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Abstract

Global convergence conditions for iterative tâtonnement with the additional require-
ments that prices stay strictly positive and their changes are bounded are given and
convergence is shown when the excess demand function has the gross substitute
property and curves appropriately around the equilibrium. Furthermore, this paper
introduces a new, second order, form of the weak axiom of revealed preferences; a
condition which also implies convergence. It is shown that this condition holds when
the excess demand function is strongly monotone.
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1 Introduction

The latest results on discrete time price adjustment processes are mostly neg-
ative: discrete time processes may fail to converge and they may exhibit peri-
odic or even chaotic behavior, see Bala and Majumdar (1992), Day and Piani-
giani (1991), Goeree et al. (1998), Mukherji (1999), Saari (1995), and Tuinstra
(2000). This paper shows that a simple iterative process avoids these phenom-
ena and converges globally under conditions that are only slightly stronger
than those required for the continuous time tâtonnement process.
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Tâtonnement processes are usually interpreted as auctions, where a fictitious
agent, Walrasian auctioneer, sets the prices until an equilibrium is reached and
the trades are made. The main purpose of such processes is to explain how an
economy comes to its equilibrium. In addition to this, a discrete time process
could provide a practical auctioning method for solving resource allocation
problems.

The need for analyzing discrete time price adjustment processes has been long
recognized. Samuelson, who formulated the tâtonnement process in continuous
time with a set of differential equations, observes the following, see Samuelson
(1947, p. 286):

“ The types of functional equations which have been most studied are those
defined by differential equations, difference equations, and integral equa-
tions, and mixed varieties. The first of these possesses the most highly de-
veloped theory and provides valuable examples of various principles. Since
economic observations consist essentially of series defined for integral values
of time, the second category of difference equations is perhaps of greatest
interest to the theoretical economist.”

Some discrete time alternatives for the continuous time tâtonnement process
have been suggested in the economics literature. Uzawa (1960) has analyzed
an iterative process for the normalized excess demand, where the price of one
of the commodities, numéraire, is set to a constant and only the rest of the
prices are adjusted. There are, however, some negative results on normalized
processes. Saari (1985) has shown that for any normalized iterative process
there are always economies for which the process fails to converge. Further-
more, according to Goeree et al. (1998) a rather general class of normalized
discrete time processes exhibits periodic and chaotic behavior. Tuinstra (2000)
demonstrates similar results for a multiplicative process.

Many authors have noticed that in most cases the results on the continuous
time process do not hold for the discrete time process. Arrow and Hahn (1971,
Section 12.8) argue that a discrete time version of the non-normalized process
converges to any given neighborhood of the set of equilibria when the itera-
tion parameter and initial prices are chosen appropriately. The corresponding
continuous time process, however, has significantly better convergence proper-
ties. Indeed, satisfactory convergence results for non-normalized discrete time
tâtonnement are lacking.

This paper studies fixed-point iteration with the additional requirements that
prices stay strictly positive and the difference between the old and the new
prices is bounded. Since only the value of the excess demand function is used
in updating the prices, the process has minimal informational requirements.
Moreover, the process has the property that if a commodity has positive excess
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demand, its price rises, and if the excess demand is negative the price falls.
Hence, the process can be interpreted as a discrete time alternative of the
non-normalized continuous time tâtonnement process. We emphasize that it
is not, however, based on approximating the continuous time process.

It is well known that the continuous time process converges globally under
the gross substitution property and the weak axiom of revealed preferences,
see Arrow et al. (1959) and Arrow and Hurwicz (1958). Here it is shown that
the iterative process converges when in addition to gross substitutability the
hypersurface obtained from the excess demand function has positive normal
curvature to all tangent directions. Furthermore, a second order form of the
weak axiom of revealed preferences is introduced. Together with some common
properties of excess demand functions this condition implies the convergence
of the iterative process, too. It will be shown that the second order weak
axiom holds when the excess demand function is appropriately Lipschitzian
and strongly monotone, or the economy has a representative consumer with a
strongly concave utility function.

The paper is organized as follows. In Section 2 we present the model for an
exchange economy and the iterative adjustment process. The global conver-
gence of the process is analyzed in Section 3. In Section 4 the conditions of
Section 3 are applied to show convergence for economies that satisfy the gross
substitute property and curve appropriately around the equilibrium. As an
example, we demonstrate that Cobb-Douglas economies satisfy these condi-
tions. The convergence of the process is shown under the second order weak
axiom of revealed preferences in Section 5. The relationship of this condition
to monotone mappings is also analyzed.

2 The Model

2.1 Excess Demand Function

An exchange economy with m consumers and n commodities, m, n ≥ 2,
is described by the preference relations �i, i = 1, . . . , m, defined on {x =
(x1, . . . , xn) ∈ R

n : x ≥ 0}, and the endowment vectors wi = (wi
1, . . . , w

i
n) ≥ 0,

i = 1, . . . , m. In this model, subscript denotes the component of a vector and
superscript denotes the consumer. Furthermore, x ≥ 0 means that xj ≥ 0 for
all j.

Given a price vector p > 0, that is p ∈ R
n
+ = {p ∈ R

n : pj > 0 ∀j}, the demand
function xi(p) for consumer i is the maximizer of �i over the budget set, which
means that xi(p) �i x holds for all x ∈ {x ∈ R

n : p · x ≤ p ·wi, x ≥ 0}, where
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p ·wi =
∑

j pjw
i
j. The equilibrium of the economy is a price vector p∗ for which

z(p∗) =
m

∑

i=1

[xi(p∗) − wi] = 0. (1)

The mapping z is called the excess demand function of the economy and it
will be assumed to have the following properties:

(P1) z is single valued and continuous for all p > 0.
(P2) z satisfies Walras’ law: p · z(p) = 0 for all p > 0.
(P3) z is homogeneous of degree zero: z(αp) = z(p) for all α > 0.
(P4) There is a scalar ν < 0 such that zj(p) > ν for all j and p > 0.
(P5) It holds that

lim
pk→p

[max
j∈Jp

zj(p
k)] = ∞,

when pk > 0, p 6= 0 and Jp = {j : pj = 0} 6= ∅.

Homogeneity is an elementary property that an excess demand function has
because the consumers’ budget sets stay the same when the budget constraints
are multiplied with positive constants. Walras’ law and continuity result from
the consumers’ maximization problems when the preferences are strictly con-
vex and locally non-satiated.

The property (P4) means that all the component functions of z are bounded
from below on R

n
+. An excess demand function has this property because the

consumers’ net supply of any commodity cannot exceed the total endowment.
According to (P5) all the commodities are desirable in the sense that when
some of them become free, the excess demand becomes infinitely large at least
for some of those commodities. This is the case, for example, when there is a
positive total amount of all the commodities and the consumers have strongly
monotone preferences. When z has the properties (P1)–(P5), the economy has
at least a ray of equilibrium prices. See, e.g., Mas-Colell et al. (1995, Chapter
17) for more about the properties of excess demand functions.

