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Abstract

In this paper, we consider how the selection of partners in a virtual organisation
(VO) can be assisted through mixed integer linear programming (MILP) models, when
the configuration of VOs is based on a virtual organisation breeding environment
(VBE). Apart from our basic model – which focuses on the minimisation of fixed
and variable costs – we present extensions that accommodate transportation costs, al-
ternative measures for capacity risk, and inter-organisational dependencies due to an
earlier collaboration history. A real case study and computational experiments suggest
that our MILP models are tractable for problems of reasonable size and useful in VO
decision making.
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1 Introduction

Collaborative networks are becoming more important in global and regional business, thanks to

their ability to combine organisational competences. But as individual companies seek efficiency

gains by focusing on their core competences while outsourcing non-core operations, the degree of

inter-firm transactions grows considerably. This makes it imperative to manage network relations

well, which in turn calls for the development and deployment of decision support models that assist

companies in the management of these relations. [1, 2, 3]

The above trends have motivated extensive research into collaborative networks. Specifically, sev-

eral researchers have introduced the idea of a ‘club’ that consists of a set of member-organisations

with a mutually agreed cooperation structure for the creation of temporary, networked project

organisations called virtual organisations (VO) [4, 5, 6]. Here, we adopt the terminology of

Camarinha-Matos and Afsarmanesh [4], who call the club a virtual organisation breeding envi-

ronment (VBE). The VBE structure is characterised by a common ICT infrastructure, strategy, and

processes for agile VO creation, among others.

In this paper, we focus on the problem of selecting VO partners in a VBE. That is, when a VBE

identifies a business opportunity, it has to determine a ‘good’ VO configuration for meeting the

identified customer need; this is essentially an optimisation problem that can be formulated as a

mixed integer linear programming (MILP) model. To support the VBE in solving it, we develop

a model for allocating work among potential VO partners, taking into account fixed and variable

work costs, transportation costs, risks of capacity shortfall, as well as inter-organisational depen-

dencies. The explicit consideration of risks and inter-organisational dependencies, in particular,

are novel features that are motivated by real problems, such as our case example where partners

were selected for the construction of a magnetic clutch prototype for lorries. This notwithstand-

ing, these features have not yet received much attention by way of formal modelling or practical

application [7, 8]. They can be operationalised through decision criteria in conjunction with goal-
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programming techniques [9] or additive value functions [10].

The rest of this paper is structured as follows. Section 2 reviews earlier models on partner selection.

Section 3 develops the MILP model for VO partner selection. Section 4 presents a real-life case

example and illustrates the use of our MILP model. Finally, Section 5 concludes with suggestions

for further research.

2 Mathematical Methods for Virtual Organisation Partner Se-

lection

For some time, competition has changed from the level of individual firms towards rivalry among

company networks [3]. Through networking, companies can focus on their niche core compe-

tences, which may contribute to increased global efficiency [11]. Networking, however, involves

transaction costs [12] due to partner search and selection, among others [13], wherefore several

methods have been proposed for the reduction of these costs.

Several authors have developed VO partner selection methods that minimise a single criterion,

most notably the total costs over the VO’s life cycle. Ko et al. [14], Ip et al. [15], and Wu and

Su [16] present integer programming models to minimise total costs that consist of production,

operation, and transportation costs, for instance. Ko et al. [14] and Ip et al. [15] solve their mod-

els with heuristic tabu search and the branch-and-bound algorithm, respectively, while Wu and

Su [16] reformulate their model as a graph theoretic representation which is then solved with an

approximation algorithm. Feng and Yamashiro [17] define a “comprehensive cost function” which

is formed by adding costs due to processing activities, transportation, and earliness-and-tardiness.

They then carry out a qualitative pre-qualification of candidate partners in order to reduce the size

of the mixed integer non-linear program that must be solved. Ip et al. [18] present a somewhat
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different one-criterion model where the probability of success of a virtual enterprise is maximised.

They also develop a genetic solution algorithm, because their model is neither linear nor convex.

Despite the importance of costs, VO partner selection is inherently a multi-criteria decision-making

problem which involves several “soft” factors – such as corporate culture and social relations –

that cannot be readily captured by pure cost models. Further to this realization, Meade et al. [19]

introduce a framework for strategic alliance structuring where the criteria weights are determined

by the Analytical Network Process (which extends the Analytic Hierarchy Process (AHP) [20] by

permitting more complex criteria structures than plain hierarchies). Mikhailov [21] and Sha and

Che [22] address multiple objectives with the AHP, while Boon and Sierksma [23] employ direct

weighting of attributes. Furthermore, Mikhailov [21] develops a fuzzy programming method for

incorporating uncertain attribute weights and candidate scores into the AHP framework. Boon

and Sierksma [23] and Sha and Che [22] develop integer programming formulations and solve the

resulting problems with standard optimisation approaches, such as branch-and-bound methods.

