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Abstract

In the constraint proposal method a mediator locates points at which the two deci-
sion makers have joint tangent hyperplanes. We give conditions under which these
points are Pareto optimal and we prove that under these conditions the mediator’s
problem has a solution, when the number of issues in the negotiation is two or any
odd number greater than two. In practice, the mediator adjusts a hyperplane go-
ing through a reference point until the decision makers’ most preferred alternatives
on the hyperplane coincide. We give local convergence conditions for fixed-point
iteration as an adjustment process. We also discuss the relationship of exchange
economies and the constraint proposal method, and the possible ways of using the
method.

Key words: Group decisions and negotiations, negotiation support method,
Pareto optimality, existence of solution, fixed-point iteration

1 Introduction

In this paper we consider a two-party negotiation over two or more contin-
uous issues. For example, the negotiation could be on allocating resources,
such as money and labor force, between two units of a company. The purpose
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of negotiation support methods in such settings is to locate Pareto optimal
points among which the decision makers (DMs), e.g., the units of a company,
can choose an agreement. Ehtamo et al. (1999a) have recently formalized an
interactive method for finding Pareto points by means of joint tangent hyper-
planes. The method is called the constraint proposal method. In this paper
we focus on three major questions: does the method produce Pareto-optimal
points, does it lead to a problem that has a solution, and can the joint tangent
hyperplanes be found with fixed-point iteration.

The idea of locating Pareto solutions by finding the joint tangent was first
presented for oligopoly games by Ehtamo et al. (1996) and Verkama et al.
(1996). Teich et al. (1995), Ehtamo et al. (1999a), and Heiskanen et al. (2001)
extend the approach to negotiation settings, where an impartial mediator tries
to find joint tangent hyperplanes. The method is based on the geometrical
observation that under some concavity assumptions there is a jointly tangential
hyperplane for the DMs’ indifference contours at a Pareto optimal point.

In practice, the mediator adjusts a hyperplane going through a predetermined
reference point until the DMs’ most preferred alternatives on the hyperplane
coincide. We show that reference points chosen from the line connecting the
DMs’ global optima produce Pareto optimal points, and the mediator’s prob-
lem has a solution when the number of issues is either two or any odd number
greater than two.

In the theory of oligopolistic markets the joint tangent can be interpreted as
a mechanism according to which the members of a cartel can punish each
others from deviating the joint optimum, see Osborne (1976). This idea is fur-
ther generalized to a dynamic resource management problem by Ehtamo and
Hämäläinen (1993) and Ehtamo and Hämäläinen (1995), where the parties
safeguard themselves with linear strategies against any attempts by the other
party to break an agreement. In this paper we use recent results on incen-
tive or contract design framework by Kitti and Ehtamo (2003) to explain the
convergence of fixed-point iteration in adjusting the hyperplane constraint.

From the negotiation support point of view, the main benefit of the constraint
proposal method is that the DMs’ utility functions do not need to be elicited.
Second, the method is informationally decentralized in the sense that the DMs
do not have to disclose any private information to each other. Other methods
with similar properties include, e.g., the heuristic presented by Teich et al.
(1996) and the Joint Gains method by Ehtamo et al. (1999b) and Ehtamo
et al. (2001). These methods are based on seeking joint improvements from a
tentative agreements; an approach, which was first suggested by Raiffa (1982).

The constraint proposal method is implemented in a negotiation support sys-
tem RAMONA, which has been applied, e.g., to agricultural negotiations be-
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tween Finnish Government and the Finnish Farmer’s Union, see Teich et al.
(1995). In RAMONA the hyperplane, on which the DMs are asked their most
preferred points, is interpreted as a budget constraint. This interpretation
relates the method to exchange economies. We shall briefly discuss the sim-
ilarities and differences of exchange economies and the constraint proposal
method.

The paper is organized as follows. In Section 2 we describe the mediator’s
problem as a system of equations to be solved and make some observations on
the properties of the system. In Section 3 we study the choice of the reference
point and Pareto optimality of the solution of the mediator’s problem. Con-
ditions for the existence of solution of the mediator’s problem are analyzed
in Section 4. Adjustment of hyperplane constraint with fixed-point iteration
is studied in Section 5. In Section 6 we discuss the relationship of the con-
straint proposal method and exchange economies. In Section 7 we make some
concluding remarks and discuss the possible ways of using the method.

2 Constraint Proposal Method

We assume that there are two DMs, a and b, who negotiate over n ≥ 2 contin-
uous issues. Let the real numbers x1, . . . , xn denote the values of these issues,
we also denote x = (x1, . . . , xn). The DMs’ preferences are characterized with
the utility functions ua, ub : R

n 7→ R. These are needed in the mathematical
analysis, but the negotiation method itself does not require these functions to
be explicitly known. In this paper we use the following assumptions on the
DMs’ value functions:

(A1) ua and ub have unique global optima at x̄a and x̄b, respectively, and
x̄a 6= x̄b,

(A2) ua and ub are continuous,
(A3) ua and ub are quasiconcave,
(A4) ua and ub are strongly quasiconcave.

The global optima are used for constructing appropriate reference points for
the constraint proposal method. We assume that these optimal points are
different since otherwise there would be no need to negotiate at all. The con-
tinuity of utility functions is crucial when we study the existence of solution
for the mediator’s problem of finding joint tangent hyperplanes.