2.2 Iterative Price Adjustment Processes

To be economically meaningful a tâtonnement process should not require other
information than prices and the corresponding excess demand, it should satisfy
the law of demand, according to which prices should increase for commodities
with excess demand and fall in the opposite case, and the process should
converge under economically relevant conditions. The simplest continuous time
process that satisfies these properties was introduced by Samuelson (1947) and
is described by the differential equation

ṗ(t) = z(p(t)), (2)
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where ṗ(t) is the time derivative of p(t). This process is usually interpreted
as an auction run by a fictitious agent, a Walrasian auctioneer, who sets the
prices until an equilibrium is reached and the trades are made.

It can be shown that under the following condition (C1), the process (2) is
globally stable, i.e., it converges to an equilibrium for any positive initial prices.
The stability condition can be stated as follows:

(C1) there is p∗ > 0 that solves (1) and satisfies p∗ · z(p) > 0 for all p > 0 for
which z(p) 6= 0.

The importance of this condition to the stability of the process (2) was first
noticed in Arrow and Hurwicz (1958) and Arrow et al. (1959), where the set
of equilibria was assumed to be unique up to a positive scalar multiple, i.e., a
unique ray. It was further shown Arrow and Hurwicz (1960) that (C1) implies
the stability even though the set of equilibria is not a unique ray.

The convergence condition (C1) can be interpreted as the weak axiom of re-
vealed preferences between the equilibrium p∗ and any disequilibrium price
vector. An excess demand function satisfies this condition in three important
cases: (i) when there is no trade at equilibrium, (ii) when the excess demand
function satisfies the weak axiom of revealed preferences for any pair of price
vectors, or (iii) when it has the gross substitute property. The latter two prop-
erties will be discussed in detail in Sections 4 and 5.

The simplest discrete time alternative for the process (2) is the fixed-point
iteration

pk+1 = pk + z(pk), (3)

where k is the iteration index that corresponds to the time instants at which
the prices are adjusted. The main argument for analyzing (3) instead of (2)
is that the auction, which a price adjustment process aims to characterize,
proceeds in discrete time instants. This paper studies (3) with the additional
assumptions that prices stay positive and their changes are bounded. A way
to implement such process in practice is given in the following section.

To obtain non-negative prices we could update pk
j as follows

pk+1

j = max{0, pk
j + µzj(p

k)}, (4)

where µ is a positive constant. The convergence of this process has been ana-
lyzed by Uzawa (1960) when the prices are normalized so that the price of one
commodity is set to a constant and only the prices of other commodities are
adjusted. In essence, it has been shown that under gross substitution there is a
choice of µ such that the process converges. The corresponding non-normalized
process converges to any given neighborhood of the equilibrium ray with some
choice of µ and with p0 chosen such that the prices remain strictly positive
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during the process, see Arrow and Hahn (1971, Section 12.8). In addition to
the limitations on the choice of µ and p0, the drawback of the process (4) is
that due to (P5) the excess demand function is not finite if some prices become
zero.

2.3 Fixed-Point Iteration with Positive Prices

It is commonly known that the discrete time process (4) does not converge
under the same assumptions as the continuous time process (2). For exam-
ple, the convergence of the process (4) depends on the choice of parameter
µ. Moreover, the normalized discrete time processes tend to exhibit chaotic
behavior. The aim of this paper is to show that a modification of fixed-point
iteration (3) converges under condition that are remarkably close to the con-
vergence conditions of the continuous time process. Indeed, for numerical or
computational considerations the difference of these conditions are negligible.

As mentioned earlier, prices should stay strictly positive. Other requirement
we need is that their changes are bounded, i.e., there is M > 0 such that
‖pk+1 − pk‖ ≤ M . This assumption is needed to show the convergence and
it is quite reasonable. Namely, it means that ever increasing price changes do
not occur, or prices cannot change arbitrarily fast between two periods. Note
that this condition does not mean that prices should be bounded themselves.
Moreover, the bound M can be arbitrarily large.

A process that satisfies the two aforementioned requirements can be defined
by the following formula

pk+1 = pk + µkz(pk), (5)

where the parameter µk is updated as follows:

Step 1 a scalar γk > 0 is chosen such that pk + γkz(pk) > 0, and γk = γk−1

for k ≥ 1 if pk + γk−1z(pk) > 0,
Step 2 µk = min{γk, M/‖z(pk)‖}, where M > 0.

The purpose of the first step is to guarantee that the new prices are positive
and the second step guarantees bounded price changes. When pk > 0 there
is a positive number γk such that pk + γkz(pk) > 0. One way to find an
appropriate γk in numerical considerations is to choose γk = (1/2)l where l is
the smallest integer for which pk + (1/2)lz(pk) > 0. It follows from the first
step that when the initial prices are positive, i.e., p0 > 0, then all the prices
obtained during the process are positive as well. The second step guarantees
that µkz(pk) is bounded in the Euclidean norm ‖ · ‖. As a result the change of
the price vector is bounded, namely ‖pk+1 − pk‖ = ‖µkz(pk)‖ ≤ M , where is
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an arbitrarily chosen positive number. Note that according to the two steps,
µk is updated only if it is necessary for obtaining positive prices or for keeping
the changes bounded by M . Hence, it may well happen that these steps are
never implemented during the actual process.

The process (5) satisfies the law of demand and prices are adjusted in pro-
portion to their excess demands in a similar way as in the process (2). There
is, however, an important difference between the prices obtained from the two
processes. Namely, it follows from Walras’ law that for the process (5) we have
‖pk+1‖ > ‖pk‖ when z(pk) 6= 0, whereas ‖p(t)‖ = ‖p(0)‖ for the process (2).

If γk went to zero, then the sequence of prices obtained from (5) could become
arbitrarily close to the path obtained from (2). If this happened, the process (5)
would be an approximation of the process (2) for large k, and we could expect
the two processes to converge under the same conditions. In the following
section we shall see that µk does not converge to zero when the process (5)
converges, which means that the process (5) does not approximate (2). The
convergence conditions of the two processes are, however, very close to each
other.

3 Convergence Analysis

In this section we give general convergence conditions for the process (5).
These conditions will be applied in Sections 4 and 5 to show convergence when
z has some more specific economic properties. We prove that the process (5)
converges when z has the properties (P1)–(P5) and satisfies (C1), see Section
2.2, together with (C2) as stated below. In the condition (C2) vector p∗ is the
same equilibrium vector for which (C1) holds and Eε = {p ∈ R

n
+ : ‖z(p)‖ < ε}.

The convergence condition (C2) is stated as follows:

(C2) there are positive scalars ε and σ such that p∗ · z(p) ≥ σ‖z(p)‖2 for all
p ∈ Eε.

Section 5 introduces a slightly strengthened form of the weak axiom of revealed
preferences and show that it implies (C2) analogously as the weak axiom
implies (C1).

Let us next examine the geometrical interpretation of conditions (C1) and
(C2). The condition (C1) means that the hyperplane {x ∈ R

n : p∗ · x = 0}
supports the set {x ∈ R

n : x = z(p), p > 0}, see Figure 1. The condition (C2)
means that this set is at least locally, around the origin, inside a ball which
has its center at the ray of solutions {p : p = λp∗, λ > 0}. This can be seen
writing p∗ · z ≥ σ‖z‖2 equivalently as ‖p∗/(2σ) − z‖ ≤ ‖p∗/(2σ)‖. In Section
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3.1 we show that for a regular economy (C2) means that the hypersurface
obtained from the excess demand function is not too flat around the origin.
Indeed, as σ goes to zero, z is allowed to become flatter, i.e., (C1) is obtained
as the limit from (C2).