Fischer et al. [7] account for inter-organisational dependencies among a group of organisations

in their model. They formulate their optimisation problem in VO selection as that of finding

the maximum weight path from a source to a drain in a digraph, and solve this problem with

an Ant Colony Optimisation algorithm. Fischer et al. [7] aggregate multiple criteria into a one-

dimensional objective function with the AHP. The goal-programming model of Talluri et al. [24],

in turn, seeks to minimise 1) costs, 2) distances, and 3) inception time, and to maximise 4) cultural

compatibility. The number of candidates – and thus the size of the model – is reduced by excluding

inefficient candidates to ensure computational tractability.

These developments notwithstanding, several topics of considerable practical relevance have re-

ceived little attention. First, hardly any multi-criteria models have dealt with inter-organisational

dependencies – including considerations such as inter-organisational trust, cultural homogeneity,

and success of past collaboration – which contribute to the expected success of future collaboration
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[4, 25, 26, 27]. Because these criteria need to be applied to a group of organisations (as opposed to

a single organisation), the resulting models tend to become more complex [7]. Second, few studies

have addressed the issue of risk management in partner selection, even though the minimisation of

risks due to capacity fluctuations and quality failures, for instance, are highly relevant.

In this setting, we develop novel models which account for inter-organisational dependencies and

capacity risks through additional selection criteria. With the help of these models, the decision

maker (DM) can identify configurations that are Pareto-efficient in the sense that there are no other

configurations which would perform at least equally well on all selection criteria and strictly better

on at least one criterion [28].

Another departure from earlier models is that the amount of work that is allocated to partners can

be a continuous quantity. This is motivated by two practical reasons. First, partners are rarely

selected according to the final project description: rather, at the outset of the VO creation process,

the project description is tentative so that it may be viable to allocate work on some tasks to several

partners. Second, during the VO creation, the project description and the proposed work allocation

are iteratively refined until the project is finally started. These phenomena can be better addressed

by using continuous work-allocation variables rather than discrete “machine-job” variables.

3 A Model of Collaboration

VO partner selection can be treated as a work-allocation problem. In Sections 3.1-3.3, we formu-

late our basic mixed integer linear programming (MILP) model. In Sections 3.4-3.6, this model

is augmented by considering transportation costs, risk metrics, and inter-organisational depen-

dencies. Section 3.7 discusses the treatment of multiple criteria, and finally Section 3.8 presents

additional features, such as overwork pricing and capacity transfer.
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3.1 Parameters and Variables

Let M = {1, . . . ,m} denote the set of candidate partners in the VBE. At the outset, the VBE iden-

tifies a business opportunity which is to be addressed by carrying out a project for the Customer.

The project tasks are denoted by N = {1, . . . , n}, and task j ∈ N involves a workload wj which

is measured in relevant units (e.g. person months). Table 1 summarises all relevant parameters

and variables. Here, continuous x’s denote the work allocation of individual candidates, binary y’s

pertain to individual candidates, and binary z’s relate to multiple partner candidates.

PLEASE INSERT TABLE 1 ABOUT HERE

In the basic model, the following parameters are collected from the candidates and relevant data

bases:

Ci,j = distribution of the capacity (i.e., amount of work) that candidate i can perform on task j

(e.g. person months),

pi,j = probabilities associated with the capacity distribution Ci,j ,

vi,j = variable costs of candidate i working on task j (e.g. e /person month),

fi = fixed cost of introducing candidate i into the VO,

fi,j = fixed cost of candidate i starting to work on task j.

Capacity information is given through discrete probability distributions. In what follows, ck
i,j de-

notes the kth element of Ci,j and pi,j(k) is the corresponding probability. Without loss of gen-

erality, it can be assumed that ck
i,js are sorted in descending order so that c1

i,j = maxk ck
i,j . The
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probabilities sum up to one, i.e.,
∑

k pi,j(k) = 1. Thus, the expected capacity that candidate i

devotes to task j is

E[Ci,j] =
∑
k

pi,j(k)ck
i,j ∀ i ∈ M, j ∈ N.

The decision variable is the work-allocation matrix Xm×n where the element xi,j denotes the

amount of work that candidate i performs on task j. The following auxiliary variables based

on x’s are defined to facilitate the model formulation. Let

yi =


0, if xi,j = 0 ∀ j ∈ N

1, if xi,j > 0 for at least one j ∈ N.

Thus, yi is equal to one if and only if candidate i performs some work in the project, and zero

otherwise. Also, let

yi,j =


0, if xi,j = 0

1, if xi,j > 0.

That is, yi,j indicates whether or not some work on task j is allocated to candidate i. The distinction

between yi and yi,j is that the former tells whether candidate i is involved in the project at all,

whereas the latter indicates, in case yi = 1, which tasks i is involved in. Thus, if yi = 0 for some

i, then yi,j = 0 ∀ j. Again, if yi = 1 for some i, then yi,j = 1 for at least one j.
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3.2 Objective Function

Our basic model has a single cost criterion which accounts for the candidates’ variable and fixed

costs, i.e.,

min
X,Y

Cost(X,Y ) =
m∑

i=1

fiyi︸ ︷︷ ︸
(I)

+
n∑

j=1

m∑
i=1

(vi,jxi,j + fi,jyi,j)︸ ︷︷ ︸
(II)

, (1)

where the work allocation matrix Xm×n contains x’s and the matrix Ym×(n+1) contains the y’s. In

the objective function, the first term (I) is the sum of fixed costs due to the addition of partners

to the VO, while the second term (II) covers the fixed and variable costs due to the work that

the partners perform on their respective tasks. This function is flexible in that some costs can be

ignored if they are irrelevant.

