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Abstract

The functioning of society and economy depends on critical infrastructures

which are vulnerable to disruptions: energy distribution networks and water

supply systems, for example, can be exposed to power outages and supply chain

disturbances. Analyses of these vulnerabilities are therefore needed to assess

and secure the performance of critical infrastructures. Towards this end, we

model critical transportation systems as networks which consist of nodes and

edges and whose performance is measured by the extent to which the trans-

portation objectives are achieved even if part of the network may be disrupted.

Specifically, we develop decision analytic methods to determine (i) how different

combinations of disruptions would impact the performance of the network and

(ii) which combinations of risk management actions are cost-efficient in main-

taining the performance of the network at as high a level as possible with regard

to multiple evaluation criteria.

Keywords: Cost-efficiency analysis, critical infrastructure, portfolio analysis,

risk analysis, transportation systems.
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1 Introduction

Critical infrastructures consist of all assets, comprising both systems and pro-

cesses, that are needed to produce and distribute vital goods and services to

people. These assets are crucial for the health, wealth, and security of soci-

ety: transportation systems, for example are needed to deliver goods for people.

The performance of these systems may be compromised by adversities such as

natural disasters and terrorist attacks, which makes it necessary to understand

how vulnerable they are (see e.g. Burns and Slovic 2012, Kleinmuntz and Willis

2009, Brown et al. 2006).

In this paper, we develop methods for assessing the vulnerability of criti-

cal transportation systems and for improving the resilience of these networks

through cost-efficient risk management actions. Technically, we model trans-

portation systems as networks consisting of nodes that are connected by edges.

For example, in the modeling of railroads, railway stations would correspond

to nodes while tracks between stations could be treated as edges. In our meth-

ods, the performance of the network is measured by the extent to which relevant

transportation objectives are achieved. For instance, one objective could be that

of minimizing the time needed to transport medical supplies to patients, while

another one could be that of ensuring the existence of at least one functioning

route between two cities.

Transportation networks, like other critical infrastructures, are vulnerable

to disruptions caused by natural events such as extreme weather conditions or

intentional attacks such as sabotage. Due to such disruptions, the performance

of the network may deteriorate so that some transportation objectives are no

longer met. For instance, traveling times may increase if trains must be re-

routed due to damaged railway stations.

From the viewpoint of risk analysis, not all parts of the network are equally

important, because disruptions of some network nodes will cause a greater de-

crease in network performance than disruptions of other nodes. Furthermore,

because the impacts depend on what the status of other nodes in the network
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is, it may be necessary to evaluate the impacts of combinations (or portfolios) of

disruptions. For instance, if a single node is disrupted, then the performance of

the network may not change much; but the performance may decrease dramati-

cally if two nodes are disrupted at the same time. It is also pertinent to account

for disruption probabilities, given that some disruptions are more probable than

others.

Specifically, our methods help identify which (i) individual network nodes

and (ii) combinations of network nodes are most important in the sense that

disruptions of these nodes would impact the performance of the network most;

moreover, they help identify which (iii) risk management actions are cost-

efficient in ensuring that the performance of the network stays at as high a

level as possible. Examples of such risk management actions include the fortifi-

cation of selected network nodes against disruptions or the introduction of new

edges between nodes. Technically, we aggregate disruption probabilities so that

it becomes possible to associate with any given level of network performance

the probability with which this performance level will be reached. Thus, for

example, it is possible to ascertain whether or not the probability of meeting

the targeted level of network performance is 95% or higher.

Because it is usually possible to implement many risk management actions

jointly, we analyze combinations or portfolios of such actions. The results of such

analyses support the allocation of resources to those risk management actions

which are cost-efficient in ensuring that the network performs as well as possi-

ble relative to the costs that arise from the implementation of risk management

actions (c.f. Kangaspunta et al. 2012). For instance, if the budget for main-

taining the road network were to be reduced, then one would like to spend the

remaining budget so that the reduction in the performance level would remain

as small as possible.

The rest of this paper is organized as follows. Section 2 reviews earlier ap-

proaches to evaluating the vulnerability of the critical infrastructures. Section 3

presents our methods for evaluating the performance of transportation networks

and for guiding the allocation of resources to risk management actions. Section
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4 gives an illustrative example. Section 5 discusses our results and identifies

directions for future work. Section 6 concludes.

2 Earlier Methods to Evaluate Networks

Much of the research on the resilience of network infrastructures has been carried

out after the turn of the millennium. Albert et al. (2000) discuss the tolerance

of real-world networks such as the World-Wide Web and social networks against

errors due to random failures and intentional attacks. Even if the nodes and

edges of these networks regularly fail, they tend to exhibit a high degree of

robustness in that they maintain a fair degree of functionality despite high

failure rates. Still, Albert et al. (2000) note that some networks are vulnerable

to attacks directed at few vital network components.