The way in which the parameter µk is updated guarantees that the norm of
the scaled excess demand µkz is bounded by the constant M . As a result
the scaled excess demand is for all p > 0 inside a ball centered at the ray of
solutions. These geometrical ideas are illustrated in Figure 1, where σ = 1/2
and λ = 1.

Let us state the main convergence theorem that will be used in showing the
other convergence results of this paper.

Theorem 1. Let z have the properties (P1)–(P5) and satisfy the conditions
(C1)–(C2). Then the process (5) converges to an equilibrium for any p0 > 0.
If there is a unique ray of equilibria, then there is N ≥ 0 such that convergence
is monotonical when k ≥ N .

The monotonical convergence of the sequence {pk}k to p̃ means that ‖pk−p̃‖ →
0, when k → ∞, and if pk 6= p̃, then ‖pk+1 − p̃‖ < ‖pk − p̃‖.

The following lemmas are used in the proof of Theorem 1. Here we let B(p∗, ε)
denote the closed ball with radius ε > 0 centered at p∗, i.e., B(p∗, ε) = {x ∈
R

n : ‖x − p∗‖ ≤ ε}.

*p
 |x|=M 

 |x−p | = |p  |  **

) ( x=z  p 

0*p ⋅ x= 

2x

1x

||

| | | |

Figure 1. Illustration of the convergence conditions.
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Lemma 1. Let the continuous mapping z : B(p∗, r) 7→ R
n satisfy Walras’

law for all p ∈ B(p∗, r), and let the inequality p∗ · z(p) ≥ ‖z(p)‖2 hold for
all p ∈ B(p∗, r). If p0 ∈ B(p∗, r) and µk ≤ 1 for all k, then the iteration
pk+1 = pk + µkz(pk) converges. When there is µ̄ such that 0 < µ̄ ≤ µk, the
iteration converges to a solution of z(p) = 0.

The proof of Lemma 1 is presented in Appendix. The following lemma is
for showing that convergence is monotonical when there is a unique ray of
equilibria, the proof is in Appendix.

Lemma 2. Let z satisfy the same conditions as in Lemma 1 and let the
iteration pk+1 = pk + µz(pk), µ > 0, converge to a solution p̃ for which there
is α > 0 such that

‖z(p)‖2 ≤ 2αz(p) · p̃

for all p ∈ B(p∗, r). Then convergence is monotonical.

The following lemma shows essentially that the convergence condition of Lemma
1 holds for the scaled excess demand that is obtained by adjusting the para-
meter µk as described in steps 1 and 2. The proof is presented in Appendix.

Lemma 3. If z has the properties (P1), (P3)–(P5), and satisfies (C1)–(C2),
then there is σ > 0 such that p∗ · ẑ(p) ≥ σ‖ẑ(p)‖2 for all p > 0, where

ẑ(p) =







Mz(p)/‖z(p)‖ if ‖z(p)‖ ≥ M,

z(p) otherwise.

With the lemmas 1–3 we are ready to prove Theorem 1.

Proof of Theorem 1. Let us first note that the process (5) can be expressed
with the formula

pk+1 = pk + λkẑ(pk),

where λk = min{γk, 1}, and ẑ is as defined in Lemma 3. When z has the
properties (P1)–(P4) so does ẑ, and (P5) implies that ẑ has the property

(P5’) lim
pk→p

[max
j∈Jp

ẑj(p
k)] > 0, when p 6= 0, and Jp = {j : pj = 0} 6= ∅.

Moreover, it is known from Lemma 3 that p∗ · ẑ(p) ≥ σ‖ẑ(p)‖2 holds for all
p > 0 when z satisfies (C1)–(C2). Due to homogeneity p∗ can be replaced by
p∗/σ in (C1) and (C2); hence, without loss of generality we may suppose that
σ = 1. It follows then from Lemma 1 that the iteration converges.

Let us show that due to (P5’) the parameter λk has positive lower bound that
is required in Lemma 1 to obtain convergence to a solution of (1). On the
contrary, suppose that {λk}k has a subsequence that converges to zero. Since
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the sequence is decreasing this means that the whole sequence converges to
zero. It then follows that pk → p, where some components of p are zero, i.e.,
Jp 6= ∅. This can be shown by observing that pk cannot converge to positive
price vector if λk is updated infinitely many times, which is the case as λk → 0.
Namely, assume that {pk}k converges to a point p > 0. First, note that there
has to be at least one commodity l for which there is a negative subsequence of
{ẑl(p

k)}. Otherwise λk would be updated only finitely many times and it could
not converge to zero. Because p > 0, for all ε ∈ (0, pl) there is Nε ≥ 0 such that
pk

l > ε for all k ≥ Nε. By the iteration formula we have pk
l +λkẑl(p

k) > ε for all
k ≥ Nε and consequently λk > (ε−pk

l )/ẑl(p
k) when ẑl(p

k) 6= 0 and k ≥ Nε. For
the iteration indices i corresponding to the negative subsequence of {ẑl(p

k)}k

we have 0 < (ε − pi
l)/ẑl(p

i) → 0. Then either pi
l → ε or ẑl(p

i) → −∞. The
first is a contradiction with pk

l → pl and the latter is a contradiction with
the convergence of {pk}k and the continuity of ẑ. Hence, we have Jp 6= ∅ and
pk

j → 0 for all j ∈ Jp. Thus, by the continuity of ẑ and (P5’) there are l ∈ Jp

and N ≥ 0 such that pk
l → 0, and ẑl(p

k) > 0 for all k ≥ N . Now we get from
the iteration formula that pk+1

l > pk
l for all k ≥ N , which contradicts pk

l → 0.
Hence, λk has a positive lower bound and convergence to a solution of (1)
follows from Lemma 1.

Let us assume that there is a unique ray of solutions for (1). Then the process
(5) converges to a point p̃ = βp∗, where β > 0. From Lemma 3 we see that
there is α > 0 such that for αp̃ we have 2αp̃ · ẑ(p) ≥ ‖ẑ(p)‖2 for all p > 0.
We can also note that λk is updated only finitely many times, since as shown
above pk cannot converge to a positive price vector if λk is updated infinitely
many times. Hence, there is N such that λk = λN for all k ≥ N . Lemma 2
then implies monotonical convergence for k ≥ N . 2

Let us make some observations on the proof of Theorem 1. First, it was shown
that the parameter γk does not converge to zero, which essentially means that
the process (5) does not approximate (2) for large k.

