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Abstract. We study a principal-agent game where the principal com-
mits to an affine contract. We suppose that the principal has incomplete
information but he can adjust the contract according to the myopically
behaving agent’s reactions when the game is played repeatedly. The
adjustment process can be considered as a learning model. We derive
convergence conditions for fixed-point iteration as an adjustment scheme
and study a related continuous time process. The analysis is based on
parameterizing the problem such that we obtain a degree zero homoge-
neous system of equations, where the nonlinear mapping satisfies Walras’
law.

1. Introduction

Contract design problems and their applications have been widely studied
in the literature of game theory and economics in principal-agent framework.
In a principal-agent model the principal offers the agents one or several
contracts that the agents can either accept or reject. This setting has several
variations depending on the principal’s information on the agents’ types and
actions. See Macho-Stadler and Pérez-Castrillo (2001), Salanié (1997) for
textbooks on contract design with asymmetric information.

Games where the principal moves first and has incomplete information on
the agents’ preferences, but can observe their actions, are called mechanism
design or adverse selection models. These problems can be analyzed as
Bayesian games where the principal’s task is to design a set of incentive
compatible contracts, sometimes called mechanisms, given the beliefs over
the agents’ possible types. If the principal observes the agents’ actions
imperfectly the model is known as a hidden knowledge or a moral hazard
problem.

In this paper we consider a two-player game, where the principal commits
to a contract that is an affine mapping of the agent’s actions. We suppose
that the principal has incomplete information but instead of Bayesian ap-
proach we assume that the game with the same players is played repeatedly
and the principal can adjust the contract according to the observations on
the agent’s behavior. We show how the complete information equilibrium
can be reached by adjusting the contract with fixed-point iteration when
supposing that the agent acts myopically.
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2 ADJUSTMENT OF AN AFFINE CONTRACT

In the literature on repeated adverse selection models the focus has been
on commitment and renegotiation issues and the analysis is usually based
on the type parameterization. In a repeated principal agent game where the
principal knows the agent’s utility function except for one parameter there
is no need for adjustment because the principal knows the agent’s utility
function completely after the first round. In some cases, however, we may
not have a type parameterization and adjustment becomes the only choice.

In the recent literature of game theory, processes where the players adjust
their strategies have been studied in the framework of learning models, see
Fudenberg and Levine (1999). A simple example of a learning scheme is the
Cournot process in which the players use their best responses sequentially to
the opponents’ latest moves. Ehtamo et al. have recently studied adjustment
of a linear wage contract in a simple principal-agent setting by using a three-
phase procedure, Ehtamo et al. (2002). Adjustment processes have also been
studied in the stability analysis of Walrasian equilibria and we shall briefly
discuss how the adjustment of an affine contract presented here is related to
the stability of Walrasian equilibrium.

The contents of the paper are as follows. In Section 2 we present the
principal-agent game with complete information and discuss the existence
of solution for the principal’s contract design problem. In Section 3 we
parameterize the game such that the contract design problem can be for-
mulated as a system of equations to be solved. Furthermore, we study the
properties of the parameterized problem. The results of sections 2 and 3 are
based on concavity properties of the agent’s utility function.

In Section 4 we show how fixed-point iteration can be used in adjusting
an affine contract when the two-player game defined in Section 2 is played
repeatedly and the principal is supposed to have incomplete information.
We derive new convergence conditions for fixed-point iteration from the
properties of the parameterization of Section 3. In Section 5 we discuss the
corresponding continuous time adjustment process and show the similarities
of the contract design problem and price adjustment in exchange economies.
In sections 4 and 5 we assume that the principal’s optimum is such that the
agent always participates the game when the contract passes through that
point. In Section 6 we briefly characterize processes that work for finding the
principal’s optimum in the case where the agent does not always participate
the game.

2. A Contract Design Game and the Complete Information

Solution

In this section we define the principal-agent game and derive conditions
for the existence of an affine solution for a contract design game with com-
plete information. Although we adopt principal-agent terminology the words
principal and agent do not refer to any specific agency problem.

We suppose that there are two utility maximizing players, a principal
and an agent with utility functions v, u : R

n × R
m → R, respectively. The

principal’s decision variable is y ∈ R
m and the agent’s is x ∈ R

n, ‖·‖ denotes
the Euclidean norm in R

m, R
n and in their product space.
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In a game of incomplete information the principal does not know the
agent’s utility function. Usually it is assumed that the agent’s utility func-
tion is determined by a type parameter θ ∈ {θ1, . . . , θN} that is unknown for
the principal, who, however, has a probability distribution over the possible
values of the parameter. The agent knows his own type. There are two in-
terpretations for using type parameters. One is that there is a population of
agents whose types are drawn from a probability distribution. Alternatively
we could assume that there is only a single agent whose type is random
from the principal’s view. In this paper we shall not use type parameteri-
zation but our approach is close to the latter one because we shall assume
that the principal meets the same or similar agent when the game is played
repeatedly.

In the contract design game the principal offers the agent a menu of con-
tracts γi(x), i = 1, . . . , N , and commits to make his decision according to the
contract that the agent chooses. The agent may also reject all the contracts
in which case he obtains his reservation utility ū. After the agent chooses
to sign a contract γi he makes a decision x′ and the principal implements
the contract, i.e., chooses the action y′ = γi(x′), and the game ends. The
principal’s problem is to design the menu of contracts that maximizes his
expected utility such that the agent obtains at least his reservation utility
and chooses the contract intended for his type.

There is a wide variety of applications for contract design games. For
example, the principal could be a seller who offers a buyer a price tariff that
specifies the prices y of the goods for any amounts x to be bought. Nonlinear
pricing with a multi-product monopoly has been studied, e.g., in Roberts
(1979), Mirman and Sibley (1980), Spence (1980).