Brown et al. (2006) present methods which help identify vulnerabilities in dif-

ferent sectors of critical infrastructures and assist in planning defensive measures

against an intelligent attacker. They stress that infrastructures which resist fail-

ures at single points may not survive intentional attacks. They note that there

is plenty of publicly available information for planning of disastrous attacks

on infrastructures. Focusing on the vulnerability of electric power networks,

Holmgren (2006) finds that complex systems can be represented as networks,

and that interdependencies between different infrastructures such as power and

communication systems are of particular interest.

Latora and Marchiori (2005) present a method to find the critical compo-

nents of an infrastructure network represented by nodes and links. They also

analyze how improvements such as the introduction of additional links between

nodes increases the performance of the network. As in Latora and Marchiori

(2001) the performance is defined as how efficiently information can be ex-

changed over the network.

Israeli and Wood (2002) define a shortest-path network-interdiction prob-

lem in which an attacker seeks to maximize the shortest path length between

two given nodes of the network. In this problem, the attacker uses limited re-
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sources to interdict paths between these two nodes for instance by destroying

paths or by increasing their lengths by reducing the capacities of these paths.

Cappanera and Scaparra (2011) consider the problem of allocating resources

to protect shortest-path networks with the aim of maximizing the resilience of

these networks against disruptions. They present methods to identify which

components need to be protected to minimize the length of the shortest path

after a worst-case disruption.

The methods we develop in this paper have novel features for evaluating

the importance of network nodes and for allocating resources to maintain the

performance of transportation networks:

1. The performance of the network is measured holistically by the extent to

which the transportation objectives of the network are achieved.

2. It is possible to account for multiple objectives which, for example, can

represent the level of performance for transporting different commodities

or for servicing different stakeholders.

3. Weight information about the relative importance of the different trans-

portation objectives need not be complete. Thus, for example, results can

be produced even on the basis of an ordinal ranking information about the

relative importance of objectives. This is useful, because the elicitation of

complete weight information can be difficult and time-consuming.

4. Cost-efficiency analyses help identify which portfolios of risk management

actions outperform others at different levels of total cost. These kinds of

analyses can be performed in order to define the appropriate budget level

as well. For instance, if a small increase in the budget for risk manage-

ment actions helps ensure the performance of the network, then increasing

the budget may be justified. Conversely, budget reductions could be war-

ranted if the same performance level can be achieved at a smaller budget.
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3 Evaluating Framework for Transportation Net-

works

Let G(V ; E) denote a network consisting of a set of nodes V = {1, . . . ,m} and

a set of undirected edges E ⊆ {(i, j) | i, j ∈ V } between the nodes. If a node

is disrupted, then all the edges connecting it to other nodes are removed from

the network. Thus, if there is a disruption at node k ∈ V , then the disrupted

network is G(V d; Ed), where V d = V \ {k} and Ed = {(i, j) ∈ E | i, j ∈ V d} ⊆

E.

The state of the network is a vector x = [x1, . . . , xm] ∈ X = {0, 1}m such

that xk = 1 if node k ∈ V is disrupted and xk = 0 if it functions. The total

number of possible states of network nodes is 2m. Figure 1 shows an example

of disruptions in a network consisting of nine nodes and thirteen edges.

Insert Figure 1 around here.

Edges, too, can be vulnerable to disruptions. Edge disruptions can be mod-

eled by replacing each edge (i, j) ∈ E with an additional node k /∈ V and

by introducing two edges (i, k) and (k, j). The augmented network then be-

comes G(V a, Ea), where V a = {1, . . . ,m + |E|}, Ea ⊆ {(i, k) | i ∈ V, k ∈

V a \ V } ∪ {(k, j) | j ∈ V, k ∈ V a \ V } and |E| is the number of edges in the

original network. Thus, without losing generality, we consider node disruptions

only.

3.1 Assessing the Impacts of Network Disruptions

We consider transportation networks whose performance is measured by the

extent to which the transportation objectives are attained. For example, the

objective can be that of maximizing the number of connections between sup-

pliers and customers; minimizing the travel time or cost between factories and

retailers; or maximizing the number of delivered shipments. The objective can

also be based on topological measures such as the average of the shortest dis-
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tances between network nodes (see e.g. Latora and Marchiori 2001).

Disruptions decrease the performance of the network. For example, routing

adjustments required by a node disruption may cause delays so that the objec-

tives concerning delivery times are not attained. Disruptions at different nodes

do not impact the performance of the network similarly, and the impacts caused

by a node disruption often depend on what other nodes are disrupted. The total

impact of disruptions is therefore a function of the combination of nodes that

are disrupted, and consequently the performance of the transportation network

must be considered in view of combinations of possible disruptions.

