyzing the vulnerabilities to natural and human threats. On the other hand, Shelar

and Amin [15] formulate a game theoretic framework to assess the security of an electricity distribution

network, based on which the defender optimizes the security strategy of the network nodes.

In this paper, Section 2 reviews the practice proposed by the EPRI to select appropriate mitigation

actions for the electric power system. Specifically, we present a critical analysis of the ranking procedure

of individual cyber threats, which could lead to inefficient or unfeasible allocations for the system. This

problem is addressed in Section 3, which provides an alternative to the EPRI practice by evaluating port-

folios of mitigation actions to protect the cyber physical system against multiple cyber threat scenarios.

In addition, an optimization model supports the selection of the mitigation strategies that minimize the

expected impacts of cyber attacks, based on financial and technical constraints. Section 4 illustrates the

methodology by analyzing the cyber threat scenarios concerning the Advanced Metering Infrastructure

(AMI) of an electric power system. Section 5 discusses the potential and limits of the proposed frame-

work, suggesting possible ways to overcome some inconveniences. Finally, Section 6 concludes the paper

and outlines extensions for future research.

2 Analysis of the EPRI practice

Cybersecurity management calls for an extensive analysis of the system vulnerabilities, which leads to an

efficient allocation of resources to protect the electric power system. In particular, the EPRI proposes the

analysis of individual cyber threat scenarios based on attack graphs, multi-leveled diagrams describing

threats on cyber physical systems and possible attacks to realize such threats [16]. Attack graphs are

increasingly being applied to computer control systems, especially related to electric power systems, but

they have also been used to analyze threats to physical systems [17]. Figure 1 illustrates the graphical
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notation of two attack graphs, where a cyber threat scenario is represented through sequences of events

(shown as diamonds) leading to the possible impacts of the cyber attack (shown as ellipses). The impacts

of the cyber attack occur if a combination of events of the cyber threat scenario has proven to be successful,

based on the binary representation of AND and OR gates (shown as solid and dashed lines, respectively).

Attack graphs represents cyber threat scenarios, which are evaluated based on the likelihood of occurrence

and impact. According to the EPRI analyses, the likelihood depends on 5 criteria whereas the impact

depends on 15 criteria which are reported in Tables 3 and 4, respectively. These tables also report the

EPRI scoring system for quantifying the likelihood and impact of cyber threat scenarios. Each score is

an integer value in the range 0− 9, thus the likelihood and impact are computed by summing the scores

over the respective criteria. However, this scoring system can be questioned on the meaningfulness of

the 0− 9 scale. For instance, is a public accessible asset three times more accessible than a fenced asset

with standard locks and nine times more accessible than a guarded/monitored asset? Furthermore, the

additive model can be questioned on the sum of scores across different criteria. For instance, is “Public

safety concern” comparable to “Long term economic damage”?

Mapping the likelihood and impact of all cyber threat scenarios in a risk matrix [18] makes it possible to

rank the priority of individual cyber threats. This procedure clusters each cyber threat into High, Medium

or Low likelihood and High, Medium or Low impact in order to prioritize the selection of mitigation

actions. Specifically, cyber threats with High likelihood and High impact deserve the highest priority in

the choice of mitigation actions, whereas priority decreases for cyber threats with lower likelihood and/or

impact until the budget is depleted.

(a) (b)

Figure 1: Attack graphs for (a) “Invalid disconnect messages to meters impact customers and utility” and (b) “Reverse
engineering of AMI equipment allows unauthorized mass control” [13].
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Despite the intuitive appeal and simplicity, risk matrices do not necessarily recommend effective risk

management decisions, instead they may lead to incorrect risk prioritization [19,20]. Thus, the sequential

choices of mitigation actions may result in a sub-optimal resource allocation because they are based on

an incorrect prioritization of cyber threats. Furthermore, this procedure does not consider technical

and budget constraints across different scenarios. In conclusion, the EPRI practice presents several

inconsistencies in assessing the risk of cyber threats and supporting the selection of mitigation actions.

3 Bayesian framework

We propose a Bayesian framework, which provides an alternative to the EPRI practice for the risk

assessment of cyber threats and the risk-based selection of mitigation strategies. In particular, the

proposed risk assessment is based on a comprehensive analysis of multiple cyber threats that can affect

the cyber physical system [21]. The framework also includes an optimization model for determining

non-dominated mitigation strategies in order to protect the system from cyber threats. Specifically, an

optimization algorithm computes the portfolios of mitigation actions that minimize the expected impacts

of cyber attacks, considering budget and technical constraints.

3.1 From attack graphs to Bayesian network

In contrast to the EPRI analysis of individual cyber threat scenarios, the Bayesian framework relies on

a comprehensive analysis of multiple attack graphs [22]. Each attack graph represents a single cyber

threat scenario, however some events could be equivalent among different attack graphs. For instance,

in Figures 1a and 1b the event “Threat agent obtains credentials for the meter disconnect function” is

equivalent among both attack graphs. For this reason, multiple attack graphs can be integrated into a

directed acyclic graph by combining the corresponding events into single nodes. This integration leads

to a comprehensive representation of cyber threat scenarios that overviews the alternative opportunities

to attack the system [23].