In this paper we shall assume that the principal observes perfectly the
agent’s move. Furthermore, in this and the next section we assume that the
principal has complete information, that is to say he knows the agent’s utility
function or type. We shall show under mild technical assumptions that the
principal gets his optimum with a single affine contract. Affine contracts
are often considered as simple to monitor and implement. Compared to
discontinuous contracts, e.g., various threshold contracts, affine contracts
have the advantage that the risk of losses becomes low for small deviations
from the principal’s optimum. In a buyer-seller game an affine price tariff
could be implemented by specifying the unit prices plus possible fixed prices
for each good to be sold.

The contract design problem is defined as follows. Find a contract γ :
R

n → R
m that maximizes v(xγ , γ(xγ)) over all feasible contract mappings

γ, where xγ solves

(1) max
x

u(x, γ(x))

and

(2) u(xγ , γ(xγ)) ≥ ū.

Equation (2) is called the agent’s participation constraint. We next show
that there is an affine contract of the form

(3) γ(x) = y0 + Lx,
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where L is a linear mapping (m × n matrix) from R
n into R

m, and y0 is a
fixed vector in R

m, that solves the contract design problem.
Suppose that x∗, y∗ solves

max
(x,y)∈D

v(x, y),

where D is the set of points that satisfy the agent’s participation constraint
u(x, y) ≥ ū. Because the pair x∗, y∗ is the best outcome the principal can
hope to get in the game, we can restrict our attention to those affine con-
tracts that pass through x∗, y∗, i.e., y∗ = γ(x∗). Thus for any contract of
the form (3) we should have y0 = y∗ − Lx∗. Hence, we can without loss of
generality assume that the principal gives his contracts in the form

(4) γ(x) = y∗ + L(x − x∗).

Note that since the contract goes through x∗, y∗, which belongs to D, the
agent will get at least his reservation utility when accepting the contract.
Thus he will always participate the game. We shall assume throughout this
paper that there are no constraints other than the participation constraint
for the principal’s and the agent’s decisions.

The affine contract design problem can now be defined as follows. Find a
contract of the form (4), i.e., find an m×n matrix L such that x∗, y∗ solves

max
x,y

u(x, y)(5)

s.t. y = y∗ + L(x − x∗).(6)

The contract γ that solves the above problem is called a contract at x∗, y∗
and the pair (x∗, γ) is a Nash equilibrium for the game.

Let us suppose that the agent’s objective function u is concave and let
us denote the set of all subgradients of u at x∗, y∗, i.e., the subdifferential
of u at x∗, y∗, by ∂u(x∗, y∗). By a subgradient at x∗, y∗ we mean a pair
(ξx, ξy) ∈ R

n+m that satisfies

u(x∗, y∗) − u(x, y) ≥ ξT
x (x − x∗) + ξT

y (y − y∗) ∀(x, y) ∈ R
n+m.

The subdifferential of a concave function u is a non-empty set and if the
function is differentiable at x∗, y∗ then the subdifferential is a singleton and
equals the gradient of u at x∗, y∗.

For given L necessary and sufficient optimality condition for (5), (6) at
x∗, y∗ is that

(7) ∂u(x∗, y∗) ∩ {(ξx, ξy) ∈ R
n+m | ξx + LT ξy = 0} �= ∅.

Geometrical interpretation of condition (7) is that there is a subgradient of
u at x∗, y∗ that is normal to the affine set defined by (6).

Now, suppose that (ξx, ξy) ∈ ∂u(x∗, y∗) is such that ξy �= 0. Then there
is a contract of the form (6) at x∗, y∗. One possible L satisfying (7) is given
by

(8) L = −ξyξ
T
x /‖ξy‖2.

Usually there are also other affine contracts than the one defined by (8).
Suppose, e.g., that the dimension of x equals the dimension of y, i.e., m = n,
and suppose (ξx, ξy) ∈ ∂u(x∗, y∗) is such that all components of ξy are
nonzero. Then we can choose L to be a diagonal matrix. In a multi-product
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buyer-seller situation the corresponding tariff can be specified by giving a
unit price for each good to be sold.

We collect the essential of the above discussion to the following.

Theorem 2.1. If u is concave and has a subgradient ξx, ξy at x∗, y∗ such
that ξy �= 0, then there is a solution to the affine contract design problem.
Furthermore, a mapping of the form (4) is a contract at x∗, y∗ if and only
if the x, y points satisfying (6) belong to the hyperplane

(9) {(x, y) ∈ R
n+m | ξT

x (x − x∗) + ξT
y (y − y∗) = 0}

for some (ξx, ξy) ∈ ∂u(x∗, y∗).

The latter part of the theorem is equivalent to the necessary and sufficient
optimality condition (7). Also note that if u is differentiable the requirement
ξy �= 0 becomes ∇yu(x∗, y∗) �= 0, which means that the agent’s utility is
sensitive for the changes of y around x∗, y∗.

The rather general formulation of the contract design problem in this way
is inspired by some early papers in the field of control theory and differential
games. Affine contract design problems, or affine incentive design problems
as they are called in these papers, and their relation to incentive problems
in economics is discussed in Ho et al. (1982). For mathematical analysis
of affine incentive design problems in dynamic game settings of complete
information see Başar (1984), Ehtamo and Hämäläinen (1993).