Technically, we use a value function v to map the network state x ∈ X onto

a performance scale so that

v = v(x) : X → R. (1)

For instance, the performance of a network can be measured using the measure

by Latora and Marchiori (2001) so that

v(x) =
1

m(m− 1)

∑

i 6=j

1
di,j(x)

∈ [0, 1], (2)

where m is the number of nodes and di,j(x) is the length of the shortest path

between nodes i and j as a function of x ∈ X . If there is no path between nodes

i and j, then 1/di,j(x) = 0. The performance (2) is zero if there is no path

between any pair of nodes. Conversely, it is one if the average length of shortest

paths between all pairs nodes is one.

Often, it is necessary to account for multiple objectives, such as that of

maximizing the number of connections and that of minimizing transportation

costs. In our modeling approach, we assume that there are n objectives which

are measured using value functions such that vj(x) is the value with regard to

objective j = 1, . . . , n when the network is in state x ∈ X . Without losing

generality, these criterion specific values can be normalized onto the range [0 , 1]

so that vj(x) = 0 if all nodes are disrupted (i.e., xk = 1 for all k = 1, . . . ,m)

and vj(x) = 1 if there are no disruptions (i.e., xk = 0 for all k = 1, . . . ,m).
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The different objectives are not necessarily equally important. To gauge

the relative importance of these objectives, we employ criterion weights which

reflect the increase in the overall value when the criterion specific performance

changes from its minimum level to the maximum level. The relative weight of

criterion j = 1, . . . , n is denoted wj ∈ [0, 1]. Following the usual convention, we

assume that these weights are normalized so that they add up to one.

If the objectives are mutually preferentially independent and some technical

assumptions hold (see e.g. Dyer and Sarin 1979), the value of network per-

formance associated with the network state x ∈ X can be represented by an

additive value function

v(x,w) =
n∑

j=1

wjvj(x) ∈ [0, 1].

In this additive representation, the additional value brought by an incremental

improvement in the performance level on one criterion does not depend on what

performance the network provides on the other criteria.

Recognizing that it can be difficult to elicit complete information about cri-

terion weights, we assume that weight information is characterized by a feasible

set Sw rather than exact point estimates (Salo and Hämäläinen 1992). This

feasible weight set is a subset of all possible weights

Sw = {w ∈ Rn | Aww ≤ Bw} ⊆





w ∈ Rn | wj ≥ 0 ∀j,

n∑

j=1

wj = 1





= S0

w, (3)

where the constraint matrices Aw ∈ Ra×n and Bw ∈ Ra contain the coefficients

that are implied by preference statements concerning the relative importance of

objectives. For instance, if criterion 1 is judged to be at least as important but

no more than twice as important than criterion 2, then the constraints w1 ≥ w2

and w1 ≤ 2w2 would apply.

For purposes of illustration, consider the network in Figure 2 which has three

suppliers (S1, S2, and S3), three customers (C1, C2, and C3), and six interme-

diate nodes. A supplier is connected to a customer if there is a route from

the supplier to the customer through edges and nodes that are operational.
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The objective is to maximize the number of connections between suppliers and

customers. The relative importance of a connection between supplier Si and

customer Cj is denoted by wi,j . If all connections between suppliers and cus-

tomers are equally important, then wi,j = 1/9 for all i, j = 1, 2, 3. The resulting

value function is therefore the following function of the network state x ∈ X

v(x,w) =
3∑

i=1

3∑

j=1

wi,jgi,j(x) ∈ [0, 1], (4)

where gi,j(x) = 1 if there is a connection between supplier i = 1, 2, 3 and

customer j = 1, 2, 3 and gi,j(x) = 0 if there is no such connection.

Insert Figure 2 around here.

We next evaluate which combinations of disruptions are most critical to the

performance of this network. For purposes of illustration, we assume that only

the intermediate nodes 1, . . . , 6 are vulnerable to disruptions. The number of

connections between suppliers and customers is shown in Figure 3 as a function

of the number of disrupted network nodes.

Insert Figure 3 around here.

The following minimization problem gives those combinations of node dis-

ruptions that decrease the performance of the network most for a given number

nd ∈ Z of disruptions and w ∈ Sw

min
x

v(x,w)

s.t.
∑m

i=1 xi = nd

x ∈ X .

(5)

Solutions for the problem (5) are marked with squares in Figure 3.