3.3 Constraints

The two types of constraints in the optimisation problem ensure that all project demands are met,

and that the optimal solution is feasible.

Starting with project constraints, the workload of each task has to be completed, i.e.,

m∑
i=1

xi,j ≥ wj ∀ j ∈ N. (2)

Furthermore, the workload that is allocated to a candidate must not exceed its maximum capacity:

xi,j ≤ c1
i,j ∀ i ∈ M, j ∈ N.
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Because the partner may not be able to devote its maximum capacity to the task, a less risky

approach is to constrain the workload by the partner’s expected capacity so that xi,j ≤ E[Ci,j]

(we shall address capacity risks at greater length in Section 3.5). Finally, workloads must be non-

negative:

xi,j ≥ 0 ∀ i ∈ M, j ∈ N.

Continuing with feasibility constraints, correct values for binary yis are ensured by the constraints:

yi ≥
∑

j∈N xi,j∑
j∈N wj

− ε and yi ≤
∑

j∈N xi,j∑
j∈N wj

− ε + 1 ∀ i ∈ M. (3)

Here, the numerators denote the total amount of work that is allocated to candidate i while the

denominator is the total workload of the project: thus, these quotients are equal the proportion of

the projects’ workload that is allocated to candidate i. Furthermore, ε corresponds to the proportion

of the total workload that a candidate has to exceed in order to be considered a relevant VO partner.

In consequence, yi = 1 if at least ε×100 percent of the projects’ workload is allocated to candidate

i, and yi = 0 otherwise. In the first expression of (3), the denominator is needed to keep the

right hand side below one. Otherwise, if the right hand side increased above one, the model

would become infeasible because yi is a zero-one variable. Similarly, in the latter expression, the

denominator is needed to push the right hand side below one if not enough work is allocated to

candidate i.

The following constraints ensure that the binary yi,j’s assume correct values:

yi,j ≥
xi,j

c1
i,j

, ∀ i ∈ M, j ∈ N s.t. c1
i,j > 0. (4)

That is, yi,j = 1 if at least some work of task j is allocated to candidate i, and yi,j = 0 otherwise.

No upper constraint for yi,js is needed, because increasing these binary variables from zero to one
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results in higher total costs, meaning that the yi,js remain at zero level if this is feasible. If one

introduces additional decision criteria such that the benefit increases when yi,j = 1, then an upper

bound similar to that for yis becomes necessary.

In summary, our basic optimisation model can now be stated as

min
X,Y

Cost(X, Y ) =
m∑

i=1

fiyi +
n∑

j=1

m∑
i=1

(vi,jxi,j + fi,jyi,j)

s.t.
m∑

i=1

xi,j ≥ wj ∀ j ∈ N

xi,j ≤ c1
i,j ∀ i ∈ M, j ∈ N

yi ≥
∑

j∈N xi,j∑
j∈N wj

− ε ∀ i ∈ M

yi ≤
∑

j∈N xi,j∑
j∈N wj

− ε + 1 ∀ i ∈ M

yi,j ≥
xi,j

c1
i,j

, ∀ i ∈ M, j ∈ N s.t. c1
i,j > 0

xi,j ≥ 0 ∀ i ∈ M, j ∈ N

yi ∈ {0, 1} ∀ i ∈ M

yi,j ∈ {0, 1} ∀ i ∈ M, j ∈ N.

3.4 Transportation Costs

We begin our discussion of transportation costs with the following example of an existing VBE,

presented by the CeBeNetwork GmbH (http://www.cebenetwork.com). CeBeNetwork is a “strate-

gic supplier” for Airbus, with numerous projects in areas such as aerodynamics R&D, wind-tunnel

testing, and IT systems development for aircrafts. For instance, an IT project typically involves

both software and hardware solutions. The development of software does not involve transporta-

tion needs, but hardware equipment must be transported from the manufacturing site of CeBeNet-

work to the Airbus manufacturing site.
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In general terms, we consider a manufacturing VO where each partner supplies a specific com-

ponent which is part of the end-product. At each point of the manufacturing process where two

or more components are assembled together, these components must be at the same site. In con-

sequence, the components must be transported to the assembly site if the assembly does not take

place at the same site where the components are manufactured.

Transportation costs are caused mainly by two factors, 1) geographical distance and 2) volume

and weight of the cargo. For instance, it may be possible to compensate the cheaper labour costs

of a far-away manufacturing site by the lower transportation costs from a near-by site. Thus,

the operational costs discussed in Section 3.2 must be augmented by considering transportation

costs, too. This can be achieved only by explicating the sequence of tasks that are involved in the

assembly of the physical product.

For instance, consider a project of three tasks. Assume that output of Task 1 must be made available

to the same site where Task 3 is carried out and that the volume of this transportation is 5 units.