3. Parameterization of the Problem

Theorem 2.1 suggests us to parameterize the principal’s problem. Let us
denote the subgradients of u appearing in (9) by parameter vectors px and
py, and denote the column vector composed of px and py by p. The contract
design problem can then be formulated as follows: Find p ∈ R

n+m, py �= 0,
such that x∗, y∗ solves

(10)
max
x,y

u(x, y)

s.t. y = y∗ + L(p)(x − x∗),

where the matrix L(p) is chosen such that the contract defines an affine
subset on the hyperplane

(11) pT
x (x − x∗) + pT

y (y − y∗) = 0.

An appropriate parameterization for L is given by

(12) L(p) = −pyp
T
x /‖py‖2,

for py �= 0. Because the contract is chosen to satisfy (11), L becomes,
regardless of its explicit form, degree zero homogeneous, i.e., L(αp) = L(p)
for α �= 0. This is because αp defines the same hyperplane as p.

Let S(p) ⊂ R
n+m denote the set of solutions to (10) for given p. Then

the contract design problem above is to find p so that

(13) (x∗, y∗) ∈ S(p).

Theorem 2.1 gives conditions for the existence of a solution for (13), and
due to the degree zero homogeneity of L, there is at least a ray of solutions
if the conditions of Theorem 2.1 hold. One can always obtain a system
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with a unique solution from a homogeneous system that has a unique ray of
solutions, e.g., by setting one of the components of p to a nonzero constant
and dropping the corresponding equation from the system. However, in this
paper we do not have any need to do so. Furthermore, (13) may also hold
for some other p’s than the subgradient directions and therefore we do not
necessarily have a unique ray of solutions.

Note that if (x(p), y(p)) ∈ S(p), then x(p) is the agent’s reaction for the
contract parameterized by p. Furthermore, as a solution set of a convex
optimization problem, S(p) if non-empty, is compact and convex set. The
other properties of S are summarized in the following theorem, which readily
follows from Theorem A.1 and Corollary A.1 presented in Appendix A.

Theorem 3.1. If u is concave, L is continuous at p and S(p) �= ∅, then
the set-valued mapping S is closed at p. If u is strictly concave and D is
compact, then S is single-valued and continuous at p, py �= 0.

Notice that the compactness of a level set, e.g., the set D, of a concave
function is equivalent with the compactness of all the level sets, see, e.g.,
Corollary 8.7.1 in Rockafellar (1970). Obviously strongly concave functions
satisfy conditions of Theorem 3.1. Strong concavity of u means that −∂u is
a strongly monotone mapping, i.e., there is a constant σ > 0 such that

(ξx1 − ξx0)
T (x0 − x1) + (ξy1 − ξy0)

T (y0 − y1) ≥ σ(‖x1 − x0‖2 + ‖y1 − y0‖2)

for all (x1, y1),(x0, y0) and (ξxi , ξyi) ∈ ∂u(xi, yi), i = 0, 1. If u is twice contin-
uously differentiable, then strong concavity is equivalent with the negative
semidefiniteness of ∇2u(x, y) + σI for every x, y pair, where ∇2u denotes
the Hessian of u with respect to x and y and I is an identity matrix. We
shall see in the following section that strong concavity is essential for the
convergence of fixed-point adjustment.

A two-dimensional example of points x(p), y(p) with L(p) defined by (12)
is presented in Figure 1. In the figure the agent’s optimum with a given
p and the corresponding contract line (dashed line) is a point where the
contract line is tangent to one of the contours (dotted lines) of u. The solid
line represents the locus of all x(p), y(p) points. In the figure K denotes the
(negative) cone of solutions of (13). The opposite directions are solutions as
well.

4. Adjustment with Fixed-Point Iteration

In a game of incomplete information the explicit form of u is unknown for
the principal. As explained earlier, the principal-agent game with incomplete
information is usually formulated as a Bayesian game by supposing that the
principal knows the form of u except for one parameter and has a probability
distribution over the possible values of that parameter.

Instead of Bayesian approach we assume that the game of incomplete
information is played repeatedly and the principal can adjust the affine
contract according to observations on the agent’s actions, i.e., the principal
is committed to a contract only for one period at a time and faces the
same agent in each round. Note that when u is unknown to the principal
he cannot necessarily have prior knowledge about the agent’s participation
constraint; hence he cannot use D when solving for (x∗, y∗) as in Section
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Figure 1. Two-dimensional illustration: the agent’s con-
tours and reactions.

2. We shall therefore assume here that the principal knows that his global
optimum (x∗, y∗), solving max v(x, y) over R

n+m, belongs to D. Thus the
agent will always participate the game, recall the discussion in Section 2
below (4). For example, this can happen when it is common knowledge that
the agent does not have a participation constraint at all. In Section 6 we
study the general case where the principal does not know D but can find
the best point in D through adjustments.

The basic idea of the adjustment approach is that the principal tries to
find a solution p so that (13) holds. An appropriate method for this task is
fixed-point iteration

(14) pk+1 = pk + µd(pk),

where d denotes the mapping

d(p) =
(

x(p) − x∗
y(p) − y∗

)
,

(x(p), y(p)) ∈ S(p), and µ �= 0 is a fixed parameter. The advantage of fixed-
point iteration is that it can be implemented in a repeated game where
the principal does not know u. This is because the agent’s response x(p)
is sufficient information for updating p by (14). Note that y(p) is defined
through the affine contract given x(p).

An interpretation for the above adjustment scheme is that it describes
a learning model, where the iteration specifies the principal’s learning rule.
Furthermore, the agent is assumed to be myopic in the sense that he does not
consider outcomes of other games than the current one. An explanation for
myopic behavior is that the agent’s discount factor is small compared to the
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speed at which the learning rule converges. Another argument for myopic
learning comes from matching models where there are a great number of
players and in each period the players match their strategies with different
opponents. Since the same players are unlikely to meet anew they tend to
play myopically. In the principal-agent game there could be a large number
of similar agents and in each round one agent is chosen randomly to play
the game.