For example, if node 5 in Figure 2 is disrupted, then seven connections

remain. Moreover, if one of the two combinations {1,5} or {4,5} are disrupted,

then only three connections remain. This can be contrasted with the disruption
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of four nodes {1,3,4,6} which leaves all connections intact. This highlights that

the nodes are not equally important for the performance of the network.

3.2 Risk Profiles for Network Performance

To evaluate the risk profile of the network, assume that the weight vector w is

selected from the set of feasible weights Sw. Here, we provide results on the risk

profiles for this selected weight vector, in the recognition that results for the

entire set of feasible weights Sw can be obtained by examining all the extreme

points of the feasible weight set.

If node disruptions occur independently, uncertainties about node disrup-

tions can be represented by the vector p = [p1, . . . , pm] ∈ P = [0, 1]m where pk

is the probability of node disruption at node k. Thus, the probability of network

state x ∈ X is

p(x) =
m∏

k=1

[xkpk + (1− xk)(1− pk)] ∈ [0, 1]. (6)

By construction, summing the probabilities of all network states equals one.

The probability (density) function of network performance for w ∈ Sw and

performance level v ∈ [0, 1] is

f(v, w) =
∑

{x∈X|v(x,w)=v}

p(x) ∈ [0, 1]. (7)

The corresponding cumulative probability function gives the probability that

network performance is less than or equal to a given performance level v. For

the given weight vector w ∈ Sw and v ∈ [0, 1], this function is

F (v, w) =
∑

{x∈X|v(x,w)≤v}

p(x) ∈ [0, 1]. (8)

Various risk constraints can be introduced by employing these probabil-

ity distributions. For example, if network performance is measured using the

value function (4), then requiring that the probability of having three or fewer

connections out of nine must not exceed 5% corresponds to the inequality

F (3/9, w) ≤ 0.05.
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For a given weight vector w ∈ Sw, the expected network performance is

Ep [v(x,w)] =
∑

x∈X

p(x)v(x,w) ∈ [0, 1]. (9)

The Decision Maker (DM) may be interested in minimizing risks by modifying

the structure of the network or by carrying out maintenance actions to fortify

network nodes. For such purposes, risk measures such as Value-at-Risk (VaR)

can be used to quantify risks and to evaluate risk management actions. VaR is

defined for a given confidence level α ∈ (0, 1] and w ∈ Sw as the greatest value

in the worst α-quantile of the network performance

VaRα
p (v, w) = sup{v ∈ [0, 1] | F (v, w) ≤ α} ∈ [0, 1]. (10)

Although VaR is a widely used, it is not coherent unlike Conditional Value-

at-Risk (CVaR) (Rockafellar and Uryasev 2000, Sarykalin et al. 2008). For a

given α ∈ (0, 1] and w ∈ Sw, CVaR is defined as the expected value in the worst

α-quantile of the network performance

CVaRα
p (v, w) = E

[
v(x,w) | v ≤ VaRα

p (v, w)
]
∈ [0, 1]. (11)

To illustrate how risk measures can be employed, we reconsider the example

in Figure 2 and assume that the probability of disruption is 20% at each node

(i.e. pk = 0.20 for k = 1, . . . , 6). The probability density function (7) and the

cumulative probability function (8) are shown in Figure 4(a) and Figure 4(b),

respectively.

The expected number of connections, for example, is 7.97 and the proba-

bility of having exactly seven connections between suppliers and customers is

about 10%. There is a 16% probability that there are fewer than seven connec-

tions. Now, if it were to be required that the probability of having at least seven

connections must be higher than 90%, this network would not fulfil such a re-

quirement and it would be necessary to identify nodes at which risk management

actions could be implemented.

Insert Figure 4 around here.
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3.3 Importance Measures for Network Nodes

We evaluate the relative importance of network nodes in view of questions such

as: How much does the expected performance of the network improve if a node

is fortified by eliminating the possibility of disruption? How much does the

expected performance of the network decline if a node disruption does occur?

Will the performance of the network decline below some given performance level

if a selected set of nodes has been fortified or disrupted?

We start by considering the status quo network in which node k disrupts with

probability pk. Now, let pk=0 denote the probability vector of node disruptions

which is identical to p expect in that node k has been fortified, meaning that

the possibility of a disruption at node k has been eliminated so that pk=0
k = 0

and pk=0
l = pl, l 6= k. Similarly, let pk=1 be the probability vector which, again,

is the same as p except in that there is a sure disruption at node k, meaning

that pk=1
k = 1 and pk=1

l = pl, l 6= k.

From the viewpoint of directing actions that help maintain the expected per-

formance of the network, it is of interest to identify at which nodes disruptions

would cause the greatest decline in expected network performance. According

to this measure, called disruption impact, node k would be viewed as more im-

portant than node l if Epk=1 [v(x,w)] < Epl=1 [v(x,w)], given that the disruption

at node k would cause a greater decline in the expected performance of the

network than that at node l (here, the probability distribution with regard to

which the expectation is taken is shown in the subscript).