The corresponding task sequence can be illustrated with the simple network of Figure 1a. Because

Task 2 does not have physical connection to Tasks 1 or 3, it is shown as a disconnected node. For

instance, Task 1 could correspond to the manufacturing of a microchip, which is assembled into the

end-product in Task 3. Task 2, in turn, could represent software development for the end-product.

PLEASE INSERT FIGURE 1 ABOUT HERE

Assume that we have four partner candidates, between which the unit transportation costs are as

shown in Figure 1b. Moreover, we assume that Candidates 1 and 3 are capable of performing

Task 1, while Task 3 can be performed by Candidates 1 and 4. Figure 1c integrates the information

of Figures 1a and 1b, as well as information about which candidates can perform the corresponding

tasks. Thus, depending on the work allocation of Tasks 1 and 3, the transportation costs are as

shown in Figure 1c.
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The above concepts can be formalised as follows. Let r = (r′, r′′) denote a pair of tasks such

that the (physical) output of task r′ must be at the same location where task r′′ is carried out

(see Figure 1a). Let R denote the set of all such pairs. For each (r′, r′′) ∈ R, let δr′,r′′ be the

corresponding output volume of task r′ (measured in a relevant unit, e.g. kg). For instance, in the

example of Figure 1, R consists of one pair only, namely (1, 3), with the volume of δ1,3 = 5.

The unit cost of transportation can be presented as a graph whose nodes correspond to the candi-

date partners and whose edges represent the unit transportation costs between adjacent nodes (see

Figure 1b); specifically, for candidates a and b, these unit costs are denoted by ta,b. In Figure 1b,

for instance, we have t1,4 = 6.

For each pair (r′, r′′) ∈ R, we have two sets of candidates, i.e., (i) those that are capable of per-

forming task r′ and (ii) those that are capable of performing task r′′ (see Figure 1c). These two

sets are connected by edges between the candidates, such that each edge represents the transporta-

tion cost from one candidate to another, in accordance with the relation (r′, r′′). For instance, in

our example, if Candidate 1 were to perform Task 1 and Candidate 4 were to perform Task 4, the

transportation costs would be 5× 6 = 30, because δ1,3 = 5 and t1,4 = 6.

Transportation costs can now be incorporated into our MILP model as follows. For any given pair

of tasks r = (r′, r′′), we define the binary variable zr
a,b

zr
a,b =


0, if ya,r′ = 0 or yb,r′′ = 0

1, if ya,r′ = 1 and yb,r′′ = 1
∀ r ∈ R, a, b ∈ M s.t. c1

a,r′ ≥ wr′ and c1
b,r′′ ≥ wr′′ ,

where this definition applies for all pairs of candidates a, b such that a is capable of performing

task r′ and b can perform task r′′. Thus, zr
a,b is one if tasks r′ and r′′ are enabled by transportation

between candidates a and b; otherwise zr
a,b is zero. In addition, the following constraints are
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needed:

zr
a,b ≤

ya,r′ + yb,r′′

2
and zr

a,b ≥ ya,r′ + yb,r′′ − 1. (5)

The first of these constraints ensures that zr
a,b is zero if tasks r′ and r′′ are not allocated to candidates

a and b, respectively. The second constraint ensures that zr
a,b is one if candidates a and b work on

tasks r′ and r′′, respectively.

The total transportation costs can now be written as

CostTRANS =
∑
r∈R

δr′,r′′ta,bz
r
a,b.

The above cost function is linear, thus the objective function (1) remains linear even when trans-

portation costs are accounted for.

Under normal conditions, we can assume that infrastructure is reliable and therefore a transporta-

tion partner is available. However, if selecting the right transportation partner is crucial to the

success of the project, then each r ∈ R can be associated with a new task of the project. Thus, the

selection of partners for these tasks is done similarly to other tasks. In this way, the DM can also

cater for possible risks related to transportation, as shown in the following section.

3.5 Capacity Risks

Risk management is vital due to the possibly adverse impact of uncertainties in the partners’ indi-

vidual or collaborative behaviour [29]. Hallikas et al. [30] suggest that there are two main sources

of uncertainties, namely customer demand and customer delivery, i.e. supply. Because the VO
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partner selection process is triggered by a business opportunity – or realised demand – demand

risks are largely beyond the scope of this paper. In our case it is meaningful to consider risks

through fluctuations in capacity, where risks are realised through the costs of the reconfiguration

of the VO. The reason for this is that project finance, i.e. payment from customer, is normally

risk-free, excluding force majeure reasons such as customer’s bankrupt.

In Section 3.1, capacities were specified as discrete probability distributions. Several reasons sug-

gest that this level of accuracy is often sufficient. First, small capacity fluctuations do not usually

matter, because organisations can adapt themselves to such fluctuations; thus, the DM is interested

in large fluctuations that may call for the reconfiguration of the VO. Second, the ex ante assessment

of minor fluctuations is difficult, which means that the DM may have to accept rough risk estimates

[30]. A discrete distribution is sufficient for this purpose.