4.1. Convergence Analysis. The convergence analysis of this section is
based on properties of the parameterized problem (13). We shall show es-
sentially that the strong concavity of the agent’s utility function is required
for the convergence of (14).

Because L is degree zero homogeneous, S and d are homogeneous, too.
Moreover, d(p) is perpendicular to p, i.e., d(p)T p = 0, because the contract
satisfies (11). This property is known as Walras’ law and it generally holds
for excess demand functions of exchange economies. In the following lemmas
we give general convergence conditions and characterize the convergence
properties of fixed-point iteration in a problem of finding a solution for
a system of equations, where the nonlinear mapping satisfies Walras’ law
together with an additional condition. The proofs of the lemmas can be
found in Appendix B.

Lemma 4.1. Let the continuous mapping F : B(p∗, r) → R
N , B(p∗, r) =

{p ∈ R
N | ‖p − p∗‖ < r}, r > 0, satisfy the following conditions:

1. F (p)T p = 0 ∀p ∈ B(p∗, r),
2. ‖F (p)‖2 ≤ 2F (p)T p∗ ∀p ∈ B(p∗, r).

Then fixed-point iteration pk+1 = pk+µF (pk), µ �= 0, converges to a solution
of F (p) = 0 when p0 ∈ B(p∗, r). Moreover p∗ is a solution.

Lemma 4.2. Let conditions 1 and 2 of Lemma 4.1 hold for F and let fixed-
point iteration pk+1 = pk + µF (pk) converge to a solution p̄ that satisfies

(15) ‖F (p)‖2 ≤ 2αF (p)T p̄ ∀p ∈ B(p∗, r)

for some α > 0. Then the iteration converges monotonically, i.e., ‖pk+1 −
p̄‖ < ‖pk − p̄‖.

The latter lemma tells that the convergence is monotonic if the sequence
of parameters p converges to a solution, e.g., to p∗ that satisfies the second
condition in Lemma 4.1. This can be guaranteed in some specific cases as
will be seen in the example of Section 4.2.

Using Lemmas 4.1 and 4.2 we obtain the following convergence theorem
for the adjustment of an affine contract using fixed-point iteration.

Theorem 4.1. If u is strongly concave and assumptions of Theorem 2.1
hold, then fixed-point iteration (14), for p0

y �= 0, either converges to a solution
of (13) or pk

y = 0 for some k. If the iteration converges to a subgradient
direction of u at x∗, y∗, then it converges monotonically.

Proof. As a strongly concave function u satisfies assumptions of Theorem
3.1 and it follows that d is continuous when py �= 0. Clearly condition 1
of Lemma 4.1 holds for all p with py �= 0. Therefore we need to show only
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that condition 2 holds. Without loss of generality we can choose µ = 1.
Let (x, y) ∈ S(p), (ξx∗ , ξy∗) ∈ ∂u(x∗, y∗) as in Theorem 2.1 and (ξx, ξy) ∈
∂u(x, y). From strong concavity we have

(16) (ξx − ξx∗)T (x∗ − x) + (ξy − ξy∗)T (y∗ − y) ≥ σ(‖x− x∗‖2 + ‖y − y∗‖2),

where σ > 0. By plugging the contract in place of y we get from the second
term on the left-hand side of (16)

ξT
y L(p)(x∗ − x) − ξT

y∗(y∗ − y),

and hence the left-hand side of (16) equals

(ξx + L(p)T ξy)T (x∗ − x) − ξT
x∗(x∗ − x) − ξT

y∗(y − y∗).

From the optimality condition it follows that ξx + L(p)T ξy = 0; hence the
left-hand side of (16) is equal to

ξT
x∗(x − x∗) + ξT

y∗(y − y∗) = d(p)T p∗

where p∗ �= 0 denotes a vector that is composed of ξx∗ and ξy∗ . Note that
the right-hand side of (16) is equal to σ‖d(p)‖2. Thus, condition 2 holds for
d when py �= 0. It follows from Lemma 4.1 that if pk

y �= 0 ∀k = 1, 2, . . . , then
the iteration converges. Otherwise pk

y = 0 for some k. Because condition 2
holds when p∗ is any subgradient direction, Lemma 4.2 implies monotonic
convergence. �

Theorem 4.1 shows that fixed-point iteration is an appropriate method
when computing the solution for the contract design problem. Moreover, in
a repeated game the iteration describes a convergent learning rule for the
principal and we may say that the equilibrium of the game is stable. Note
that it is obvious from Lemma 4.1 and Theorem 4.1 that when the initial
parameter vector p0 is chosen close enough to a solution the iteration does
not stall.

4.2. Example. The purpose of this example is to illustrate the geometrical
ideas of the convergence analysis. Let us assume that the agent’s utility
function is

u(x, y) = min{−x2/2 − y2,−x2 − y2/2},

and the principal’s optimum is achieved at x∗ = 1, y∗ = −1. As a minimum
of two strongly concave functions u is also strongly concave but it is not
differentiable for all x, y. Contours of u are illustrated in Figure 1. Because
the example is only two-dimensional (11) defines the contract uniquely by
(12).
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The graph of S consists of four parts given below:

(px, py)-region Image under S

I: 1/2 ≤ px/py ≤ 2 y = x, −1/3 ≤ x ≤ 1/3
II: |px/py| ≤ 1/2 (y + 1/2)2 + (x − 1/2)2/2 = 3/8,

x ≤ 1, y ≤ −1/3
III: 2 ≤ |px/py| (y + 1/2)2/2 + (x − 1/2)2 = 3/8,

1/3 ≤ x, −1 ≤ y, x �= 1, y �= 0
IV: −2 ≤ px/py ≤ −1/2 x∗, y∗.