In order to improve expected network performance, one is interested in deter-

mining those nodes the fortification of which would result in the largest improve-

ment in the expected network performance. Specifically, this fortification impact

would be higher for node k than for node l if Epk=0 [v(x,w)] > Epl=0 [v(x,w)].

Insights into the relative importance of different network nodes can be gen-

erated by comparing (i) the expected performance of networks in which selected

nodes are disrupted or fortified with (ii) the expected performance of the status

quo network. That is, the disruption impact I1(k) = Ep[v(x,w)]−Epk=1 [v(x,w)]
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of node k shows how much the the expected network performance declines if

there is a disruption at node k. Similarly, the fortification impact I0(k) =

Epk=0 [v(x,w)] − Ep[v(x,w)] indicates how much the expected network perfor-

mance can be improved by fortifying node k.

For example, consider the transportation network in Figure 5 in which there

are twelve edges and nine nodes with disruption probabilities

p1 = p2 = p3 = 0.05, p4 = p5 = p6 = 0.10, and p7 = p8 = p9 = 0.20.

We assume that the performance of this network is measured by employing the

value function in (2). The disruption and fortification impacts for this network

are shown in Figure 6. For example, the expected performance decreases most if

there is a disruption at node 4. Conversely, the expected performance increases

most if node 8 is fortified to remain operational.

Insert Figure 6 around here.

Disruption impact and fortification impact are both results of sensitivity

analyses that can be extended to examine networks in which several nodes are

disrupted (i.e. pk = 1 for some k ∈ V1) or fortified (i.e. pk = 0 for some

k ∈ V0). That is, if the nodes in the set V0 ⊆ V remain operational and

those in the set V1 ⊆ V are disrupted (we assume that the sets V0 are V1

disjoint), then the probabilities of node disruptions in this modified network is

p̃ = [p̃1, . . . , p̃m] ∈ [0, 1]m, where

p̃k =






0, if k ∈ V0,

1, if k ∈ V1,

pk, otherwise.

If V = V0 ∪ V1, all uncertainties about node disruptions will be eliminated,

because the network state will be x = [x1, . . . , xm] where xk = 0 for all k ∈ V0

and xk = 1 for all k ∈ V1.

The disruption impact and fortification impact have here been defined in

terms of changes in the expected performance of the network. Yet, one could
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equally well examine what impacts possible disruptions and fortifications would

have on different risk measures of network performance, most notably on VaR

or CVaR. Also, when using the additive value function (1) with incomplete

information about attribute weights, then these impacts could be computed for

all the extreme points of the feasible weight set Sw in order to communicate to

the DM the ranges within which the resulting impacts would reside for different

choices of feasible weights (see e.g. Toppila and Salo 2013).

3.4 Securing the Performance of Networks

The performance of the network can be improved through risk management

actions. These actions can, for example, decrease the probability of node dis-

ruptions or they may entail the introduction of additional nodes and edges.

Figure 7 illustrates the decision to implement an action to protect a network

node. Without this action, the initial probability of disruption at node k is

pk. If the action is implemented, this probability becomes smaller, denoted by

p′k < pk.

Insert Figure 7 around here.

The introduction of additional nodes and edges may establish new routes

in the network so that possible disruptions have less impact. For example, to

illustrate how the addition of a node can improve the resilience of the network,

assume that the objective in the network of Figure 8 is to secure the connection

between nodes 1 and 3. Initially, there is only one connecting node 2 between

nodes 1 and 3. However, if node 4 and two additional edges are added, nodes 1

and 3 remain connected even if the node 2 is disrupted.

The introduction of additional nodes and edges can be viewed as risk man-

agement actions that decrease the disruption probabilities of the nodes. For

instance, if the disruption probabilities of nodes 2 and 4 are p2 and p4, re-

spectively, then there is a connection between nodes 1 and 3 with probability

1 − p2p4. Therefore, this additional node can be modeled by updating the
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disruption probability of node 2 to p′2 = p2p4 < p2.

Insert Figure 8 around here.

Usually, there are many actions that the DM can take to improve the re-

silience of the network, and the probability with which different levels of network

performance can be attained depends on which portfolio of actions is imple-

mented. We assume that there are r possible risk management actions and

qi = 1 if action i is implemented and qi = 0 if it is not, i = 1, . . . , r. The action

portfolio is given by a vector q = [q1, . . . , qr] ∈ Q = {0, 1}r. The total cost of

portfolio q is c(q) ∈ R+, and the available budget is b.