This directed acyclic graph can be converted into a Bayesian network [24], a probabilistic graphical model

that consists of:

- chance nodes (shown as circles) representing the random events of cyber threat scenarios;

- value nodes (shown as diamonds) representing the possible impacts of the cyber attacks;

- arcs (shown as directed edges) indicating causal dependencies between nodes.

Specifically, chance nodes are connected by arcs to represent combinations of events leading to the re-

spective final impacts [25]. In this framework, the combinations of events indicate the stages of cyber
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Figure 2: Example of a Bayesian network.

threat scenarios, whereas the final impacts indicate the possible outcomes of the cyber attacks. Arcs

connects the nodes to represent the causal dependencies between the events of the attack graph. Figure

2 illustrates a Bayesian network, where each chance node represents a random event that encodes a finite

set of discrete states, including a state of No occurrence of the event. Bayesian networks typically consider

discrete states, nevertheless it is possible to include continuous variables under specific conditions [24].

Statistical analyses and expert judgment provide information to define the probability distributions of

events that do not depend on any other chance node (nodes j and ` in Figure 2). For events that show

causal dependencies on other chance nodes through directed arcs (node i in Figure 2), the probabilistic

representation is based on the state of the events they are depending on. Thus, it is necessary to define

conditional probability tables for such nodes. Following the binary representation of attack graphs, con-

ditional probability tables are derived from the information provided by AND and OR gates. Specifically,

if the event i depends on the events j and ` through AND(OR) gates, then the occurrence probability

of the event i is 1 if the events j and(or) ` occur as well, and 0 otherwise. For illustrative purposes, we

consider the event “Threat agent performs mass disconnects” in Figure 1b as an example throughout the

paper. Table 1 displays the conditional probability table of the event, based on the binary representation

of Occurrence and No occurrence of the dependent events. The conditional probability table is derived

from the information provided by AND and OR gates of the attack graph in Figure 1b.

Bayesian networks represent the events such that the occurrence probability is not necessarily limited to

0 and 1, but it is a real value in the set [0, 1]. This model leads to a more realistic representation of the

stages of cyber threat scenarios, in contrast to the binary representation. Table 2 displays the conditional

probability table of the event “Threat agent performs mass disconnects”, based on the multiple states of

the events. This conditional probability table is not meant to represent any actual electric power system.

According to the EPRI analyses, the occurrence probability of each event depends on (i) skill required,

(ii) physical accessibility, (iii) logical accessibility and (iv) attack vector. In particular, the occurrence

probability increases by enhancing the accessibility to equipment and information, while it decreases by

requiring specialized knowledge and technical means to pursue the cyber threat.

The cascading events of the cyber threat scenarios finally lead to the possible impacts, assessed according

to a set of criteria represented by the set K of value nodes [26]. The EPRI lists 14 possible impact criteria
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Table 1: Conditional Probability Table Based on Binary States.
Threat agent performs

mass disconnects
Threat agent reverse Threat agent Threat agent gains

Occurrence No occurrence
engineers AMI equipment obtains credentials control of devices

Occurrence
Occurrence

Occurrence 1 0
No occurrence 0 1

No occurrence
Occurrence 1 0

No occurrence 0 1

No occurrence
Occurrence

Occurrence 1 0
No occurrence 0 1

No occurrence
Occurrence 0 1

No occurrence 0 1

Table 2: Conditional Probability Table Based on Multiple States.

Threat agent performs mass disconnects [MW]
Threat agent reverse Threat agent Threat agent gains

No occurrence (0 50] (50 100] > 100
engineers AMI equipment obtains credentials control of devices

Occurrence

Occurrence

None 1 0 0 0
Few 0.6 0.4 0 0

Moderate 0.4 0.2 0.4 0
High 0.3 0.1 0.2 0.4

No occurrence

None 1 0 0 0
Few 0.6 0.4 0 0

Moderate 0.4 0.2 0.4 0
High 0.3 0.1 0.2 0.4

No occurrence

Occurrence

None 1 0 0 0
Few 0.6 0.4 0 0

Moderate 0.4 0.2 0.4 0
High 0.3 0.1 0.2 0.4

No occurrence

None 1 0 0 0
Few 1 0 0 0

Moderate 1 0 0 0
High 1 0 0 0

of cyber attacks on electric power systems, including financial, safety and service impacts. As a result,

each value node of the Bayesian network represents a single impact criterion k, whose score depends on

the state of events leading to that specific outcome. Ideally, the scores should be evaluated by a specific

scale that reflects its unit of measure.

3.2 Probabilistic risk assessment

The probabilistic risk assessment of cyber threats is based on the computation of the expected impact

for every impact criteria. Each chance node i represents a random event that encodes a finite set Si of

discrete states, including a state of No occurrence of the event. In particular, the occurrence probability

of events that show causal dependencies relies on the occurrence probability of the events they depend

on. For this reason, we define ∆i as the set of all possible combinations of states of the chance nodes
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affecting the event i, such that

∆i =
∏

j|(j,i)∈E

Sj , (1)

where E denotes the set of all arcs.