Quasiconcavity of function ui means that the set

Si(y) = {x ∈ R
n : ui(x) ≥ ui(y)}
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is convex for all y ∈ R
n. Strong quasiconcavity of ui means that for each x1,

x2 ∈ R
n, x1 6= x2, we have ui(λx1 + (1 − λ)x2) > min{ui(x

1), ui(x
2)} for all

λ ∈ (0, 1). Strong quasiconcavity implies quasiconcavity and also assures the
uniqueness of the global maximum, see, e.g., Bazaraa et al. (1993, Section 3.5).

The purpose of the constraint proposal method is to locate Pareto optimal
solutions that are points where it is not possible to move to any other point
without worsening one of the DMs value. Formally, Pareto optimality of point
x∗ means that there is no x for which

ui(x) ≥ ui(x
∗)

for i = a, b and the inequality is strict for at least one i.

In the constraint proposal method an impartial mediator tries to locate a
hyperplane going through a given reference point such that the DMs’ most
preferred alternatives on that hyperplane coincide. When this happens the
hyperplane is tangential to the DMs’ indifference curves at the point in ques-
tion; see Figure 1, where the hyperplane is simply a line. If all the DMs’ more
preferred points are on the opposite sides of the hyperplane as in Figure 1,
then the point is Pareto optimal.

o 

Contours of 

Contours of u
b
 

u
a
 

Figure 1. A Pareto optimal point and a joint tangent hyperplane.

Let us now formulate the mediator’s problem mathematically. First, the me-
diator chooses a reference point r and defines a hyperplane

H(p, r) = {x ∈ R
n : p · (x − r) = 0}

going through the reference point. The normal of the hyperplane is denoted
with p and p · x denotes the usual inner product of vectors p and x. The
mediator asks the DMs to give their most preferred points on the hyperplane.
These points solve

max
x∈H(p,r)

ui(x), i = a, b. (1)
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Knowing the optimal answers the mediator then updates the hyperplane. The
procedure is repeated until the most preferred points coincide within some pre-
determined tolerance. We shall turn back to the adjustment of the hyperplane
in Section 5.

Let Xi(p, r), i = a, b, denote the solutions to (1). The mediator’s problem can
be formulated as follows: for fixed r find p such that

Xa(p, r) ∩ Xb(p, r) 6= ∅. (2)

When (1) has a unique solution, i.e., Xa and Xb consist of single points, then
the mediator’s problem can be formulated equivalently as the following system
of equations to be solved for p:

F (p) = xa(p, r) − xb(p, r) = 0, (3)

where xi(p, r), i = a, b, denotes the unique solution of (1). Recall that under
strong quasiconcavity the solution of (1) is unique.

By solving (3) with different reference points different Pareto solutions can be
obtained. This can be done in practice, e.g., by sliding the reference point as
suggested by Ehtamo et al. (1999a). Under some concavity assumptions for
ua and ub the resulting Pareto optimal points vary lower semicontinuously as
the reference point is changed, see Heiskanen et al. (2001, Theorem 5).

In this paper we assume that when solving for their most preferred points
the DMs do not have other constraints than the hyperplane given by the
mediator. There could be some other constraints as well, e.g., in a resource
allocation problem the amounts of the resources could be limited. Nevertheless,
adding the same compact and convex constraint set to the DMs’ optimization
problems would not affect the mathematical properties of the problem. To ease
the notation we neglect all these additional constraints. See Heiskanen (2001)
for the use of the constraint proposal method in negotiations with additional
constraints.

Let us now make observations on the properties of F . These properties are
needed in the analysis in the following sections. First, because any parallel
normal vectors define the same hyperplane, F is degree zero homogeneous,
i.e.,

(P1) F (p1) = F (αp1) for all α 6= 0.

In particular, if F (p∗) = 0 then F (αp∗) = 0 for all α 6= 0, which means that
the mediator’s problem has at least a ray of solutions if it has one solution.
This holds for both formulations (2) and (3) of the mediator’s problem.
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Second, since xi(p, r) ∈ H(p, r) for i = a, b, it follows that F satisfies a condi-
tion which is known as Walras’ law in microeconomics literature:

(P2) p · F (p) = 0 for all p 6= 0.

We shall see that Walras’ law plays an important role in the analysis of the
constraint proposal method. It is also a property that does not hold for the
multi-party generalization of the method considered by Heiskanen et al. (2001)
and Heiskanen (2001). Hence, most of the results of this paper cannot be
generalized to a multi-party setting with the same techniques as used in this
paper. The interpretation of Walras’ law is further discussed in Section 6.

2.1 Example: Quadratic Utility Functions

Let us assume that the utility functions are of the form

ui(x) = −
n

∑

j=1

αi
j(xj − x̄i

j),

where αi
j > 0 for j = 1, . . . , n and i = a, b. By solving the optimality conditions

of (1) we get that the DM i’s responses for given hyperplane constraint are
given by the formula

xi
j(p, r) = [p · (r − x̄i)]pj/[αi

j

∑

k

(p2
k/α

i
k)] + x̄i

j , (4)

for j = 1, . . . , n and i = a, b.

To illustrate the geometrical ideas behind the constraint proposal method let
us now consider the two dimensional case and set αa

1 = αb
2 = 15, αa

2 = αb
1 = 1,

x̄a = (0, 0), x̄b = (2, 2), and let us choose the reference point r = (2, 0).
The contours of the utility functions are illustrated in the left part of Figure
2; dotted lines represent the contours of ua and dashed lines represent the
contours of ub. The resulting optimal solution functions xa(p, r) and xb(p, r)
are illustrated in the figure by solid lines. The optimal solution functions, given
by (4), are

xa(p, r) = (2p2
1, 30p1p2)/(p2

1 + 15p2
2),

xb(p, r) = (30(p2
1 − p1p2) + 2p2

2, 30p2
1) /(15p2

1 + p2
2).