Second, suppose the condition

p∗ · z(p) ≥ σ‖z(p)‖2 (6)

holds for all p > 0 and z has the properties (P1)–(P3) and (P5’), see the proof
Theorem 1, then Lemma 3 is not needed in showing the convergence of the
process (5). Moreover, in that case we can set µk = γk in step 2, because z
is bounded due to (6), namely ‖z(p)‖ ≤ ‖p∗‖/σ. Boundedness is, however,
in contradiction with (P5), according to which the excess demand becomes
infinitely large when some of the commodities become free. Therefore, it is
reasonable to suppose that (6) holds only locally; that is exactly what the
condition (C2) says.
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Third, constructing an example where the process (5) fails to converge should
be rather easy since there are such examples for the process (2), see, e.g., Scarf
(1960). More interesting question is whether there are excess demand functions
that satisfy (C1) but for which the iterative process does not converge. Condi-
tions (C1) and (C2) guarantee that the sequence of prices obtained from the
process (5) is bounded. Hence, we could expect the sequence of prices to be un-
bounded if only (C1) holds. This would be natural in view of results by Arrow
and Hahn (1971), according to which (C1) implies convergence to any given
neighborhood of the equilibrium ray but not necessarily to an equilibrium.

3.1 Curvature and Convergence

Theorem 1 shows that the process (5) converges when the set {x ∈ R
n :

x = z(p), p > 0} is included in a specific ball at least around the origin.
This property holds in Figure 1 because this set is not too flat around the
origin. This section characterizes more closely the relationship between the
convergence and the geometry of the hypersurface defined by a regular excess
demand function.

Let us first define a parameterized hypersurface that can be obtained from an
excess demand function z. Because z is homogeneous, one of the commodities,
e.g., the last one, can be selected as a numéraire, which means that the price of
this commodity is set to a constant and the other prices are considered as rel-
ative prices with respect to the price of this commodity. Let p̄ ∈ R

n−1 denote
the price vector that is obtained by dropping the last price of p. As a result we
can define a mapping z̄ : R

n−1
+ 7→ R

n by setting z̄(p̄) = z(p̄, 1). This mapping
is a parameterized hypersurface in R

n and {x ∈ R
n : x = z̄(p̄), p̄ > 0} is the

actual hypersurface obtained from z. Note that z(p) = z̄(p̄) when p = (p̄, 1),
but due to homogeneity z as such is not an appropriate parameterized hyper-
surface.

In the rest of this section it will be assumed that z̄ is twice continuously
differentiable. Let ∇j z̄(p̄) denote the vector that is obtained by differentiating
the component functions of z̄ with respect to j’th argument. These vectors
are the row vectors of the Jacobian matrix ∇z̄(p̄) and we use them to define
the regular points of the parameterized hypersurface z̄.

Definition 1. Point p̄ is a regular point of z̄ if ∇1z̄(p̄), . . . ,∇n−1z̄(p̄) are lin-
early independent. A parameterized hypersurface z̄ is said to be regular if all
points p̄ > 0 are regular points of z̄.

Let N(p̄) be the unit normal of the tangent space of z̄ at p̄, i.e., the normal of
the set {x : x = ∇z̄(p̄)d, d ∈ R

n−1} . At a regular point p̄ the tangent space of
z̄ is n−1 dimensional subspace, a hyperplane, spanned by the vectors ∇j z̄(p̄),
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j = 1, . . . , n − 1. It follows from Walras’ law that N(p̄∗) = p∗/‖p∗‖, where
p̄∗ = (p∗1/p

∗
n, . . . , p

∗
n−1/p

∗
n). Namely, Walras’ law implies that p·∇z(p) = −z(p),

which gives that p∗ · [∇z(p∗)d] = −p∗ · z(p∗) = 0, i.e., p∗ is perpendicular to
all tangent directions at p∗.

The normal curvature of a parameterized hypersurface can be defined as fol-
lows.

Definition 2. Let p̄ > 0 be a regular point of a parameterized hypersurface
z̄. The normal curvature of z̄ at p̄ to a tangent direction ∇z̄(p̄)d, d 6= 0, is

κ(d; p̄) =
n

∑

k=1

n−1
∑

i=1

n−1
∑

j=1

[

Nk(p̄)
∂2z̄k(p̄)

∂p̄i∂p̄j

didj

]

/‖d‖2. (7)

Normal curvature measures how the normal direction of the hypersurface
changes when moving from z̄(p̄) to a tangent direction. The change of the nor-
mal direction describes how the hypersurface curves at z̄(p̄). See, e.g., Spivak
(1979, Sections 7.C–D) on deriving (7) from the basics of differential geome-
try. 2 In this paper (7) is taken as the definition of normal curvature.

The following lemma shows that the positive normal curvature of z̄ to all
tangent directions at equilibrium p̄∗ is necessary and sufficient condition for
z to satisfy (C2), when the regular parameterized hypersurface z̄ is twice
continuously differentiable. The proof is given in Appendix.

Lemma 4. Let z be a twice continuously differentiable excess demand function
having the properties (P1)–(P3) and an equilibrium at p∗ = (p̄∗, 1), and let z̄
be a regular parameterized hypersurface. Then z satisfies (C2) if and only if z̄
has positive normal curvature at p̄∗ to all tangent directions.

From Theorem 1 and Lemma 4 we can prove the following convergence result
according to which (P1)–(P5) together with positive normal curvature of z̄
at p̄∗ to all tangent directions guarantees the convergence of the process (5).
Note that due to regularity and (C1) there is a unique ray of equilibria, which
implies monotonical convergence.

Theorem 2. Let z be twice continuously differentiable regular excess demand
function that has the properties (P1)–(P5) and satisfies (C1) for p∗ = (p̄∗, 1).
Furthermore, let the normal curvature of the regular parameterized hypersur-
face z̄ be positive at p̄∗ to all tangent directions. Then the process (5) con-
verges to an equilibrium for any p0 > 0 and there is N such that convergence

2 In fact κ(d; p̄) = II(v, v)/I(v), where I is the first fundamental form, II is the
second fundamental form, and v = ∇z̄(p̄)d. The expression (7) for the normal
curvature follows from the properties of the second fundamental form.
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is monotonical when k ≥ N .

4 Convergence under the Gross Substitute Property

A differentiable excess demand function z is said to have the gross substitute
property if ∂zj(p)/∂pi > 0 for j 6= i. This property means that when the price
of some commodity increases, the demand for other commodities grows. For
such an excess demand function, the equilibrium is characterized by the system
(1) and if p∗ is an equilibrium then p∗ > 0. Moreover, the set of equilibria is a
unique ray, see, e.g., Arrow et al. (1959, Lemma 4).

It can be shown that under the gross substitute property the excess demand
function satisfies (C1), see, e.g., Arrow et al. (1959, Lemma 5). It follows that
the continuous time process (2) converges when the excess demand function
has the gross substitute property. The following proposition shows a related
result on the convergence of the process (5) when z satisfies (C2) in addition
to having the gross substitute property. The condition (C2) can be replaced
by the assumption that the parameterized hypersurface z̄ has positive normal
curvature at equilibrium to all tangent directions.

Proposition 1. Let z be a differentiable excess demand function with the
properties (P2)–(P4) and the gross substitute property. Let p∗ = (p̄∗, 1) be an
equilibrium.

(a) If z satisfies (C2), then the process (5) converges to an equilibrium for
any p0 > 0.