A portfolio of risk management actions is feasible if its cost is within budget

(i.e., c(q) ≤ b) and it satisfies possible logical constraints. For instance, if actions

1 and 2 are mutually exclusive, the constraint q1 + q2 ≤ 1 must hold. The set

of feasible portfolios is denoted by QF ⊆ Q. The objective is to determine

which feasible portfolio q ∈ QF satisfies the relevant risk constraints and is

best in terms of the selected objective, such as the maximization of expected

performance. Once the action portfolio q ∈ QF has been implemented, the

probability of the network state x ∈ X is

p(x | q) =
m∏

k=1

[xkpk(q) + (1− xk)(1− pk(q))] ∈ [0, 1], (12)

where pk(q) is the probability of disruption at node k when portfolio q has been

implemented. Likewise, the probability density function and the cumulative

probability distribution of network performance are denoted f(v, w | q) and

F (v, w | q), respectively.

This formulation is generic in that the disruption probability of each node

can depend on the entire portfolio of actions that are being considered. Thus,

if there are two actions which both impact the probability of disruption at a

given node and can be taken jointly, it would be necessary to estimate what the

probability of node disruption would be if both actions are implemented or if

only one of the actions is taken. More generally, if there are K different actions
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such that all combinations therefore can impact the probability of disruption at

node k, then it would be necessary to elicit 2K probability parameters for node

k.

In more typical case, however, different risk management actions pertain to

different nodes. Assuming that there is only one possible action at each node

(i.e. r = m) and that the action at node k decreases the disruption probability

to p′k < pk, the probability of disruption at node k is

pk(q) =






pk, if qk = 0,

p′k, if qk = 1.
(13)

When the DM seeks to maximize the expected network performance, as

measured by the value function, the objective is to determine which feasible

portfolios outperform others at different cost levels for all feasible weights. The

risk management portfolio q1 ∈ QF is dominated by portfolio q2 ∈ QF if and

only if Ep

[
v(x,w) | q1

]
≤ Ep

[
v(x,w) | q2

]
for all w ∈ Sw and Ep

[
v(x,w) | q1

]
<

Ep

[
v(x,w) | q2

]
for some w ∈ Sw.

Definition 1 Risk management portfolio q1 ∈ QF is dominated by portfolio

q2 ∈ QF , denoted by q2 � q1, if and only if Ep

[
v(x,w) | q1

]
≤ Ep

[
v(x,w) | q2

]

for all w ∈ Sw and (ii) Ep

[
v(x,w) | q1

]
< Ep

[
v(x,w) | q2

]
for some w ∈ Sw.

Moreover, if Ep

[
v(x,w) | q1

]
= Ep

[
v(x,w) | q2

]
for all w ∈ Sw, then port-

folios q1 and q2 are equally efficient, which is denoted by q1 ∼ q2. A feasible

portfolio is cost-efficient if (i) it is not dominated by any feasible portfolio which

costs at most as much and (ii) there is no other equally efficient portfolio that

costs less.

Definition 2 A feasible portfolio q1 ∈ QF is cost-efficient, denoted by q1 ∈

QCE ⊆ QF if and only if @q2 ∈ QF such that q2 �C q1 ⇔ (i) q2 � q1, c(q2) ≤

c(q1) or (ii) q2 ∼ q1 and c(q2) < c(q1).

Although Definitions 1 and 2 are defined in terms of the objective of maxi-

mizing the expected network performance, these definitions can be readily ex-

tended to account for feasibility constraints that arise from the consideration
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of risk measures such as VaR and CVaR, for instance. With incomplete weight

information, these constraints could be employed conservatively by requiring

that they hold for all extreme points of the feasible weight set.

3.5 Computation of Cost-Efficient Portfolios

The elicitation of preferences about the relative importance of objectives typi-

cally leads to linear inequalities which define a polyhedral set of feasible weights

Sw. To compare values of network performance v(x,w) with regard to all feasi-

ble weights, it is sufficient to examine the extreme points of the feasible weight

set Sext
w (Liesiö et al. 2008). These extreme points of a polyhedral set can be

computed using techniques of linear programming (see e.g. Taha 2003).

The following iterative algorithm can be used to determine cost-efficient

action portfolios QCE :

1: Initialize v(x,w) for all x ∈ X and w ∈ Sext
w

2: Q0 ← {[0, . . . , 0]}

3: for k = 1, . . . , r

4: Qk ←
{
q ∈ QF | qk = 1 ∧ ∃q′ ∈ Qk−1 : ql = q′l, l 6= k

}

5: Qk ← Qk \
{
q ∈ Qk | ∃q′ ∈ Qk−1 : q′ � q

}

6: Qk−1 ← Qk−1 \
{
q ∈ Qk−1 | ∃q′ ∈ Qk : q′ � q

}

7: Qk ← Qk ∪Qk−1

8: end for

9: QCE ← Qr

In Step 1, the criterion specific values and the overall values for network

states are initialized by using the extreme points of the set of feasible weights.