The first three parts in x, y-plane are marked in Figure 2. Part IV is
the point (1,−1). Notice that S and d are not defined when py = 0 and
therefore there is a discontinuity at x = 1, y = 0. The discontinuity is not,
however, illustrated in the figure.

−0.5 0 0.5 1

−1

−0.5

0

0.5

x

y

p

I

II

III

* 

1 

2 

3 

4 
5 

0 

Figure 2. Two-dimensional illustration of the second con-
vergence condition and an iteration.

The first convergence condition of Lemma 4.1, namely that d(p) is per-
pendicular to p, was explained in the second paragraph of Section 4.1 and it
is illustrated in Figure 1. The geometric interpretation of the second conver-
gence condition in Lemma 4.1 for d is that the image of {(px, py) ∈ R

n+m |
py �= 0} under d is contained in a ball. This can be seen by writing the
condition in an equivalent form

‖d(p) − p∗‖2 ≤ ‖p∗‖2,
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i.e., the ball is centered at p∗ and has radius ‖p∗‖. This condition is now
satisfied and the dashed line in Figure 2 illustrates one appropriate ball when
the origin is transformed to (1,−1).

In general, strong concavity of u implies that the level set {(x, y) ∈ R
n+m |

u(x, y) ≥ u(x∗, y∗)} is contained in a sufficiently large ball that goes through
x∗, y∗. The region inside the dotted line in Figure 2 belongs to the afore-
mentioned level set. Because the points (x(p), y(p)) are inside the level set
and d(p) is the difference vector of (x∗, y∗) and this point, d is inside the
ball obtained from the one that contains the level set by transforming the
origin to x∗, y∗. Notice that the condition 2 of Lemma 4.1 has both global
and local interpretation. Globally the condition implies that d(p) belongs
to a compact set and in the vicinity of p∗ it means that d is not too flat.

In this example y is one-dimensional and therefore all the solutions of (13)
are subgradient directions. Hence, fixed-point iteration converges monoton-
ically, see Theorem 4.1. The first six (x, y) points of an iteration with µ = 1
and initial parameter vector p0 = [3 2]T are illustrated with numbered dots
in Figure 2.

5. Continuous Time Process

In this section we focus on a continuous time process for adjusting the
affine contract. Continuous time approach is commonly used in the stability
analysis of Walrasian equilibrium and it turns out that the famous stabil-
ity result by Arrow et al. (1959) is related to the adjustment of an affine
contract.

In this section we denote by p(t) the parameter vector at time t and we
suppose that p is differentiable with respect to t and denote its derivative
by ṗ. If we set p(tk) = pk, p(tk+1) = pk+1 and assume that µ = tk+1 − tk,
we get the process

(17) ṗ = d(p)

as a limit from (14) when µ → 0. This process can not be implemented in a
repeated game but it works as an idealization for the discrete time process
where the principal reacts arbitrarily fast. Hence, the process describes a
continuous time learning model.

The following lemma gives convergence conditions for a continuous time
adjustment process for a system that satisfies Walras’ law. The lemma is a
modification of the stability theorem for Walrasian equilibrium by Arrow et
al. (1959). The formulation and proof follow the presentation of Theorem
3.E.1 in Takayama (1974) with the difference that we do not require that
there is a unique ray of solutions. A similar result for exchange economies
with multiple equilibria is given in Arrow and Hurwicz (1960).

Notice that in Lemma 5.1 we need to assume existence of a solution for
the equation, which was not assumed in Lemma 4.1. However, the condition
that is required in addition to Walras’ law is less stringent than condition 2
of Lemma 4.1. The proof is presented in Appendix B.

Lemma 5.1. Let K ⊂ Ω, K �= ∅ be the set of solutions of F (p) = 0 and let
the continuous mapping F : Ω → R

N , Ω ⊂ R
N , satisfy Walras’ law and

(18) F (p)T p∗ > 0 ∀p ∈ Ω \ K
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for some p∗ ∈ K. Then the process ṗ = F (p) converges monotonically to a
solution of F (p) = 0 when p(0) ∈ B(p∗, r) ⊂ Ω.

The geometric interpretation of (18) is that points F (p), p ∈ Ω\K, are on
the half-space defined by the hyperplane with normal p∗. Clearly F has this
property if it satisfies condition 2 of Lemma 4.1. Using Lemma 5.1 we can
prove the following convergence theorem for the continuous time adjustment
process (17).

Theorem 5.1. If assumptions of Theorem 2.1 and Theorem 3.1 hold, then
the process (17), for py(0) �= 0, either converges to a solution or stalls at a
point in which py = 0.

Proof. From Theorem 2.1 it follows that the set of solutions K of d(p) = 0,
is non-empty and clearly condition 1 of Lemma 4.1 holds. Moreover from
Theorem 3.1 we know that d is continuous when py �= 0. Now let us suppose
that p is not a solution of (13) and let (x, y) ∈ S(p). Let (ξx∗ , ξy∗) ∈
∂u(x∗, y∗) as in Theorem 2.1 and (ξx, ξy) ∈ ∂u(x, y). From strict concavity
of u we get

(ξx − ξx∗)T (x∗ − x) + (ξy − ξy∗)T (y∗ − y) =

(ξx + L(p)T ξy)T (x∗ − x) − ξT
x∗(x∗ − x) − ξT

y∗(y∗ − y) =

ξT
x∗(x − x∗) + ξT

y∗(y − y∗) = d(p)T p∗ > 0,

where p∗ �= 0 is composed of ξx∗ and ξy∗ . Hence the conditions of Lemma
5.1 are satisfied for F = d with Ω = R

n+m \ {p ∈ R
n+m | py �= 0}. If we get

during the process a point p(t) such that py(t) = 0, the iteration stalls since
d is not defined at such a point.