(b) If z̄ is twice continuously differentiable and has positive normal curva-
ture to all tangent directions at p̄∗, then the process (5) converges to an
equilibrium for any p0 > 0.

In both cases there is N such that convergence is monotonical when k ≥ N .

Proposition 1 is based on theorems 1 and 2 and the following lemmas. Lemma
5 shows that in the gross substitute case z has the property (P5). The proof
of Lemma 5 is presented in Appendix.

Lemma 5. Suppose that z is homogeneous, satisfies Walras’ law and has the
gross substitute property. Then z has the property (P5).

Lemma 6 shows that in the gross substitute case z̄ is regular. The result follows
from the well known fact that the rank of the Jacobian ∇z(p) is n − 1 for all
p > 0 when z has the gross substitute property, see, e.g., Hildenbrand and
Kirman (1988, Section 6.4).

13



Lemma 6. When z has the gross substitute property all points p̄ > 0 are
regular points of z̄.

The result (a) of Proposition 1 follows from Theorem 1 and Lemma 5. The
result (b) follows from Theorem 2 and Lemma 6. Furthermore, under gross
substitution there is a unique ray of solutions, so that convergence is monoton-
ical in both cases.

4.1 Cobb-Douglas Economy

In this section the convergence of the process (5) is explicitly shown for an
economy in which the consumers’ preferences are characterized by Cobb-
Douglas utility functions that are of the form

ui(x) =
n

∏

j=1

x
ai,j

j ,

where ai,j > 0 and
∑

j ai,j = 1 for all i = 1, . . . , m. It follows from each
consumer’s optimization problem that the j’th component of the consumer i’s
demand function is xi

j(p) = ai,j(p · wi)/pj. Thus, the excess demand for the
j’th commodity is zj(p) = (p · qj)/pj − tj , where qj =

∑

i ai,jw
i and tj =

∑

i w
i
j.

Let us suppose that qi
j > 0 for all i, j, for example because wj

i > 0 for all

i, j. It can be seen that ∂zj(p)/∂pi = qj
i /pj > 0 when i 6= j, i.e., the excess

demand function of the Cobb-Douglas economy z has the the gross substitute
property. Moreover, z has the properties (P1)–(P4).

For the convergence of the process (5) to an equilibrium, we need to show that
the normal curvature of z̄ is positive at p̄∗ to all tangent directions. Let us begin
with deriving the derivatives of z̄ up to second order. The first derivatives of
z̄ at p̄ are

∂z̄j(p̄)

∂p̄k
=















qn
k if j = n,

(qj
j p̄j − p · qj)/(p̄j)

2 if k = j < n,

qj
k/p̄k if k 6= j < n,

where p = (p̄, 1), and the second derivatives are

∂2z̄j(p̄)

∂p̄k∂p̄l
=



























0 if k, l 6= j or j = n,

−2(qj
j p̄j − p · qk)/(p̄j)

3 if k = l = j < n,

−qj
l /(p̄j)

2 if k = j, l 6= j < n,

−qj
k/(p̄j)

2 if l = j, k 6= j < n.

Let us assume for simplicity that the unique ray of equilibria is {λ(1, . . . , 1) :
λ > 0}. It can be shown that the general case, where (C1) holds for some
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equilibrium p∗, can be transformed such that (C1) holds for the transformed
excess demand function with λ(1, . . . , 1) in place of p∗, see Arrow et al. (1959,
Section 3.1.1.0). Let us denote p∗ = (1, . . . , 1) = (p̄∗, 1). It follows that tj =
p∗ · qj =

∑n
k=1 qj

k.

The normal curvature of z̄ at p̄∗ to a tangent direction defined by d ∈ R
n−1,

d 6= 0, is

κ(d; p̄∗) = 2
n−1
∑

j=1

[

(dj)
2tj −

n−1
∑

k=1

(qj
kdjdk)

]

/
[

(n − 1)1/2‖d‖2
]

= 2f(d)/
[

(n − 1)1/2‖d‖2
]

.

To prove that κ is positive it is enough to show that the function

f(d) =
∑

j

[

(dj)
2tj −

∑

k

(qj
kdjdk)

]

is positive for all d ∈ R
n−1 for which ‖d‖ = ρ. It turns out that the unique

minimizer of f is d = 0 and f(d) > f(0) = 0 when d 6= 0.

The necessary condition for the minimum of f over R
n−1 is

∂f(d)

∂dj

= 2(tj − qj
j )dj −

n−1
∑

k=1
k 6=j

(qj
kdk) = 0

for all j. Clearly, d = 0 satisfies this condition. Let us now show that f(d)
is strictly convex function by which it follows that the necessary condition is
sufficient and f(d) > f(0) = 0 for all d 6= 0.

To see that f(d) is strictly convex it is enough to show that its Hessian matrix
is positive definite. The entry in the j’th row and k’th column of the Hessian
is

bj,k =
∂2f(d)

∂dj∂dk
=







2(tj − qj
j ) if j = k,

−qj
k if j 6= k.

(8)

The positive definiteness of the Hessian matrix follows from the observation
that the Hessian is strictly positively diagonally dominant, which means that
bj,j > 0 and |bj,j| >

∑

k 6=j |bj,k| for all j = 1, . . . , n − 1. From (8) we see

that |bj,k| = qj
k for j 6= k, and bj,j = |bj,j| = 2(tj − qj

j ), so that the Hessian
has positive diagonal entries. Furthermore, it can be seen that the Hessian is,
indeed, diagonally dominant:

|bj,j| −
∑

k 6=j

|bj,k| = 2

[

(
n

∑

k=1

qj
k) − qj

j

]

−
n−1
∑

k=1
k 6=j

qj
k = 2qj

n +
n−1
∑

k=1
k 6=j

qj
k > 0.
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As a conclusion κ(d; p̄∗) > 0 holds for all d 6= 0. The convergence of the process
(5) for a Cobb-Douglas economy follows then from Proposition 1.

5 Second Order Weak Axiom of Revealed Preferences

An excess demand function is said to satisfy the weak axiom of revealed pref-
erences if for any pair of price vectors p1 and p2 for which z(p1) 6= z(p2) it
holds that

p1 · z(p2) ≤ 0 =⇒ p2 · z(p1) > 0.

The interpretation of the WA is that if p1 is revealed preferred to p2, which
means that the value of z(p2) with prices p1 is negative, then p2 cannot be
revealed preferred to p1. It can be seen that the WA implies (C1); hence,
also the stability of the continuous time process (2). As was seen in Section 3
the excess demand function has to satisfy (C2) to obtain convergence for the
process (5). Hence, we define a strengthened form of the WA, called the second
order weak axiom of revealed preferences, which implies (C2) analogously as
the WA implies (C1).

Definition 3. An excess demand function z satisfies the second order weak
axiom of revealed preferences (SWA) if for any p2 > 0 there is σ > 0 such that

p1 · z(p2) ≤ 0 =⇒ p2 · z(p1) ≥ σ‖z(p1) − z(p2)‖2

The SWA means that if p1 is revealed preferred to p2, then p2 is not revealed
preferred to p1 and the value of z(p1) with prices p2 is bounded from below
in proportion to the differences of the excess demands ‖z(p1) − z(p2)‖2. Note
that in the definition of the SWA the constant σ depends on p2.