Let the random variable Xi represent the probability distribution of event i over the states si ∈ Si. Then,

X̂i is a vector of random events on which Xi directly depends, meaning the vector of random variables

Xj for all nodes j such that (j, i) ∈ E. For the d-separation property of Bayesian networks [24], the

probability that the events affecting the event i meets a specific combination of states δi ∈ ∆i is

P[X̂i = δi] =
∏
sj∈δi

P[Xj = sj ] ∀δi ∈ ∆i. (2)

Thus, the occurrence probability of the event i is computed by the law of total probability as the weighted

average of the posterior probabilities across all δi ∈ ∆i, such that

P[Xi = si] =
∑
δi∈∆i

P[Xi = si|X̂i = δi] P[X̂i = δi]. (3)

Because the occurrence probabilities are computed recursively, it is necessary to start the computation

from the initial events throughout the dependent events of the cyber threat scenarios. The risk of cyber

threats is then evaluated as the expected impact of the scenarios for each criterion k ∈ K, such that

E[Vk] =
∑
δk∈∆k

P[X̂k = δk] Vk[X̂k = δk], (4)

where Vk[X̂k = δk] is the score of the impact criterion k depending on the combination of states δk of

the events leading to that specific impact.

The expected impacts can be significantly reduced by deploying mitigation actions on the cyber physical

system. Specifically, the mitigation actions affect the occurrence probability of one or multiple events in

the cyber threat scenarios. In Bayesian networks, decision nodes (shown as squares) represent the choice

of mitigation actions, as illustrated in Figure 3. Each arc directed from a decision node to a chance node

jaj

`a`

i k

Figure 3: Example of a Bayesian network with decision nodes.
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indicates that the deployment of the mitigation action affects the occurrence probability of the event

represented by the chance node. Because this paper focuses on system design, the decision nodes do not

depend on any event (no incoming arcs). Future research will focus on system control with decision nodes

depending on other events.

Mitigation actions are numbered a ∈ {1, 2, ..., N}, such that the binary variable za indicates the de-

ployment of the mitigation action a. Specifically, the binary variable is za = 1 for the deployment of

the mitigation action a and za = 0 otherwise. Thus, a portfolio is defined by the binary vector z as a

combination of binary variables za for all the possible mitigation actions. With no loss of generality, the

vector z lists binary variables such that

z = [z1, z2, ... , zN ]. (5)

The deployment of mitigation actions reduces the occurrence probabilities of affected events. Bayesian

networks compute probability updates of the cascading events throughout the cyber threat scenarios by

the law of total probability, such that

P[Xi = si|z] =
∑
δi∈∆i

P[Xi = si|X̂i = δi] P[X̂i = δi|z]. (6)

Thus, the risk of cyber threats depends on the portfolio z so that the expected impact of each criterion

k ∈ K is

E[Vk](z) =
∑
δk∈∆k

P[X̂k = δk|z] Vk[X̂k = δk]. (7)

This framework aims to compute the risk of cyber threats for each impact criterion, making it possible

to select mitigation strategies based on the minimization of the expected impacts.

3.3 Optimization model

The risk-based selection of mitigation strategies is performed through a multi-objective optimization

model. Unlike the EPRI practice, the selection of mitigation actions is not based on the additive model

of scores across different impact criteria. Instead, our optimization model determines the portfolios of

mitigation actions that minimize the risk of cyber threats for every impact criteria. The selection is based

on the analysis of expected impacts derived from the deployment of different mitigation strategies, so

that the optimization model determines the portfolios that fulfill the Pareto condition

z∗ � z⇐⇒

 E[Vk](z∗) ≤ E[Vk](z) for all k

E[Vk](z∗) < E[Vk](z) for some k
. (8)
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This condition states that portfolio z∗ dominates z if it reduces the risk of cyber threats for any impact

criterion without increasing the risk for other impact criteria.

In addition to the Pareto condition, the optimal mitigation strategies need to fulfill budget and technical

constraints. Budget constraints specify the financial feasibility of the deployment of a mitigation strategy.

Each mitigation action a is associated to a cost ca, thus the overall cost of portfolio z must not exceed

the budget B such that ∑
a

za ca ≤ B. (9)

Technical constraints specify the properties of the system, such as mutually exclusive or mutually inclusive

conditions of mitigation actions. For instance in Figure 3, the linear constraints

zaj + za` ≤ 1 (10)

zaj − za` = 0 (11)

indicate that mitigation actions aj and a` cannot be deployed together or they must be deployed together,

respectively.

Technical constraints also include risk acceptability limits that are represented by non-linear inequalities.

In particular, specific regulatory conditions may apply to some events of the cyber threat scenarios. For

such event i, the subset S̃i ⊂ Si includes the critical states whose occurrence probability must not exceed

a risk acceptability threshold εi, such that

∑
si∈S̃i

P[Xi = si|z] ≤ εi. (12)

Risk acceptability thresholds are usually provided by regulatory offices or internal company policies.