This can be time consuming if the values need to be computed through sim-

ulation models and therefore, it may be appropriate to consider only a subset

of possible states, for instance. In Step 2, the set of portfolios is initialized to

contain only an empty portfolio. In Steps 3 to 8, the index k iterates through all

risk management actions 1, . . . , r. In Step 4, a set Qk is constructed using set

Qk−1 so that only the values for column k are different. In Step 5 portfolios in
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Qk are compared to portfolios in Qk−1, and inefficient portfolios are discarded

from the set Qk. These comparisons require the computation of expected net-

work performance or other measure such as CVaR for each q ∈ Qk and w ∈ Sext
w .

In Step 6 inefficient portfolios are discarded from Qk−1 by comparing them to

portfolios in Qk. In Step 7 portfolios in Qk−1 are added to set Qk. In the final

Step 9, the set of cost-efficient portfolios is Qr.

4 An Illustrative Example

Consider the twelve node transportation network in which nodes S1, S2, and S3

represent suppliers and nodes C1, C2, and C3 represent customers (see Figure 2).

The objective is to serve as many customers as possible, subject to the following

preference statements about suppliers and customers. First, all connections from

supplier S1 to any one of its customers are at least as important as those between

supplier S2 and its customers; and similarly, connections between supplier S2

and its customers are at least as important as those between supplier S3 and

its customers. Second, for all suppliers, customer C1 is at least as important

as customer C2, which in turn is at least as important as customer C3. These

statements lead to the following linear inequalities on feasible weights

w1,1 ≥ w1,2 ≥ w1,3 ≥ w2,1 ≥ w2,2 ≥ w2,3 ≥ w3,1 ≥ w3,2 ≥ w3,3,

where wi,j represents the relative importance of the connection between supplier

Si and customer Cj . The probability of disruption is assumed to be pk = 0.20

at all nodes k = 1, . . . , 6. The DM states that she seeks (i) to maximize the

expected network performance and (ii) to maximize the probability that there

are more than four connections.

For each node, there are two mutually exclusive risk management actions, A

and B, of which the cost of action A is one unit and that of B is two units. Thus,

the total number of portfolios of actions is 36=729, given that at each node it is

possible to implement action A, B, or no action at all. Action A decreases the

probability of node disruption to 0.10 and action B decreases the probability to
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0.05. Cost-efficient portfolios are computed using the algorithm in Section 3.5.

The computation took a few seconds on a laptop computer (2GHz/4Gb).

The resulting 42 cost-efficient portfolios are presented in Figure 9 as a func-

tion of the total cost of actions. For instance, at the cost level 3, there are

three cost-efficient portfolios. These portfolios correspond to action B in node

5 and action A in node 1 or 2; and action A in node 5 and action B in node 1.

Furthermore, it can be seen, for example, that for cost levels exceeding 3, it is

always action B that is employed to protect node 5.

Insert Figure 9 around here.

The expected network performance of cost-efficient portfolios with regard to

cost levels is shown in Figure 10. Moreover, the probabilities of having more

than four connections for each of the cost-efficient portfolios are presented in

Figure 11.

Insert Figures 10 and 11 around here.

5 Discussion

From the computational perspective, one challenge in the application of this

framework is that the number of network states grows quickly as a function

of network size. That is, if the network has m nodes which are all vulnerable

to disruptions, there are 2m network states and, in principle, the performance

level of each network state would have to be estimated by relying on analytical

computations, simulation models or expert judgments (see e.g. Kangaspunta

and Salo 2014, Bedford and Cooke 2001).

However, in practice, attention can largely be focused on nodes that are

likely to be of greatest concern, in the sense that they have higher disruption

probabilities or have a more central position in the network. Also, if the dis-

ruption probabilities are small (say, below 10%), then introducing an additional
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disruption to an existing portfolio of m > 1 disrupted nodes would result in a

portfolio of disrupted nodes such that the probability of the augmented portfolio

would be by an order of magnitude smaller than that of the initial one. Such

observations can be employed to reduce the number of portfolios that would

have to be explicitly considered.

In our framework, we have assumed that individual node disruptions do not

depend on what other nodes are disrupted. Yet, in some situations there would

be interest in modeling dependencies so that the probability of disruption in

one node does depend on what other nodes have been disrupted: this would be

the case, for example, if the failure of a node increases the load on some other

node to the extent that the disruption probability of the latter node increases.