The resulting F , defined by (3), is drawn in the right part of Figure 2.
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There are three solution rays to (3):

R1 = {(p1, p2) : (p1, p2) = λ(1, 1), λ 6= 0},
R2 = {(p1, p2) : (p1, p2) = λ

(

(2 −
√

3)/(2 +
√

3), 1
)

, λ 6= 0},
R3 = {(p1, p2) : (p1, p2) = λ

(

1, (2 −
√

3)/(2 +
√

3)
)

, λ 6= 0}.

These rays are illustrated with dashed lines in the right part of Figure 2. A
hyperplane going through the reference point (2, 0) and the normal in R1, R2,
or R3 gives the joint tangential points (1, 15)/8, (0.00, 0.14), and (1.86, 2.00),
respectively. These points are the intersection points of the solid lines in the
left part of Figure 2, the points marked with circles. All these points are Pareto
optimal. In the right part of Figure 2 we also see that Walras’ law, (P2), means
that F (p) is perpendicular to its argument p.

−2 0 2 4 6
−4

−2

0 

2 

4 

x
1

−6 −4 −2 0 2
−6

−4

−2

0 

2 

x
1

x
2

x
2

o o

o
F  p( )

x=x   p,r( )a

x=x   p,rb( )

R
1
 

R
2
 

R
3
 

p

Figure 2. Illustration of xa(p, r), xb(p, r), and F (p).

3 Pareto Optimality and the Choice of Reference Points

In this section we first show that under the assumptions (A1)–(A3) for the
utility functions all the solutions of the mediator’s problem (2) are Pareto
optimal when the reference point is chosen from the line connecting the DMs’
optima. We also show that all the Pareto points can be obtained by choosing
the reference points in this manner.

Let us begin with showing in Lemma 1 that Pareto optimality can be charac-
terized with jointly supporting hyperplanes when the value functions satisfy
(A1)–(A3). See, e.g., Yu (1985, Section 3.4) for other Pareto optimality con-
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ditions. We use the following notation

H+(p, r) = {x ∈ R
n : p · (x − r) ≥ 0},

H−(p, r) = {x ∈ R
n : p · (x − r) ≤ 0}.

The proof of Lemma 1 is presented in the appendix.

Lemma 1. Let the assumptions (A1)–(A3) hold. Then x∗ is Pareto optimal
if and only if there is H(p, x∗) such that Sa(x

∗) ⊂ H+(p, x∗) and Sb(x
∗) ⊂

H−(p, x∗).

The part (a) of the following proposition tells that the solutions of (2), if
there are such, are Pareto optimal when the reference point is chosen from the
line connecting the DMs’ global optima. The part (b) of the proposition has
been proven in Ehtamo et al. (1999a) in the case of differentiable quasiconcave
utility functions. The meaning of this results is that all the Pareto points can
be obtained by taking reference points from the line connecting the decision
makers’ global optima. Related results are also given by Heiskanen (2001) for
strictly pseudoconcave utility functions. 1

Proposition 1. Let the assumptions (A1)–(A3) hold.

(a) Let r = λx̄a + (1 − λ)x̄b, λ ∈ [0, 1]. If x∗ ∈ Xa(p, r) ∩Xb(p, r), then x∗ is
Pareto optimal.

(b) If x∗ is Pareto optimal, then there are r = λx̄a + (1 − λ)x̄b, λ ∈ [0, 1],
and p such that x∗ ∈ Xa(p, r) ∩ Xb(p, r).

Proof. Let us begin with the part (a). If λ = 0 or λ = 1 the result is obvious.
Thus we may suppose that λ ∈ (0, 1). By the optimality of x∗ we know that
H(p, r) is a joint tangent hyperplane of Sa(x

∗) and Sb(x
∗). It follows that

Sa(x
∗) and Sb(x

∗) belong to opposite halfspaces defined by H(p, r) and hence
x∗ is Pareto optimal by the quasiconcavity. For example, let us suppose that
Sa(x

∗) ⊂ H+(p, r), i.e., p · (x− r) ≥ 0 for all x ∈ Sa(x
∗). In particular we have

p · (x̄a − r) ≥ 0. Observing that

x̄a − r = (1 − λ)(x̄a − x̄b) = (1 − λ)(r − x̄b)/λ,

it follows that p · (x̄b − r) ≤ 0. Then Sa(x
∗) and Sb(x

∗) belong to the opposite
halfspaces and Pareto optimality follows from Lemma 1.

Let us now show the part (b). By Lemma 1, Pareto optimality means that
there is a hyperplane H(p, x∗) such that Sa(x

∗) ⊂ H+(p, x∗), and Sb(x
∗) ⊂

1 Strictly pseudoconcave functions are strongly quasiconcave. Hence, Proposition 1
gives a more general result for two-party negotiations than the results of Heiskanen
(2001).
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H−(p, x∗). An appropriate r is now obtained by taking the intersection of the
line λx̄a + (1− λ)x̄b, λ ∈ [0, 1], and H(p, x∗) as the reference point. Hence, we
need to show that there is such an intersection point. Let us denote

f(λ) = p · [λx̄a + (1 − λ)x̄b − r].