Feasible portfolios belong to the set ZF , which includes all binary vector z that fulfill linear and non-linear

constraints. Then, the set of non-dominated solutions consists of the feasible portfolios that fulfill the

Pareto condition for any other feasible portfolio, meaning that

ZND = {z∗ ∈ ZF |@ z ∈ ZF such that z � z∗}. (13)

Generally, the set of non-dominated portfolios can include multiple alternative solutions, so the selection

of a single mitigation strategy is not straightforward. For this reason, it is necessary to support the

selection of the optimal mitigation strategy through additional analyses. A possible approach is the

computation of the core index of each mitigation action. Analogously to Liesiö et al. [27], the core index
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CI(a) is defined as the fraction of non-dominated portfolios that include the mitigation action a, such

that

CI(a) =
|{z∗ ∈ ZND|za = 1}|

|ZND|
. (14)

The analysis of the core indexes helps determine the mitigation actions that should be selected or rejected.

If the core index of a mitigation action is 1, that measure is included in all non-dominated portfolios;

on the other hand, if the core index is 0, that measure is not included in any non-dominated portfolio.

Finally, mitigation actions whose core index is in the range (0, 1) require further analyses in order to be

selected or rejected.

An implicit enumeration algorithm computes the set of non-dominated portfolios that minimize the risk of

cyber threats over the impact criteria. The algorithm is an adaptation of Liesiö [28] and has been proposed

by Mancuso et al. [29] for multi-objective optimization. This optimization algorithm is computationally

efficient but it may be time consuming for a large amount of mitigation actions (over 40). In this case,

evolutionary algorithms are a possible alternative to approximate non-dominated solutions for a lower

computational time [30].

4 Case study

We illustrate the potential of the Bayesian framework by optimizing the selection of mitigation strate-

gies for the Advanced Metering Infrastructure (AMI) of an electric power system. AMI systems have

raised many security concerns since they connect traditionally self-contained power system operations

with unreliable customer sites that are widely dispersed. The deployment of AMI systems is introducing

millions of components to the electric grid that support two-way communication for next-generation grid

applications. Although these systems can increase operational efficiency and enable new capabilities such

as demand-response, they also increase the attack opportunity for potential adversaries. For this reason,

electric power companies must address these new cybersecurity risks as part of their risk management

strategy.

Information about AMI systems is provided by the National Electric Sector Cybersecurity Organization

Resource (NESCOR), a program funded by the U.S. Department of Energy to protect electric power sys-

tems from cybersecurity incidents, both malicious and non-malicious. The NESCOR document “Electric

Sector Failure Scenarios and Impact Analyses” [16] provides short descriptions of approximately 125 cy-

ber threat scenarios in seven domains of the electric sector: Advanced Metering Infrastructure, Distributed

Energy Resources, Wide Area Monitoring, Protection and Control, Electric Transportation, Demand Re-

sponse and Distribution Grid Management. Furthermore, the NESCOR document “Analysis of Selected
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Electric Sector High Risk Failure Scenarios” [13] presents the analyses of a selection of these cyber threat

scenarios. Specifically, each analysis includes an attack graph that details the logical dependencies of

events leading to a successful cyber attack. In addition to the attack graph, several of the analyses also

provide a detailed description of each scenario.

Based on the NESCOR analyses, we select 8 cyber threats with the highest priority for AMI systems,

in particular: invalid disconnect messages to meters impact customers and utility; reverse engineering of

AMI equipment allows unauthorized mass control; threat agent obtains credentials for system or function;

threat agent uses social engineering; threat agent gains access to network; threat agent exfiltrates data;

authorized employee brings malware into system or network; threat agent exploits firewall gap.

Figure 4: Bayesian network for selected cyber threat scenarios to the Advanced Metering Infrastructure
of an electric power system.
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These cyber threats potentially lead to “Threat agent performs mass disconnects”, “Threat agent sends

demand-response messages to drastically raise electricity usage” and “Threat agent causes devices to

send last gasps or self-test failure messages”, which indicate the possible outcomes of cyber attacks to

the AMI systems. In Figure 4, the Bayesian network is based on the attack graphs of the 8 cyber threat

scenarios to represent the alternative opportunities to attack the system. In particular, the circles repre-

sent the events of the cyber threat scenarios, the diamonds indicate the possible impacts of cyber attacks

whereas the squares show mitigation actions that could be deployed for protecting the AMI system from

cyber threats. Note that the event “Threat agent obtains credentials for the meter disconnect function”

is equivalent among both cyber threat scenarios in Figures 1a and 1b. For this reason, this event has

been represented by one chance node named “Credentials for meter disconnect function” in the Bayesian

network. Reducing redundancies of equivalent events in multiple cyber threat scenarios facilitates the

comprehensive analysis of cyber threats as a Bayesian network. In addition, the events “Threat agent

has headend credentials and initiates disconnect(s) at headend” and “Threat agent has business system

credentials and initiates disconnect(s) at business system” in Figure 1a are not considered in the Bayesian

network because it is sufficient that the threat agent gains access to the network hosting the meter dis-

connect function and obtains the relative credentials to cause “Possible voltage/frequency fluctuations

with disconnected customers”.