The management of capacity risks calls for a risk measure. Among alternative measures, expected

downside risk (EDR), introduced by Eppen et al. [31] for capacity-risk management, is suitable for

our purposes, largely because it can be interpreted as the expected shortfall from the given target

value (in our case the allocated work). Recently, EDR has also been adopted in the context of in-

vestment portfolio optimisation [32]. This measure belongs to the family of mean-risk dominance

models [31, 33] which are discussed at some length in Gustafsson and Salo [32].

Arguably, it is more meaningful to measure capacity risk as the expected shortfall from a target

value or – more specifically in our case – the allocated workload than as variance. This is because

variance-based measures indicate ‘risk’ whenever there are capacity uncertainties; yet, if the ca-

pacity varies well above the required level, the DM is not faced with risks. Thus, variance-based

risk measures would be misleading.
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In our model, the EDR of Candidate i’s work allocation on task j is

ρEDR
i,j =

∑
k

ck
i,j

<xi,j

pi,j(k)(xi,j − ck
i,j).

That is, ρEDR
i,j is the expected value of downside difference between the amount of work on task j

that is allocated to Candidate i, on one hand, and i’s capacity on this task, on the other hand. The

summation is taken over those events ck
i,j that would result in capacity shortfall, subject to the

allocation of workload xi,j .

In order to incorporate EDR into our model, let ck+
i,j ≥ 0 and ck−

i,j ≥ 0, denote the positive and

negative difference of ck
i,j − xi,j for any given ck

i,j ∈ Ci,j . The correct values of ck+
i,j and ck−

i,j can be

ensured with constraints:

xi,j − ck−
i,j + ck+

i,j = ck
i,j ∀ i ∈ M, j ∈ N, ck

i,j ∈ Ci,j.

The formula for EDR becomes

ρEDR
i,j =

∑
k

pi,j(k)ck−
i,j ,

where the summation is taken over the probability distribution pi,j(k). However, only capacity

realisations below the target level contribute to the risk measure, because ck−
i,j s are equal to zero

otherwise. The total EDR of a VO configuration can thus be expressed as the sum
∑

i

∑
j ρEDR

i,j .

Risk management based on EDR can be captured by our MILP model either through goal program-

ming (e.g. through linear constraints such as ρEDR
i,j ≤ EDRmax) or through a value function that

relates risks to costs. These approaches require parameter estimates, either in terms of accepted
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risk-levels (EDRmax) or through the explication of tradeoffs between cost and capacity risk. From

the dynamic perspective, if the project involves tasks whose completion is crucial to the comple-

tion of several other tasks, such tasks can be weighted more heavily in the model formulation: for

example, one can associate lower accepted risk-levels or higher cost-of-risk with critical tasks.

3.6 Inter-organisational Dependencies

The collaborating entities can be individual workers, intra-organisational teams, business units, or

distinct companies, for instance. The level at which collaboration is analysed depends on the case

at hand. Nevertheless, work performed in collaboration causes transaction costs that would not

exist if one entity performed the job. At the partner selection phase of VO creation it is unrealistic

to estimate the transaction costs that arise during the VO life-cycle. Therefore, it is more practical

to study non-monetary indicators that influence the size of transaction costs over the VO life-cycle.

One such indicator – which can be measured relatively easily – is the number of past collaboration

activities between partner candidates. It is reasonable to assume that the more the companies have

collaborated earlier, the better they know each other’s ways of action, which reduces the transaction

costs of collaboration. In contrast, examples of measurable indicators that may increase transaction

costs are geographical distance and linguistic difference. When used as partner selection criteria

in VO configuration, we refer to these indicators as network preparedness criteria.

The network preparedness criteria differ from traditional selection criteria (e.g. cost or quality) in

that their measurement involves two or more companies (i.e., one cannot measure ’geographical

distance’ for a single company). The traditional selection criteria are usually applicable to a single

company [34]. The measurement of inter-organisational performance is more viable in the man-

agement of a VBE than in an “open universe” of organisations. This is because the VBE members

collaborate repeatedly, which permits the collection of data about inter-organisational performance

[4]. Thus, considerations such as trust, success of past collaboration, and congruence between or-
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ganisational culture and objectives can be employed as potentially useful criteria for VO partner

selection in a VBE.

The following formulation shows how inter-organisational dependencies are incorporated into our

model, using collaboration history as an instance of network preparedness criteria. Network re-

lations are commonly described through graphs where edges represent interrelationships between

organisational pairs [35]. For instance, Figure 2 illustrates the collaboration history of four ficti-

tious companies. Here, Companies 2 and 3 have collaborated in one past project, and Companies

3 and 4 have collaborated in two earlier projects. Company 1 has no earlier collaboration with any

of the others.

PLEASE INSERT FIGURE 2 ABOUT HERE

In order to incorporate inter-organisational dependencies into our model, we define a binary vari-

able za,b ∈ {0, 1} which indicates whether or not a particular pair of candidates is selected into the

VO. Formally, we let

za,b =


0, if ya = 0 or yb = 0

1, if ya = 1 and yb = 1.

In other words, za,b is one if some work is allocated to both candidates a and b, and zero if work is

allocated to neither candidate or only one of them. This variable permits the modelling of bilateral

relations, of which the collaboration history in Figure 2 is but one example.