�
Compared to Theorem 4.1 the convergence conditions in Theorem 5.1 are

weaker because instead of strong concavity only strict concavity is required.
Similarly as for the discrete time adjustment, the process does not stall when
initial parameter vector p(0) is chosen close enough to a solution.

The essential properties of d are its homogeneity and that it satisfies Wal-
ras’ law and these properties are also typical for excess demand functions
of exchange economies. According to the well-known theorem by Sonnen-
schein (1973), Mantel (1974), and Debreu (1974) any continuous function
that satisfies Walras’ law for p ≥ 0 is an excess demand function for some
economy.

Our two-player model is, indeed, similar to an exchange economy with
only one consumer and a Walrasian auctioneer. This can be seen from (10)
and (11) by making the following alternative interpretation. The variables x
and y represent the amounts of commodities, px and py are the correspond-
ing prices, (x∗, y∗) is the consumer’s initial bundle, (11) gives a budget con-
straint for the consumer, and x(p), y(p) are the amounts that the consumer
is willing to buy for given prices. Furthermore, process (17) describes a price
adjustment scheme that drives the excess demand of commodities, d(p), to
zero. The principal acts as an auctioneer who sets the prices according to
the excess demand but no trade occurs until an equilibrium is reached, i.e.,
(17) is a tâtonnement process.
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The analog to exchange economies leads us to ask whether fixed-point iter-
ation works in finding a Walrasian equilibrium. The convergence conditions
for fixed-point iteration are, however, more stringent than those required
for the convergence of the continuous time process. Particularly the sec-
ond condition of Lemma 4.1 does not necessarily hold for excess demand
functions of exchange economies. The reason for this is that when d is an
excess demand mapping it usually has the following property: when price of
some commodity goes to zero, the excess demand for that commodity grows
infinitely large given that the other prices are fixed. Therefore, d cannot be
inside any ball and condition 2 of Lemma 4.1 does not hold. Though we
cannot generalize the convergence result as such to exchange economies, it
is possible that the condition holds for some class of economies.

6. Processes for Finding the Principal’s Optimum

So far we have assumed that the agent will always participate the game
during the process, i.e., the principal’s global optimum (x∗, y∗) belongs to
D, recall the discussion in the beginning of Section 4. If (x∗, y∗) does not
belong to D, the agent does not necessarily participate the game. In this
case the contract design problem is to find the optimal point for v over D
and a corresponding contract at that point. In this section we characterize
procedures for finding the principal’s optimum assuming that a contract
can be found at any given (x∗, y∗) ∈ D, e.g., with the adjustment process
described previously in this paper.

Let w = (x̄, ȳ) ∈ R
n+m, we call w a reference point, and let S(p,w) denote

the set of solutions to

(19)
max
x,y

u(x, y)

s.t. y = ȳ + L(p)(x − x̄),

for given p and w, where L(p) is as in (10). Now the contract design problem
is to find w∗ such that v(w∗) = maxw∈D v(w) and p∗ ∈ G(w∗), where G(w) =
{p | w ∈ S(p,w)}. We assume now that given any w ∈ D, a parameter vector
p that defines the contract at w, i.e., p ∈ G(w), can be found. Namely,
given that u is strongly concave, and for all w ∈ D there is ξy �= 0, (ξx, ξy) ∈
∂u(w), the convergence result of Theorem 4.1 holds for any reference point
w ∈ D. In addition, we make the following assumptions for the adjustment
of reference point w:

1. The reference point wk ∈ D is updated only if a strictly better point
wk+1 ∈ D can be found.

2. If it holds that wk ∈ D and wk �= w∗, then wk+1 ∈ D such that
v(wk+1) > v(wk) can be found.

The first assumption is natural because there is no reason for the principal
to expect less utility from the future rounds than from the previous ones.
Furthermore, it is rather easy to generate better reference points, so that
the second assumption is reasonable, too. For example when the current
reference point is in the interior of D, one can find a better reference point
that is also in the interior of D by taking an appropriate step to an improving
direction of v at the current reference point. It is also worth noticing that if
the reference point is taken outside of D, an affine contract going through
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that point will usually have points in common with D. Nevertheless, the
agent will reject the contract at some stage of the updating procedure. In
that case some of the agent’s previous choices can be taken as a new reference
point.

We further need the concept of complete process. We say that a process
is incomplete if the sequence of reference points converges to w̄ but there
is a non-trivial process that starts from w̄ and satisfies assumptions 1 and
2. By a non-trivial process we mean a sequence {w̄k}k generated by the
process with w̄0 = w̄, such that w̄k �= w̄ at least for some k. Process that is
not incomplete is called complete. Similar concept of a complete process in
the price adjustment framework has been used in Smale (1976).

The following theorem shows that a complete adjustment processes, which
satisfies the above assumptions, converges and there is a subsequence of
contracts converging to the solution of the contract design problem.