In the Bayesian network, probability distributions of the chance nodes have been set according to in-

formation provided by the NESCOR documents. For instance, the psychological manipulation (social

engineering) of an employee may be expensive and it could lead to a public disclosure if the attempt fails,

which summarizes to a low occurrence probability. However, such information is not sufficient to specif-

No occurrence (0 50] (50 100] > 100
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Figure 5: Illustrative impact scores for “Restoration costs”.
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ically quantify the occurrence probability. For this reason, the occurrence probabilities of this example

are not meant to be representative of any existing AMI system, but they are illustrative values to prove

the viability of the Bayesian framework. The value nodes list the impact criteria of Table 4, in particular

the ones affected by a possible cyber attack to the AMI systems. For illustrative purposes, impacts Vk

have been quantified based on the scoring system of Table 4 due to the lack of detailed information in

literature. For instance, the event “Threat agent performs mass disconnects” is quantified in different

states of mass disconnects: No occurrence, (0 50]MW, (50 100]MW, > 100MW. Thus, each value node

maps the impact score depending on the states of that event, as illustrated in Figure 5 for the impact

criterion “Restoration costs”. Note that the impacts of cyber threats are not necessarily evaluated by

every criteria of Table 4. For instance, the event “Threat agent performs mass disconnects” does not

affect the impact criterion “Loss of privacy” for any state.

Assuming that event i is “Threat agent performs mass disconnects” and the value node represents the

impact criterion “Restoration costs” in Figure 2, the expected impact of “Restoration costs” [k = RC] is

the weighted average of the impact scores for every state in Figure 5, such that

E[VRC ] = P[Xi ≤ 50MW ] VRC [Xi ≤ 50MW ] + ...+ P[Xi ≥ 100MW ] VRC [Xi ≥ 100MW ]. (15)

The NESCOR documents also list possible mitigation actions that could be deployed to protect the AMI

systems from cyber threats, specifying the events affected by each mitigation action. The deployment

of a mitigation action affects the occurrence probability of the cyber threats according to the effect of

the action. In particular, this case study accounts for 22 possible mitigation actions, which lead to 222

No occurrence ≤ 50 50 < ... ≤ 100 > 100
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Figure 6: Illustrative probability distribution for mass disconnects.
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mitigation strategies. Tables 5-10 list the 22 mitigation actions for the selected cyber threat scenarios,

specifying the affected events based on the NESCOR analyses. The first column of the tables lists

the index of the action in the portfolio z, whereas the third column lists the cost of each mitigation

action. The illustrative costs of mitigation actions aim to include a budget constraint to the optimization

model. In addition, the optimization model includes a technical constraint on the risk acceptability of

mass disconnects above 50MW. Figure 6 illustrates the probability distribution of the event “Threat

agent performs mass disconnects” deriving from the deployment of a generic portfolio z. Assuming that

experts set the risk acceptability threshold to 0.5%, then the occurrence probability of the critical states

must fulfill the constraint

P[Xi > 50MW |z] ≤ 0.5%. (16)

The results of the multi-objective optimization show a decrease of the risk of every impact criteria by

increasing the budget level. Figure 7 shows that larger budgets lead to more effective mitigation strategies

to reduce the risk of every impact criteria. In this case study, the risk profiles of some impact criteria are

overlapping because the impact scores are based on the same 0− 9 scale that limit the quantification of

the impacts. The analysis of the risk profiles supports the definition of the optimal budget by selecting

the budget level above which the risk converges for every impact criteria, such as B ≥ 400 in this example.

Computational time is around one hour on a regular laptop, however it depends on the constraints limiting

the set of feasible portfolios. For instance, relaxing the budget constraint leads to higher computational

time because the algorithm considers a larger set of feasible portfolios. In Figure 7, the risk profiles

consider all the non-dominated portfolios selected by the optimization algorithm for each budget level.

Figure 7: Expected impact of each impact criterion for different budget levels.
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Figure 8: Core index map of mitigation actions for different budget levels.

Then, the core index of each mitigation action is computed to support the choice of actions that should

be selected or rejected. Figure 8 maps the core index of each mitigation action through a gray scale.

Specifically, a black square indicates that the action is included in every non-dominated portfolio, whereas

a white square indicates that the action is not included in any non-dominated portfolio. Gray squares

indicate a core index in the range (0, 1), meaning that the mitigation action is included in some non-

dominated portfolios, but not all.

As a result, the black-squared actions should be selected whereas the white-squared actions should be

rejected. On the other hand, gray-squared actions need additional analyses to support the selection or

rejection of the deployment on the AMI system. In this case study, the additional analyses would be

necessary only for a limited number of mitigation actions for some budget levels. For instance, for budget

B = 500k$ the mitigation actions z5, z6 and z16 belong to 50% of the non-dominated portfolios. The

other mitigation actions belongs to either all or none of the non-dominated portfolios, so they do not

require any additional analysis.

5 Discussion

The case study shows the potential of a comprehensive analysis of multiple cyber threats. Integrating

the cyber threat scenarios into a Bayesian network facilitates the detection of system vulnerabilities and

the definition of appropriate mitigation actions for protecting the cyber physical system. In this respect,

actions affecting multiple cyber threats and synergies of actions affecting the same event(s) can be easily

represented in a single model. This model results in a clear graphical representation of the possible cyber
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threats to the system by erasing the redundancies deriving from equivalent events in multiple scenarios.