It can be seen that the SWA implies (6) for all p > 0. Thus, we could say that
(6) means that the second order weak axiom holds between the equilibrium
vector p∗ and any other price vector. As explained in Section 3 if z satisfies
(6) for all p > 0, then it is bounded. Because excess demand functions are
not necessarily bounded it is reasonable to assume that the SWA holds only
around the equilibria. We say that z satisfies the SWA on Eε if the SWA holds
for all p1, p2 ∈ Eε.

As a corollary of Theorem 1 we obtain the following convergence result for
economies that satisfy the SWA.

Proposition 2. Let z be an excess demand function that has the properties
(P1)–(P5), and let p∗ be an equilibrium. If z satisfies the WA for all p > 0
and the SWA on Eε, then the process (5) converges to an equilibrium for any
p0 > 0.
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5.1 Strongly Monotone Mappings and the SWA

It is well known that the WA holds when the excess demand function is
monotone or has a representative consumer with an appropriate preference re-
lation. This arises the question whether there are similar economic conditions
which imply the SWA. This section shows that if the excess demand function
is a strongly monotone and Lipschitz continuous mapping, then it satisfies
the SWA. Furthermore, if the economy has a representative consumer, whose
preferences are characterized by a strongly concave utility function, then the
excess demand function satisfies the SWA. The latter result is based on the
strong monotonicity of the gradient mapping of a strongly concave function.
It follows from Proposition 2 that when z has the properties (P1)–(P5) and
satisfies one of the conditions presented in this section, then the process (5)
converges globally to an equilibrium.

We first define some monotonicity concepts. Below, I denotes the n×n identity
matrix.

Definition 4. Let S be a convex set in R
n. Mapping F : S 7→ R

n is monotone
on S if the inequality (p1 − p2) · [F (p1) − F (p2)] < 0 holds for all p1, p2 ∈ S
whenever F (p1) 6= F (p2). If there is σ > 0 such that F + σI is monotone on
S, then F is said to be strongly monotone on S.

Because excess demand functions are homogeneous, it is reasonable to de-
fine monotonicity for them by restricting the monotonicity condition to those
price vectors that are somehow comparable to each other. An appropriate
monotonicity concept for excess demand functions is obtained by requiring
that the monotonicity condition holds for z with a pair of prices p1 and p2 if
for some vector y > 0 we have p1 − p2 ∈ Ty = {x ∈ R

n : y · x = 0}. The
condition p1 − p2 ∈ Ty means that the value of commodity bundle y is the
same for prices p1 and p2. Geometrically monotonicity means that the vector
of price changes and the vector of demand changes point to the opposite half
spaces. It can be shown that the excess demand function of a large economy,
in which there is a continuum of consumers, is monotone when the income
distribution of the economy has certain properties, see Hildenbrand (1983).

It is well known that when z is monotone in the sense that the monotonicity
condition holds when p1−p2 ∈ Ty, then z satisfies the WA. The SWA is related
to the strong monotonicity of the excess demand function analogously, which
is shown in Proposition 3, where in addition to monotonicity z is assumed
to be Lipschitz continuous in the sense of the following definition. Note that
due to homogeneity z cannot satisfy the ordinary Lipschitz condition ‖z(p1)−
z(p2)‖ ≤ L‖p1 − p2‖.

Definition 5. An excess demand function z is Lipschitz continuous on the
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cone C ⊂ R
n
+ relative to vector y > 0 if there is a constant L > 0 such that

the inequality ‖z(p1)− z(p2)‖ ≤ L‖α1p
1 −α2p

2‖ holds for all p1, p2 ∈ C when
α1, α2 > 0 satisfy αkp

k − y ∈ Ty for k = 1, 2.

The following proposition shows that Lipschitz continuity and strong monotonic-
ity imply the SWA.

Proposition 3. Let the excess demand function z be Lipschitz continuous on
Eε relative to y > 0, and strongly monotone for all p1, p2 ∈ Eε that satisfy
p1 − p2 ∈ Ty. Then z satisfies the SWA on Eε.

Proof. Let p1, p2 ∈ Eε, p1 6= p2, and p1 · z(p2) ≤ 0. Moreover, let the positive
coefficients α1 and α2 be such that αkp

k − y ∈ Ty for k = 1, 2. In that case
we have α1p

1 − α2p
2 ∈ Ty and α1p

1, α2p
2 ∈ Eε. Note that Eε is a cone, i.e.,

αp ∈ Eε for all α > 0. By homogeneity it holds that z(αkp
k) = z(pk) for

k = 1, 2. From strong monotonicity and Walras’ law we obtain

−α1p
1 · z(p2) − α2p

2 · z(p1) = (α1p
1 − α2p

2) · [z(p1) − z(p2)]

≤ −σ‖α1p
1 − α2p

2‖2.

It follows that

α2p
2 · z(p1) − σ‖α1p

1 − α2p
2‖2 ≥ −α1p

1 · z(p2) ≥ 0.

From the Lipschitz continuity relative to y we get

σ‖z(p1) − z(p2)‖2/L2 ≤ σ‖α1p
1 − α2p

2‖2 ≤ α2p
2 · z(p1).

Hence, the SWA condition holds with the constant σ/(L2α2). 2

Due to the result of Proposition 3 it would be natural to call the SWA as the
strong axiom of revealed preferences. Strong axiom, however, usually refers
to the following indirect form of the WA: for any N ≥ 2 the inequalities
pk · z(pk+1) ≤ 0, k = 1, . . . , N − 1, imply that pN · z(p1) > 0.

There is another relationship between the SWA and strongly monotone map-
pings in addition to the one described above. Namely, if the economy has a
representative consumer whose preferences can be characterized by a locally
strongly concave utility function u (see the definition below), then the econ-
omy satisfies the SWA around the equilibrium ray. A representative consumer
means a preference relation for which

∑

i x
i(p) equals the demand function

obtained by maximizing this preference relation under the budget constraint
p · (x −

∑

i w
i) ≤ 0.

Definition 6. A differentiable function u is strongly concave on a convex set
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S if ∇u is strongly monotone on S. 3

See, e.g., Rockafellar and Wets (1998, Section 12.H) for more about strongly
monotone mappings and convex functions. In the framework of exchange
economies Shannon and Zame (2002) have utilized strong concavity to show
determinacy of equilibrium. 4 Note that differentiable strictly concave func-
tions could be defined similarly by requiring the gradient mapping to be
monotone.

The relationship of the SWA and the representative consumer with a strongly
concave utility function is stated in the following proposition. In addition to
strong concavity we need local nonsatiation, which means that in any environ-
ment of a commodity bundle there are more desirable bundles. This condition
guarantees that Walras’ law is satisfied.

Proposition 4. Let a locally nonsatiated preference relation be characterized
by a strictly concave utility function u that is strongly concave on B(

∑

i w
i, δ).