For z, we need the following constraints:

za,b ≤
ya + yb

2
and za,b ≥ ya + yb − 1 ∀ {a, b} ⊂ M, (6)
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The former constraint ensures that za,b is strictly less than one if either ya or yb is zero, while the

latter ensures that za,b is one if both ya and yb are equal to one.

Next, we define a measure for using collaboration history as a selection criterion. First, let ea,b

denote the number of earlier collaboration activities between companies a and b, and let emax be the

maximum number of earlier collaboration activities that one partner candidate has. For instance,

considering Figure 2, we have e2,3 = 1, e3,4 = 2, and emax = 3, which is due to Candidate 3.

When the VBE has a documented collaboration history, the following linear measure can be used

to represent the benefits that accrue from earlier collaboration:

γLIN(Y, Z) =
∑
i∈M

emaxyi −
∑

a,b∈M
a<b

ea,bza,b. (7)

Here, Z is the m × m matrix of zs. The first sum-term of γLIN increases by emax whenever the

number of partners in the VO configuration is increased by one. The second sum-term, in turn,

subtracts from this the number of earlier collaboration activities the new partner has. Hence, γLIN

increases whenever a new partner is added into the configuration, unless this new partner has emax

collaboration activities with the partners that are already part of the configuration. Assuming the

DM prefers a small number of partners and an active collaboration history, then a configuration

with a small γLIN is preferred to one with a large γLIN.

In general, the main use of collaboration data is to help determine which subsets of a VBE have

higher expected collaboration strength, in view of the earlier track record of more or less successful

collaboration activities. This and other network preparedness criteria (e.g., geographical distance)

can be incorporated into our MILP model with the z variables.
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3.7 Multi-criteria Analysis

Our optimisation framework has three types of selection criteria for the VO configuration: 1) total

costs, 2) capacity risks, and 3) collaboration strength. We have proposed a linear measure for each

objective; but since these measures are not commensurate, the DM needs to consider these multiple

objectives explicitly.

First, the DM can employ goal-programming. Here, one of the objectives is typically optimised

while the other objectives are required to perform at some satisfactory level. Implicitly, we have

already done this when requiring that the task workloads much be fulfilled (see 2): that is, the

completion of the project is so important that no tradeoffs against other criteria are allowed. If

all target levels can not be reached simultaneously, then the DM may wish to minimise the total

deviation from target levels. [9]

Second, the DM can aggregate the different objectives through a value function which reflects his or

her preferences for the relative importance of the selection criteria [10]. These preferences can be

captured by eliciting criteria weights with methods such as SMART [36], SWING [37], SMARTS

or SMARTER [38]. The properties of these methods have been examined in several empirical

studies [39, 40, 41, 42]. In the value function framework, the value of a VO configuration to the

DM is the weighted sum of scores on each criterion. Because the resulting additive value function

is linear in scores, it can be readily maximised in the MILP framework.

We find that goal programming techniques are suitable for networks whose management is largely

based on performance measurement. This is because these techniques help managers set aspiration

levels for different performance indicators. Value functions, in turn, may be suitable for networks

that favour group decision-making. With the above weight-elicitation techniques, groups can gen-

erate weights that illustrate the relative importance of different criteria. For instance, SMARTS

and SMARTER can be used even with little experience of weight elicitation, whereas SMART,
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SWING, and direct weighting are suggested for more experienced decision makers. Networks

using value functions can also adjust criteria weights through learning from past decisions.

3.8 Additional Features

The MILP model can be extended through modifications from problems such as capital budgeting,

job-shop scheduling, and portfolio selection, which all have connections to our partner selection

model [9]. For instance, Common capacity between several tasks can be captured through an addi-

tional constraint such as xi,a + xi,b ≤ ci,ab. Cardinality constraints on the number of organisations

that may take part in performing some task can be modelled through binary variables: for instance,

if task j denotes project management activities that must be performed by a single organisation,

we add the constraint
∑

i yi,j = 1.

Overwork pricing is captured with a new variable x+
i,j which denotes work in excess of the capacity

c1
i,j . The capacity constraint now consists of two equalities, xi,j − x+

i,j ≤ c1
i,j and x+

i,j ≤ c1+
i,j , of

which the latter one puts an upper bound for the amount of overwork. The cost function takes an

additional term v+
i,jx

+
i,j , where v+

i,j is the marginal variable cost of overwork.

Capacity transfer between the members of the VBE can be modelled with the variable ∆j
a,b, which

denotes the transfer of capacity from a to b in relation to task j. Moreover, every ck
a,j in the

constraints must be replaced by ck
a,j−∆j

a,b, and every ck
b,j by ck

b,j +∆j
a,b. The possibility of capacity

transfers opens up exciting possibilities for hedging against capacity risk by using capacity option-

contracts [43]. If a VBE member sells a capacity option, the owner of the option has the right but

not the obligation to use the capacity of that member. The price of using the capacity is agreed

in the option contract. Using capacity options, a VO manager has a portfolio of VO partners for

his/her project, augmented by substitute companies (i.e. the subjects of the option contracts) if an

initially selected VO partner cannot manage its workload.
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Additional selection criteria which pertain to a single partner can be captured using the binary

yi variables; these criteria may cover aspects such as quality of outputs or financial status of the

partner (for a list of 183 evaluation attributes, see[44]). For instance, if qi denotes the quality level

of candidate i, the quality of a VO configuration can be approximated by the sum
∑

i qiyi. Further-

more, additional criteria that rely on the comparison of two partners can be captured by introducing

binary variables, analogously to consideration of the collaboration history in Section 3.6.