Theorem 6.1. When v is strictly concave, then for any complete process,
which begins from w0 ∈ D and satisfies assumptions 1 and 2, the sequence of
reference points converges to w∗. Furthermore, when u is strictly concave,
and for all wk ∈ D there is (ξk

x, ξk
y ) ∈ ∂u(wk) such that ξk

y �= 0, then there
is a subsequence of parameters pk ∈ G(wk) converging to p∗ ∈ G(w∗) given
that G(w∗) �= ∅.
Proof. Let us first observe that due to assumption 2 and the assumption
that w0 ∈ D the sequence of reference points {wk}k, obtained during the
process, belongs to D. Let us now show that this sequence converges to the
principal’s optimum over D, i.e., to point w∗. There are two possibilities:
either wk = w∗ when k > N , or for every k we have v(wk+1) > v(wk).
In both cases v is a Lyapunov function for the subsequence. Hence the
subsequence converges and the limit is in D, which is a closed set because
u is continuous. Notice also that v is strictly concave and w∗ is its unique
maximizer over D, so that it is an appropriate Lyapunov function. From
the completeness assumption it follows that the limit is w∗.

It follows from the continuity of S, see Corollary A.1, that G(w) is a
closed mapping. Because of homogeneity of S we may choose a bounded
sequence {pk}k, pk ∈ G(wk), where wk ∈ D, e.g., we may set ‖pk‖ = 1.
This sequence has a convergent subsequence and from the closedness of G
it follows that the limit is in G(w∗) when G(w∗) �= ∅. Hence we have the
result. �

In view of Theorem 6.1 iteration (14) can be started using any reference
point w ∈ D, and as we discussed it is rather easy to generate reference
points. When during an iteration a point (x(p), y(p)) is encountered, giving
the principal a better outcome than the current reference point, it can be
taken as a new reference point in iteration (14), which can be continued
from the current parameter vector.

7. Conclusion

In this paper we have presented a new adjustment approach for an affine
contract design problem. When a principal-agent game with incomplete
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information is played repeatedly, the principal can adjust his contract ac-
cording to agent’s previous move. The adjustment procedure is based on pa-
rameterizing the problem appropriately and updating the parameters with
fixed-point iteration.

The parameterization of the contract design problem results to a degree
zero homogeneous system of equations, where the mapping satisfies Walras’
law. We showed that the iteration converges when an additional condition,
the condition 2 of Lemma 4.1, holds for the system. As a result we obtained a
convergence result for a principal-agent game where the agent has a strongly
concave utility function. In addition to fixed-point iteration we have studied
a related continuous time adjustment process.

The idea of using linear constraints in coordinating decision makers to
a desired outcome has been used in the context of Walrasian tâtonnement
and recently in negotiation analysis. In Ehtamo et al. (1999) a method of
finding a Pareto-optimal solution for a two-party negotiation is formulated
as a problem of searching for a joint tangent hyperplane for the parties util-
ity functions. The problem results to a degree zero homogeneous system of
equations that satisfies Walras’ law. The search of the joint tangent hyper-
plane is done interactively between a mediator, using the method, and the
parties. In this framework fixed-point iteration has been used successfully
in numerical experiments The convergence results that we have presented in
this paper may prove useful for this kind of adjustment of hyperplane con-
straints in finding Pareto optimal solutions or more generally adjustment of
linear budget constraints for exchange economies.

Appendix A. Continuity Properties of the Optimal Set

Mapping

Here S(p,w) ⊂ R
n+m denotes the set of solutions for (19) for given p and

w = (x̄, ȳ). The following theorem characterizes the continuity of S with
respect to p and w.

Theorem A.1. If u is concave, L(p) is continuous at p and S(p,w) �= ∅,
then the set-valued mapping S is closed at (p,w).

Proof. Let us assume that S(p,w) �= ∅, pk → p, wk → w and (xk, yk) →
(x, y), where (xk, yk) ∈ S(pk, wk) �= ∅. We denote the set of feasible points
of problem (19), i.e., the set of points satisfying the linear contract, with
C(p,w) and the normal cone of the feasible set, {(ξx, ξy) ∈ R

n+m | ξx +
L(p)T ξy = 0}, with N(p). Let us first note that C(p,w) is a closed mapping
with respect to (p,w), because L is continuous.

According to sufficient optimality conditions (xk, yk) ∈ S(pk, wk) if and
only if (xk, yk) ∈ C(pk, wk) and

∂u(xk, yk) ∩ N(pk) �= ∅.
From continuity of L it follows that N is a closed mapping. Concavity of u
implies upper hemi-continuity of ∂u. Moreover,

∪(x,y)∈{(xk ,yk)}k
∂u(x, y)

is bounded, see, e.g., Prop. 6.2.1 and 6.2.2 in Section 6 of Hiriart-Urruty
and Lemaréchal (1993). Hence, there is a convergent sequence {ξi}i such
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that
ξi ∈ ∂u(xki , yki) ∩ N(pki).

It follows that limi→∞ ξi ∈ ∂u(x, y) ∩ N(p). Because C is a closed mapping
we have (x, y) ∈ C(p,w). Thus, sufficient optimality conditions are satisfied
and (x, y) ∈ S(p,w).

�

Corollary A.1. If u is strictly concave with compact level sets and L(p) is
continuous at p, then S is single-valued and continuous at (p,w), w ∈ D.

Proof. From the compactness of the level sets we know that D is compact
and S(p,w) �= ∅. The latter follows from Weierstrass theorem. Strict con-
cavity of u implies that S(p,w) is a singleton. Furthermore, since D is com-
pact there is w̄ = (x̄, ȳ) such that u(x̄, ȳ) = max(x,y)∈D u(x, y) and clearly
S(p,w) ⊂ {(x, y) ∈ R

n+m | u(x, y) ≥ u(x̄, ȳ)} so that S is a closed mapping
into a compact set. Hence S is upper hemi-continuous, see, e.g., Prop. 11.9
(c) in Border (1985).