Let x(p) be the demand function that is obtained by maximizing u(x) subject
to the budget constraint p · (x −

∑

i w
i) ≤ 0 and let the prices be positive at

equilibrium. Then the excess demand function z(p) = x(p) −
∑

i w
i satisfies

the SWA on Eε for some ε > 0.

Proof. First, note that the demand function x(p) is continuous because u is
a strictly concave function, see, e.g., Hildenbrand and Kirman (1988, Proposi-
tion 3.1). Under local nonsatiation and concavity, the necessary and sufficient
optimality condition for maximizing u over the budget pk · (x −

∑

i w
i) ≤ 0 is

∇u(x(p)) = λkp
k for some λk > 0 when x(pk) > 0. Because prices are positive

at the equilibrium, i.e., p∗ > 0, there is ε̄ > 0 such that x(p) > 0 when p ∈ Eε̄.
Note that we have x(p1)−x(p2) = z(p1)−z(p2), and local nonsatiation implies
Walras’ law. These facts and strong concavity yield

[

∇u
(

x(p1)
)

−∇u
(

x(p2)
)]

·
[

x(p1) − x(p2)
]

=
(

λ1p
1 − λ2p

2
)

·
[

z(p1) − z(p2)
]

=

−λ1p
1 · z(p2) − λ2p

2 · z(p1) ≤ −σ‖z(p1) − z(p2)‖2.

By rearranging the terms in the bottom line and dividing with λ2 we obtain

p2 · z(p1) − (σ/λ2)‖z(p1) − z(p2)‖2 ≥ −(λ1/λ2)p
1 · z(p2) ≥ 0,

where the latter inequality holds when p1 is revealed preferred to p2. Thus,
z satisfies the SWA when p1 and p2 are chosen such that x(p1), x(p2) ∈

3 In a non-differentiable case the definition is the same except that the gradient is
replaced with subgradient. Differentiability is assumed here for simplicity.
4 Shannon and Zame (2002) call strong concavity as quadratic concavity.
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B(
∑

i w
i, δ) and x(p1), x(p2) > 0. It follows from this result and the continuity

of x that there is ε ≤ ε̄ such that z satisfies the SWA on p ∈ Eε. 2

6 Conclusion

An extensive part of literature has concentrated on normalized processes, e.g.,
processes in which one of the prices is selected as a numéraire and only the rest
of them are adjusted. This paper shows that a non-normalized process that
is a slight modification of fixed-point iteration pk+1 = pk + z(pk) converges
under conditions that are remarkably close to the continuous time convergence
conditions. Indeed, price normalization seems to lead to chaos whereas non-
normalized process has better convergence properties.

This paper has also introduced a second order form of the weak axiom of
revealed preferences that implies convergence of iterative tâtonnement. This
condition has the same economic interpretation as the ordinary weak axiom
of revealed preferences but mathematically the condition is more stringent.
Actually, the ordinary weak axiom is obtained as a limiting case from the
second order version. For practical or numerical considerations the difference
between the convergence conditions of the usual continuous time process and
the conditions obtained in this paper are quite negligible. This is because
the continuous time convergence condition is obtained as the limit from the
discrete time convergence condition as the hypersurface defined by the excess
demand function becomes flatter.

Appendix: Proofs of the Lemmas

Proof of Lemma 1. Let us first observe that

µkp
∗ · z(p) ≥ ‖µkz(p)‖2, (9)

when µk ≤ 1. This can be seen by multiplying both sides of p∗ ·z(p) ≥ ‖z(p)‖2

with µ2
k and noticing that µ2

kp
∗ · z(p) ≤ µkp

∗ · z(p) because µk ≤ 1.

From (9) and Walras’ law we have

‖pk+1 − p∗‖2 = ‖pk + µkz(pk) − p∗‖2 =

‖µkz(pk)‖2 − 2µkz(pk) · p∗ + ‖pk − p∗‖2 ≤ ‖pk − p∗‖2.

Note that pk belongs to B(p∗, r) for all k = 0, 1, . . ., when p0 ∈ B(p∗, r).
Therefore, the sequence {‖pk − p∗‖}k converges and as a result the sequence
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{‖pk‖}k is bounded. From Walras’ law it follows that

‖pk‖2 = ‖p0‖2 +
k−1
∑

i=0

µ2

i ‖z(pi)‖2,

so that {‖pk‖}k is a growing and bounded sequence and hence convergent.
The iteration formula yields

pk = p0 +
k−1
∑

i=0

µiz(pi).

Hence, ‖p0 +
∑k−1

i=0 µiz(pi)‖ converges, too. From the triangular inequality we
get

‖p0 +
k+l
∑

i=0

µiz(pi)‖ ≥

∣

∣

∣

∣

∣

∣

‖p0 +
k

∑

i=0

µiz(pi)‖ − ‖
k+l
∑

i=k+1

µiz(pi)‖

∣

∣

∣

∣

∣

∣

and we obtain

‖pk+l − pk‖ = ‖
k+l
∑

i=k+1

µiz(pi)‖ → 0, (10)

when k → ∞ and l ≥ 1. Thus, {pk}k is a Cauchy sequence and hence conver-
gent. Let p̃ denote the limit point of this Cauchy sequence.

Let us now show that when 0 < µ̄ ≤ µk the sequence {pk}k converges to a
solution of z(p) = 0. By setting l = 1 it follows from (10) that µk‖z(pk)‖ → 0.
Because it holds that µ̄‖z(pk)‖ ≤ µk‖z(pk)‖ and z is continuous, we see that
p̃ is a solution of z(p) = 0. 2

Proof of Lemma 2. If ‖z(p)‖2 ≤ 2αz(p) · p̃ holds for α > 0 then it holds
for any ᾱ > α. Specifically, we can choose ᾱ > 0 such that this condition
holds for p∗ = ᾱp̄ − 2p̄ instead of αp̄. Moreover we can take α such that
‖z(p)‖2 < 2αz(p) · p̃ if p is not a solution. Similarly as in Lemma 1 we can
deduce that ‖pk+1 − p∗‖2 < ‖pk − p∗‖2, and ‖pk+1 − αp̃‖2 < ‖pk − αp̃‖2 when
pk is not a solution. From parallelogram law we get

‖pk − αp̃‖2 + ‖pk − p∗‖2 = 2‖pk − p̃‖2 + 2(α − 1)‖p̃‖2.

By rearranging the terms we have

2‖pk − p̃‖2 = 2(α − 1)‖p̃‖2 − ‖pk − αp̃‖2 − ‖pk − p∗‖2

> 2(α − 1)‖p̃‖2 − ‖pk+1 − αp̃‖2 − ‖pk+1 − p∗‖2 = 2‖pk+1 − p̃‖,

and hence {pk}k converges monotonically to p̃. 2

Proof of Lemma 3. Let z satisfy (C2) on Eε̄ = {p ∈ R
n
+ : ‖z(p)‖ < ε̄} with

constant σ̄. By the homogeneity of excess demand we know that ẑ obtains all
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its values on the unit simplex ∆ = {p ∈ R
n
+ :

∑

j pj = 1}. Because of (P4) and
(P5) it can be seen that p∗ · z(pk) → ∞, when pk → p and Jp 6= ∅. As a result,
we have

lim
pk→p

p∗ · ẑ(pk) > 0,

when Jp 6= ∅. From this property, continuity, and (C1), it follows that there is
δ > 0 such that p∗ · ẑ(p) ≥ δ for all p ∈ ∆ \ S, where S = {p ∈ ∆ : pj > ε′

∀j = 1, . . . , n} and ε′ > 0 is chosen such that Eε̄ ∩ ∆ ⊂ S.