4 Case Study: Magnetic Clutch Prototype for Lorries

We illustrate the use of the model with a partner-selection example of an existing VBE, the Virtuelle

Fabrik AG (http://www.vfeb.ch). The VBE operates in North-Eastern Switzerland, offering the

services of some 70 companies in the field of machinery manufacture. Recently, they have had

projects for instance for car and energy industries.

4.1 Project Description

We applied our MILP model to a real-life case of Virtuelle Fabrik, where partners were to be

selected for a project ordered by a large German car manufacturer. The aim of the project was to

devise and construct a prototype magnetic clutch to be used in lorries. We performed the case study

in close collaboration with the manager of Virtuelle Fabrik, who also contributed by suggesting

many of the features presented by the current model. The following describes the use of our model

with real data.

The project was broken down into nine tasks, which were 1) Grinding, 2) Gear milling, 3) Metal

sheet forming, 4) Milling and turning of bigger parts, 5) Welding, 6) Bending of pipes, 7) En-
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gineering, 8) Milling and turning of smaller parts, and 9) Project management. Moreover, the

tasks needed to follow a tight schedule set by the end customer. For each task, there were two

to five partner candidates, some of which were candidates for several tasks, so that there were 21

partner candidates altogether. The candidates were chosen on the basis of their competences and

availability during the project.

There were three selection criteria in the following order of declining priority: 1) minimise delay

risks, 2) maximise earlier collaboration, and 3) minimise costs. The project had a tight schedule,

thus minimisation of risks was most important. Moreover, successful collaboration history was

expected to contribute to finishing the project in time. Costs were in this case the least important

criterion.

Each partner candidate was given a probability distribution for finishing the tasks in time based

on historical performance. The probabilities associated with the capacity distributions were the

only parameters that had to be estimated. Data on the candidates’ collaboration history was readily

available (see Figure 3), and candidates’ costs for finishing the tasks were known. Altogether, 288

parameter values were estimated or acquired from databases and bids from partner candidates.

Explaining the model to the DM, data gathering, parameter estimation, and the interpretation

of the results took about one day in total. This, however, does not include the planning of the

project, which is beyond the scope of partner selection. The DM was already familiar with the

concepts of this paper since Virtuelle Fabrik has been a partner in our ECOLEAD research project

(http://www.ecolead.org), which probably expedited the process. The required time can be reduced

further by systemising the data gathering and parameter estimation.

PLEASE INSERT FIGURE 3 ABOUT HERE
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4.2 Partner Selection

The problem was to select a good VO configuration for the project, subject to the above information

on the project and candidate partners. This problem was essentially that of allocating the task

workloads to partners, in recognition of their capacities and the decision criteria that are relevant

to the evaluation of alternative VO configurations.

In the analysis of this case, six Pareto-efficient configurations were identified using our optimisa-

tion framework implemented in Java. The calculations were carried out with the lp_solve software

(available at http://groups.yahoo.com/group/lp_solve/). Finding one Pareto-efficient configuration

takes a few seconds on a normal PC (1.2 GHz Intel processor with 1 GB of RAM). Table 2 presents

the performance of these configurations on the three selection criteria. The configurations have

been sorted first by risk, second by collaboration, and third by cost, which was also the relative im-

portance of the selection criteria. Hence, Configuration 1 would best reflect the DM’s preferences.

PLEASE INSERT TABLE 2 ABOUT HERE

The risk-measure used was the EDR, where a smaller score is preferred to a greater one, zero

being the theoretically best. The collaboration-score is calculated using the γLIN-measure (7) that

accounts for earlier collaboration as well as for the total number of partners in a configuration. Also

here a smaller score is preferred. Cost is the expected total cost in Euros, based on the candidates’

prices.

In Table 3 we have made a sensitivity analysis on the partner candidates. The score after each

candidate represents the percentage of Pareto-efficient configurations in which the work of the

corresponding task has been allocated to the candidate. This score can be interpreted as a measure

of robustness in the sense that a partner with a high score is a good choice despite the relative

importance of the selection criteria [45].
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PLEASE INSERT TABLE 3 ABOUT HERE

The manager of Virtuelle Fabrik was particularly satisfied with the model’s capability to highlight

inter-organisational dependencies; for a DM, it is difficult to intuitively see synergies of differ-

ent VO configurations. Moreover, scoring methods that evaluate partner candidates individually

cannot either account for inter-organisational dependencies.

5 Conclusions and Further Research

In this paper, we have developed multi-criteria optimisation models for the VO partner-selection

problem in a VBE. Our models allow the DM to apply several selection criteria to the analysis of

alternative configurations either by using goal programming techniques or additive value functions

(see, e.g., [10]). These models extend earlier research also by considering the risks of individual

VO failures and inter-organisational dependencies (say, due to the earlier collaboration history).