The model relies on the definition of the occurrence probability of cyber threats, which could be a trou-

blesome task. However, the decomposition of the cyber threat scenario into cascading events facilitates

the definition of the occurrence probabilities of the single events. In addition, the collection of informa-

tion on successful and unsuccessful cyber attacks could provide valuable data to estimate the occurrence

probability of specific events [31]. These statistical analyses are not sufficient because the threat agents

would exploit system vulnerabilities that were not necessarily available in past attacks, which by defini-

tion are not included in the existing data [32]. Specifically, a cyber threat may not be recognized until it

manifests, thus it may be missed in threat scenarios that are examined as part of the risk assessment [33].

For this reason, it is necessary to integrate statistical analyses with information provided by experts based

on investigations on possible system vulnerabilities.

The probabilistic representation of cyber threat scenarios provides a solid framework for the risk assess-

ment of cyber physical system. It also enhances detailed analyses for risk management, in contrast to

the binary representation through the attack graphs. Moreover, Bayesian networks make it possible to

update the probability of the cascading events of cyber threat scenarios. As a result, the model represents

the effect of the deployment of mitigation actions on the system, even considering intrusion detectors to

tackle cyber threats that have not been examined for the risk assessment [34]. The evaluation of the risk

for each impact criteria provides additional insights into risk management, which would not be possible

with the additive model of scores proposed by the EPRI.

In the case study, the impacts of the cyber threats have been set according to the scoring system in Table

4. However, it is advisable to set different numeric scales based on the specificity of the impact criterion,

for instance the criterion “Restoration costs” should be evaluated through a monetary scale. Note that

the choice of the scale could lead to different solutions of the optimization model [35].

Finally, the Bayesian framework has broader applications than electric power systems to consider cy-

ber threats on any cyber physical system. For instance, the National Vulnerability Database provides

information about vulnerabilities of IT systems through the Common Vulnerability Scoring System [36].

6 Conclusions

In this paper, we have developed a Bayesian framework to analyze the vulnerabilities of cyber physical

systems and optimize the resource allocation to protect the system from cyber threats. In particular, the

selection of mitigation actions is based on the analysis of multiple outcomes of cyber attacks, including

financial, safety and service impacts. Cyber threat scenarios are modeled through Bayesian networks to

overview the alternative opportunities to pursue a cyber attack leading to such impacts. Thus, the mini-
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mization of the expected impacts supports the choice of mitigation strategies based on a multi-objective

optimization model.

The optimization model integrates budget and technical constraints that limit the set of feasible portfolios

in order to select the optimal mitigation strategies. Specifically, the optimal mitigation strategies corre-

spond to the portfolios that reduce the risk of cyber threats for any impact criterion without increasing

the risk for other impact criteria. As a result, we have showed that a comprehensive analysis of the cyber

threat scenarios leads to an optimal mitigation strategy for the system. The viability of the Bayesian

framework has been illustrated through a case study concerning the Advanced Metering Infrastructure

of an electric power system, which have raised several security concerns.

In conclusion, this framework can be introduced as a novel practice for assessing the risks of cyber threats

and for supporting risk-based decisions on resource allocation to cyber physical systems. Possible exten-

sions need to be investigated, such as modeling the objectives of the threat agent(s) through Adversarial

Risk Analysis [37]. Future research will focus on the analysis of the cyber resilience [38], meaning the

ability of the cyber physical system to continuously deliver the intended outcome despite adverse cyber

events.
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[2] Smith, M.D. and Paté-Cornell, M.E., 2018. Cyber Risk Analysis for a Smart Grid: How Smart is

Smart Enough? A Multiarmed Bandit Approach to Cyber Security Investment. IEEE Transactions

on Engineering Management.

[3] Whitehead, D.E., Owens, K., Gammel, D. and Smith, J., 2017, April. Ukraine cyber-induced power

outage: Analysis and practical mitigation strategies. In Protective Relay Engineers (CPRE), 2017

70th Annual Conference for (pp. 1-8). IEEE.

19



[4] Yaqoob, I., Ahmed, E., ur Rehman, M.H., Ahmed, A.I.A., Al-garadi, M.A., Imran, M. and Guizani,

M., 2017. The rise of ransomware and emerging security challenges in the Internet of Things. Computer

Networks, 129, pp.444-458.

[5] Nourian, A. and Madnick, S., 2018. A systems theoretic approach to the security threats in cyber

physical systems applied to stuxnet. IEEE Transactions on Dependable and Secure Computing, 15(1),

pp.2-13.

[6] Lee, R.M., Assante, M.J. and Conway, T., 2014. German steel mill cyber attack. Industrial Control

Systems, 30, p.62.

[7] Kshetri, N., 2010. The global cybercrime industry: economic, institutional and strategic perspectives.

Springer Science and Business Media.

[8] Poolsappasit, N., Dewri, R. and Ray, I., 2012. Dynamic security risk management using bayesian

attack graphs. IEEE Transactions on Dependable and Secure Computing, 9(1), pp.61-74.

[9] Shameli-Sendi, A., Louafi, H., He, W. and Cheriet, M., 2018. Dynamic optimal countermeasure

selection for intrusion response system. IEEE Transactions on Dependable and Secure Computing,

15(5), pp.755-770.

[10] Mancuso, A., Compare, M., Salo, A. and Zio, E., 2017. Portfolio optimization of safety measures for

reducing risks in nuclear systems. Reliability Engineering and System Safety, 167, pp.20-29.

[11] Barrett, M.P., 2018. Framework for Improving Critical Infrastructure Cybersecurity Version 1.1 (No.