Analyses of such interdependencies could be captured through Bayesian analyses

(see e.g. Gelman et al. 2009, Langseth and Portinale 2007). One could even

admit incomplete information about disruption probabilities: for example, the

probabilities of node disruptions could be elicited by asking experts to express

statements on verbal scales and by mapping each such statement to an interval

of probabilities (see e.g. Toppila and Salo 2013).

The use of binary variables in modeling disruptions means that the nodes

are either fully operational or dysfunctional. To model different levels of node

performance more comprehensively, one could introduce multi-valued variables

in order to capture different gradations of node performance and, for instance,

to model the capacity that nodes in a transportation network have during rush-

hours or in the presence of minor road accidents (see e.g. Ramirez-Marquez

and Rocco S. 2009, Cormican et al. 1998). A potential challenge with the

introduction of multi-valued variables is that the overall number of network

states would quickly grow. That is, if three states are permitted for each node

in a network containing m nodes, the total number of network states would be

3m as opposed to 2m in a network with the same number of binary variables.

In attacker-defender situations, there is an interdictor who seeks to determine

which combinations of node disruptions would reduce the expected performance

of the network most. The objective function of such an interdictor can be mod-
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eled by replacing the original value function v(x,w) by vint(x,w) = 1− v(x,w).

The interdictor would seek to determine how he should expend his resources

to influence node disruption probabilities so that the network performance de-

teriorates as much as possible. But then the defender could anticipate that

disruptions at these nodes are more probable (because they are more attractive

for the interdictor) and therefore prepare by implementing risk management

actions at such nodes (see e.g. Powell 2007). Thus, given the strategic nature

of such expectations and actions, game theoretic approaches would be needed

to capture interactions in these kinds of attacker-defender situations (see e.g.

Parnell et al. 2010, Rios Insua et al. 2009, Bell et al. 2008).

One could also extend this framework by building scenarios to characterize

different states of the world in which the network is required to operate. For

instance, if the node disruptions probabilities depend on the weather, then it

could be beneficial to specify scenarios that represent different weather condi-

tions. Then, one could examine risk management actions in order to determine

if a given portfolio of risk management actions will offer a sufficiently high level

of network performance across all such scenarios; or, assuming that probabilities

can be associated with the different scenarios, to determine what the expected

level of performance of the network is when taking the expectations over all

such scenarios.

6 Conclusion

In this paper, we have developed a framework for assessing the risks of trans-

portation networks consisting of nodes and edges that may be disrupted due to

events such as natural hazards, technical failures, or intentional attacks. Start-

ing from estimates about the probabilities of these distributions, we are able to

characterize the cumulative probability distribution for the performance level

of the network. This resulting distribution synthesizes information about how

these disruptions (which may occur at a single node or many nodes simulta-

neously) affect the performance of the network. It also offers the foundation
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for choosing cost-efficient portfolios of risk management actions that best im-

prove the performance of the network, relative to the cost of implementing such

actions.

Our framework opens up avenues for further methodological and applied

research on the analysis of critical infrastructures and the planning and imple-

mentation of risk management actions. For example, although we have focused

on a single network, the simultaneous consideration of multiple interlinked net-

works consisting of, say, energy, transportation, and communication systems

calls for further methodological extensions that can be employed to improve the

resilience of these interdependent networks. Furthermore, the framework could

be extended to situations in which the disruption probabilities are contingent

not only on the selected risk management actions but also on the occurrence

of disruptions in other parts of the network or the presence of specific environ-

mental conditions depicted by scenarios.
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Tables and Figures
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Figure 1: Disrupted network caused by disruptions of nodes 3 and 4.
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Figure 2: A transportation network of three suppliers (S1−S3), three customers

(C1 − C3), and six intermediate nodes (1-6).
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Figure 3: Number of connections between suppliers and customers as a function

of the number of disrupted nodes. Numbers on the right side of the dots show

how many disruption combinations are at the same point.
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Figure 4: (a) Probability for different number of connections and (b) probability

that the number of connections is at most a given level.
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Figure 5: A network of of nine nodes and twelve edges.
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Figure 6: Changes in the expected performance of the network in Figure 5 due

to disrupted nodes (squares) and fortified nodes (circles). Horizontal line is the

expected performance of the status quo network.
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Figure 7: Decision tree for implementing an action to protect network node.
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Figure 8: The addition of a node may enhance the resilience of the network.
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Figure 9: Cost-efficient portfolios of actions for the network in Figure 2. Actions

A and B are indicated using grey and black markers, respectively.
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Figure 10: Cost-efficient portfolios with regard to expected network perfor-

mance.
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Figure 11: Cost-efficient portfolios with regard to the probability that the num-

ber of connections is more than four.
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