Clearly, the infimum of p∗ · ẑ(p) over S \Eε̄ is positive, since otherwise ẑ would
violate (C1). Let α > 0 denote this infimum. We have p∗ · ẑ(p) ≥ min{δ, α}
for all p ∈ ∆ \ Eε̄. Because ‖ẑ(p)‖ ≤ M we get p∗ · ẑ(p) ≥ σ̂‖ẑ(p)‖2 for all
p ∈ ∆ \ Eε̄ by choosing σ̂ < min{δ, α}/M2. The result follows by setting
σ = min{σ̄, σ̂}. 2

Proof of Lemma 4. From Taylor’s formula we get

z̄k(p̄
∗ + d) = z̄k(p̄

∗) + ∇z̄k(p̄
∗) · d +

1

2
d · ∇2z̄k(p̄

∗) · d + o(‖d‖2), (11)

where d ∈ R
n−1 is such that p̄∗ + d > 0 and o(‖d‖2)/‖d‖2 → 0 as ‖d‖ → 0.

Here ∇z̄k denotes the gradient of k’th component function of z̄. Furthermore,
vectors are considered as column vectors and x′ denotes the transpose of vector
x.

Recall that Walras’ law gives N(p̄∗) = p∗/‖p∗‖. Furthermore, we have

∇z̄(p̄) =















∇z̄1(p̄)
′

...

∇z̄n(p̄)′















=
[

∇1z̄(p̄) · · · ∇n−1z̄(p̄)

]

,

and because ∇z̄(p̄)d is a tangent direction of the parameterized hypersurface
z̄ at z̄(p̄), we get p∗ · [∇z̄(p̄∗)d] = 0. From this together with (11) and z̄(p̄∗) = 0
we obtain

2p∗ · z̄(p̄∗ + d) =
∑

i,j,k

p∗k
∂z̄k(p̄

∗)

∂p̄i∂p̄j

didj + o(‖d‖2),

where in the summation i and j run from 1 to n − 1 and k runs from 1 to n.
By the definition of normal curvature this can be written as

2p∗ · z̄(p̄∗ + d) = ‖p∗‖κ(d; p̄∗)‖d‖2 + o(‖d‖2). (12)

From Taylor’s formula (11) we also get

‖z̄(p̄∗ + d)‖2 = z̄(p̄∗ + d) · z̄(p̄∗ + d) = d · [∇z̄(p̄∗)′∇z̄(p̄∗)d] + o(‖d‖2), (13)

22



where ∇z̄(p̄∗)′ is the transpose of the Jacobian matrix.

Because p̄∗ is a regular point of z̄, the Jacobian is full rank matrix. Therefore,
the matrix A = ∇z̄(p̄∗)′∇z̄(p̄∗) is positive definite. It is known from linear
algebra that for a symmetric matrix A it holds that

βL‖d‖
2 ≤ d · (Ad) ≤ βU‖d‖

2, (14)

where βL and βU are the minimal and maximal eigenvalues of A, respectively.

When the curvature is positive to all directions, we have

κ∗ = min
‖d‖=ρ

κ(d; p̄∗) > 0,

because as a continuous function κ attains its minimum over ∂B(0, ρ) = {d ∈
R

n−1 : ‖d‖ = ρ}, where ρ > 0 is chosen such that p̄∗+d > 0 for all d ∈ ∂B(0, ρ).
An appropriate ρ can be found because p∗ > 0. By choosing α > βU/(‖p∗‖κ∗)
we obtain the following inequality from (12) and (13):

2αp∗ · z̄(p̄∗ + d) ≥ ‖z̄(p̄∗ + d)‖2,

when ‖d‖ ≤ ρ. Hence, z satisfies (C2) around the equilibrium ray with the
constant σ = 1/(2α).

To conclude the proof it needs to be shown that (C2) implies that z̄ has positive
normal curvature at p̄∗ to all tangent directions. Without loss of generality we
may assume that σ = 1 in (C2). It follows that there is ρ > 0 such that
2p∗ · z̄(p̄) ≥ ‖z̄(p̄)‖2 for all p̄ ∈ B(p̄∗, ρ). From (12), (13), and (14) we get

‖p∗‖κ(d; p̄∗)‖d‖2 + o(‖d‖2) ≥ βL‖d‖
2,

for all d ∈ B(0, ρ), and consequently κ(d; p̄∗) ≥ βL/‖p∗‖ > 0, i.e., the normal
curvature of z̄ is positive to all tangent directions at p̄∗. 2

Proof of Lemma 5. Let us suppose that pk → p as k → ∞. Without
loss of generality we may suppose that the first l prices of p are zero, i.e.,
Jp = {1, . . . , l}, l < n. By homogeneity we can choose an equilibrium vector
p∗ such that pj > p∗j for all j /∈ Jp. Moreover, there is N such that when
k ≥ N , we have pk

j < p∗j for all j ∈ Jp, and pk
j > p∗ for all j /∈ Jp.

According to Walras’ law

l
∑

j=1

p∗jzj(p
∗
1, . . . , p

∗
l , p

k
l+1, . . . , p

k
n) = −

n
∑

j=l+1

pk
jzj(p

∗
1, . . . , p

∗
l , p

k
l+1, . . . , p

k
n). (15)

The gross substitute property implies that zj(p
k) < zj(p

∗
1, . . . , p

∗
l , p

k
l+1, . . . , p

k
n)
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for j /∈ Jp and k ≥ N , because pk
j < p∗j , j ∈ Jp. Thus, from (15) we obtain

l
∑

j=1

p∗jzj(p
∗
1, . . . , p

∗
l , p

k
l+1, . . . , p

k
n) < −

n
∑

j=l+1

pk
j zj(p

k) =
l

∑

j=1

pk
jzj(p

k), (16)

where the last equality is from Walras’ law.

Let us make a counter assumption that z1(p
k), . . . , zl(p

k) are bounded above.
Taking limits from both sides of (16) as k → ∞ yields

l
∑

j=1

p∗jzj(p
∗
1, . . . , p

∗
l , pl+1, . . . , pn) ≤ 0, (17)

because limk→∞
∑l

j=1 pk
jzj(p

k) ≤ 0 by the boundedness. From the gross sub-
stitute property, on the other hand, it follows that when j ∈ Jp we have

zj(p
∗
1, . . . , p

∗
l , pl+1, . . . , pn) > zj(p

∗) = 0. (18)

Recall that p∗ was chosen such that pj > p∗j for all j ∈ Jp. Clearly, (17) leads
to contradiction with (18). Thus, at least one of z1(p

k), . . . , zl(p
k) becomes

infinitely large as pk
j → 0 for all j ∈ Jp. 2
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