Continuity follows from upper hemi-continuity and single-valuedness, see
prop 11.9 (d) in Border (1985).

�

Appendix B. Proofs of the Lemmas

Proof of lemma 4.1. If function F satisfies the conditions 1 and 2, then
they hold also for µF with µ �= 0. Hence, without loss of generality we can
prove the convergence with µ = 1. Let p∗ be as in condition 2, then

‖pk+1 − p∗‖2 = ‖pk + F (pk) − p∗‖2 =

‖F (pk)‖2 − 2F (pk)T p∗ + ‖pk − p∗‖2 ≤ ‖pk − p∗‖2.

Note that pk ∈ B(p∗, r) ∀k = 0, 1, . . ., when p0 ∈ B(p∗, r). Therefore the
sequence {‖pk−p∗‖}k converges and the sequence {‖pk‖}k is bounded. From
condition 1 it follows that

‖pk‖2 = ‖p0‖2 +
k−1∑
i=0

‖F (pi)‖2,

so that {‖pk‖}k is a growing and bounded sequence and hence convergent.
From the iteration formula we have

pk = p0 +
k−1∑
i=0

F (pi).

Hence ‖p0 +
∑k−1

i=0 F (pi)‖ converges, too. From triangular inequality we get

‖p0 +
k+l∑
i=0

F (pi)‖ ≥
∣∣∣∣∣‖p0 +

k∑
i=0

F (pi)‖ − ‖
k+l∑

i=k+1

F (pi)‖
∣∣∣∣∣

and it follows that

(20) ‖pk+l − pk‖ = ‖
k+l∑

i=k+1

F (pi)‖ → 0,
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when k → ∞ and l ≥ 1. Thus {pk}k is a Cauchy sequence and hence
convergent; let p̄ denote its limit point. Moreover, from (20) we get by
setting l = 1 that ‖F (pk)‖ → 0, and from the continuity of F we have
F (p̄) = 0.

We can construct a sequence of solutions converging to p∗ by taking neigh-
borhoods B(p∗, rk) with r ≥ r0 > r1 > ... > rk → 0. There is a solution
p̄k in each of these neighborhoods, and p̄k → p∗ since rk → 0. From the
continuity of F we have F (p∗) = 0. �

Proof of lemma 4.2. If (15) holds for α > 0 then it holds for any ᾱ > α.
Specifically, we can choose ᾱ > 0 such that (15) holds for p∗ = ᾱp̄−2p̄ instead
of αp̄. Moreover we can take α such that ‖F (p)‖2 < 2αF (p)T p̄ if p is not
a solution. Similarly as in Lemma 4.1 we can deduce that ‖pk+1 − p∗‖2 <
‖pk − p∗‖2, and ‖pk+1 −αp̄‖2 < ‖pk −αp̄‖2 when pk is not a solution. From
parallelogram law we get

‖pk − αp̄‖2 + ‖pk − p∗‖2 = 2‖pk − p̄‖2 + 2(α − 1)‖p̄‖2.

By rearranging the terms we have

2‖pk − p̄‖2 = 2(α − 1)‖p̄‖2 − ‖pk − αp̄‖2 − ‖pk − p∗‖2

> 2(α − 1)‖p̄‖2 − ‖pk+1 − αp̄‖2 − ‖pk+1 − p∗‖2 = 2‖pk+1 − p̄‖,
and hence {pk}k converges monotonically to p̄. �

Proof of lemma 5.1. From the first condition it follows that ‖p(t)‖ =
‖p(0)‖, because

d‖p(t)‖2/dt = 2p(t)T ṗ = 2p(t)T F (p) = 0,

i.e., ‖p(t)‖ is constant. Let us choose p∗ such that ‖p∗‖ = ‖p(0)‖, and
differentiate D(t) = ‖p(t)−p∗‖2, where p∗ is as required in the assumptions:

dD(t)/dt = d‖p(t) − p∗‖2/dt = 2ṗT (p(t) − p∗)

= 2F (p)T (p(t) − p∗) = −2F (p)T p∗ < 0,
(21)

when p(t) is not a solution. Hence, p(t) ∈ Ω and p(t) moves monotonically
towards p∗. We need to show that p(t) is not bounded away from K, i.e.,
the process converges to a solution. Let us suppose that p(t) is bounded
away from K, i.e., there is ε > 0 such that

p(t) ∈ S = B(p∗, r) \ {p | ‖p − p̄‖ < ε for some p̄ ∈ K}
for all t. Note that S �= ∅ because p∗ ∈ K. From continuity of F it follows
that f(p) = −2F (p)T p∗ is a continuous function. From Weierstrass theorem
we know that f(p) achieves its maximum −δ < 0 in the compact set S.
Hence, we have dD/dt = −2F (p(t))T p∗ ≤ −δ < 0. Integrating both sides
from 0 to t and rearranging the terms we get

D(t) < D(0) − δt.

For t large enough we have D(t) < 0, which is a contradiction with non-
negativity of the norm. �
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Başar, T., 1984. Affine incentive schemes for stochastic systems with dy-
namic information. SIAM J. Control Optim. 22 199–210.

Border, K. C., 1985. Fixed Point Theorems with Applications to Economics
and Game Theory . Cambridge University Press.

Debreu, G., 1974. Excess demand functions. J. Math. Econom. 1 15–23.
Ehtamo, H., R. P. Hämäläinen, 1993. A cooperative incentive equilibrium

for a resource management problem. J. Econom. Dynam. Control 17
659–678.

, , P. Heiskanen, J. Teich, M. Verkama, S. Zionts,
1999. Generating Pareto solutions in a two party setting: Constraint
proposal methods. Management Sci. 45 1697–1709.
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