Because Si(x
∗), i = a, b, are convex sets and x̄i ∈ Si(x

∗), i = a, b, and because
Sa(x

∗) ⊂ H+(p, x∗) and Sb(x
∗) ⊂ H−(p, x∗), we know that there are δ1, δ2 ∈

[0, 1], δ2 < δ1, such that f(λ) > 0 for all λ ∈ [δ1, 1], and f(λ) < 0 for all
λ ∈ [0, δ2]. Clearly f is a continuous function, so that there is λ∗ ∈ [0, 1] such
that f(λ∗) = 0. The result follows by taking r = λ∗x̄a + (1 − λ∗)x̄b. 2

Under assumption (A4) Proposition 1 implies that a Pareto point other than
one of the global optima x̄a, x̄b should have a reference point other than one of
these optima. The result does not, however, guarantee that there is always a
solution for the mediator’s problem even though the reference point is chosen
from the line connecting the DMs’ optima.

Since any point on a given hyperplane can be taken as a new reference point
defining the same hyperplane, the solutions of (2) can be Pareto optimal even
though the reference point is not chosen from the line connecting the DMs’
optima. It is also easy to find reference points such that at least some of the
solutions of (2) fail to be Pareto optimal.

4 Existence of Solution

In this section we show that under the assumptions (A1), (A2), and (A4), the
mediator’s problem, i.e., equation (3) since (A4) holds, has a solution for any
reference point if n = 2 or n is odd. In Figure 2 we have an example where the
system has three solutions, which are all Pareto optimal; the points market
by circles in the left part of Figure 2.

Let us begin with a general existence result for F (p) = 0. The proof of the
following lemma is given in the appendix and it is based on a fixed-point
theorem according to which a continuous mapping from a unit sphere to itself
has either a fixed-point or it maps some point to its antipode when n is odd,
see (Dugundji, 1966, Corollary 3.3 in Chapter XIV).

Lemma 2. Let the continuous mapping F : R
n\{0} 7→ R

n have the properties
(P1) and (P2). Then F (p) = 0 has at least a ray of solutions when n = 2 or
n > 2 is odd.

Recall that by a ray of solution we mean that if F (p∗) = 0 then F (αp∗) = 0
for all α 6= 0. Due to homogeneity of xa(p, r) and xb(p, r) with respect to
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their first argument there is at least a ray of solutions for (3) if there is one
solution. Similar existence results as that given by Lemma 2 can be found in
economics literature, where F is the excess demand function of an exchange
economy. In that framework the solution is called competitive equilibrium.
There is, however, a significant difference between the results on economic
equilibria and the results of this paper. Namely, for exchange economies vector
p represents prices and they are assumed to be positive. Moreover, ‖F (p)‖
becomes infinitely large when some components of p converge to zero. Because
of these specific properties, the existence results for exchange economies are
based on different deduction than the result of this section, see, e.g., Mas-
Colell et al. (1995, Chapter 3). The relationship of exchange economies and
the constraint proposal method is discussed in detail in Section 6.

To be able to use Lemma 2 for the mediator’s problem we need to show that xa

and xb are continuous with respect to p 6= 0. Lemma 3 gives this result when ua

and ub are strongly quasiconcave functions with the property that the sets that
are preferred to r are compact. These properties hold, e.g., for strictly concave
functions that attain their optima. The main characteristics of the problem
that guarantee the continuity of F are continuity of the utility functions,
single valuedness of the optimal solutions due to strong quasiconcavity, and
the continuity of the hyperplane constraint with respect to its normal. The
proof of Lemma 3 is given in the appendix.

Lemma 3. For i = a, b let ui be a strongly quasiconcave continuous function
and let Si(r) be a compact set. Then xi(p, r) is continuous with respect to its
first argument for all p 6= 0.

When xa and xb are continuous with respect to p, then F is continuous, too.
The following proposition tells essentially that for the constraint proposal
method with two negotiators F (p) = 0 has a solution for any reference point.
The proposition follows immediately from Lemma 2 and Lemma 3.

Proposition 2. Let n = 2 or n > 2 be odd. Let the assumptions (A2) and
(A4) hold, and let Sa(r) and Sb(r) be compact sets. Then there is p∗ 6= 0 such
that xa(p∗, r) = xb(p∗, r).

Proposition 2 guarantees that there is a solution for (3) when n = 2 or n > 2
is odd. Nevertheless, we have not been able to generate a counterexample with
n even and concave utility functions, where there is no solution. The technical
difficulty with showing the existence of solution for arbitrary n is that xa and
xb are not continuous at p = 0. For exchange economies, which result to similar
system of equations, there are stronger results that give the existence for all
n. These results are, however, based on properties which do not hold for F in
the current problem.

In practice, the constraint proposal method is most suitable when the DMs
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can easily give their optima on a given hyperplane, which is possible when the
number of issues is low. Hence, the method is most suitable when n = 2 or
n = 3. In these cases the mediator’s problem has a solution by Proposition 2.

Finally, let us notice that the existence result does not generalize as such to
the multi-DM setting because of the structural differences of these problems
with the two DM case. For example, in multi-DM setting equation (3) is not
defined for linearly dependent parameter vectors, and therefore the resulting
F is not continuous.

5 Adjustment of Hyperplane Constraint

The basic idea of the constraint proposal method is that the mediator pro-
poses the negotiators a hyperplane and asks their optimal points on the plane.
If the points are significantly different the mediator updates the normal of
the hyperplane with using the DMs’ current and possibly other previous op-
timal choices. Ehtamo et al. (1999a) have suggested fixed-point iteration for
updating the normal of the hyperplane constraint. The main advantage of
this iteration is that the mediator can adjust the hyperplane on the basis of
the DMs’ optimal answers for given normal. For example, the derivatives of
the mapping F need not be approximated. Although fixed-point iteration has
been successfully applied by several authors dealing with the constraint pro-
posal method, e.g., Ehtamo et al. (1999a), an explicit convergence proof is
lacking. Our aim in this section is to remedy this matter.