NIST Cybersecurity Framework).

[12] Zio, E., 2009. Computational methods for reliability and risk analysis (Vol. 14). World Scientific

Publishing Company.

[13] Lee, A., 2015. Analysis of selected electric sector high risk failure scenarios. National Electric Sector

Cybersecurity Organization Resource (NESCOR) Technical Working Group 1.

[14] Ciapessoni, E., Cirio, D., Kjølle, G., Massucco, S., Pitto, A. and Sforna, M., 2016. Probabilistic risk-

based security assessment of power systems considering incumbent threats and uncertainties. IEEE

Transactions on Smart Grid, 7(6), pp.2890-2903.

[15] Shelar, D. and Amin, S., 2017. Security assessment of electricity distribution networks under DER

node compromises. IEEE Transactions on Control of Network Systems, 4(1), pp.23-36.

[16] Lee, A., 2015. Electric sector failure scenarios and impact analyses. National Electric Sector Cyber-

security Organization Resource (NESCOR) Technical Working Group 1.

20



[17] Johnson, P., Vernotte, A., Gorton, D., Ekstedt, M. and Lagerström, R., 2016, October. Quantitative

information security risk estimation using probabilistic attack graphs. In International Workshop on

Risk Assessment and Risk-driven Testing (pp. 37-52). Springer, Cham.

[18] Ni, H., Chen, A. and Chen, N., 2010. Some extensions on risk matrix approach. Safety Science,

48(10), pp.1269-1278.

[19] Duijm, N.J., 2015. Recommendations on the use and design of risk matrices. Safety science, 76,

pp.21-31.

[20] Allodi, L. and Massacci, F., 2017. Security events and vulnerability data for cybersecurity risk

estimation. Risk Analysis, 37(8), pp.1606-1627.

[21] Liu, Y. and Man, H., 2005, March. Network vulnerability assessment using Bayesian networks. In

Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005 (Vol.

5812, pp. 61-72). International Society for Optics and Photonics.

[22] Frigault, M. and Wang, L., 2008, July. Measuring network security using bayesian network-based

attack graphs. In Annual IEEE International Computer Software and Applications Conference (pp.

698-703). IEEE.

[23] Kordy, B., Pitre-Cambacds, L. and Schweitzer, P., 2014. DAG-based attack and defense modeling:

Dont miss the forest for the attack trees. Computer science review, 13, pp.1-38.

[24] Nielsen, T.D. and Jensen, F.V., 2009. Bayesian networks and decision graphs. Springer Science and

Business Media.

[25] Xie, P., Li, J.H., Ou, X., Liu, P. and Levy, R., 2010, June. Using Bayesian networks for cyber security

analysis. In Dependable Systems and Networks (DSN), 2010 IEEE/IFIP international conference on

(pp. 211-220). IEEE.

[26] Couce-Vieira, A., Houmb, S.H. and Ros-Insua, D., 2017, August. CSIRA: A Method for Analysing

the Risk of Cybersecurity Incidents. In International Workshop on Graphical Models for Security (pp.

57-74). Springer, Cham.
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[35] Hämäläinen, R.P. and Lahtinen, T.J., 2016. Path dependence in Operational ResearchHow the

modeling process can influence the results. Operations Research Perspectives, 3, pp.14-20.

[36] Zhang, Y., Wang, L., Xiang, Y. and Ten, C.W., 2015. Power system reliability evaluation with

SCADA cybersecurity considerations. IEEE Transactions on Smart Grid, 6(4), pp.1707-1721.

[37] Banks, D.L., Aliaga, J.M.R. and Insua, D.R., 2015. Adversarial risk analysis. Chapman and

Hall/CRC.

[38] Gisladottir, V., Ganin, A.A., Keisler, J.M., Kepner, J. and Linkov, I., 2017. Resilience of cyber

systems with over and underregulation. Risk Analysis, 37(9), pp.1644-1651.

22



Supplementary tables

Table 3: Likelihood Criteria With Scoring System [16].
Likelihood criterion Scoring system

Skill required 0: Deep domain/insider knowledge and ability to build custom attack tools;
1: Domain knowledge and cyber attack techniques;

3: Special insider knowledge needed;
9: Basic domain understanding and computer skills.

Accessibility 0: Inaccessible; 1: Guarded, monitored;
(physical) 3: Fence, standard locks; 9: Publicly accessible.

Accessibility 0: High expertise to gain access; 1: Not readily accessible;
(logical, assume have 3: Publicly accessible but not common knowledge;

physical access) 9: Common knowledge or none needed.
Attack vector 0: Theoretical; 1: Similar attack has been described;

(assume have physical 3: Similar attack has occurred;
and logical access) 9: Straightforward, for example script or tools available.

Common vulnerability 0: Isolated occurrence; 1: More than one utility;
among others 3: Half or more of power infrastructure; 9: Nearly all utilities.
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Table 4: Impact Criteria With Scoring System [16].
Impact criterion Scoring system

Public safety concern 0: none; 1: 10-20 injuries possible;
3: 100 injured possible; 9: one death possible.