Computationally, our models are tractable in problems of reasonable size, and enable the devel-

opment of decision support systems that assist the DM in assessing alternative VO configurations.

Such support systems can be highly useful when the DM seeks to identify Pareto-efficient VO

configurations, even through the actual selection of VO partners is unlikely to be fully relegated to

an optimisation model.

Because the VBE supports the creation of VOs from a relatively stable set of members, it is in a

good position to collect data on its members. Thus, the VBE can consider even additional selection

criteria in VO configuration in order to account for aspects such as earlier collaboration history,

degree of mutual trust, or similarity of ICT infrastructures [4]. Numerical parameter estimates

on these aspects can be obtained by using accumulated databases, by soliciting expert opinions,

or by collecting bids from candidate partners. However, if the VBE has not been able to collect
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performance data from its members, the availability of parameter estimates may limit possibilities

for the development and deployment of MILP models.

Experiences from our case study with a real VBE suggests that the formulation and solution of

proposed models can be quite helpful in partner selection. This is, in part, due to their ability to

capture inter-organisational dependencies that can be difficult to address without explicit decision

support. Another domain with considerable potential for the use of models consists of problems

where the VBEs carry out repeatedly one-off projects with high uncertainties (say, due to factors

such as technological success).

This research suggests several topics for further research. First, the identification of substitute

partners for hedging against capacity risk can be of considerable value, and could be implemented

through capacity option-contracts; in effect, although capacity option contracts have been stud-

ied in supply chains [46], they have received little attention in the context of temporary virtual

organisations. Second, because it may be difficult or prohibitively expensive to acquire complete

information about all the relevant model parameters (e.g. characteristics of candidate partners,

DM’s preferences for the evaluation criteria), preference programming methods [47] that deal with

incomplete information explicitly may be useful in VO creation, too. Third, efficient algorithms

and heuristic approximative approaches for finding the set of Pareto-efficient VO configurations

may be needed. Here, the recently developed Robust Portfolio Modelling method is one promising

approach [45].
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Figure 3
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Legends for Figures

Figure 1: An Example of Transportation Parameters

Figure 2: An Example of Candidates’ Collaboration History

Figure 3: Collaboration history of some members of Virtuelle Fabrik (line thickness corresponds

to intensity)
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Table 1: Parameters and Variables
Parameters Definition

Ci,j distribution for candidate i’s capacity on task j

ck
i,j kth element of Ci,j

ea,b intensity of earlier collaboration between candidates a and b

fi fixed cost of candidate i’s work on the project

fi,j fixed cost of candidate i’s work on task j of the project

i index for candidates

j index for project’s tasks

k index for the candidates’ capacity distributions

m number of candidates

n number of tasks in the project

pi,j(k) probability that candidate i’s realised capacity on task j is ck
i,j

ta,b unit transportation cost between candidates a and b

vi,j variable cost of candidate i’s work on task j

wj workload of task j

δr′,r′′ quantity of transportation required between tasks r′ and r′′

ρRISK
i,j capacity risk of i’s work on task j, using risk measure RISK

Variables

xi,j candidate i’s work allocation on task j

yi takes value one if i is selected into the VO; zero otherwise

yi,j takes value one if i performs work on task j; zero otherwise

za,b takes value one if both candidates a and b are selected into the VO;

zero otherwise

zr
a,b takes value one if candidates a and b perform tasks r′ and r′′, respec-

tively, and transportation is required between tasks r′ and r′′; zero

otherwise
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Table 2: Performance of six Pareto-efficient configurations on three selection criteria

Task \ Configuration 1 2 3 4 5 6

Bending of pipes SMA SMA SMA SMA SMA SMA

Engineering Schuler Schär Engineering Schär Engineering AE&P AE&P AE&P

Gear milling Okey AG Okey AG Okey AG Okey AG Okey AG Okey AG

Grinding Brunner Brunner Brunner Brunner Brunner Brunner

Metal sheet forming Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher

Milling bigger parts SMA SMA SMA SMA OMB SMA

Milling smaller parts Innotool Innotool Innotool Innotool Innotool Innotool

Project management VF AG Schär Engineering VF AG AE&P AE&P VF AG

Welding Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher Beni Burtscher

Performance (all criteria to be minimised):

Risk 0.25 0.75 0.75 1.25 1.25 1.75

Collaboration 86 73 83 70 94 81

Cost 131312 132116 123215 124005 121934 122057

36



Table 3: Sensitivity Analysis

Task Robustness of Partner Candidates

Bending of pipes SMA: 100

Engineering AE&P: 50 Schär Engineering: 33 Schuler:17

Gear milling Okey AG: 100

Grinding Brunner: 100

Metal sheet forming Beni Burtscher: 100

Milling of bigger parts SMA: 83 OMB: 17

Milling smaller parts Innotool: 100

Project management VF AG: 50 AE&P: 33 Schär Engineering: 17

Welding Beni Burtscher: 100
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