In fixed-point iteration the normal pk is updated in proportion to the value of
F as follows:

pk+1 = pk + µF (pk), (5)

where µ > 0 is a fixed parameter. If the difference of two successive normals
is small, then F is close to zero and an approximate solution has been found.
Due to the properties (P1) and (P2) fixed-point iteration can also be applied
to a normalized system, where one of the components of p is set to a non-
zero constant and only the rest of the components are updated. We do not,
however, consider the normalized procedure in this paper because it is not
clear whether it makes the process more stable or not. The results for the
non-normalized process do not hold for the normalized one because Walras’
law does not hold if one of the equations is dropped.

The following result on the convergence of fixed-point iteration is shown by
Kitti and Ehtamo (2003). Here we denote B(p∗, r) = {x ∈ R

n : ‖x−p∗‖ ≤ r},
r > 0.

Lemma 4. Let the continuous mapping F : B(p∗, r) 7→ R
n, satisfy (P2) and
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the inequality
p∗ · F (p) ≥ ‖F (p)‖2 (6)

for all p ∈ B(p∗, r). If p0 ∈ B(p∗, r) then (5) converges to a solution of (3). If
(5) converges to a solution p̃ for which there is α > 0 such that

‖F (p)‖2 ≤ 2αF (p) · p̃

for all p ∈ B(p∗, r), then the convergence is monotonical.

The above lemma assumes continuity, (P2), and (6). As shown earlier F is
continuous when the utility functions are continuous and strongly quasicon-
cave. Hence, an additional property to obtain convergence is the inequality (6),
which geometrically means that the hypersurface {x ∈ R

n : x = F (p), p 6= 0}
curves enough at the origin. More specifically, (6) is equivalent to

‖p∗/2 − F (p)‖ ≤ ‖p∗/2‖.

Thus, F (p) is inside a ball centered at the ray defined by p∗. This is illustrated
in Figure 3, where F (p) is indeed inside a ball, represented with the dashed
line, for p chosen from the vicinity of p∗/2.

−2 0 2 4
−2

0

2
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x
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F  p( )

x
2

p*/2

Figure 3. Illustration of convergence condition (6).

Unfortunately, the concavity assumptions do not imply (6) even though (6)
seems to be a generic feature. Kitti (2004) shows that when the parameterized
hypersurface obtained from F has non-zero normal curvature to all its tangent
directions, then (6) is is satisfied. This curvature condition can be formulated
for the second derivatives of F , and this is done in Section 5.1. The above
Lemma on the convergence of (5) gives a local convergence result. Neverthe-
less, numerical tests suggest that the iteration converges globally, i.e., for all
initial normals. A possible explanation is that Rn can be divided into regions
corresponding to different solution rays and in these regions (6) holds.
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5.1 Convergence Test

In this section we give a more detailed characterization for (6) and derive a
simple algebraic test for the convergence of (5). The test is based on examining
whether the normal curvature of the hypersurface obtained from F is positive
to all tangent directions.

Let us first define some basic concepts of differential geometry. Let us as-
sume that the last component of p is equal to one, i.e., pn = 1. Let us denote
p = (p̄, 1), where p̄ ∈ R

n−1, and set F̄ (p̄) = F (p̄, 1). Mapping F̄ : R
n−1 7→ R

n is
the parameterized hypersurface obtained from F . To define the normal curva-
ture of F̄ at p̄ we need to assume that it is twice continuously differentiable and
regular. Regularity means that the vectors ∇1F̄ (p̄), . . . ,∇n−1F̄ (p̄) are linearly
independent. Here ∇jF̄ (p̄) denotes the vector that is obtained by differentiat-
ing the component functions of F̄ with respect to j’th argument. Furthermore,
we let N(p̄) denote the normal of the hypersurface at p̄. It follows from Walras’
law that N(p̄∗) = p∗/‖p∗‖, when F (p∗) = 0 and p∗ = (p̄∗, 1), see, e.g., Kitti
(2004, Section 3.1).

The normal curvature of F̄ at p̄ to a tangent direction F̄ (p̄)d, d 6= 0, is a func-
tion κ(d; p̄) = [(Ld) ·d]/‖d‖2 that depends on N(p̄) and the second derivatives
of F̄ . Here L denotes the matrix L = AB−1, where A = [N(p̄) · ∇ijF̄ (p̄)]i,j,
B = [∇iF̄ (p̄) · ∇jF̄ (p̄)]i,j , and ∇i,jF̄ denotes the vector obtained by differen-
tiating the component functions of F̄ with pi and pj. The notation [ai,j ]i,j for
a matrix means that the component of the matrix in i’th row of j’th column
is ai,j . For the derivation of the formula for the normal curvature see, e.g.,
Spivak (1979, Section 7.C–D). It is shown in Kitti (2004, Lemma 4) that (6)
holds around p∗ = (p̄∗, 1) if κ(d; p̄∗) > 0 for d 6= 0. Hence, we can formulate
the following proposition.

Proposition 3. Let F satisfy (P1) and (P2), and let F̄ be regular and twice
continuously differentiable. Then F satisfies (6) around p∗ = (p̄∗, 1), F (p∗) =
0, if and only if F̄ has positive normal curvature to all tangent directions at
p̄∗.