Workforce safety concern 0: none; 3: any possible injury; 9: any possible death.
Ecological concern 0: none; 1: logical ecological damage such as localized fire or spill,

repairable; 3: permanent local ecological damage; 9: widespread
temporary or permanent damage to one or more ecosystems.

Financial impact of 0: petty cash or less; 1: up to 2% of utility
compromise on utility revenue; 3: up to 5 %; 9: greater than 5 %.

Restoration costs 0: petty cash or less; 1: up to 1% of utility organization
O&M budget; 3: up to 10%; 9: greater than 10%.

Negative impact on 0: no effect; 1: small generation facility off-line or degraded operation of
generation capacity large facility; 3: more than 10% loss of generation capacity for 8 hours or

less; 9: more than 10% loss of generation capacity for more than 8 hours.
Negative impact on the 0: no effect; 1: localized price manipulation, lost transactions, loss of

energy market market participation; 3: price manipulation. lost transactions, loss of
market participation impacting a large metro area; 9: market or key

aspects of market non operational.
Negative impact on the 0: no; 1: loss of transmission capability to meet peak demand or

bulk transmission system isolate problem areas; 3: major transmission system interruption;
9: complete operational failure or shut down of the transmission system.

Negative impact on 0: no; 1: up to 4 hour delay in customer ability to contact utility and gain
customer service resolution, lasting one day; 3: up to 4 hour delay in customer ability to

contact utility and gain resolution, lasting a week; 9: complete operational
failure or shut-down of the transmission system.

Negative impact on 0: none; 1: isolated recoverable errors in customer bills; 3: widespread but
billing functions correctible errors in bills; 9: widespread loss of accurate power usage data.

Damage to goodwill 0: no effect; 1: negative publicity but this does not cause financial loss to
toward utility utility; 3: negative publicity causing up to 20% less interest in programs;

9: negative publicity causing more than 20% less interest in programs.
Immediate macro 0: none; 1: local businesses down for a week; 3: regional infrastructure
economic damage damage; 9: widespread runs on banks.

Long term 0: none; 3: several years of local recession;
economic damage 9: several years of national recession.
Loss of privacy 0: none; 1: 1000 or less individuals; 3: thousands of individuals;

9: millions of individuals.
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Table 5: Mitigation Actions for Scenario “Authorized Employee Brings Malware Into System or Network”.
Index Mitigation actions Cost [k$] Affected event(s)

1 Train personnel on possible paths for infection 30
Compromised mobile device

Compromised computer peripherals
Unintentional installation of malware

2 Maintain patches and anti-virus 70

Compromised mobile device
Compromised computer peripherals

Unintentional installation of malware
Intentional installation of malware

3 Test for malware before connection 50
Compromised mobile device

Compromised computer peripherals

Table 6: Mitigation Actions for Scenario “Threat Agent Exploits Firewall Gap”.
Index Mitigation actions Cost [k$] Affected event(s)

4 Implement configuration management 40

Intentional set of firewall rule
that permits access between two networks

Accidental set of firewall rule
that permits access between two networks

5 Verify all firewall changes 60

Intentional set of firewall rule
that permits access between two networks

Accidental set of firewall rule
that permits access between two networks

6 Require intrusion detection 30

Intentional set of firewall rule
that permits access between two networks

Accidental set of firewall rule
that permits access between two networks

7 Require authentication to access firewall 50

Intentional set of firewall rule
that permits access between two networks

Accidental set of firewall rule
that permits access between two networks

Table 7: Mitigation Actions for Scenario “Threat Agent Uses Social Engineering”.
Index Mitigation actions Cost [k$] Affected event(s)

8 Conduct penetration testing periodically 70

Info from Internet
Info from dumpster diving

Info from other means
Threat agent posing as

trustworthy party

9 Train personnel on social engineering attacks 40
Threat agent posing as

trustworthy party
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Table 8: Mitigation Actions for Scenario “Threat Agent Obtains Credentials for System or Function”.
Index Mitigation actions Cost [k$] Affected event(s)

10 Strong passwords 30 Crack of passwords

11 Encrypt communication paths 80
Capture of passwords on network

or through keystroke logger

12 Protect against replay 60
Capture of passwords on network

or through keystroke logger
13 Strong security questions 30 Reset passwords
14 Require multi-factor authentication 50 No assistance from authorized user
15 Use a token with PIN 20 Theft of an authentication token

Table 9: Mitigation Actions for Scenario “Threat Agent Gains Access to Network”.
Index Mitigation actions Cost [k$] Affected event(s)

16 Limit individuals with privilege 30

Having privilege to access network
hosting disconnect function

Privilege to access a network connected to
network hosting disconnect function

17 Isolate network 90
Privilege to access a network connected to

network hosting disconnect function

18
Enforce restrictive firewall rules

70
Path to gain privilege to access

to access connected network network hosting disconnect function

19
Require authentication

40
Path to gain privilege to access

to access connected network network hosting disconnect function

Table 10: Mitigation Actions for Scenario “Reverse Engineering of AMI Equipment Allows Unauthorized
Mass Control”.

Index Mitigation actions Cost [k$] Affected event(s)
20 Remove unsecure development features 80 Reverse engineering of AMI meters
21 Include credentials in equipment design 50 Control of many devices simultaneously
22 Configure for least functionality 30 Control of many devices simultaneously
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