We can use the result of Proposition 3 to derive an algebraic test for the
convergence. Namely, if we find the minimal value of the normal curvature over
the unit sphere we can see from its sign whether (6) holds. Indeed, the critical
points of κ over the unit sphere correspond to so called principal curvatures.
These critical points are exactly the eigenvectors of L and the eigenvalues are
the principal curvatures. Hence, we can test (6) numerically by computing the
eigenvalues of L. If these eigenvalues are positive we know that (6) holds for
p∗, and if they are negative then (6) holds for −p∗. Notice, however, that this
test requires that p∗ is known.
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For example, in the two-dimensional quadratic case of Section 2.1 we have
the following positive principal curvatures corresponding to the three ray of
solutions: κ1 = 16

√
2/45, κ2 = κ3 =

√
14/45. Hence, condition (6) holds when

p is chosen close enough to any of the the three solution rays illustrated in
Figure 2.

6 Constraint Proposal Method and Exchange Economies

In this section we discuss the relationship of the constraint proposal method
and exchange economies. In an exchange economy there is a number of con-
sumers with initial allocations of some resources. Given prices for the resources
each consumer is willing to buy a bundle that maximizes his utility under his
budget, which is the monetary value of his initial bundle. The maximizing
bundle is called the consumer’s demand function. A vector of prices is an
equilibrium if the total demand equals the total supply of the resources which
is simply the sum of the initial allocations. Under some economic conditions
the equilibrium prices can be found by a simple auctioning process, where an
auctioneer adjusts the prices until an equilibrium is reached but no trades are
made during the adjustment process. See, e.g., (Mas-Colell et al., 1995, Part
IV) for more about the basic properties of exchange economies.

The problem of finding a Pareto solution for the negotiation can be interpreted
as a resource allocation problem, where the decision makers are sharing their
total dispute w = x̄a − x̄b. The initial allocation of the total dispute is defined
by the reference point r = λx̄a+(1−λ)x̄b, λ ∈ [0, 1]; the proportion of the total
dispute for the first DM is λ and (1−λ) for the second DM. Moreover, decision
maker i gets at the least value ui(r) as the outcome from the negotiation.

The constraint proposal method can be interpreted as an auctioning process,
where the mediator acts as an auctioneer who tries to find a Pareto optimal
allocation of the total dispute w. See Kitti (2004) for an iterative process for
finding the Walrasian equilibrium. The relationship to resource allocation can
be explicitly seen by making the following transform of variables: ya = x− x̄a,
yb = x̄b − x. The DMs’ optimization problems are then of the form

max
yi

Ui(y
i) s.t. p · (yi − λiw) = 0, i = a, b, (7)

where Ua(y
a) = ua(y

a + x̄a), Ub(y
b) = ub(x̄

b − yb), and λa + λb = 1, λi ∈ [0, 1]
for i = a, b.

Let p denote a price vector of n-resources, which correspond to the issues, and
λiw denote the initial endowment that the DM i has. Then we can interpret
the linear constraint in (7) as a budget identity. Moreover, the point yi(p),
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i = a, b, that solves (7) is the DM’s demand function for the resources, and
∑

i(y
i(p) − λiw) is the excess demand of the resources. Similarly as F (p),

the excess demand satisfies Walras’ law, which means now that the monetary
value of the excess demand is zero. Homogeneity of the excess demand function
means that only the relative prices of the resources matter.

As the above discussion demonstrates the mediator’s problem in the constraint
proposal method is remarkably close to the resource allocation problems of ex-
change economies. Indeed, the part (a) of Proposition 1 corresponds to the first
fundamental welfare theorem in microeconomics and the part (b) corresponds
to the second fundamental welfare theorem. According to the first fundamen-
tal theorem a price equilibrium is Pareto optimal and according to the latter
there is a price equilibrium corresponding to a Pareto solution, see Mas-Colell
et al. (1995).

There are some important differences between the constraint proposal method
and exchange economies. In an exchange economy the demand functions are
not defined if some of the prices are negative. Moreover, the demand for a
resource usually grows infinitely large as its prices go to zero, i.e., the utility
functions do not have global optima and (A1) does not hold. In the constraint
proposal method p can have negative components as well and there is no
reason to assume the DMs’ responses to satisfy any boundary conditions for
zero components of p.

Due to the aforementioned differences, the results for exchange economies are
not applicable for the constraint proposal method. For example, exchange
economies can be shown to have an equilibrium for any number of resources,
but such a result requires aforementioned boundary conditions for zero prices.
Pareto optimality results of Section 3 are also based on different assumptions
than the welfare theorems for exchange economies.

7 Discussion

7.1 General Remarks

In this paper we have analyzed the choice of the reference point in the con-
straint proposal method. We have shown that the method produces Pareto
optimal points when the mediator chooses the reference point from the line
connecting the DMs’ optima and all the Pareto points can be produced in this
manner. Moreover, we have proven that the mediator’s problem has a solution
when the number of issues is two or any odd number greater than two. In
essence, these results mean that the constraint proposal method is not just
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a heuristic approach for finding Pareto solutions, but it indeed gives Pareto
optimal points.

To find a joint tangent hyperplane the mediator has to solve a system of
equations. A suitable method for that purpose is fixed-point iteration, which
requires only the DMs’ last optima to update the hyperplane. In this paper
we have given local convergence conditions for fixed-point iteration and a
numerical convergence test.

In addition to the aforementioned results, we have discussed the relationship
of the constraint proposal method and exchange economies. We have seen that
the mediator’s problem in the constraint proposal method can be transformed
to a resource allocation problem where the total resource to be shared is the
difference of the DMs’ optima. We have also pointed out some differences be-
tween the economic resource allocation model and the mediator’s problem. Due
to these differences the results for the constraint proposal method are based
on different assumptions and techniques as those for exchange economies.

7.2 Ways of Using the Constraint Proposal Method

The constraint proposal method can be applied in a variety of ways. One
way, as suggested by Ehtamo et al. (1999a), is to use the method for finding
an approximation for the whole Pareto frontier. The negotiation then becomes
distributive along the frontier. The method can also be used in a kind of“post-
settlement settlement” fashion; this method was suggested by Raiffa (1982).
First the parties negotiate unaided and reach a tentative solution point, not
necessarily Pareto optimal, after which they search for a jointly beneficial
Pareto optimal solution using one of the available methods, e.g., the constraint
proposal method.

Yet, there is at least a third possible way of using the constraint proposal
method. Namely, that of first bargaining on a suitable reference point for the
method and then using it. We describe such a process briefly. In particular, the
bargaining could be restricted to the reference points on the line connecting
the DMs’ optima. This problem is one dimensional since it is over the choice
of parameter λ that defines a point r(λ) = λx̄a + (1 − λ)x̄b. Note, however,
that the resulting utility points vi(λ) = ui(r(λ)), i = 1, 2, do not form a line in
u1, u2-plane; rather they form a rough approximation of the Pareto frontier.

If the negotiation over the “approximate” Pareto frontier results in r(λ̄), then
the DM i is guaranteed to have at least the value vi(λ̄) after applying the
constraint proposal method with this reference point. Indeed, the constraint
proposal method applied with reference point r(λ) gives a point that both
DMs prefer to it.
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The negotiation over the reference points can be considered as a bargaining
problem. For example, one may use the axiomatic approach to bargaining
initiated by Nash (1950). Nash bargaining solution is obtained by maximizing
the product

[va(λ) − da] · [vb(λ) − db], (8)

where di is the threat point, which gives the value for the DM i if the bargaining
fails. For example, we may take the threat point according to the worst case
scenario, where the di is chosen to be the value at the other party’s optimum,
i.e., da = va(0), db = vb(1). Even though it is not necessarily possible to give
both DMs their worst case outcomes, these values can be taken as the threat
points.

In practice, the bargaining solution λ̄ ∈ [0, 1] can be found approximately by
first eliciting the utility functions va(λ) and vb(λ) within some accuracy. See
von Winterfeldt and Edwards (1986, Section 7.3.) for methods of estimating
utility functions, such as va and vb, that depend on a single parameter. There
is a plethora of efficient methods to perform this task. After having found the
approximations of utility functions the bargaining solution can be computed
numerically by maximizing (8).

Let us sum up the process of finding a single Pareto optimal point for the
negotiation problem:

1. The reference point r(λ̄) is chosen according to Nash bargaining solution,
e.g., by a sequential bargaining process.

2. The mediator finds one solution for (2) with the reference point r(λ̄) and
suggest this point to the DMs.

Proposition 1 guarantees that the above procedure gives a Pareto optimal
point if the mediator finds a solution for (2).

As an example, let us consider the same utility functions as in the two di-
mensional example of Section 2.1. We now obtain va(λ) = −64(1 − λ)2,
vb(λ) = −64λ2, da = va(0) = 0, and db = vb(1) = 0. The optimum of (8)
is obtained at λ̄ = 1/2 and r(λ̄) = (1, 1), i.e., the reference point is chosen
exactly from the middle of the DMs’ optima. With this reference point the me-
diator’s problem has three solutions giving the Pareto optimal points (1, 15)/8,
(1.74, 1.99), and (0.22, 1.16), the latter two being approximate values.
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Appendix: Proofs of the lemmas

Proof of Lemma 1:

Let us first assume that x∗ = x̄a, which is a Pareto optimal point, and show
that there is a joint tangent hyperplane at this point. Note that the deduction
is similar for x∗ = x̄b. We have Sa(x

∗) = {x∗} and by the convexity of Sb(x
∗)

there is a hyperplane H(p, x∗) such that Sb(x
∗) ⊂ H−(p, x∗) and because

x∗ ∈ H(p, x∗) we see that Sa(x
∗) ⊂ H(p, x∗) ⊂ H+(p, x∗).

Let us now show that there is a joint tangent hyperplane for a Pareto optimal
point x∗ 6= x̄i, i = a, b. By the definition of Pareto optimality

intSa(x
∗) ∩ intSb(x

∗) = ∅. (9)

Note that we have intSi(x
∗) 6= ∅ because x̄i ∈ intSi(x

∗), and by the continuity
of value functions intSi(x

∗) = {x ∈ R
n : ui(x) > ui(x

∗)}. It follows that there
is a hyperplane H(p, x∗) such that intSa(x

∗) ⊂ H+(p, x∗) and intSb(x
∗) ⊂

H−(p, x∗), see, e.g., Bazaraa et al. (1993, Theorem 2.4.8). Since the halfspaces
are closed sets we have Sa(x

∗) ⊂ H+(p, x∗) and Sb(x
∗) ⊂ H−(p, x∗).

Let us now assume that there is a hyperplane H(p, x∗) such that Sa(x
∗) ⊂

H+(p, x∗) and Sb(x
∗) ⊂ H−(p, x∗). By this we have intSa(x

∗) ⊂ intH+(p, x∗)
and intSb(x

∗) ⊂ intH−(p, x∗), where

intH+(p, x∗) = {x ∈ R
n : p · (x − x∗) > 0},

intH−(p, x∗) = {x ∈ R
n : p · (x − x∗) < 0}.

Because intH−(p, x∗) ∩ intH+(p, x∗) = ∅, we get (9), which means that x∗ is
Pareto optimal. 2

Proof of Lemma 2:

Let B(y, ρ) denote the closed ball having radius ρ > 0 centered at y, i.e.,
B(y, ρ) = {x ∈ R

n : ‖x − y‖ ≤ ρ}, where ‖ · ‖ is the Euclidean norm.
Moreover, we let ∂B(y, ρ) denote the boundary of this ball.

Let us define a mapping G : ∂B(0, 1) 7→ ∂B(0, 1) by setting

G(p) =
p + F (p)

(1 + ‖f(p)‖2)1/2
.

It follows from Walras’ law that ‖G(p)‖ = 1 so that the image of ∂B(0, 1)
under G belongs to ∂B(0, 1) itself.
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For any p ∈ ∂B(0, 1) the mapping is continuous since F is continuous. Thus,
either G has a fixed point or it sends some point to its antipode when n is
odd, which follows from a corollary of Poincaré-Brouwer theorem, see, e.g.,
Dugundji (1966, Corollary 3.3 in Chapter XIV). Hence, there is p∗ ∈ ∂B(0, 1)
such that p∗ = G(p∗) or p∗ = −G(p∗). By taking inner product of both sides of

these equations with respect to (1 + ‖F (p∗)‖2)
1/2

F (p∗) and applying Walras’
law we get ‖F (p∗)‖2 = 0 or −‖F (p∗)‖2 = 0, which implies that F (p∗) = 0.

Let us assume that n = 2 and set p1(φ) = cos φ, p2(φ) = sin φ, fi(φ) =
Fi (p1(φ), p2(φ)), i = 1, 2. By the homogeneity F (p1(φ), p2(φ)) obtains all its
values when φ ∈ [0, π] and

fi(φ0 + π) = fi(φ0), i = 1, 2. (10)

Walras’ law can be now written as

f1(φ) cosφ + f2(φ) sinφ = 0 (11)

To see that F (p) = 0 has a solution, we need to show that fi(φ) = 0, i = 1, 2,
for some φ ∈ [0, π].

Let us first observe that (11) implies that f1(0) = 0 and f2(π/2) = 0. Hence,
F (p) has a solution if f2(0) = 0 or f1(π/2) = 0, and we may assume that
f2(0) 6= 0 and f1(π/2) 6= 0. Let us consider the case f2(0) > 0 and f1(π/2) > 0.
By the continuity of fi, the positivity of sin φ and cos φ on (0, π/2), and (11)
there is ε > 0 such that f2(φ) < 0 for all φ ∈ (π/2 − ε, π/2). Then f2 changes
its sign on the interval (0, π/2), i.e., there is φ∗ ∈ (0, π/2) such that f2(φ

∗) = 0
and by (11) we have f1(φ

∗) = 0.

If f1(π/2) < 0 there is ε ∈ (0, π/2) such that f1(φ0) < 0, where φ0 = π/2 + ε.
Since sin φ0 > 0 and cos φ0 < 0, (11) implies that f2(φ0) < 0. Because f2(π) =
f2(0) > 0 and f2 is continuous, we know that f2 changes its sign on (φ0, π).
Hence, there is φ∗ such that fi(φ

∗) = 0, i = 1, 2. The similar deduction can be
made when f2(0) < 0. 2

Proof of Lemma 3:

Let us first notice that

Xi(p, r) = arg max
x∈φi(p,r)

ui(x), i = a, b,

where φi(p, r) = Si(r)∩H(p, r), i.e., the constraint x ∈ H(p, r) can be replaced
with x ∈ φi(p, r). This is because the maximization problem has a unique
solution that belongs to Si(r), which is the set of points that are at least as
good as r. Note also that φi is non-empty and because Si is compact valued
so is φi.
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Let us first show that φi is lower hemicontinuous with respect to p 6= 0, i.e.,
pk → p̄, xk ∈ φi(p

k, r), imply that there is a subsequence {xkj}j such that
xkj → x̄ ∈ φi(p̄, r). This is because due to compactness of Si(r) the sequence
{xk}k has a convergent subsequence and because p · (x − r) is a continuous
function, the limit of the subsequence belongs to φi(p̄, r). Second, φi is upper
hemicontinuous with respect to p 6= 0, i.e., pk → p̄, x̄ ∈ φi(p̄, r), imply that
there is a sequence {xk}k with xk ∈ φi(p

k, r) for all k such that xk → x̄. Indeed,
such a sequence can be constructed by setting xk = arg minx∈φi(pk,r) ‖x − x̄‖.

Because φi is both upper and lower hemicontinuous, it is continuous. By the
Berge’s theorem Xi is a closed and upper hemicontinuous set-valued mapping
for p 6= 0, because it is the set of points that maximize a continuous func-
tion ui over a compact-valued continuous mapping φi, see, e.g., Border (1985,
Theorem 12.1). Strong quasiconcavity implies that Xi is a singleton, and as
a single valued upper hemicontinuous mapping Xi is continuous, see Border
(1985, Proposition 11.9 (d)). Hence, xi(p, r) is continuous with respect to its
first argument when p 6= 0. 2
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Ehtamo, H., Hämäläinen, R. P., 1995. Credibility of linear equilibrium strate-
gies in a discrete time fishery management game. Group Decision and Ne-
gotiation 4 (1), 27–37.
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